JP4361743B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4361743B2
JP4361743B2 JP2003044295A JP2003044295A JP4361743B2 JP 4361743 B2 JP4361743 B2 JP 4361743B2 JP 2003044295 A JP2003044295 A JP 2003044295A JP 2003044295 A JP2003044295 A JP 2003044295A JP 4361743 B2 JP4361743 B2 JP 4361743B2
Authority
JP
Japan
Prior art keywords
aeration
tank
treatment method
water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044295A
Other languages
Japanese (ja)
Other versions
JP2004249252A (en
Inventor
渉 藤井
真澄 小林
賢治 本城
康雄 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2003044295A priority Critical patent/JP4361743B2/en
Publication of JP2004249252A publication Critical patent/JP2004249252A/en
Application granted granted Critical
Publication of JP4361743B2 publication Critical patent/JP4361743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、窒素を含有する排水を効率的に処理する方法に関し、中でも生活排水を効率的に処理する方法に関する。
【0002】
【従来の技術】
窒素含有排水の窒素処理方法としては、循環式硝化脱窒法、硝化内生脱窒法、ASRTを制御したオキシデーションディッチ法、より窒素の除去率を高めたステップ流入法等が開発されている。単槽で脱窒を行う方法としては回分式活性汚泥法、深槽曝気法などがある。
【0003】
循環式硝化脱窒法は、無酸素槽と、曝気槽との間で前記活性汚泥を循環させながら排水の処理を行う方法であるが、循環倍率を制御することによって、特に薬剤を用いることなく窒素除去率を容易に制御することができる。この方法においては、余剰汚泥による除去分を除いた脱窒反応による窒素除去率は循環倍率(r)から理論的にr/(r+1)として求めることができる。
【0004】
生活排水の場合、通常は窒素濃度が30〜40mg/L程度なので、排出規制値が10mg/L程度の場合は、循環倍率を2〜3倍にすることによって対応できる。しかし、河川の汚染改善のため、5mg/L以下のような更に厳しい基準が設けられる場合、循環倍率を5〜7倍にしなければならず、循環動力コストがかさむことに加えて、曝気槽から無酸素槽への溶存酸素(以下DOと称す)の持込が大きくなり、無酸素槽での窒素除去が行い難くなるという問題がある。
【0005】
この問題に対し、無酸素槽に供給される原水中のDO、曝気槽の呼吸速度とDOを測定し、ポンプの吸い上げ量を制御して循環量を最適化する方法が提案されている(例えば特許文献1参照)。
【0006】
しかしながら、この方法は依然として循環動力コストがかさむ問題点を有していた。
【0007】
【特許文献1】
特開平8−117792号公報
【0008】
【発明が解決しようとする課題】
本発明は、低い動力コストで高い窒素除去率を達成できる排水処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
すなわち、第一の本発明の要旨は、排水を活性汚泥で処理する排水処理方法であって、曝気槽内に曝気部と非曝気部とを設け、非曝気部において、水面から1/8の水深における溶存酸素を2mg/L以下とする排水処理方法、である。
【0010】
また、第二の本発明の要旨は、排水を活性汚泥で処理する排水処理方法であって、曝気槽内に曝気部と非曝気部とを設け、非曝気部において、水面から1/2の水深における溶存酸素を0.2mg/L以下とする排水処理方法、である。
【0011】
また、第一の本発明において、前記非曝気部の、水面から1/2の水深における溶存酸素を0.2mg/L以下とすると、窒素の除去率をさらに向上させることができる。
また、第一及び第二の本発明において、処理水中のアンモニア性窒素濃度が0.2〜3mg/Lであると余分な曝気を行う必要がないため、動力コストを低減できる。また、処理水中のアンモニア性窒素濃度に従って曝気量を制御するとより好ましい。
【0012】
また、第一及び第二の本発明において、前記曝気槽に設けた膜分離装置で濾過を行って処理水を取り出すか、また活性汚泥のMLSS濃度を9000mg/L以上とすると、窒素の除去率を高い状態で維持し易い。
さらに、第一及び第二の本発明において、無酸素槽を設け、該無酸素槽と、前記曝気槽との間で前記活性汚泥を循環させると、より安定して窒素の除去を行うことができる。
また、このとき活性汚泥の循環倍率をrとし、脱窒反応による窒素除去率をY(%)としたとき、Y>r/(r+1)×100であると、循環動力コストが低い状態で運転できるため好ましい。
【0013】
【発明の実施の形態】
以下、本発明の排水処理方法について、図面を基に詳細に説明する。図1は、本発明の排水処理方法の一例を示す概略フロー図である。
【0014】
排水原水は、曝気槽1に投入され、活性汚泥により生物学的に浄化される。曝気槽1には、管体2が浸漬されており、管体2の下から曝気装置7により曝気を行う。この管体2により、曝気槽1内部は、上面から見た際に、管体2によって囲われた曝気部3と、管体2の外側に位置する非曝気部4とに区分され、曝気部3と非曝気部4との間で循環流が形成される。
【0015】
このとき、非曝気部4において、水面から1/8の水深におけるDOを2mg/L以下とすると、非曝気部4を活性汚泥が下降していく途中で、活性汚泥による有機物の酸化反応及び硝化反応によってDOが消費されるため、非曝気部4の下層においては無酸素状態が形成される。その結果、脱窒反応が起こり、窒素の除去が可能となる。
【0016】
曝気槽1の水深は、あまり浅いと無酸素状態とならないため、1m以上とすることが好ましく、2m以上とすることがより好ましく、3m以上とすることが更に好ましい。一方、深すぎると効率的に撹拌混合し難くなるため、10m以下が好ましく、6m以下がより好ましい。
【0017】
曝気槽1を上面から見た際に、曝気槽1全体の面積に対する曝気部3が占める面積としては、小さすぎると有機物の酸化や硝化に必要なDOを供給しきれないため、5%以上とすることが好ましく、10%以上とすることがより好ましい。一方、大きすぎると非曝気部4において無酸素状態を形成できなくなるため、50%以下とすることが好ましく、30%以下とすることがより好ましく、25%以下とすることが更に好ましい。
【0018】
このとき、活性汚泥のMLSS濃度が高いと、非曝気部4におけるDO消費速度が高くなり、無酸素状態を形成しやすくなる。したがって、MLSS濃度は9000mg/L以上とすることが好ましく、10000mg/L以上とすることがより好ましい。
【0019】
一方、あまりMLSS濃度を高くすると、粘度が高くなって効率的に撹拌混合し難くなるため、20000mg/L以下とすることが好ましく、15000mg/L以下とすることがより好ましい。
【0020】
なお、MLSS濃度を高くするためには、管体2の内部に膜分離装置8を配置して濾過を行い、処理水を曝気槽1から取り出すことが好ましい。膜分離装置8の種類としては特に限定されず、平膜、中空糸膜、管状セラミック膜、回転円盤膜等を用いることができる。
【0021】
非曝気部3において、水面から1/8の水深におけるDOを2mg/L以下とするには、具体的には、水面から1/8の水深付近にDO計を設置し、DO濃度をモニターしながら、DOが2mg/Lを超えそうになった時点で曝気量を減少させると良い。
【0022】
非曝気部4の、水面から1/8の水深におけるDOは、1mg/L以下とすることがより好ましい。
【0023】
非曝気部4の水深方向のDOとしては、水面から1/2の水深におけるDOを0.2mg/L以下とすると、非曝気部4の下層において無酸素状態を形成することができる。
【0024】
水面から1/2の水深におけるDOを0.2mg/L以下とするためには、水面から1/2の水深付近にDO計を設置し、DO濃度をモニターしながら、DOが0.2mg/Lを超えそうになった時点で曝気量を減少させると良い。
【0025】
非曝気部4の、水面から1/2の水深におけるDOは、0.1mg/l以下とすることがより好ましく、実質的にゼロとすることが更に好ましい。
【0026】
非曝気部4の水深方向におけるDOは、水面から1/8の位置と、上から1/2の位置の両方において、前述の濃度となるように制御することがより好ましい。
【0027】
なお、非曝気部4の水深方向において、水面から1/8の位置のDOが2mg/L以下となっていても、水面から1/2の位置のDOが0.1mg/L以上である場合は、1/2の位置のDOによる制御を優先させて曝気量を減少させることが好ましい。
【0028】
非曝気部4の水深方向におけるDOのみならず、処理水のアンモニア濃度も合わせてモニターすると、より効率的な制御が可能となる。具体的には、アンモニア性窒素濃度が0.2mg/Lよりも少なくなった場合、曝気量を低減させ、3mg/Lよりも多くなった場合、曝気量を増加させる。
【0029】
なお、非曝気部4におけるDOは、溶存酸素センサー(例えば横河電機製、型番:DO30G)と溶存酸素変換機(例えば横河電機製、型番:DO402G)等によって測定することができる。また、処理水中のアンモニア性窒素濃度は、アンモニア性窒素自動測定装置(例えば横河電機製、型番:AN1000)によって測定することができる。
【0030】
本発明の排水処理方法は、図2に示すように、曝気槽1に加えて無酸素槽5を配置し、曝気槽1と無酸素槽5との間で活性汚泥を循環させると、窒素の除去をより効率的に行うことができる。
【0031】
このような構成は、従来の循環式硝化脱窒法と見かけ上は同じであるが、従来の方法は、曝気槽1内のDOをなるべく均一となるように混合させている。したがって、曝気槽1内に無酸素状態となる部位は存在しないか、極めて少ない。
【0032】
このため、従来の方法における脱窒反応による窒素の除去率は、曝気槽1と無酸素槽5における活性汚泥の循環倍率rによって決定される。
なお、循環倍率rとは、原水の供給量を1としたときの、曝気槽1と無酸素槽5との間で活性汚泥が循環している量を意味する。例えば無酸素槽5に原水を1m/hrの速度で供給し、曝気槽1から処理水を1m/hrの速度で取り出し、曝気槽1から無酸素槽5へ2m/hrの速度で活性汚泥を戻す場合、循環倍率rは2となる。
【0033】
一方、本発明の方法では、曝気槽1の内部においても無酸素状態が形成されるため、脱窒反応による窒素除去率をY(%)としたとき、Y>r/(r+1)×100となる。したがって、循環倍率を高くしなくても、窒素除去率を高めることができ、動力コストを低減することができる。
なお、脱窒反応による窒素除去率Yは、以下の計算式によって求める。
Y=(N1−N2−N)/N1×100
ここで、
1:一日あたりに処理される原水に含まれる全窒素量
:一日あたりに引き抜かれる余剰汚泥に含まれる全窒素量
:一日あたりに処理される処理水に含まれる全窒素量
である。
【0034】
無酸素槽5及び曝気槽1の間での活性汚泥の循環は、ポンプ6を用いて一方の槽から他方の槽へ送液し、他方の槽からオーバーフローによって流入させる。この際、どちらの槽からポンプを用いて送液するかは必ずしも限定されないが、原水が導入されない槽から原水が導入される槽へポンプ6で送液し、その反対の流れはオーバーフローさせると、ポンプ6の送液量が少なくてすみ、エネルギーコスト的に好ましい。
【0035】
なお、MLSS濃度を高くすると酸素消費速度が速く、また循環液の取り出しもDOの少ない位置から取り出しているので無酸素槽のORPが下がり、リンの除去も可能である。
【0036】
以下に、実験例1の概要と結果を示す。実験例1は、図2に示すフローの装置を用いて、生活排水を原水とする排水の処理を行うにあたり、曝気量及びMLSSを調整し、槽内のDOと窒素除去率との関係を調べたものである。
【0037】
各種条件は以下のように構成した。
(1)無酸素槽及びばっ気槽の汚泥容量(サイズ)
5.8m(長さ145cm×幅100cm×高さ600cm、水深400cm)
(2)管体サイズ
長さ62cm×幅45cm×高さ140cmの管体を2つ上下に重ねて配置した。管体内には膜分離装置を配し(膜面積126m)、濾液を処理水として取り出した(曝気槽との断面積比:19.2%)。
(3)処理水量:46m/日
(4)曝気槽から無酸素槽への汚泥循環量:92m/日
(5)余剰汚泥引き抜き量:0.3〜0.5m/日
(6)曝気量:20〜30Nm/hr
処理期間中の原水及び汚泥の性状を表1に示す。
【0038】
【表1】

Figure 0004361743
【0039】
なお、各測定方法は下水道試験方法(1997年、社団法人日本下水道協会)に従い以下のように行った。
【0040】
(1)BOD
BODは、硝化抑制試薬を加えずに測定した。
(2)COD
CODは、過マンガン酸カリウム消費量から求めるいわゆるマンガン法により測定した。
【0041】
(3)全窒素
全窒素は、総和法により測定した。
(4)全リン
全リンは、完全分解定量法により測定した。
【0042】
(5)DO
DOは、溶存酸素計(横河電機■製溶存酸素センサー(型番:DO30G)と溶存酸素変換器(型番:DO402G))を用いて測定した。
(6)ORP(銀−塩化銀基準)
ORPは、ORP計(横河電機■製ORPセンサー(型番:OR8EFG)とORP変換器(型番:OR400G))を用いて測定した。電極は、飽和塩化銀電極を用い、直読の値を用いた。
【0043】
(7)固形分含量及びMLSS
MLSSは、遠心分離法を用いて測定した。すなわち、汚泥試料適量を沈殿管に取り、3000〜4000rpmで2〜3分遠心分離を行い、上澄液を捨て、沈殿管に水を加え、攪拌し、再び同様に遠心し、上澄液を捨て、この沈殿物を蒸発皿に洗い入れ、105〜110℃で2時間乾燥し、質量を測定し、以下の計算式によって算出した。
汚泥濃度(MLSS)=汚泥の乾燥質量(mg)/試料量(L)
【0044】
このときの、非曝気部の水面から1/8の位置(水深0.5m)のDOと、処理水の硝酸性窒素濃度の関係を図3に、非曝気部の水面から1/2の位置(水深2m)のDOと、処理水の硝酸性窒素濃度の関係を図4に示した。また、処理水中のアンモニア性窒素濃度と、硝酸性窒素濃度の関係を図5に示した。
【0045】
図3及び図4より、非曝気部の水面から1/8の位置のDOが、2mg/L以下のとき硝酸性窒素の値が低下し、1mg/L以下で顕著に低下していることがわかる。
【0046】
また、非曝気部の水面から1/2の位置のDOは、0.2mg/L以下あると、硝酸性窒素の値が低下することがわかる。
【0047】
なお、非曝気部の水面から1/8及び1/2の位置におけるDOが本発明で規定する範囲内の場合と、範囲外の場合における原水、処理水の代表的な分析データを表2に示す。
【0048】
【表2】
Figure 0004361743
【0049】
次に、実験例2として、大きさが異なる装置を用いた場合の実験例を示す。なお、装置は図2に示したフローのものを使用し、原水は上記実験例と同じ水質のものを用いた。
【0050】
槽のサイズ等は以下のように構成した。
(1)無酸素槽及び曝気槽の汚泥容量(サイズ)
0.625m(長さ60cm×幅80cm×高さ180cm、水深130cm)
(2)管体サイズ
長さ24cm×幅56.5cm×高さ106.5cmの管体を配置した。管体内には膜分離装置を配し(膜面積8m)、濾液を処理水として取り出した(曝気槽との断面積比:28%)。
(3)処理水量:5m/日
(4)無酸素槽から曝気槽への汚泥循環量:15m/日
(5)余剰汚泥引き抜き量:0.06〜0.10m/日
(6)曝気量: 5.6〜9.6Nm/hr
【0051】
非曝気部の水面から1/2の位置(65cm)のDOと、処理水の硝酸性窒素の関係を図6に示した。
【0052】
また、非曝気部の水面から1/2の位置におけるDOが本発明で規定する範囲内の場合と、範囲外の場合における原水、処理水の代表的な分析データを表3に示した。
【0053】
【表3】
Figure 0004361743
【0054】
このように、水深が130cmと極めて浅い曝気槽であっても、窒素除去率が極めて高くなることが分かった。
【0055】
【発明の効果】
本発明によれば、通常の曝気槽のみでも、非曝気部の水深方向のDOを制御することにより、容易に硝化脱窒による窒素除去が可能となる。更に無酸素槽と曝気槽の2槽を用いて、曝気槽の非曝気部の水深方向のDOを制御することにより、さらに高い除去率で窒素を除去することが可能である。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す模式図である。
【図2】本発明の別の実施形態の一例を示す模式図である。
【図3】実験例1の非曝気部の水面から1/8の位置におけるDOと処理水中の硝酸性窒素の濃度との関係を示すグラフである。
【図4】実験例1の非曝気部の水面から1/2の位置におけるDOと処理水中の硝酸性窒素の濃度との関係を示すグラフである。
【図5】実験例1の処理水中のアンモニア性窒素濃度と、硝酸性窒素濃度の関係を示すグラフである。
【図6】実験例2の非曝気部の水面から1/2の位置におけるDOと処理水中の硝酸性窒素の濃度との関係を示すグラフである。
【符号の説明】
1 曝気槽
2 管体
3 曝気部
4 非曝気部
5 無酸素槽
6 ポンプ
7 曝気装置
8 膜分離装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently treating wastewater containing nitrogen, and more particularly to a method for efficiently treating domestic wastewater.
[0002]
[Prior art]
As a nitrogen treatment method for nitrogen-containing wastewater, a circulating nitrification denitrification method, a nitrification endogenous denitrification method, an oxidation ditch method with controlled ASRT, a step inflow method with a higher nitrogen removal rate, and the like have been developed. As a method for performing denitrification in a single tank, there are a batch activated sludge method, a deep tank aeration method, and the like.
[0003]
The circulation nitrification denitrification method is a method of treating waste water while circulating the activated sludge between an oxygen-free tank and an aeration tank. By controlling the circulation ratio, nitrogen can be used without using any chemicals. The removal rate can be easily controlled. In this method, the nitrogen removal rate by the denitrification reaction excluding the portion removed by excess sludge can theoretically be obtained as r / (r + 1) from the circulation magnification (r).
[0004]
In the case of domestic wastewater, since the nitrogen concentration is usually about 30 to 40 mg / L, when the emission regulation value is about 10 mg / L, it can be dealt with by increasing the circulation magnification to 2 to 3 times. However, if more stringent standards such as 5 mg / L or less are provided for improving the pollution of the river, the circulation magnification must be increased to 5 to 7 times. There is a problem that the dissolved oxygen (hereinafter referred to as DO) is brought into the oxygen-free tank and the removal of nitrogen in the oxygen-free tank becomes difficult.
[0005]
For this problem, a method has been proposed in which DO in raw water supplied to the anoxic tank, the respiration rate and DO of the aeration tank are measured, and the amount of pump suction is controlled to optimize the circulation rate (for example, Patent Document 1).
[0006]
However, this method still has a problem of increasing the circulation power cost.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-117792
[Problems to be solved by the invention]
An object of the present invention is to provide a wastewater treatment method capable of achieving a high nitrogen removal rate at a low power cost.
[0009]
[Means for Solving the Problems]
That is, the gist of the first aspect of the present invention is a wastewater treatment method for treating wastewater with activated sludge, wherein an aeration section and a non-aeration section are provided in an aeration tank. A wastewater treatment method in which the dissolved oxygen at a water depth is 2 mg / L or less.
[0010]
The gist of the second aspect of the present invention is a wastewater treatment method for treating wastewater with activated sludge, wherein an aeration part and a non-aeration part are provided in an aeration tank, and the non-aeration part is ½ of the water surface. A wastewater treatment method in which dissolved oxygen at a water depth is 0.2 mg / L or less.
[0011]
In the first aspect of the present invention, the nitrogen removal rate can be further improved if the dissolved oxygen in the non-aerated part at a water depth of 1/2 from the water surface is 0.2 mg / L or less.
Further, in the first and second aspects of the present invention, when the ammoniacal nitrogen concentration in the treated water is 0.2 to 3 mg / L, it is not necessary to perform extra aeration, so that the power cost can be reduced. It is more preferable to control the amount of aeration according to the ammoniacal nitrogen concentration in the treated water.
[0012]
In the first and second aspects of the present invention, when the treated water is taken out by filtration with a membrane separator provided in the aeration tank, or the MLSS concentration of the activated sludge is 9000 mg / L or more, the nitrogen removal rate Is easy to maintain in a high state.
Furthermore, in the first and second aspects of the present invention, when an oxygen-free tank is provided and the activated sludge is circulated between the oxygen-free tank and the aeration tank, nitrogen can be removed more stably. it can.
At this time, when the circulation rate of the activated sludge is r and the nitrogen removal rate by the denitrification reaction is Y (%), if Y> r / (r + 1) × 100, the operation is performed at a low circulation power cost. This is preferable because it is possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the waste water treatment method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic flowchart showing an example of the wastewater treatment method of the present invention.
[0014]
The raw waste water is put into the aeration tank 1 and biologically purified by activated sludge. The tube body 2 is immersed in the aeration tank 1, and aeration is performed from below the tube body 2 by the aeration apparatus 7. The tube body 2 divides the inside of the aeration tank 1 into an aeration unit 3 surrounded by the tube body 2 and a non-aeration unit 4 located outside the tube body 2 when viewed from above. A circulation flow is formed between 3 and the non-aerated part 4.
[0015]
At this time, if the DO at a depth of 1/8 from the water surface is 2 mg / L or less in the non-aerated part 4, the oxidation reaction and nitrification of the organic matter by the activated sludge in the middle of the activated sludge descending the non-aerated part 4. Since DO is consumed by the reaction, an oxygen-free state is formed in the lower layer of the non-aerated portion 4. As a result, a denitrification reaction occurs and nitrogen can be removed.
[0016]
The water depth of the aeration tank 1 is preferably 1 m or more, more preferably 2 m or more, and even more preferably 3 m or more, since it does not enter an oxygen-free state if it is too shallow. On the other hand, if it is too deep, it is difficult to efficiently stir and mix, and it is preferably 10 m or less, and more preferably 6 m or less.
[0017]
When the aeration tank 1 is viewed from the upper surface, the area occupied by the aeration unit 3 with respect to the entire area of the aeration tank 1 is too small to supply DO necessary for oxidation and nitrification of organic matter, and is 5% or more. It is preferable to set it to 10% or more. On the other hand, if it is too large, an oxygen-free state cannot be formed in the non-aerated portion 4, so that it is preferably 50% or less, more preferably 30% or less, and even more preferably 25% or less.
[0018]
At this time, if the MLSS concentration of the activated sludge is high, the DO consumption rate in the non-aerated part 4 becomes high, and it becomes easy to form an oxygen-free state. Therefore, the MLSS concentration is preferably 9000 mg / L or more, more preferably 10,000 mg / L or more.
[0019]
On the other hand, if the MLSS concentration is too high, the viscosity increases and it becomes difficult to efficiently stir and mix. Therefore, it is preferably 20000 mg / L or less, more preferably 15000 mg / L or less.
[0020]
In order to increase the MLSS concentration, it is preferable to place the membrane separation device 8 inside the tube body 2 and perform filtration to take out the treated water from the aeration tank 1. The type of the membrane separation device 8 is not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular ceramic membrane, a rotating disc membrane, or the like can be used.
[0021]
In the non-aeration unit 3, in order to make DO at a depth of 1/8 from the water surface 2 mg / L or less, specifically, a DO meter is installed near the water depth of 1/8 from the water surface, and the DO concentration is monitored. However, it is good to reduce the amount of aeration when DO is likely to exceed 2 mg / L.
[0022]
The DO of the non-aerated part 4 at a depth of 1/8 from the water surface is more preferably 1 mg / L or less.
[0023]
As DO in the water depth direction of the non-aerated part 4, an oxygen-free state can be formed in the lower layer of the non-aerated part 4 when DO at a water depth ½ from the water surface is 0.2 mg / L or less.
[0024]
In order to make DO at 0.2 mg / L or less at a water depth of 1/2 from the water surface, a DO meter is installed near the water depth of 1/2 from the water surface, and the DO concentration is 0.2 mg / L while monitoring the DO concentration. It is good to reduce the amount of aeration when it is likely to exceed L.
[0025]
The DO of the non-aerated portion 4 at a water depth of 1/2 from the water surface is more preferably 0.1 mg / l or less, and still more preferably substantially zero.
[0026]
The DO in the water depth direction of the non-aeration unit 4 is more preferably controlled so as to have the above-described concentration at both the position 1/8 from the water surface and the position 1/2 from the top.
[0027]
In addition, in the water depth direction of the non-aerated portion 4, even when DO at a position 1/8 from the water surface is 2 mg / L or less, DO at a position 1/2 from the water surface is 0.1 mg / L or more. It is preferable to prioritize control by DO at a half position to reduce the amount of aeration.
[0028]
If not only the DO in the water depth direction of the non-aeration unit 4 but also the ammonia concentration of the treated water is monitored together, more efficient control is possible. Specifically, when the ammoniacal nitrogen concentration is less than 0.2 mg / L, the aeration amount is reduced, and when it is more than 3 mg / L, the aeration amount is increased.
[0029]
In addition, DO in the non-aeration unit 4 can be measured by a dissolved oxygen sensor (for example, Yokogawa Electric, model number: DO30G) and a dissolved oxygen converter (for example, Yokogawa Electric, model number: DO402G). Further, the ammoniacal nitrogen concentration in the treated water can be measured by an ammoniacal nitrogen automatic measuring device (for example, model number: AN1000 manufactured by Yokogawa Electric Corporation).
[0030]
In the wastewater treatment method of the present invention, as shown in FIG. 2, when an oxygen-free tank 5 is arranged in addition to the aeration tank 1 and activated sludge is circulated between the aeration tank 1 and the oxygen-free tank 5, Removal can be performed more efficiently.
[0031]
Such a configuration is apparently the same as the conventional circulation nitrification denitrification method, but the conventional method mixes the DO in the aeration tank 1 so as to be as uniform as possible. Therefore, there are no or very few sites in the aeration tank 1 that are in an oxygen-free state.
[0032]
For this reason, the removal rate of nitrogen by the denitrification reaction in the conventional method is determined by the circulation rate r of activated sludge in the aeration tank 1 and the anoxic tank 5.
The circulation ratio r means the amount of activated sludge circulating between the aeration tank 1 and the oxygen-free tank 5 when the supply amount of raw water is 1. For example, the raw water is supplied to the anaerobic tank 5 at a speed of 1 m 3 / hr, the treated water is taken out from the aeration tank 1 at a speed of 1 m 3 / hr, and is transferred from the aeration tank 1 to the anoxic tank 5 at a speed of 2 m 3 / hr. When the activated sludge is returned, the circulation ratio r is 2.
[0033]
On the other hand, in the method of the present invention, since an oxygen-free state is formed even inside the aeration tank 1, when the nitrogen removal rate by the denitrification reaction is Y (%), Y> r / (r + 1) × 100 Become. Therefore, the nitrogen removal rate can be increased without increasing the circulation magnification, and the power cost can be reduced.
In addition, the nitrogen removal rate Y by denitrification reaction is calculated | required with the following formulas.
Y = (N 1 −N 2 −N 3 ) / N 1 × 100
here,
N 1 : Total amount of nitrogen contained in raw water processed per day N 2 : Total amount of nitrogen contained in surplus sludge extracted per day N 3 : Total contained in treated water processed per day The amount of nitrogen.
[0034]
The activated sludge is circulated between the anaerobic tank 5 and the aeration tank 1 by using the pump 6 to send liquid from one tank to the other tank and to flow in from the other tank by overflow. At this time, it is not necessarily limited from which tank the liquid is sent using the pump, but when the liquid is fed by the pump 6 from the tank where the raw water is not introduced to the tank where the raw water is introduced, the opposite flow overflows. The amount of liquid delivered by the pump 6 is small, which is preferable in terms of energy cost.
[0035]
If the MLSS concentration is increased, the oxygen consumption rate is high, and the circulating fluid is taken out from a position where there is little DO, so the ORP of the oxygen-free tank is lowered and phosphorus can be removed.
[0036]
The outline and results of Experimental Example 1 are shown below. Experimental Example 1 uses the flow apparatus shown in FIG. 2 to adjust the amount of aeration and MLSS in the treatment of wastewater using domestic wastewater as raw water, and examine the relationship between DO in the tank and the nitrogen removal rate. It is a thing.
[0037]
Various conditions were configured as follows.
(1) Sludge capacity (size) of anaerobic tank and aeration tank
5.8 m 3 (length 145 cm × width 100 cm × height 600 cm, water depth 400 cm)
(2) Two tube bodies having a tube size length of 62 cm × width of 45 cm × height of 140 cm were stacked one above the other. A membrane separation device was arranged in the tube (membrane area 126 m 2 ), and the filtrate was taken out as treated water (cross-sectional area ratio with the aeration tank: 19.2%).
(3) Amount of treated water: 46 m 3 / day (4) Amount of sludge circulation from the aeration tank to the oxygen-free tank: 92 m 3 / day (5) Amount of excess sludge drawn: 0.3 to 0.5 m 3 / day (6) Aeration amount: 20 to 30 Nm 3 / hr
Table 1 shows the properties of raw water and sludge during the treatment period.
[0038]
[Table 1]
Figure 0004361743
[0039]
In addition, each measuring method was performed as follows according to a sewer test method (1997, Japan Sewerage Association).
[0040]
(1) BOD
BOD was measured without adding a nitrification inhibitor.
(2) COD
COD was measured by a so-called manganese method determined from potassium permanganate consumption.
[0041]
(3) Total nitrogen Total nitrogen was measured by the summation method.
(4) Total phosphorus Total phosphorus was measured by a complete decomposition quantitative method.
[0042]
(5) DO
DO was measured using a dissolved oxygen meter (a dissolved oxygen sensor (model number: DO30G) and a dissolved oxygen converter (model number: DO402G) manufactured by Yokogawa Electric).
(6) ORP (silver-silver chloride standard)
The ORP was measured using an ORP meter (Yokogawa Electric ORP sensor (model number: OR8EFG) and ORP converter (model number: OR400G)). As the electrode, a saturated silver chloride electrode was used, and a value read directly was used.
[0043]
(7) Solid content and MLSS
MLSS was measured using a centrifugation method. That is, take an appropriate amount of sludge sample in a sedimentation tube, centrifuge at 3000 to 4000 rpm for 2 to 3 minutes, discard the supernatant, add water to the sedimentation tube, stir, centrifuge again in the same way, After discarding, this precipitate was washed in an evaporating dish, dried at 105 to 110 ° C. for 2 hours, measured for mass, and calculated according to the following formula.
Sludge concentration (MLSS) = Dry mass of sludge (mg) / Sample amount (L)
[0044]
At this time, the relationship between DO at a position 1/8 from the water surface of the non-aerated part (water depth 0.5 m) and the nitrate nitrogen concentration of the treated water is shown in FIG. FIG. 4 shows the relationship between DO at a water depth of 2 m and the concentration of nitrate nitrogen in the treated water. Moreover, the relationship between the ammonia nitrogen concentration in the treated water and the nitrate nitrogen concentration is shown in FIG.
[0045]
From FIG. 3 and FIG. 4, the value of nitrate nitrogen decreases when DO at the position 1/8 from the water surface of the non-aerated portion is 2 mg / L or less, and is significantly decreased at 1 mg / L or less. Recognize.
[0046]
Moreover, it turns out that the value of nitrate nitrogen falls that DO of the position of 1/2 from the water surface of a non-aeration part is 0.2 mg / L or less.
[0047]
Table 2 shows typical analysis data of raw water and treated water when DO at the positions 1/8 and 1/2 from the water surface of the non-aerated part is within the range defined by the present invention and when it is outside the range. Show.
[0048]
[Table 2]
Figure 0004361743
[0049]
Next, as Experimental Example 2, an experimental example in the case where apparatuses having different sizes are used is shown. In addition, the thing of the flow shown in FIG. 2 was used for the apparatus, and the raw | natural water used the same water quality as the said experiment example.
[0050]
The tank size was configured as follows.
(1) Sludge capacity (size) of oxygen-free tank and aeration tank
0.625 m 3 (length 60 cm x width 80 cm x height 180 cm, water depth 130 cm)
(2) Tube size A tube having a length of 24 cm, a width of 56.5 cm, and a height of 106.5 cm was disposed. A membrane separation device was arranged in the tube (membrane area 8 m 2 ), and the filtrate was taken out as treated water (cross-sectional area ratio with the aeration tank: 28%).
(3) Amount of treated water: 5 m 3 / day (4) Amount of sludge circulation from the oxygen-free tank to the aeration tank: 15 m 3 / day (5) Amount of excess sludge drawn: 0.06 to 0.10 m 3 / day (6) Aeration amount: 5.6 to 9.6 Nm 3 / hr
[0051]
FIG. 6 shows the relationship between DO at half the position (65 cm) from the water surface of the non-aerated portion and nitrate nitrogen of the treated water.
[0052]
Table 3 shows typical analysis data of raw water and treated water when DO at a position 1/2 of the surface of the non-aerated portion is within the range defined by the present invention and when it is outside the range.
[0053]
[Table 3]
Figure 0004361743
[0054]
Thus, it was found that the nitrogen removal rate is extremely high even in an aeration tank having a very shallow water depth of 130 cm.
[0055]
【The invention's effect】
According to the present invention, it is possible to easily remove nitrogen by nitrification and denitrification by controlling DO in the water depth direction of the non-aerated portion only in a normal aeration tank. Furthermore, by using two tanks, an oxygen-free tank and an aeration tank, by controlling DO in the depth direction of the non-aerated portion of the aeration tank, it is possible to remove nitrogen at a higher removal rate.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing an example of another embodiment of the present invention.
FIG. 3 is a graph showing the relationship between DO and the concentration of nitrate nitrogen in treated water at a position 1/8 from the water surface of the non-aerated portion in Experimental Example 1;
4 is a graph showing the relationship between DO and the concentration of nitrate nitrogen in treated water at a position ½ from the water surface of the non-aerated portion in Experimental Example 1. FIG.
5 is a graph showing the relationship between ammonia nitrogen concentration and nitrate nitrogen concentration in treated water of Experimental Example 1. FIG.
6 is a graph showing the relationship between DO and the concentration of nitrate nitrogen in treated water at a position ½ from the water surface of the non-aerated portion in Experimental Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Tube 3 Aeration part 4 Non-aeration part 5 Anoxic tank 6 Pump 7 Aeration apparatus 8 Membrane separation apparatus

Claims (5)

曝気層において排水を活性汚泥で処理し、前記曝気槽内に浸漬された管体内に配された膜分離装置を用いて、ろ液を取り出す排水処理方法であって、前記曝気槽は略直方体で水深は1m以上10m以下であり、曝気槽内に、前記曝気槽を上面から見た際に前記管体によって囲われた曝気部と前記管体の外側に位置する非曝気部とを設け、曝気槽全体の面積に対する前記曝気部が占める面積が5%以上50%以下であり、前記非曝気部において、水面から1/8の水深における溶存酸素を2mg/L以下、水面から1/2の水深における溶存酸素を0.2mg/L以下とし、前記活性汚泥の濃度を9000mg/L以上20000mg/L以下とする排水処理方法。 A wastewater treatment method in which wastewater is treated with activated sludge in an aeration layer, and a filtrate is taken out using a membrane separation device disposed in a tube immersed in the aeration tank , wherein the aeration tank is a substantially rectangular parallelepiped. The water depth is 1 m or more and 10 m or less, and when the aeration tank is viewed from above, an aeration part surrounded by the tubular body and a non-aeration part located outside the tubular body are provided in the aeration tank. The area occupied by the aeration part with respect to the area of the entire tank is 5% or more and 50% or less, and in the non-aeration part, the dissolved oxygen at a depth of 1/8 from the water surface is 2 mg / L or less , and the water depth is 1/2 from the water surface. the dissolved oxygen was less 0.2 mg / L in the concentration of the activated sludge or less 9000 mg / L or more 20000 mg / L, the wastewater treatment method. 請求項1に記載の排水処理方法によって処理された処理水中のアンモニア性窒素濃度が、0.2〜3mg/Lである排水処理方法。The wastewater treatment method whose ammonia nitrogen concentration in the treated water processed by the wastewater treatment method of Claim 1 is 0.2-3 mg / L. 処理水中のアンモニア性窒素濃度に従って曝気量を制御する請求項に記載の排水処理方法。The wastewater treatment method according to claim 2 , wherein the amount of aeration is controlled according to the concentration of ammoniacal nitrogen in the treated water. 前記曝気槽に加えて無酸素槽を設け、該無酸素槽と、前記曝気槽との間で前記活性汚泥を循環させる請求項1〜のいずれか一項に記載の排水処理方法。The wastewater treatment method according to any one of claims 1 to 3 , wherein an oxygen-free tank is provided in addition to the aeration tank, and the activated sludge is circulated between the oxygen-free tank and the aeration tank. 前記活性汚泥の循環倍率をrとし、脱窒反応による窒素除去率をY(%)としたとき、Y>r/(r+1)×100である請求項に記載の排水処理方法。The wastewater treatment method according to claim 4 , wherein Y> r / (r + 1) × 100, where r is the circulation rate of the activated sludge and Y (%) is the nitrogen removal rate by the denitrification reaction.
JP2003044295A 2003-02-21 2003-02-21 Wastewater treatment method Expired - Fee Related JP4361743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044295A JP4361743B2 (en) 2003-02-21 2003-02-21 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044295A JP4361743B2 (en) 2003-02-21 2003-02-21 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004249252A JP2004249252A (en) 2004-09-09
JP4361743B2 true JP4361743B2 (en) 2009-11-11

Family

ID=33027036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044295A Expired - Fee Related JP4361743B2 (en) 2003-02-21 2003-02-21 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4361743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178999B2 (en) 2014-06-19 2019-01-15 Olympus Corporation Energy treatment unit, energy treatment instrument and energy treatment system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609989B2 (en) * 2004-09-22 2011-01-12 学校法人早稲田大学 Wastewater treatment equipment
JP4088630B2 (en) * 2005-02-28 2008-05-21 シャープ株式会社 Wastewater treatment equipment
JP2007098368A (en) * 2005-10-07 2007-04-19 Mitsubishi Heavy Ind Ltd Immersed-membrane separation apparatus and method therefor
JP5448285B2 (en) * 2005-12-07 2014-03-19 三菱レイヨン株式会社 Membrane separation activated sludge treatment method
CN101885570B (en) * 2009-05-15 2012-04-04 江西金达莱环保研发中心有限公司 Sludge treatment method
CN101885539B (en) * 2009-05-15 2012-06-20 江西金达莱环保研发中心有限公司 Facultative aerobic membrane bioreactor process
CN101885538B (en) * 2009-05-15 2013-02-27 江西金达莱环保股份有限公司 Membrane bioreactor process for removing phosphorus without mud discharge
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
WO2014152872A1 (en) * 2013-03-14 2014-09-25 D.C. Water & Sewer Authority Method and apparatus for maximizing nitrogen removal from wastewater
JP6786787B2 (en) * 2015-10-19 2020-11-18 王子ホールディングス株式会社 Water treatment system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178999B2 (en) 2014-06-19 2019-01-15 Olympus Corporation Energy treatment unit, energy treatment instrument and energy treatment system

Also Published As

Publication number Publication date
JP2004249252A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
KR100767724B1 (en) A method and an apparatus for waste water treatment through biological system combined with flotation separation of activated sluge
JP4361743B2 (en) Wastewater treatment method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
WO1998054100A1 (en) A process for wastewater treatment using intermittently decanted extended aeration process
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4826982B2 (en) Wastewater treatment method
JP3015426B2 (en) Wastewater management and treatment method
JP3962284B2 (en) Waste water treatment apparatus and waste water treatment method
JP2004148144A (en) Method for treating sewage
JP4101539B2 (en) Wastewater treatment equipment
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JPH0148834B2 (en)
JP3690537B2 (en) Intermittent aeration
JP6716664B2 (en) Batch type carrier water treatment method
JP3782738B2 (en) Wastewater treatment method
JP7181078B2 (en) Water treatment method and water treatment equipment
JP2005066504A (en) Method and apparatus for treating sewage
JPH1094796A (en) Treatment of waste water and device therefor
JP2004237219A (en) Biological membrane filter apparatus and treatment method
JP2001029991A (en) Water treatment method
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
JPH10323688A (en) Method for removing phosphorus in waste water
JP6883992B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
JPS58223490A (en) Treatment of sewage by oxidation ditch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees