JP4361439B2 - Optical fiber processing method - Google Patents

Optical fiber processing method Download PDF

Info

Publication number
JP4361439B2
JP4361439B2 JP2004227790A JP2004227790A JP4361439B2 JP 4361439 B2 JP4361439 B2 JP 4361439B2 JP 2004227790 A JP2004227790 A JP 2004227790A JP 2004227790 A JP2004227790 A JP 2004227790A JP 4361439 B2 JP4361439 B2 JP 4361439B2
Authority
JP
Japan
Prior art keywords
optical fiber
bobbin
nbohc
deuterium
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004227790A
Other languages
Japanese (ja)
Other versions
JP2006047623A (en
Inventor
貴弘 濱田
宗久 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004227790A priority Critical patent/JP4361439B2/en
Publication of JP2006047623A publication Critical patent/JP2006047623A/en
Application granted granted Critical
Publication of JP4361439B2 publication Critical patent/JP4361439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は、光ファイバの処理方法に関するものである。   The present invention relates to an optical fiber processing method.

一般に、光ファイバは、石英ガラスからなる光ファイバ母材を溶融、線引きして製造される。具体的には、光ファイバ母材を、例えば2000℃程度の高温で溶融して、その先端部から溶融した石英ガラスを糸状に引き出し、これを冷却筒などで急激に冷却した後、その表面を表面保護用樹脂で被覆することにより光ファイバが得られる。   In general, an optical fiber is manufactured by melting and drawing an optical fiber preform made of quartz glass. Specifically, the optical fiber preform is melted at a high temperature of, for example, about 2000 ° C., the fused quartz glass is drawn out from the tip thereof into a thread shape, and this is cooled rapidly with a cooling cylinder or the like, and then the surface is An optical fiber is obtained by coating with a surface protecting resin.

一般に、この光ファイバの製造工程において、溶融された石英ガラスが急激に冷却されることにより、非架橋酸素中心ホール(Non−Bridging Oxygen Hole Center、以下「NBOHC」と略すこともある。)が生成することが知られている。光ファイバの製造工程において、溶融された石英ガラスの冷却速度を緩やかにすることによって、NBOHCの再結合を促し、NBOHCを低減させることは可能である。しかしながら、この方法では、光ファイバ中からNBOHCを完全に消滅させることは不可能である。   In general, in the optical fiber manufacturing process, the fused quartz glass is rapidly cooled to generate a non-bridging oxygen center hole (hereinafter also abbreviated as “NBOHC”). It is known to do. In the optical fiber manufacturing process, it is possible to promote NBOHC recombination and reduce NBOHC by slowing the cooling rate of the fused quartz glass. However, with this method, it is impossible to completely eliminate NBOHC from the optical fiber.

光ファイバ中に残存するNBOHCは、光ファイバ中に残留した水素や表面保護用樹脂から発生した水素と結合し、Si−OH結合を生成する。水酸基(−OH)が生成すると、波長1383nm近傍における水酸基に起因する吸収損失が増大し、光ファイバの伝送特性が劣化する。   NBOHC remaining in the optical fiber is combined with hydrogen remaining in the optical fiber or hydrogen generated from the surface protecting resin to generate a Si—OH bond. When a hydroxyl group (-OH) is generated, absorption loss due to a hydroxyl group in the vicinity of a wavelength of 1383 nm increases, and the transmission characteristics of the optical fiber deteriorate.

従来、波長1383nm近傍における水酸基に起因する吸収損失の増加を抑制する方法としては、光ファイバをボビンに巻き取り、この状態で重水素を含むガスの雰囲気に曝すことによって、光ファイバをなす石英ガラス中のNBOHCと重水素(D)とを反応させて重水酸基(−OD)とする方法が提案されている(例えば、特許文献1、特許文献2参照。)。 Conventionally, as a method for suppressing an increase in absorption loss due to a hydroxyl group in the vicinity of a wavelength of 1383 nm, a quartz glass that forms an optical fiber by winding the optical fiber around a bobbin and exposing it to a gas atmosphere containing deuterium in this state. A method has been proposed in which NBOHC and deuterium (D 2 ) are reacted to form a deuterated hydroxyl group (—OD) (see, for example, Patent Document 1 and Patent Document 2).

NBOHCが重水素と常温で容易に反応して重水酸基となることや、重水酸基の光吸収が1.87μmにあることから、光通信の伝送帯域に影響を及ぼさない。そこで、特許文献1、特許文献2では、光ファイバを、40℃以下の温度の重水素を含むガスの雰囲気に曝して、光ファイバに含まれる水素の濃度の経時変化を抑制する方法が提案されている。  NBOHC easily reacts with deuterium at room temperature to form a deuterated hydroxyl group, and the light absorption of the deuterated hydroxyl group is 1.87 μm, so the transmission band of optical communication is not affected. Therefore, Patent Document 1 and Patent Document 2 propose a method of exposing an optical fiber to an atmosphere of a gas containing deuterium at a temperature of 40 ° C. or less to suppress a change in the concentration of hydrogen contained in the optical fiber over time. ing.

NBOHCと重水素(D)とを反応させて重水酸基(−OD)とする方法では、製造コストを考慮すると、光ファイバの暴露時間を短時間とし、また低濃度の重水素を含むガスを用いて処理することが望ましい。
例えば、光ファイバを、重水素を含むガスの雰囲気に曝す暴露時間は、特許文献1では1日〜2週間の時間を要し、特許文献2では1週間を要することが開示されている。
In the method of reacting NBOHC with deuterium (D 2 ) to form deuterated hydroxyl group (-OD), considering the manufacturing cost, the exposure time of the optical fiber is shortened and a gas containing low concentration deuterium is used. It is desirable to use and process.
For example, it is disclosed that the exposure time for exposing an optical fiber to a gas atmosphere containing deuterium requires 1 day to 2 weeks in Patent Document 1 and 1 week in Patent Document 2.

また、光ファイバは、通常、ボビンなどに巻き取った状態で重水素を含むガスの雰囲気に曝されるが、重水素を含むガスは、ボビンの巻き芯付近まで行き渡り難い。光ファイバ中のNBOHCは、容易に重水素と結合して重水酸基となる。そのため、NBOHCを重水酸基とする反応は、NBOHCと重水素を含むガスとの接触頻度によって大きく影響を受ける。したがって、ボビンに巻き取った光ファイバのうち、ボビンの巻き芯付近、すなわち下層に位置する光ファイバは、重水素を含むガスと接触し難く、結果として、NBOHCと重水素との反応が進行し難い。  In addition, the optical fiber is usually exposed to an atmosphere of a gas containing deuterium while being wound around a bobbin or the like, but the gas containing deuterium hardly spreads to the vicinity of the bobbin winding core. NBOHC in the optical fiber is easily bonded to deuterium to form a deuterated hydroxyl group. Therefore, the reaction using NBOHC as a heavy hydroxyl group is greatly affected by the contact frequency between NBOHC and a gas containing deuterium. Therefore, among the optical fibers wound around the bobbin, the optical fiber located in the vicinity of the bobbin core, that is, in the lower layer is difficult to come into contact with the gas containing deuterium. As a result, the reaction between NBOHC and deuterium proceeds. hard.

例えば、特許文献1、2に開示された方法によって、ボビンなどに巻き取った状態の光ファイバを、重水素の濃度が1%の混合ガスに24時間曝しても、ボビンの巻き芯付近、すなわち下層に位置する光ファイバではNBOHCを消滅させることができなかった。したがって、ボビンなどに巻き取った光ファイバの全域に渡ってNBOHCを消滅させるためには、高濃度の重水素を含むガスを必要とする上に、暴露時間を長時間とする必要があった。  For example, even if an optical fiber wound on a bobbin or the like is exposed to a mixed gas having a deuterium concentration of 1% for 24 hours by the methods disclosed in Patent Documents 1 and 2, the vicinity of the bobbin core, that is, NBOHC could not be eliminated in the optical fiber located in the lower layer. Therefore, in order to eliminate NBOHC over the entire area of the optical fiber wound around a bobbin or the like, it is necessary to use a gas containing a high concentration of deuterium and to increase the exposure time.

また、光ファイバを、重水素を含むガスの雰囲気に曝すには、反応槽内に、ボビンなどに巻き取った状態の光ファイバを配置し、この反応槽内に重水素を含むガスを供給した後、反応槽を所定時間密封する。従来、光ファイバ中のNBOHCを低減する処理を行った後、重水素を含むガスは、再利用されることなく排気されており、重水素を含むガスは高価であるから、製造コストが非常に高くなるという問題があった。
特開2002−148450号公報 特開2003−137580号公報
Further, in order to expose the optical fiber to an atmosphere of a gas containing deuterium, an optical fiber wound around a bobbin or the like is arranged in the reaction tank, and a gas containing deuterium is supplied into the reaction tank. Thereafter, the reaction vessel is sealed for a predetermined time. Conventionally, after performing a process for reducing NBOHC in an optical fiber, the gas containing deuterium is exhausted without being reused, and the gas containing deuterium is expensive, so the manufacturing cost is very high. There was a problem of becoming higher.
JP 2002-148450 A JP 2003-137580 A

本発明は、前記事情に鑑みてなされたもので、ボビンに巻き取った光ファイバの全域に渡ってNBOHCを消滅させることが可能な光ファイバの処理方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical fiber processing method capable of eliminating NBOHC over the entire area of an optical fiber wound around a bobbin.

本発明は、上記課題を解決するために、光ファイバをボビンに巻き取る工程Aと、ボビンに巻き取られた光ファイバを、重水素を含むガスの雰囲気に曝す工程Bを備えた光ファイバの処理方法であって、前記工程Aにおいて、光ファイバの外径をd、光ファイバをボビンに巻き取る間隔をSとすると、S≧2dなる関係式を満たすように、かつ、光ファイバを巻き取る張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバをボビンに巻き取る光ファイバの処理方法を提供する。 In order to solve the above-mentioned problems, the present invention provides an optical fiber comprising: a step A for winding an optical fiber around a bobbin; and a step B for exposing the optical fiber wound around the bobbin to a gas atmosphere containing deuterium. In the processing method, in step A, when the outer diameter of the optical fiber is d and the interval at which the optical fiber is wound around the bobbin is S , the optical fiber is wound so as to satisfy the relational expression S ≧ 2d. Provided is an optical fiber processing method in which an optical fiber is wound around a bobbin so as to satisfy a relational expression of 0.2N ≦ T ≦ 2.0N, where T (N) is a tension .

本発明によれば、光ファイバをボビンに巻き取る工程において、光ファイバの外径をd、光ファイバをボビンに巻き取る間隔をSとすると、S≧2dなる関係式を満たすように、光ファイバを、一定の間隔でボビンに巻き取り、このボビンに巻き取った光ファイバを配置した反応槽内に重水素を含むガスを供給することにより、光ファイバをボビンに巻き取った状態であっても、重水素を含むガスは、巻き取った光ファイバ間の隙間を通り、速やかにボビンの巻き芯付近まで行き渡るようになる。その結果、ボビンの巻き芯付近、すなわち下層に位置する光ファイバと、重水素を含むガスとの接触効率が向上する。   According to the present invention, in the step of winding the optical fiber around the bobbin, if the outer diameter of the optical fiber is d and the interval at which the optical fiber is wound around the bobbin is S, the optical fiber satisfies the relational expression S ≧ 2d. Even if the optical fiber is wound around the bobbin by supplying a gas containing deuterium into the reaction vessel in which the optical fiber wound around the bobbin is disposed, The gas containing deuterium passes through the gap between the wound optical fibers and quickly reaches the vicinity of the bobbin core. As a result, the contact efficiency between the optical fiber located near the bobbin winding core, that is, the lower layer, and the gas containing deuterium is improved.

また、本発明によれば、光ファイバをボビンに巻き取る工程において、光ファイバの巻き張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバを、一定の張力でボビンに巻き取ることにより、光ファイバをボビンに巻き取った状態であっても、重水素を含むガスは、巻き取った光ファイバ間の隙間を通り、速やかにボビンの巻き芯付近まで行き渡るようになる。その結果、ボビンの巻き芯付近、すなわち下層に位置する光ファイバと、重水素を含むガスとの接触効率が向上する。   According to the present invention, in the step of winding the optical fiber around the bobbin, the optical fiber satisfies the relational expression of 0.2N ≦ T ≦ 2.0N, where T (N) is the winding tension of the optical fiber. Even if the optical fiber is wound around the bobbin with a constant tension, the gas containing deuterium passes through the gap between the wound optical fibers and quickly winds the bobbin. It reaches around the core. As a result, the contact efficiency between the optical fiber located near the bobbin winding core, that is, the lower layer, and the gas containing deuterium is improved.

したがって、本発明によれば、低濃度の重水素を含むガスを用い、光ファイバを、この低濃度の重水素を含むガスの雰囲気に曝す時間を短くしても、光ファイバの全域に渡ってNBOHCを消滅させることができる。結果として、生産性の向上、製造コストの低減を図ることができる。   Therefore, according to the present invention, even when a gas containing a low concentration of deuterium is used and the optical fiber is exposed to the atmosphere of the gas containing the low concentration of deuterium, the entire time of the optical fiber is reduced. NBOHC can be extinguished. As a result, productivity can be improved and manufacturing costs can be reduced.

以下、本発明を実施した光ファイバの処理方法について、図面を参照して説明する。   Hereinafter, an optical fiber processing method embodying the present invention will be described with reference to the drawings.

図1は、本発明に係る光ファイバの処理方法で用いられる光ファイバの処理装置の一例を示す概略構成図である。
図1中、符号10は光ファイバの処理装置、11は反応槽、12はガス導入口、13はガス導入用開閉バルブ、14はガス供給用配管、15は排気口、16は排気用開閉バルブ、17は排気用ポンプ、18は差圧計、20は光ファイバ、21はボビンをそれぞれ示している。
FIG. 1 is a schematic configuration diagram showing an example of an optical fiber processing apparatus used in the optical fiber processing method according to the present invention.
In FIG. 1, 10 is an optical fiber processing device, 11 is a reaction tank, 12 is a gas introduction port, 13 is a gas introduction opening / closing valve, 14 is a gas supply pipe, 15 is an exhaust port, and 16 is an exhaust opening / closing valve. , 17 is an exhaust pump, 18 is a differential pressure gauge, 20 is an optical fiber, and 21 is a bobbin.

反応槽11は、内部に光ファイバ20を収容できる密閉可能な空間が設けられた容器であり、0.1kPa程度の真空状態や常圧〜250kPa以下の加圧状態に耐えられる耐圧性や密封性を有する。
反応層11に設けられたガス導入口12には、ガス導入用開閉バルブ13を介してガス供給用配管14が接続されている。このガス供給用配管14から反応槽11内に重水素を含むガスなどを供給できるようになっている。
The reaction tank 11 is a container provided with a sealable space in which the optical fiber 20 can be accommodated, and has a pressure resistance and a sealing property that can withstand a vacuum state of about 0.1 kPa and a pressure state of normal pressure to 250 kPa or less. Have
A gas supply pipe 14 is connected to a gas introduction port 12 provided in the reaction layer 11 via a gas introduction opening / closing valve 13. A gas containing deuterium can be supplied into the reaction tank 11 from the gas supply pipe 14.

ここで、重水素を含むガスとは、重水素ガス単独または重水素ガスを含む混合ガスのことである。   Here, the gas containing deuterium is a deuterium gas alone or a mixed gas containing deuterium gas.

反応槽11に設けられた排気口15には、排気用開閉バルブ16を介して、真空ポンプなどからなる排気用ポンプ17が接続されている。この排気用ポンプ17から反応槽11内の重水素を含むガスなどを排気できるようになっている。   An exhaust port 15 provided in the reaction tank 11 is connected to an exhaust pump 17 such as a vacuum pump through an exhaust opening / closing valve 16. A gas containing deuterium in the reaction tank 11 can be exhausted from the exhaust pump 17.

また、反応槽11には、差圧計18が設けられ、反応槽11内の圧力が測定できるようになっている。差圧計18による測定値に基づいて、ガス導入用開閉バルブ13の開閉や、ガス供給用配管14に接続されたガス供給源(図示略)からの重水素を含むガスの供給量を調整し、反応槽11内を所定の圧力の重水素を含むガスの雰囲気とすることができるようになっている。また、差圧計18による測定値に基づいて、排気用ポンプ17の始動、停止を行い、反応槽11内を所定の圧力の減圧雰囲気とすることができるようになっている。   The reaction tank 11 is provided with a differential pressure gauge 18 so that the pressure in the reaction tank 11 can be measured. Based on the measured value by the differential pressure gauge 18, the gas supply opening / closing valve 13 is opened and closed, and the supply amount of gas containing deuterium from a gas supply source (not shown) connected to the gas supply pipe 14 is adjusted, The inside of the reaction tank 11 can be set to an atmosphere of a gas containing deuterium at a predetermined pressure. Further, the exhaust pump 17 is started and stopped based on the measured value by the differential pressure gauge 18 so that the inside of the reaction tank 11 can be in a reduced pressure atmosphere of a predetermined pressure.

さらに、反応槽11には、ヒータや冷却機構などの温度調整手段(図示略)や、温度計(図示略)、温度調整部(図示略)が設けられており、これらによって、内部温度を調整して反応槽11内を40℃以下の恒温状態とすることができるようになっている。   Furthermore, the reaction tank 11 is provided with temperature adjusting means (not shown) such as a heater and a cooling mechanism, a thermometer (not shown), and a temperature adjusting unit (not shown), and thereby the internal temperature is adjusted. Thus, the inside of the reaction vessel 11 can be brought to a constant temperature state of 40 ° C. or lower.

なお、反応槽11としては、開閉バルブ13の代わりに、ガス流量の調整が可能な電磁弁などが備えられ、反応槽11内に供給する重水素を含むガスの供給量を調整できるものであってもよい。   The reaction tank 11 is equipped with an electromagnetic valve or the like that can adjust the gas flow rate instead of the on-off valve 13, and can adjust the supply amount of gas containing deuterium supplied into the reaction tank 11. May be.

次に、図1を参照して、本発明に係る光ファイバの処理方法の一実施形態について説明する。
この実施形態の光ファイバの処理方法では、まず、所定の長さの光ファイバ20を、ボビン21に巻き取る(工程A)。
Next, with reference to FIG. 1, one Embodiment of the processing method of the optical fiber which concerns on this invention is described.
In the optical fiber processing method of this embodiment, first, an optical fiber 20 having a predetermined length is wound around a bobbin 21 (step A).

この工程Aにおいて、光ファイバ20の外径をd(mm)、光ファイバ20をボビン21に巻き取る間隔をS(mm)とすると、S≧2dなる関係式を満たすように、光ファイバ20をボビン21に巻き取る。   In this step A, when the outer diameter of the optical fiber 20 is d (mm) and the interval at which the optical fiber 20 is wound around the bobbin 21 is S (mm), the optical fiber 20 is satisfied so as to satisfy the relation S ≧ 2d. Winding on the bobbin 21.

S<2dでは、ボビン21に巻き取った光ファイバ20のうち、ボビン21の巻き芯付近、すなわち下層に位置する光ファイバ20は、重水素を含むガスと接触し難く、結果として、NBOHCと重水素との反応が進行し難い。   In S <2d, among the optical fibers 20 wound around the bobbin 21, the optical fiber 20 located in the vicinity of the core of the bobbin 21, that is, in the lower layer, is difficult to come into contact with the gas containing deuterium. Reaction with hydrogen is difficult to proceed.

また、この工程Aにおいて、光ファイバ20をボビン21に巻き取る張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバ20をボビン21に巻き取ってもよい。   Further, in this step A, when the tension for winding the optical fiber 20 around the bobbin 21 is T (N), the optical fiber 20 is wound around the bobbin 21 so as to satisfy the relational expression 0.2N ≦ T ≦ 2.0N. You may take it.

T<0.2Nでは、光ファイバ20をボビン21に巻き取る張力Tが弱すぎて、光ファイバ20の巻き嵩密度が小さくなり、巻き条長が短くなるため、生産に適さない。一方、T>2.0Nでは、光ファイバ20のガラス密度が高くなり、重水素の拡散が阻害されるので、結果として、NBOHCと重水素との反応が進行し難くなり、NBOHCの消滅が遅くなる。   When T <0.2N, the tension T for winding the optical fiber 20 around the bobbin 21 is too weak, the winding bulk density of the optical fiber 20 is reduced, and the winding length is shortened, which is not suitable for production. On the other hand, when T> 2.0N, the glass density of the optical fiber 20 is increased and the diffusion of deuterium is inhibited. As a result, the reaction between NBOHC and deuterium does not proceed easily, and the disappearance of NBOHC is slow. Become.

次いで、ボビン21に巻き取った光ファイバ20を、重水素を含むガスの雰囲気に曝し、光ファイバ20中のNBOHCを低減する処理を行う(工程B)。   Next, the optical fiber 20 wound around the bobbin 21 is exposed to a gas atmosphere containing deuterium to perform a process of reducing NBOHC in the optical fiber 20 (step B).

この工程Bにおいて、まず、処理装置10の反応槽11内に、ボビン21に巻き取った光ファイバ20を静置する。
次いで、排気用ポンプ17を作動した後、排気用開閉バルブ16を開き、反応槽11内の空気を排気して反応槽11内、すなわち光ファイバ20を収容した空間内を減圧して減圧雰囲気とし、光ファイバ20を減圧雰囲気に曝す。
In this process B, first, the optical fiber 20 wound around the bobbin 21 is placed in the reaction vessel 11 of the processing apparatus 10.
Next, after the exhaust pump 17 is actuated, the exhaust open / close valve 16 is opened, the air in the reaction tank 11 is exhausted, and the pressure in the reaction tank 11, that is, the space containing the optical fiber 20, is reduced to a reduced pressure atmosphere. The optical fiber 20 is exposed to a reduced pressure atmosphere.

次いで、排気用開閉バルブ16を閉じた後、温度調整手段(図示略)や、温度計(図示略)、温度調整部(図示略)によって、反応槽11内の温度を調整して40℃以下の恒温状態とする。
次いで、ガス導入用開閉バルブ13を開き、重水素を含むガスを、反応槽11内の減圧雰囲気に供給する。
Next, after closing the exhaust opening / closing valve 16, the temperature in the reaction vessel 11 is adjusted to 40 ° C. or less by a temperature adjusting means (not shown), a thermometer (not shown), or a temperature adjusting unit (not shown). Of constant temperature.
Next, the gas introduction opening / closing valve 13 is opened, and a gas containing deuterium is supplied to the reduced pressure atmosphere in the reaction tank 11.

そして、反応槽11内が所定の圧力となるまで重水素を含むガスを供給して、反応槽11の光ファイバ20を収容した空間内を、重水素を含むガスで置換した後、ガス導入用開閉バルブ13を閉じて反応槽11内を密封し、この反応槽11内において、光ファイバ20を、重水素を含むガスの雰囲気に曝す。   Then, a gas containing deuterium is supplied until the inside of the reaction vessel 11 reaches a predetermined pressure, and the space containing the optical fiber 20 in the reaction vessel 11 is replaced with a gas containing deuterium. The on-off valve 13 is closed to seal the inside of the reaction tank 11, and in this reaction tank 11, the optical fiber 20 is exposed to a gas atmosphere containing deuterium.

この工程Bにより、光ファイバ20を、重水素を含むガスの雰囲気に曝し、光ファイバ20をなす石英ガラス中のNBOHCと、重水素(D)を反応させて重水酸基(−OD)とすることにより、水酸基(−OH)の生成を阻止することができる。これにより、光ファイバ20の吸収波長帯域を、水酸基の吸収波長帯域である1.38μm帯から、重水酸基の吸収波長帯域である1.87μm帯、すなわち、光通信波長帯域以外に移動させることができる。ゆえに、石英ガラス中の水酸基に起因する吸収損失による光ファイバ20の伝送特性の劣化を抑制できる。 By this step B, the optical fiber 20 is exposed to an atmosphere of a gas containing deuterium, and NBOHC in quartz glass forming the optical fiber 20 and deuterium (D 2 ) are reacted to form a deuterated hydroxyl group (—OD). As a result, the formation of a hydroxyl group (—OH) can be prevented. Thereby, the absorption wavelength band of the optical fiber 20 can be moved from the 1.38 μm band that is the absorption wavelength band of the hydroxyl group to the 1.87 μm band that is the absorption wavelength band of the heavy hydroxyl group, that is, other than the optical communication wavelength band. it can. Therefore, it is possible to suppress the deterioration of the transmission characteristics of the optical fiber 20 due to the absorption loss due to the hydroxyl group in the quartz glass.

なお、この実施形態では、上記の工程Aにおいて、光ファイバ20の外径をd(mm)、光ファイバ20をボビン21に巻き取る間隔をS(mm)とすると、S≧2dなる関係式を満たすように、光ファイバ20をボビン21に巻き取るか、あるいは、光ファイバ20をボビン21に巻き取る張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバ20をボビン21に巻き取ることとしたが、本発明の光ファイバの処理方法では、工程Aにおいて、光ファイバ20の外径をd(mm)、光ファイバ20をボビン21に巻き取る間隔をS(mm)とすると、S≧2dなる関係式を満たし、かつ、光ファイバ20をボビン21に巻き取る張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバ20をボビン21に巻き取ってもよい。   In this embodiment, when the outer diameter of the optical fiber 20 is d (mm) and the interval at which the optical fiber 20 is wound around the bobbin 21 is S (mm) in the above step A, the relational expression S ≧ 2d is obtained. If the tension for winding the optical fiber 20 around the bobbin 21 or T (N) is T (N), the relational expression 0.2N ≦ T ≦ 2.0N is satisfied. In the optical fiber processing method of the present invention, the outer diameter of the optical fiber 20 is d (mm) and the optical fiber 20 is wound around the bobbin 21 in the process A. If the interval to be taken is S (mm), the relationship of S ≧ 2d is satisfied, and if the tension for winding the optical fiber 20 around the bobbin 21 is T (N), the relationship is 0.2N ≦ T ≦ 2.0N I satisfy the formula In the optical fiber 20 may be wound on a bobbin 21.

この実施形態では、S≧2dなる関係式を満たすように、光ファイバ20を、一定の間隔でボビン21に巻き取るか、あるいは、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバ20を、一定の張力でボビン21に巻き取り、この状態で光ファイバ20を配置した反応槽11内を減圧雰囲気とした後、反応槽11内に重水素を含むガスを供給することにより、光ファイバ20をボビン21に巻き取った状態であっても、反応槽11内における拡散速度が高められた重水素を含むガスは、巻き取った光ファイバ20間の隙間を通り、速やかにボビン21の巻き芯付近まで行き渡るようになる。その結果、ボビン21の巻き芯付近、すなわち下層に位置する光ファイバ20と、重水素を含むガスとの接触効率が向上する。   In this embodiment, the optical fiber 20 is wound around the bobbin 21 at regular intervals so as to satisfy the relational expression S ≧ 2d, or the relational expression 0.2N ≦ T ≦ 2.0N is satisfied. The optical fiber 20 is wound around the bobbin 21 with a constant tension, and after the inside of the reaction tank 11 in which the optical fiber 20 is disposed is made a reduced pressure atmosphere, a gas containing deuterium is supplied into the reaction tank 11. Thus, even in the state where the optical fiber 20 is wound around the bobbin 21, the gas containing deuterium whose diffusion rate is increased in the reaction tank 11 passes through the gap between the wound optical fibers 20 and quickly. It reaches to the vicinity of the core of the bobbin 21. As a result, the contact efficiency between the optical fiber 20 located near the core of the bobbin 21, that is, the lower layer, and the gas containing deuterium is improved.

NBOHCは、重水素と容易に結合し、重水酸基となるため、NBOHCと重水素とが結合し重水酸基となる反応(NBOHCを消滅させる反応)は、NBOHCと重水素ガスとの接触頻度によって大きく影響を受ける。
本発明によれば、上述のように、ボビン21の巻き芯近傍の光ファイバ20において、光ファイバ20と重水素を含むガスとの接触頻度(接触効率)を高めることができ、これにより、ボビン21に巻き取った光ファイバ20の全域に渡って、NBOHCと重水素との反応速度を高めることができる。したがって、低濃度の重水素を含むガスを用い、光ファイバ20を、この低濃度の重水素を含むガスの雰囲気に曝す時間を短くしても、光ファイバ20の全域に渡ってNBOHCを消滅させることができる。
Since NBOHC is easily bonded to deuterium to form a deuterated hydroxyl group, the reaction in which NBOHC and deuterium are combined to form a deuterated hydroxyl group (reaction that eliminates NBOHC) is greatly dependent on the contact frequency between NBOHC and deuterium gas. to be influenced.
According to the present invention, as described above, in the optical fiber 20 near the winding core of the bobbin 21, the contact frequency (contact efficiency) between the optical fiber 20 and the gas containing deuterium can be increased. Thus, the reaction rate between NBOHC and deuterium can be increased over the entire area of the optical fiber 20 wound up by 21. Therefore, NBOHC is extinguished over the entire area of the optical fiber 20 even when the gas containing the low concentration deuterium is used and the time for exposing the optical fiber 20 to the atmosphere of the gas containing the low concentration deuterium is shortened. be able to.

なお、本発明の光ファイバの処理方法により処理可能な光ファイバは、特に限定されない。本発明の光ファイバの処理方法によれば、石英ガラスを構成材料として含む光ファイバであればいかなる光ファイバでも処理することができる。   The optical fiber that can be processed by the optical fiber processing method of the present invention is not particularly limited. According to the optical fiber processing method of the present invention, any optical fiber can be processed as long as it is an optical fiber containing quartz glass as a constituent material.

以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with experimental examples, but the present invention is not limited to the following experimental examples.

(実験例1)
外径250μmの光ファイバを、巻き高さが30mmとなるように、ボビンに巻き取った。この際、光ファイバをボビンに巻き取る間隔を0.4mm〜0.9mmの間で変化させて、光ファイバの巻き取り間隔の異なるボビンを数種類作製した。
各ボビンを、図1に示すような光ファイバの処理装置の反応槽内に入れ、この反応槽内を1kPa(絶対圧)まで減圧した。その後、重水素の分圧が1.0kPaまたは2.0kPaとなるように、反応槽内に重水素を含むガスを供給し、反応槽内の圧力を95kPaとして、反応槽を密封した。この状態で、反応槽内において、光ファイバを、重水素を含むガスの雰囲気に7時間曝した。
重水素を含むガスの雰囲気に7時間曝した後、光ファイバを反応槽から取り出し、ボビンに巻き取った光ファイバのうち最外層(表面に存在する)の光ファイバと、最下層の光ファイバとについて、NBOHCの残存量を、NBOHCの吸収波長域である0.63μmにおける吸収損失から換算し、NBOHCが消滅する時間を計測した。最外層の光ファイバのNBOHCが消滅する時間と、最下層の光ファイバのNBOHCが消滅する時間との差から算出したNBOHCの消滅遅延時間と光ファイバの巻き取り間隔との関係について、図2に示す。
図2の結果から、重水素の分圧によらず、外径250μmの光ファイバを重水素で処理する場合、光ファイバの巻き取り間隔が0.5mm以上であれば、光ファイバの巻き取り間隔の重水素処理への影響はないことが分かった。
(Experimental example 1)
An optical fiber having an outer diameter of 250 μm was wound around a bobbin so that the winding height was 30 mm. At this time, the interval at which the optical fiber was wound around the bobbin was varied between 0.4 mm and 0.9 mm, and several types of bobbins having different optical fiber winding intervals were produced.
Each bobbin was placed in a reaction tank of an optical fiber processing apparatus as shown in FIG. 1, and the pressure in the reaction tank was reduced to 1 kPa (absolute pressure). Thereafter, a gas containing deuterium was supplied into the reaction vessel so that the partial pressure of deuterium became 1.0 kPa or 2.0 kPa, and the reaction vessel was sealed at 95 kPa. In this state, the optical fiber was exposed to a gas atmosphere containing deuterium for 7 hours in the reaction vessel.
After being exposed to a gas atmosphere containing deuterium for 7 hours, the optical fiber is removed from the reaction vessel, and the outermost optical fiber (existing on the surface) of the optical fibers wound on the bobbin, the lowermost optical fiber, The amount of NBOHC remaining was converted from the absorption loss at 0.63 μm, which is the NBOHC absorption wavelength range, and the time for NBOHC to disappear was measured. FIG. 2 shows the relationship between the NBOHC extinction delay time calculated from the difference between the NBOHC disappearance time of the outermost optical fiber and the NBOHC disappearance time of the lowermost optical fiber and the optical fiber winding interval. Show.
From the results shown in FIG. 2, when an optical fiber having an outer diameter of 250 μm is treated with deuterium regardless of the partial pressure of deuterium, the optical fiber winding interval is 0.5 mm or more if the optical fiber winding interval is 0.5 mm or more. It was found that there was no effect on the deuterium treatment.

(実験例2)
実施例1で使用した光ファイバと同様の特性を有する外径250μmの光ファイバを、巻き高さが30mmとなるように、ボビンに巻き取った。この際、光ファイバをボビンに巻き取る間隔を0.4mm〜0.9mmの間で変化させて、光ファイバの巻き取り間隔の異なるボビンを数種類作製した。
各ボビンを、図1に示すような光ファイバの処理装置の反応槽内に入れ、この反応槽内を減圧せずに、重水素の分圧が1.0kPaまたは2.0kPaとなるように、反応槽内に重水素を含むガスを供給し、反応槽内の圧力を95kPaとして、反応槽を密封した。この状態で、反応槽内において、光ファイバを、重水素を含むガスの雰囲気に24時間曝した。
重水素を含むガスの雰囲気に24時間曝した後、光ファイバを反応槽から取り出し、ボビンに巻き取った光ファイバのうち最外層(表面に存在する)の光ファイバと、最下層の光ファイバとについて、NBOHCの残存量を、NBOHCの吸収波長域である0.63μmにおける吸収損失から換算し、NBOHCが消滅する時間を計測した。最外層の光ファイバのNBOHCが消滅する時間と、最下層の光ファイバのNBOHCが消滅する時間との差から算出したNBOHCの消滅遅延時間と光ファイバの巻き取り間隔との関係について、図3に示す。
図3の結果から、重水素の分圧によらず、外径250μmの光ファイバを重水素で処理する場合、光ファイバの巻き取り間隔が0.5mm以上であれば、光ファイバの巻き取り間隔の重水素処理への影響はないことが分かった。
(Experimental example 2)
An optical fiber having an outer diameter of 250 μm having the same characteristics as the optical fiber used in Example 1 was wound around a bobbin so that the winding height was 30 mm. At this time, the interval at which the optical fiber was wound around the bobbin was varied between 0.4 mm and 0.9 mm, and several types of bobbins having different optical fiber winding intervals were produced.
Each bobbin is placed in a reaction tank of an optical fiber processing apparatus as shown in FIG. 1, and the partial pressure of deuterium is 1.0 kPa or 2.0 kPa without reducing the pressure in the reaction tank. A gas containing deuterium was supplied into the reaction tank, the pressure in the reaction tank was set to 95 kPa, and the reaction tank was sealed. In this state, the optical fiber was exposed to a gas atmosphere containing deuterium for 24 hours in the reaction vessel.
After being exposed to an atmosphere of a gas containing deuterium for 24 hours, the optical fiber is taken out of the reaction vessel, and the optical fiber in the outermost layer (existing on the surface) of the optical fibers wound around the bobbin, The amount of NBOHC remaining was converted from the absorption loss at 0.63 μm, which is the NBOHC absorption wavelength range, and the time for NBOHC to disappear was measured. FIG. 3 shows the relationship between the NBOHC extinction delay time calculated from the difference between the time when the NBOHC in the outermost optical fiber disappears and the time when the NBOHC in the lowermost optical fiber disappears, and the optical fiber winding interval. Show.
From the results shown in FIG. 3, when an optical fiber having an outer diameter of 250 μm is treated with deuterium regardless of the partial pressure of deuterium, if the winding distance of the optical fiber is 0.5 mm or more, the winding distance of the optical fiber It was found that there was no effect on the deuterium treatment.

(実験例3)
外径175μmの光ファイバと、外径500μmの光ファイバを、巻き高さが30mmとなるように、ボビンに巻き取った。この際、光ファイバをボビンに巻き取る間隔を変化させて、それぞれの光ファイバについて、巻き取り間隔の異なるボビンを数種類作製した。
各ボビンを、図1に示すような光ファイバの処理装置の反応槽内に入れ、この反応槽内を1kPa(絶対圧)まで減圧した。その後、重水素の分圧が1.0kPaとなるように、反応槽内に重水素を含むガスを供給し、反応槽内の圧力を95kPaとして、反応槽を密封した。この状態で、反応槽内において、光ファイバを、重水素を含むガスの雰囲気に7時間曝した。
重水素を含むガスの雰囲気に7時間曝した後、光ファイバを反応槽から取り出し、ボビンに巻き取った光ファイバのうち最外層(表面に存在する)の光ファイバと、最下層の光ファイバとについて、NBOHCの残存量を、NBOHCの吸収波長域である0.63μmにおける吸収損失から換算し、NBOHCが消滅する時間を計測した。最外層の光ファイバのNBOHCが消滅する時間と、最下層の光ファイバのNBOHCが消滅する時間との差から算出したNBOHCの消滅遅延時間と、光ファイバの巻き取り間隔(S)を光ファイバの外径(d)で除した値を図4に示す。
図4の結果から、光ファイバの外径によらず、S/dが2以上であれば、光ファイバの巻き取り間隔の重水素処理への影響はないことが分かった。
(Experimental example 3)
An optical fiber having an outer diameter of 175 μm and an optical fiber having an outer diameter of 500 μm were wound around a bobbin so that the winding height was 30 mm. At this time, the interval at which the optical fiber was wound around the bobbin was changed, and several types of bobbins having different winding intervals were produced for each optical fiber.
Each bobbin was placed in a reaction tank of an optical fiber processing apparatus as shown in FIG. 1, and the pressure in the reaction tank was reduced to 1 kPa (absolute pressure). Thereafter, a gas containing deuterium was supplied into the reaction vessel so that the partial pressure of deuterium became 1.0 kPa, and the reaction vessel was sealed at 95 kPa. In this state, the optical fiber was exposed to a gas atmosphere containing deuterium for 7 hours in the reaction vessel.
After being exposed to a gas atmosphere containing deuterium for 7 hours, the optical fiber is removed from the reaction vessel, and the outermost optical fiber (existing on the surface) of the optical fibers wound on the bobbin, the lowermost optical fiber, The amount of NBOHC remaining was converted from the absorption loss at 0.63 μm, which is the NBOHC absorption wavelength range, and the time for NBOHC to disappear was measured. The NBOHC extinction delay time calculated from the difference between the time when the NBOHC in the outermost optical fiber disappears and the time when the NBOHC in the lowermost optical fiber disappears, and the winding interval (S) of the optical fiber are calculated as follows. The value divided by the outer diameter (d) is shown in FIG.
From the results of FIG. 4, it was found that if the S / d is 2 or more, regardless of the outer diameter of the optical fiber, the winding interval of the optical fiber has no effect on the deuterium treatment.

(実験例4)
外径250μmの光ファイバを、巻き取る間隔を0.6μm、巻き高さが30mmとなるように、ボビンに巻き取った。この際、光ファイバをボビンに巻き取る張力を変化させて、巻き取る張力の異なるボビンを数種類作製した。
各ボビンを、図1に示すような光ファイバの処理装置の反応槽内に入れ、この反応槽内を1kPa(絶対圧)まで減圧した。その後、重水素の分圧が1.0kPaとなるように、反応槽内に重水素を含むガスを供給し、反応槽内の圧力を95kPaとして、反応槽を密封した。この状態で、反応槽内において、光ファイバを、重水素を含むガスの雰囲気に7時間曝した。
重水素を含むガスの雰囲気に7時間曝した後、光ファイバを反応槽から取り出し、ボビンに巻き取った光ファイバのうち最外層(表面に存在する)の光ファイバと、最下層の光ファイバとについて、NBOHCの残存量を、NBOHCの吸収波長域である0.63μmにおける吸収損失から換算し、NBOHCが消滅する時間を計測した。最外層の光ファイバのNBOHCが消滅する時間と、最下層の光ファイバのNBOHCが消滅する時間との差から算出したNBOHCの消滅遅延時間と光ファイバの巻き取り張力との関係について、図5に示す。
図5の結果から、巻き取り張力が2.0N以下であれば巻き取り張力の重水素処理への影響はないことが分かった。しかしながら、巻き取り張力が0.2N未満では、張力が低過ぎて、光ファイバのボビンへの巻き取り状態が悪くなるといった不良が発生し、巻き条長が短くなると考えられる。
(Experimental example 4)
An optical fiber having an outer diameter of 250 μm was wound around a bobbin such that the winding interval was 0.6 μm and the winding height was 30 mm. At this time, the tension for winding the optical fiber around the bobbin was changed, and several types of bobbins having different winding tensions were produced.
Each bobbin was placed in a reaction tank of an optical fiber processing apparatus as shown in FIG. 1, and the pressure in the reaction tank was reduced to 1 kPa (absolute pressure). Thereafter, a gas containing deuterium was supplied into the reaction vessel so that the partial pressure of deuterium became 1.0 kPa, and the reaction vessel was sealed at 95 kPa. In this state, the optical fiber was exposed to a gas atmosphere containing deuterium for 7 hours in the reaction vessel.
After being exposed to a gas atmosphere containing deuterium for 7 hours, the optical fiber is removed from the reaction vessel, and the outermost optical fiber (existing on the surface) of the optical fibers wound on the bobbin, the lowermost optical fiber, The amount of NBOHC remaining was converted from the absorption loss at 0.63 μm, which is the NBOHC absorption wavelength range, and the time for NBOHC to disappear was measured. FIG. 5 shows the relationship between the NBOHC extinction delay time calculated from the difference between the NBOHC disappearance time of the outermost optical fiber and the NBOHC disappearance time of the lowermost optical fiber and the winding tension of the optical fiber. Show.
From the results of FIG. 5, it was found that the winding tension had no effect on the deuterium treatment when the winding tension was 2.0 N or less. However, if the winding tension is less than 0.2 N, it is considered that the tension is too low and the winding state of the optical fiber on the bobbin is deteriorated, and the winding length is shortened.

本発明に係る光ファイバの処理方法で用いられる光ファイバの処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing apparatus of the optical fiber used with the processing method of the optical fiber which concerns on this invention. 実験例1において、NBOHCの消滅遅延時間と光ファイバの巻き取り間隔との関係を示すグラフである。In Experimental example 1, it is a graph which shows the relationship between the extinction delay time of NBOHC, and the winding interval of an optical fiber. 実験例2において、NBOHCの消滅遅延時間と光ファイバの巻き取り間隔との関係を示すグラフである。In Experimental example 2, it is a graph which shows the relationship between the extinction delay time of NBOHC, and the winding interval of an optical fiber. 実験例3において、NBOHCの消滅遅延時間と、光ファイバの巻き取り間隔(S)を光ファイバの外径(d)で除した値との関係を示すグラフである。In Experimental example 3, it is a graph which shows the relationship between the extinction delay time of NBOHC, and the value which remove | divided the winding interval (S) of the optical fiber by the outer diameter (d) of the optical fiber. 実験例4において、ボビンに巻き取った光ファイバのうち最外層の光ファイバのNBOHCが消滅する時間と、最下層の光ファイバのNBOHCが消滅する時間との差から算出したNBOHCの消滅遅延時間と光ファイバの巻き取り張力との関係を示すグラフである。In Experimental Example 4, the NBOHC extinction delay time calculated from the difference between the time when the NBOHC of the outermost optical fiber of the optical fiber wound around the bobbin disappears and the time when the NBOHC of the lowermost optical fiber disappears It is a graph which shows the relationship with the winding tension | tensile_strength of an optical fiber.

符号の説明Explanation of symbols

10・・・光ファイバの処理装置、11・・・反応槽、12・・・ガス導入口、13・・・ガス導入用開閉バルブ、14・・・ガス供給用配管、15・・・排気口、16・・・排気用開閉バルブ、17・・・排気用ポンプ、18・・・差圧計、20・・・光ファイバ、21・・・ボビン。
DESCRIPTION OF SYMBOLS 10 ... Optical fiber processing apparatus, 11 ... Reaction tank, 12 ... Gas introduction port, 13 ... Gas introduction opening / closing valve, 14 ... Gas supply piping, 15 ... Exhaust port , 16 ... Open / close valve for exhaust, 17 ... Pump for exhaust, 18 ... Differential pressure gauge, 20 ... Optical fiber, 21 ... Bobbin.

Claims (1)

光ファイバをボビンに巻き取る工程Aと、ボビンに巻き取られた光ファイバを、重水素を含むガスの雰囲気に曝す工程Bを備えた光ファイバの処理方法であって、
前記工程Aにおいて、光ファイバの外径をd、光ファイバをボビンに巻き取る間隔をSとすると、S≧2dなる関係式を満たすように、かつ、光ファイバを巻き取る張力をT(N)とすると、0.2N≦T≦2.0Nなる関係式を満たすように、光ファイバをボビンに巻き取ることを特徴とする光ファイバの処理方法。
An optical fiber processing method comprising: a step A for winding an optical fiber on a bobbin; and a step B for exposing the optical fiber wound on the bobbin to an atmosphere of a gas containing deuterium,
In step A, when the outer diameter of the optical fiber is d and the interval at which the optical fiber is wound around the bobbin is S, the tension that winds the optical fiber is T (N) so that the relational expression S ≧ 2d is satisfied. Then, the optical fiber is wound around a bobbin so as to satisfy the relational expression of 0.2N ≦ T ≦ 2.0N.
JP2004227790A 2004-08-04 2004-08-04 Optical fiber processing method Expired - Lifetime JP4361439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227790A JP4361439B2 (en) 2004-08-04 2004-08-04 Optical fiber processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227790A JP4361439B2 (en) 2004-08-04 2004-08-04 Optical fiber processing method

Publications (2)

Publication Number Publication Date
JP2006047623A JP2006047623A (en) 2006-02-16
JP4361439B2 true JP4361439B2 (en) 2009-11-11

Family

ID=36026253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227790A Expired - Lifetime JP4361439B2 (en) 2004-08-04 2004-08-04 Optical fiber processing method

Country Status (1)

Country Link
JP (1) JP4361439B2 (en)

Also Published As

Publication number Publication date
JP2006047623A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
TWI226464B (en) Optical fiber, non-linear optical fiber, optical amplifier using the same optical fiber, wavelength converter and optical fiber manufacture method
US7805039B2 (en) Single mode optical fiber with improved bend performance
JP2009515217A (en) Microstructured optical fiber and manufacturing method thereof
US11181684B2 (en) Optical fiber
RU2239210C2 (en) Single-mode optic fiber (variants) and method for manufacture of said optic fiber (variants)
JP3941910B2 (en) Method for producing hydrogen-resistant optical waveguide fiber and soot preform as precursor thereof
JP4464958B2 (en) Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JP2004067459A (en) Optical fiber preform, its manufacturing method, and optical fiber obtained by drawing the preform
US7486863B2 (en) Method for treating optical fiber and apparatus for treating optical fiber
JP5242006B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP4361439B2 (en) Optical fiber processing method
EP0100174A1 (en) Method of making glass optical fiber
JP5363172B2 (en) Optical fiber
JP2014214079A (en) Optical fiber preform
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
JP2007051024A (en) Photonic crystal fiber and its manufacture method
JP2007508227A (en) Method of manufacturing optical fiber and its preform
JP5535129B2 (en) Optical fiber manufacturing method
JPWO2008001673A1 (en) Optical fiber preform manufacturing method, optical fiber manufacturing method, and optical fiber
JP2003261351A (en) Optical fiber and method for treating the same
JP2012062240A (en) Method for producing optical fiber preform and method for producing optical fiber
JP4409396B2 (en) Optical fiber processing method
JP7073739B2 (en) Optical fiber manufacturing method
JP2008266060A (en) Manufacture method of silica glass tube
JPH0920528A (en) Apparatus for producing fluoride optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R151 Written notification of patent or utility model registration

Ref document number: 4361439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term