JP4358086B2 - Paper transport device and image forming apparatus using the same - Google Patents

Paper transport device and image forming apparatus using the same Download PDF

Info

Publication number
JP4358086B2
JP4358086B2 JP2004329860A JP2004329860A JP4358086B2 JP 4358086 B2 JP4358086 B2 JP 4358086B2 JP 2004329860 A JP2004329860 A JP 2004329860A JP 2004329860 A JP2004329860 A JP 2004329860A JP 4358086 B2 JP4358086 B2 JP 4358086B2
Authority
JP
Japan
Prior art keywords
paper
sheet
time
roller pair
succeeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004329860A
Other languages
Japanese (ja)
Other versions
JP2006137579A (en
Inventor
賢司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004329860A priority Critical patent/JP4358086B2/en
Publication of JP2006137579A publication Critical patent/JP2006137579A/en
Application granted granted Critical
Publication of JP4358086B2 publication Critical patent/JP4358086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)

Description

本発明は、用紙搬送装置及びこれを使用した画像形成装置に関し、特に、給紙動作における紙間バラツキを低減し、紙間を小さくすることができる用紙搬送装置及びこれを使用した画像形成装置に関する。   The present invention relates to a sheet conveying apparatus and an image forming apparatus using the same, and more particularly, to a sheet conveying apparatus capable of reducing variation between sheets in a sheet feeding operation and reducing the sheet interval, and an image forming apparatus using the same. .

図19に従来の用紙搬送装置(FRR分離方式を使用)の横断面を示す。用紙搬送装置はコピー機やプリンタなどの画像形成装置の給紙搬送部として機能するものである。同図において、用紙積載部1aに積載された用紙2aは先端位置がAの位置にある。用紙搬送装置に給紙開始を伝える給紙信号がONとなるのをトリガとしてピックアップローラ3が下降、回転し、最上部の用紙を分離部Bに送り出す。フィードローラ4、リバースローラ5はピックアップローラの駆動と同時に駆動され、用紙を1枚に分離する。
この実施例ではピックアップローラ3、フィードローラ4、リバースローラ5は1つのモータで駆動されている。1枚に分離された用紙2aの先端が用紙センサa(C)に達するとピックアップローラ3が上昇するとともに駆動が切れ、ピックアップローラ3による用紙の搬送が無くなる。その後用紙はフィードローラ4の搬送力により搬送され、第1搬送ローラ対1(E)に達する。フィードローラ4の駆動は、フィードローラ4の駆動開始後一定時間t1後に切れるが、このときの用紙先端位置は用紙先端が第1搬送ローラ対1(E)に達した後となるよう設定されている。
フィードローラ4の駆動が切れた後は用紙は第1搬送ローラ対1(E)により送られる。その後、用紙先端が用紙センサb(G)、第2搬送ローラ対2(E’)、用紙センサFを通過する。用紙先端が用紙センサFを通過したこと(=センサFが用紙先端を検知したこと)をトリガとして感光体への画像書込みが開始される(センサFがONしてから20msec後に画像書込みスタートというような制御による。)。
第1搬送ローラ対1(E)、第2搬送ローラ対2(E’)はそれぞれ別のモータ(図示せず)で駆動されている。用紙先端が用紙センサC(I)に達してから時間t2経過後(このとき用紙先端はレジストローラ(J)に達するようにt2が設定されており、このときレジストローラは停止している。この時間t2の設定により、用紙先端はレジストローラの前でたるみを作りスキュー補正を行う。この例ではt2=37.5msec)に搬送ローラモータはOFFとなり、第1搬送ローラ対1(E)、2(E’)は駆動OFFとなる。
その後、レジストローラJの駆動ONと同時に搬送ローラ用のモータはONとなり、第1搬送ローラ対1(E)、第2搬送ローラ対2(E’)は回転を始め、用紙は感光体6と転写ローラ7からなる転写部に送られ画像を転写される。レジストローラONのタイミングは、用紙センサFがON後時間t3後にONとなるよう設定されている。これにより感光体6に書き込まれた画像と用紙位置を合わせている。
FIG. 19 shows a cross section of a conventional paper transport device (using the FRR separation method). The sheet conveying device functions as a sheet feeding / conveying unit of an image forming apparatus such as a copier or a printer. In the figure, the leading edge of the paper 2a stacked on the paper stacking unit 1a is at the position A. The pickup roller 3 descends and rotates with a paper feed signal that tells the paper transport device to start feeding paper as a trigger, and sends the uppermost paper to the separating section B. The feed roller 4 and the reverse roller 5 are driven simultaneously with the driving of the pickup roller to separate the paper into one sheet.
In this embodiment, the pickup roller 3, the feed roller 4, and the reverse roller 5 are driven by one motor. When the leading edge of the sheet 2a separated into one sheet reaches the sheet sensor a (C), the pickup roller 3 rises and the drive is cut off, so that the sheet is not conveyed by the pickup roller 3. Thereafter, the sheet is conveyed by the conveying force of the feed roller 4 and reaches the first conveying roller pair 1 (E). The drive of the feed roller 4 is cut off after a predetermined time t1 after the start of the drive of the feed roller 4, but the leading edge of the sheet at this time is set to be after the leading edge of the sheet reaches the first conveying roller pair 1 (E). Yes.
After the drive of the feed roller 4 is cut off, the paper is fed by the first transport roller pair 1 (E). Thereafter, the leading edge of the paper passes through the paper sensor b (G), the second transport roller pair 2 (E ′), and the paper sensor F. Image writing to the photosensitive member is triggered by the fact that the leading edge of the sheet has passed the sheet sensor F (= sensor F has detected the leading edge of the sheet) (such as starting image writing 20 msec after the sensor F is turned on). It is by the control.)
The first transport roller pair 1 (E) and the second transport roller pair 2 (E ′) are driven by separate motors (not shown). After time t2 has elapsed since the leading edge of the sheet reached the sheet sensor C (I) (at this time, t2 is set so that the leading edge of the sheet reaches the registration roller (J), and at this time, the registration roller is stopped. By setting the time t2, the leading edge of the sheet forms a slack in front of the registration roller and performs skew correction (in this example, t2 = 37.5 msec), the conveyance roller motor is turned off, and the first conveyance roller pair 1 (E), 2 (E ′) is driven off.
Thereafter, simultaneously with the driving of the registration roller J, the conveyance roller motor is turned on, the first conveyance roller pair 1 (E) and the second conveyance roller pair 2 (E ′) begin to rotate, and the sheet is in contact with the photosensitive member 6. The image is transferred to a transfer portion comprising the transfer roller 7. The registration roller ON timing is set to be ON after time t3 after the paper sensor F is turned ON. As a result, the image written on the photosensitive member 6 is aligned with the paper position.

コピー、プリンタ等の画像形成装置において、従来は用紙を連続して搬送する場合、1枚給紙後次の用紙を給紙する際に間隔を空けて(以降この間隔を紙間と記す)給紙し、搬送しているものがほとんどである。用紙先端をセンサで検知させて画像書き込みのトリガとする、レジストローラ部に用紙先端を止めてスキュー補正、画像との位置合わせを行う等の理由のため、用紙搬送時にはある一定以上の紙間が必要であり、紙間をあけるには給紙部で用紙を送り出す際に紙間をあけて送り出すのが簡単であることから、給紙部で紙間をあけて用紙を搬送することが一般的な方法となっている。
しかし、給紙部で紙間を空けていることによる不具合も生じている。即ち、近年、コピー、プリンタ等の画像形成装置において生産性向上等の理由から紙間をできるだけ短縮したいというニーズが大きくなってきている。そして、搬送される用紙の紙間の間隔を短縮して生産性を向上しようとするものが提案されて公知である(特許文献1、特許文献2を参照)。
これは、同一線速(用紙送り速度)であれば紙間距離が短いほどコピー、プリントの速度が速くできることから、従来より、低コスト化を求め(同一プリント速度を狙うのであればローラの回転数をあげる必要がないためモータ等の部品として1ランク低価格のものを使用できる)、静音化(同一プリント速度を狙うのであればローラの回転数をあげる必要がないためモータの騒音を下げられる)、耐久性の向上(紙間で余分にモータを回す必要がないことなどから耐久性を向上できる)などを目的とするものである。
特開平05−085644号公報 特開2003−176045公報
Conventionally, in an image forming apparatus such as a copy or printer, when continuously transporting paper, an interval is provided when the next paper is fed after feeding one sheet (hereinafter, this spacing is referred to as a paper gap). Most are paper and transported. Due to reasons such as detecting the leading edge of the sheet with a sensor and triggering image writing, stopping the leading edge of the sheet at the registration roller section to perform skew correction, aligning with the image, etc. It is necessary, and it is easy to leave the paper when the paper is sent out by the paper feed unit to feed the paper. It has become a method.
However, there is a problem due to a gap between sheets in the sheet feeding unit. That is, in recent years, there has been an increasing need to shorten the sheet gap as much as possible for reasons such as productivity improvement in image forming apparatuses such as copying and printers. And it is well-known that an attempt is made to improve productivity by shortening the interval between sheets of conveyed paper (see Patent Document 1 and Patent Document 2).
This is because if the same linear speed (paper feed speed) is used, the shorter the distance between papers, the faster the copying and printing speeds. Therefore, lower costs have been sought in the past (if the same printing speed is aimed, the number of rotations of the rollers). Because it is not necessary to increase the motor speed, it is possible to use motors and other parts that are one rank lower in price.) Noise reduction (If the same print speed is aimed, the motor noise can be reduced because there is no need to increase the rotation speed of the roller) The purpose is to improve the durability (durability can be improved because it is not necessary to rotate the motor extra between papers).
Japanese Patent Laid-Open No. 05-085644 JP 2003-176045 A

しかし、従来においては、給紙部で紙間を空ける方式では以下のような不具合があった。
1.給紙時の用紙スリップのバラツキによる紙間バラツキ
用紙は用紙を搬送するローラの搬送力と用紙を搬送する際の負荷との関係によりスリップを生じながら搬送される。このとき搬送力が負荷に対して充分に大きいとスリップは小さく安定した線速で送られる。しかし、一般に給紙用ローラによる用紙搬送では、分離部での負荷が給紙用ローラの搬送力に対して比較的大きい場合が多く、また分離状態、用紙の種類などによっても負荷のバラツキを生じる。また、ローラの経時でのゴムの劣化、紙粉、汚れ等の付着による摩擦係数の低下等の影響によって搬送力がバラツキやすい。このため、他の搬送用ローラなどに比べてスリップが大きく、またそのバラツキも大きくなりやすい。
この結果として、給紙開始から用紙先端が第1搬送ローラ対1に送られるまでの間で用紙線速がバラツキやすく、結果として紙間のバラツキが大きくなってしまう(用紙先端が第1搬送ローラ対1に噛んだ後は搬送ローラの搬送力が加わるため、負荷に対して用紙の搬送力が十分に大きくなり、スリップによる線速のバラツキは小さくなる。)。紙間のバラツキが大きくなると紙間がばらついた状態で必要な紙間を確保するためには紙間の中央値を大きめに設定し、紙間がばらついても必要な紙間を確保できるようにする必要があった。このため、紙間を小さくするためには紙間のバラツキを小さくする必要がある。
2.用紙の待機位置のバラツキによる紙間距離のバラツキ
給紙される用紙の先端位置は用紙の待機位置(図19の(A))から分離部(図19の(B))までの間で待機している。従来の給紙部で紙間を空ける方式で用紙を連続して給紙する場合、用紙の先端位置のバラツキが紙間距離のバラツキとなってしまう。このため、上記1と同様に紙間のバラツキが大きくなると紙間がばらついた状態で必要な紙間を確保するためには紙間の中央値を大きめに設定し、紙間がばらついても必要な紙間を確保できるようにする必要があった。
つまり、従来構成では、紙間を小さくすることが困難であった。
そこで、本発明は、上述した実情を考慮してなされたもので、給紙動作における紙間バラツキを低減し、紙間を小さくすることができる用紙搬送装置及びこれを使用した画像形成装置を提供することを目的とする。
Conventionally, however, the following problem has been encountered in the method in which the paper feed unit provides a gap between papers.
1. Inter-paper variation due to variations in paper slip at the time of paper feeding The paper is transported while causing slippage due to the relationship between the transport force of the roller that transports the paper and the load when transporting the paper. At this time, if the conveying force is sufficiently large with respect to the load, the slip is small and is fed at a stable linear speed. However, in general, in the sheet conveyance by the sheet feeding roller, the load on the separation unit is often relatively large with respect to the conveyance force of the sheet feeding roller, and the load varies depending on the separation state, the type of sheet, and the like. . In addition, the conveying force tends to vary due to the influence of the deterioration of the rubber over time, the reduction of the friction coefficient due to the adhesion of paper dust, dirt and the like. For this reason, the slip is larger than that of other conveying rollers, and the variation is likely to increase.
As a result, the line speed of the sheet is likely to vary from the start of paper feeding until the leading edge of the sheet is sent to the first conveying roller pair 1, resulting in a large variation between the sheets (the leading edge of the sheet is the first conveying roller). Since the conveying force of the conveying roller is applied after the pair 1 is bitten, the conveying force of the sheet becomes sufficiently large with respect to the load, and the variation in the linear velocity due to the slip is reduced. In order to ensure the required paper gap when the paper gap varies, the median value between the papers is set to a large value so that the required paper gap can be secured even if the paper gap varies. There was a need to do. For this reason, in order to reduce the gap between the sheets, it is necessary to reduce the variation between the sheets.
2. Variation in distance between sheets due to variation in paper standby position The leading edge of the paper to be fed waits from the paper standby position ((A) in FIG. 19) to the separation unit ((B) in FIG. 19). ing. When the paper is continuously fed by the conventional paper feeding unit with a gap between the papers, the variation in the front end position of the paper becomes the variation in the distance between the papers. For this reason, in the same way as in 1 above, when the variation between the papers becomes large, in order to secure the necessary paper space in the state where the paper space varies, the median value between the papers is set to be large, and it is necessary even if the paper space varies. It was necessary to be able to secure a gap between papers.
That is, with the conventional configuration, it is difficult to reduce the gap between the sheets.
Accordingly, the present invention has been made in consideration of the above-described circumstances, and provides a paper transport device that can reduce paper-to-paper variations in a paper feeding operation and can reduce the paper-to-paper space, and an image forming apparatus using the same. The purpose is to do.

上記の課題を解決するために、請求項1に記載の発明は、用紙を用紙積載部から送り出すための給紙ローラと、用紙を1枚に分離するための分離手段と、前記給紙ローラより下流の搬送路に設けられ、用紙を搬送する第1搬送ローラ対と、前記第1搬送ローラ対より下流の搬送路に設けられ、用紙を搬送する第2搬送ローラ対と、前記第1搬送ローラ対と前記第2搬送ローラ対の間に位置する用紙センサとを備え、連続して給紙を行う場合には、用紙を前記用紙積載部から給紙する際に用紙の間隔をあけずに連続して給紙を行い、先行する用紙の後端が前記第1搬送ローラ対を抜けた以降のタイミングで前記第2搬送ローラ対の駆動は切らずに先行紙の搬送を続けたまま前記第1搬送ローラ対の駆動を切って後行紙の搬送を止めることにより、前記第1搬送ローラ対と前記第2搬送ローラ対の間で紙間距離を空けて以降搬送し、前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラ対の駆動を開始して後行紙を搬送すると共に、先行紙後端が前記用紙センサを抜けてから後行紙先端が前記用紙センサに達するまでの紙間時間t1の測定を行い、測定された紙間時間t1の値に応じて後行紙先端が前記第1搬送ローラ対に達した後に後行紙を用紙線速V2で増速して搬送する時間、あるいは後行紙を停止する時間等の搬送タイミングを決定する用紙搬送装置を最も主要な特徴とする。
また、請求項2に記載の発明では、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1≧設定時間Taのとき(ただしTa=一定値)、前記用紙センサ位置に後行紙先端が達した後、時間Tb間は前記第1搬送ローラ対の回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、用紙センサ位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
In order to solve the above-described problem, the invention according to claim 1 includes: a paper feed roller for feeding paper from a paper stacking unit; a separation unit for separating paper into one sheet; and the paper feed roller. A first conveying roller pair that is provided in a downstream conveying path and conveys a sheet, a second conveying roller pair that is disposed in a conveying path downstream of the first conveying roller pair and conveys a sheet, and the first conveying roller A sheet sensor positioned between the pair and the second transport roller pair, and in the case of continuous sheet feeding, the sheet is continuously fed without feeding the sheet when the sheet is fed from the sheet stacking unit. Then, at the timing after the trailing edge of the preceding sheet passes through the first conveying roller pair, the first conveying roller pair is not turned off and the first sheet is continuously conveyed without being turned off. By stopping the conveyance roller pair and stopping the conveyance of the following paper It is detected that the trailing edge of the preceding sheet has been removed from the position of the sheet sensor by the sheet sensor after transporting after a distance between the first transport roller pair and the second transport roller pair. As a trigger, the drive of the first conveying roller pair is started after a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet has passed, and the trailing sheet is conveyed, and the trailing edge of the preceding paper sheet passes through the sheet sensor. The paper interval time t1 until the leading edge of the line paper reaches the paper sensor is measured, and the trailing paper after the leading edge of the succeeding paper reaches the first conveying roller pair according to the measured value of the paper interval time t1. The main feature is a paper transport device that determines transport timing such as a time for transporting the paper at a speed of the paper linear speed V2 or a time for stopping the succeeding paper.
In the second aspect of the present invention, it is detected that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the conveying speed and timing of the trailing sheet after the sheet interval time t1 is measured is the sheet interval. When time t1 ≧ set time Ta (where Ta = a constant value), after the leading edge of the succeeding paper reaches the paper sensor position, the normal speed is increased by increasing the rotation speed of the first conveying roller pair during time Tb. After the succeeding sheet is conveyed at a faster sheet linear velocity V2, and the leading edge of the succeeding sheet reaches the sheet sensor position, the rotation speed of the first conveying roller pair is returned to the normal rotation speed after the time Tb has elapsed. A main feature is a paper conveyance device set to convey the following paper at a normal paper linear velocity V1.

また、請求項3に記載の発明では、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラ対の回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
また、請求項4に記載の発明では、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tc間は前記第1搬送ローラ対の回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後はそこから更に時間Td経過するまでは前記第1搬送ローラ対の回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、時間Td経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定した用紙搬送装置を主要な特徴とする。
また、請求項5に記載の発明では、時間TbがTb=(t1−Ta)×V1/(V2−V1)ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、時間TcがTc=Ta−t1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値である用紙搬送装置を主要な特徴とする。
According to a third aspect of the present invention, it is detected that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the conveying speed and timing of the succeeding sheet after the sheet interval time t1 is measured is the sheet interval. When time t1 <set time Ta (where Ta = constant value), after the leading edge of the succeeding sheet reaches the position of the sheet sensor, the rotation of the first conveying roller pair is stopped for a period of time Tc. After the conveyance of the paper is stopped and the leading edge of the succeeding paper reaches the position of the paper sensor, after the time Tc elapses, the rotation speed of the first conveyance roller pair is returned to the normal rotation speed, so that the normal sheet linear velocity is reached. The main feature is a paper transporting device set to transport subsequent paper at V1.
According to a fourth aspect of the present invention, it is detected that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the conveying speed and timing of the succeeding sheet after the sheet interval time t1 is measured is the sheet interval. When time t1 <set time Ta (where Ta = constant value), after the leading edge of the succeeding sheet reaches the position of the sheet sensor, the rotation of the first conveying roller pair is stopped for a period of time Tc. After the paper conveyance is stopped and the leading edge of the succeeding paper has reached the position of the paper sensor, after the time Tc has elapsed, the rotation speed of the first conveyance roller pair is increased until the time Td has elapsed. The succeeding paper is conveyed at a paper linear speed V2 that is faster than the speed, and after the time Td, the following paper is conveyed at the normal paper linear speed V1 by returning the rotation speed of the first conveying roller pair to the normal rotation speed. A main feature is a sheet conveying apparatus set to convey.
In the invention according to claim 5, the time Tb is Tb = (t1−Ta) × V1 / (V2−V1) where Ta = L / V1, L = target inter-paper distance after correction, V1 = Normal paper linear velocity, V2 = paper linear velocity during acceleration, time Tc is a calculated value obtained from the relationship of Tc = Ta-t1, or a data table is obtained in advance so as to obtain the same effect as when the calculated value is used. The main feature is a sheet conveying device which is a value obtained by referring to data set in the inside.

また、請求項6に記載の発明では、時間TbがTb=(t1−Ta)×V1/(V2−V1)+Tdただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間、時間TcがTc=Ta−t1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値である用紙搬送装置を主要な特徴とする。
また、請求項7に記載の発明では、前記用紙センサの位置を前記第1搬送ローラ対の位置より前記用紙積載部に積載された用紙の先端位置から前記分離手段の位置までの距離よりも大きく離れた搬送路の下流側に設けた用紙搬送装置を主要な特徴とする。
また、請求項8に記載の発明では、前記用紙センサにより前記用紙センサの位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラ対の駆動を開始する際の前記第1搬送ローラ対により送られる後行紙の用紙線速は前記第1搬送ローラ対の駆動開始から前記用紙センサに後行紙先端が達するまでの一部の区間、あるいは全区間において後行紙用紙線速が通常線速V1より速い増速線速V2にて送られるように前記第1搬送ローラ対の回転数が制御される用紙搬送装置を主要な特徴とする。
また、請求項9に記載の発明では、用紙に画像を形成するための画像形成部と、
前記画像形成部に用紙を搬送する請求項1〜8のいずれかに記載の用紙搬送装置とを備えた画像形成装置を主要な特徴とする。
また、請求項10に記載の発明では、前記画像形成部は電子写真方式で形成したトナー画像を用紙に転写して用紙上に画像を形成する画像形成装置を主要な特徴とする。
In the invention described in claim 6, the time Tb is Tb = (t1−Ta) × V1 / (V2−V1) + Td, where Ta = {L + Td × (V2−V1)} / V1, L = after correction V1 = normal paper linear velocity, V2 = paper linear velocity at the time of acceleration, Td = a fixed time, and a calculated value obtained from the relationship of Tc = Ta−t1 or the calculated value is used. In order to obtain the same effect as in the case of the paper transporting apparatus, the main feature is a sheet transporting apparatus having values obtained by referring to data set in the data table in advance.
According to a seventh aspect of the present invention, the position of the sheet sensor is larger than the distance from the position of the first conveying roller pair to the position of the separating means from the leading end position of the sheets stacked on the sheet stacking unit. A main feature is a sheet conveying apparatus provided on the downstream side of a separated conveying path.
In the invention according to claim 8, a certain time T1 (≧ 0) after the trailing edge of the preceding paper sheet is triggered by the fact that the trailing edge of the preceding sheet has been detected by the sheet sensor as being detected by the sheet sensor. ) When the first conveying roller pair starts to be driven later, the sheet linear velocity of the succeeding sheet sent by the first conveying roller pair is determined from the start of driving the first conveying roller pair to the sheet sensor. The rotation speed of the first conveying roller pair is controlled so that the following paper sheet linear velocity is fed at a speed increasing linear velocity V2 that is higher than the normal linear velocity V1 in a part or all of the interval until reaching The main feature is a paper transport device.
In the invention according to claim 9, an image forming unit for forming an image on a sheet;
An image forming apparatus including the sheet conveying device according to claim 1 that conveys a sheet to the image forming unit is a main feature.
According to a tenth aspect of the present invention, the image forming unit mainly includes an image forming apparatus that transfers a toner image formed by an electrophotographic method onto a sheet to form an image on the sheet.

本発明によれば、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、用紙センサにより紙間時間を測定し、その値により後行紙の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキの低減が可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、測定した紙間時間が大きいときは、後行紙線速を増速(V2)にてある時間Tb搬送することで紙間を詰め、その後通常の用紙線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、測定した紙間時間が小さいときは、後行紙をある時間Tc停止することで紙間をあけ、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減することが可能となる。
また、測定した紙間時間が小さいときは、後行紙をある時間Tc停止することで紙間をあけ、その後一定時間Td増速V2で搬送を再開し、その後通常の用紙線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、時間Tb、TcをTb=(t1−Ta)×V1/(V2−V1)ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Tc=Ta−t1と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
また、時間Tb、TcをTb=(t1−Ta)×V1/(V2−V1)+Tdただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間、Tc=Ta−t1と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
According to the present invention, the position where the space between the papers is sufficiently large in relation to the transport load (separation load, transport stiffness due to the stiffness of the paper, sliding with the guide plate, etc.) Therefore, it is possible to suppress the variation between papers as compared to the conventional paper feeding unit where the paper linear speed is unstable. In addition, the paper interval is measured by the paper sensor, the acceleration time and timing of the succeeding paper are determined based on the measured values, and correction between the papers is performed, so that it is possible to reduce the variation between the corrected papers. . As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.
Further, when the measured paper interval time is large, the subsequent paper linear velocity is increased (V2) by transporting the paper interval by Tb for a certain time Tb, and then the normal paper linear velocity V1 is restored. It becomes possible to reduce the variation of the.
Further, when the measured paper interval time is small, the following paper is stopped for a certain time Tc to clear the paper interval, and then the conveyance is resumed at the normal paper linear velocity V1 to reduce the variation between the papers. Is possible.
Further, when the measured paper interval time is small, the succeeding paper is stopped for a certain time Tc to clear the paper interval, and thereafter the conveyance is resumed at a constant time Td speed increase V2, and then returned to the normal paper linear speed V1. This makes it possible to reduce the variation between the papers.
Also, the times Tb and Tc are Tb = (t1−Ta) × V1 / (V2−V1) where Ta = L / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 By setting = paper linear velocity during acceleration and Tc = Ta-t1, the corrected inter-paper distance≈the target inter-paper distance L can be achieved, and the variation between the papers can be effectively reduced. It becomes possible.
Further, the times Tb and Tc are set to Tb = (t1−Ta) × V1 / (V2−V1) + Td, where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction, By setting V1 = normal sheet linear velocity, V2 = accelerated sheet linear velocity, Td = predetermined time, and Tc = Ta−t1, the corrected inter-paper distance≈target inter-paper distance L can be set. It is possible to effectively reduce the variation between the papers.

また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙を紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙先端が用紙センサに達しないことから、用紙が重なっている状態でも用紙センサにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより紙間の補正が可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサによる紙間時間測定の前に後行紙の用紙線速を速くすることで測定時の紙間をより小さくすることが可能である。これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから、以降の後行紙用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
また、画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから、小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置に紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから、小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Even if there is variation in the standby position of the paper, the leading edge of the succeeding paper when the trailing paper is stopped even if the paper is partially overlapped when the paper is continuously fed without gaps due to the variation in the standby position. Since the paper sensor does not reach the paper sensor, the paper sensor can detect the sensor removal timing of the preceding paper and measure the paper interval time t1 even when the paper is overlapped, thereby correcting the paper interval. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet before the sheet interval time measurement by the sheet sensor, it is possible to further reduce the sheet interval at the time of measurement. As a result, the measurement paper interval time t1 and the variation thereof can be made smaller in advance, so that it is possible to cope with a larger variation in the paper interval in combination with the effect of the correction of the inter paper interval by the subsequent paper linear speed and the conveyance timing.
In addition, by providing the image forming apparatus with a paper conveyance device that performs this paper gap correction, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, increased durability, calming, etc. The effect of can be obtained.
In addition, since the electrophotographic image forming apparatus is provided with a paper conveyance device for correcting the paper gap, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

以下、図面を参照して、本発明の用紙搬送装置及びこれを使用した画像形成装置を実施するための最良の形態(用紙搬送装置を使用した画像形成装置)を詳細に説明する。なお、画像形成装置の機能としては、この例では、コピー、ファックス、プリンタ、スキャナ等の機能を備えている。また、従来技術の説明で用いた図19と同様の部分については同図を用いて説明する。
図19において、用紙センサb(G)は用紙の有無を検知するセンサであり、従来技術では第1搬送ローラ対1と第2搬送ローラ対2と間の用紙の挙動(用紙先端が用紙センサbに達するタイミング、後端が用紙センサbを抜けたタイミング等)を観察する目的で使用している。これらのタイミングが規定値より大きく外れた値である場合、例えば、用紙センサbがずっとONしたままの状態となった場合にはセンサ部分で用紙が停止したまま(JAM)であると判断し、異常をパネル上に表示する、あるいは、規定時間を過ぎてもセンサがONしない場合には用紙が不給紙であると判断し、同様に異常をパネル上に表示する、等の目的で使用されている。この働きに加え、本発明を実施するための最良の形態では、紙間無しで給紙され、送られてきた用紙に一定の紙間をあけるためにも使用している。
用紙センサb(G)の位置は、第1搬送ローラ対1(E)からLE−G(以下、Lは距離を意味する記号として用いる)の距離に設けられており、用紙先端が第1搬送ローラ対1から距離LE−Gに達したときにセンサON、用紙の後端が第1搬送ローラ対1から距離LE−Gに達したときにセンサOFFとなる様設けられている。このとき、距離LE−Gは用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−B に対して、LE−G>LA−Bとなる関係にある。
この例で示したFRR分離方式の給紙機構の場合、用紙先端の待機位置は用紙セット時の用紙先端待機位置(A)から分離部(B)までの間でばらつく。この待機位置のバラツキにより、給紙部で用紙の紙間をあけずに連続して給紙する場合、先行紙の後部と後行紙の前部が最大で距離LA−B重なって給紙される場合がある。本発明を実施するための最良の形態では、LE−G>LA−Bとなる関係に用紙センサbの位置を設けており、これは、先行紙の後部と後行紙の前部との重なり量をD、その最大値をDmaxとしたとき、第1搬送ローラ対1からの距離がDmax(=LA−B)の距離より下流の箇所に用紙センサbを設けることを狙ったものである。
なお、給紙開始時、その給紙が連続給紙であれば(プリンタのコントロ−ラからの指示、PPCのコピー枚数からの指示などにより判断する)、給紙部では紙間を空けずに連続給紙を開始する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode (an image forming apparatus using a sheet conveying apparatus) for carrying out a sheet conveying apparatus and an image forming apparatus using the same according to the present invention will be described in detail with reference to the drawings. In this example, the image forming apparatus has functions such as a copy function, a fax function, a printer function, and a scanner function. Moreover, the same part as FIG. 19 used by description of a prior art is demonstrated using the same figure.
In FIG. 19, a paper sensor b (G) is a sensor that detects the presence or absence of paper. In the prior art, the behavior of paper between the first transport roller pair 1 and the second transport roller pair 2 (the front end of the paper is the paper sensor b). For example, the timing at which the trailing edge passes through the paper sensor b). If these timings are values that are significantly larger than the specified value, for example, if the paper sensor b remains on all the time, it is determined that the paper is stopped (JAM) at the sensor portion, It is used for the purpose of displaying abnormalities on the panel, or if the sensor does not turn on even after the specified time has passed, it is judged that the paper is not fed and the abnormalities are displayed on the panel as well. ing. In addition to this function, in the best mode for carrying out the present invention, the sheet is fed without a gap and used to leave a certain gap between the fed sheets.
The position of the paper sensor b (G) is provided at a distance of LE-G (hereinafter, L is used as a symbol indicating distance) from the first transport roller pair 1 (E), and the front end of the paper is the first transport roller. The sensor is turned on when the distance LE-G is reached from the roller pair 1, and the sensor is turned off when the trailing edge of the paper reaches the distance LE-G from the first conveying roller pair 1. At this time, the distance LE-G has a relationship of LE-G> LA-B with respect to the distance LA-B from the paper leading edge standby position (A) to the separating portion (B) when setting the paper.
In the case of the FRR separation type paper feed mechanism shown in this example, the standby position of the paper leading edge varies between the paper leading edge standby position (A) and the separating portion (B) when the paper is set. Due to the variation in the standby position, when the paper feeding unit continuously feeds paper without leaving a gap between the papers, the rear part of the preceding paper and the front part of the succeeding paper are fed with a maximum distance LA-B. There is a case. In the best mode for carrying out the present invention, the position of the sheet sensor b is provided in a relationship of LE-G> LA-B, which is the overlap between the rear part of the preceding paper and the front part of the succeeding paper. When the amount is D and the maximum value is Dmax, the sheet sensor b is intended to be provided at a location downstream from the distance Dmax (= LA−B) from the first conveying roller pair 1.
If the paper feed is continuous paper feed at the start of paper feed (determined by an instruction from the printer controller, an instruction from the number of copies of the PPC, etc.), the paper feed unit does not leave a gap between the papers. Start continuous feeding.

実施例1では、図1のフローチャート、図2〜図16及び図19を用いて説明する。また、実施例1では、以下の3つの場合について説明する。
1:連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例(図1、図19、図2〜図6)
2:連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例(図1、図19、図7〜図11)
3:連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例(図1、図19、図12〜図16)
1:連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例
図2〜図6は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。なお、図中、ロ−ラ、センサ等の横に記載されている数値はこの例での用紙積載位置からの距離(mm)である。まず、給紙部で連続して給紙された用紙は、図2のように、先行紙P1後端と後行紙P2先端が重なって送られ、先行紙後端が第1搬送ローラ対1を抜けた以降のタイミング(この例では第1搬送ローラ対1から10mm送られたタイミング)で第1搬送ローラ対1が停止することにより後行紙の搬送が停止する(図1のステップS1〜ステップS5)。
このときの重なり量の最大値Dmaxは、用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−Bであり(この例では24.5mm)、用紙センサbの位置は搬送ローラ1からの距離LE−Gであり、重なり量の最大値Dmax=LA−Bより大きいことから、後行紙先端は用紙センサbに達していない位置で停止している。
The first embodiment will be described with reference to the flowchart of FIG. 1 and FIGS. 2 to 16 and 19. In the first embodiment, the following three cases will be described.
1: Example in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed by continuous feeding (FIGS. 1, 19, and 2 to 6)
2: An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with zero gap between continuous sheets (FIGS. 1, 19, and 7 to 11).
3: An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are conveyed with a slight gap between them in continuous feeding (FIGS. 1, 19, and 12 to 16).
1: An example in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed in continuous feeding FIGS. 2 to 6 show the paper when continuous feeding is performed without leaving a gap in the paper feeding unit. FIG. 10 is a schematic cross-sectional view when sheets are fed in overlapping due to variations in the standby position. In the figure, the numerical values written beside the rollers, sensors, etc. are the distance (mm) from the paper stacking position in this example. First, as shown in FIG. 2, the paper continuously fed by the paper feeding unit is fed with the trailing edge of the preceding paper P1 and the leading edge of the trailing paper P2 overlapped, and the trailing edge of the leading paper is the first conveying roller pair 1. When the first conveying roller pair 1 stops at a timing after passing through (the timing when 10 mm is fed from the first conveying roller pair 1 in this example), the conveyance of the succeeding paper is stopped (steps S1 to S1 in FIG. 1). Step S5).
The maximum value Dmax of the overlap amount at this time is the distance LA-B (24.5 mm in this example) from the paper leading edge standby position (A) to the separating portion (B) when setting paper, and the position of the paper sensor b. Is the distance LE-G from the conveying roller 1 and is larger than the maximum overlap amount Dmax = LA-B, so that the leading edge of the succeeding sheet stops at a position where it does not reach the sheet sensor b.

次に、図3に示すように、先行紙P1後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbの検知信号により図示しないタイマにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図4に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される(図5参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=V1/(V2−V1)×(t1−Ta)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。
本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算することにより決められる(図5において、t1=11ms、Ta=41.4msなのでt1<Ta、よってここから時間Tcだけ後行紙を停止する。Tc=Ta−t1=41.4−11=30.4ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=11msであり、設定値Ta=41.4msより小さく、t1<Taである。このため、後行紙は後行紙先端が用紙センサbに達したタイミングで第1搬送ローラ対1の駆動を停止され、後行紙の搬送が停止した後、時間Tc経過後に通常の用紙線速V1で搬送を再開される(図6参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11、ステップS15〜ステップS17)。
停止時間Tcは、Tc=Ta−t1、ただし、Ta=L/V1、L=補正後の狙いの紙間距離、の計算式にて求められる値である。
停止時間Tc経過後に後行紙の搬送が通常用紙線速V1で再開されたときの紙間距離は、
補正後紙間距離=(t1+Tc)×V1={t1+(Ta−T1)}×V1=Ta×V1、上記式Ta=L/V1より、補正後紙間時間=L/V1×V1=Lとなり、狙いの紙間距離Lに補正される。この例では、停止時間Tcの設定によって補正後の紙間距離=Lとなるようにしている。
Next, as shown in FIG. 3, when it is detected that the trailing edge of the preceding paper P1 has passed through the paper sensor b, the conveyance of the succeeding paper P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, measurement of the sheet interval time t1 is started by a timer (not shown) in response to the detection signal of the sheet sensor b (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 4, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S9 to step S10 in FIG. 1), and the measured value of t1 and thereafter are thereafter. The subsequent paper conveyance speed and timing are determined by the control unit (see FIG. 5). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = V1 / (V2−V1) × (t1−Ta), Tc = Ta−t1, corrected paper The distance target value = 15 mm.
In this example, the conveyance speed and timing of the succeeding paper are determined by calculating from the paper interval time t1 in the control unit (in FIG. 5, since t1 = 11 ms and Ta = 41.4 ms, t1 <Ta, so from here There is also a method in which the succeeding paper is stopped for the time Tc (Tc = Ta−t1 = 41.4−11 = 30.4 ms) is determined by referring to the data table stored in the control unit.
In this example, the measured inter-paper time t1 = 11 ms, which is smaller than the set value Ta = 41.4 ms, and t1 <Ta. For this reason, for the succeeding paper, the driving of the first transport roller pair 1 is stopped at the timing when the leading edge of the succeeding paper reaches the paper sensor b, and after the time Tc elapses after the transport of the succeeding paper is stopped, The conveyance is resumed at the speed V1 (see FIG. 6). When the number of fed sheets reaches the set value, the operation is terminated (Step S11, Step S15 to Step S17 in FIG. 1).
The stop time Tc is a value obtained by a calculation formula of Tc = Ta−t1, where Ta = L / V1, and L = target inter-paper distance after correction.
The distance between the sheets when the conveyance of the succeeding sheet is resumed at the normal sheet linear velocity V1 after the stop time Tc has elapsed is:
Corrected inter-paper distance = (t1 + Tc) × V1 = {t1 + (Ta−T1)} × V1 = Ta × V1, From the above formula Ta = L / V1, the inter-paper time after correction = L / V1 × V1 = L , The target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L by setting the stop time Tc.

2:連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例
図7〜図11は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図7のように、先行紙と後行紙が紙間0で送られ、先行紙P1後端が第1搬送ローラ対1のニップ部を抜けた以降のタイミング(この例ではで第1搬送ローラ対1から10mm送られたタイミング)で、第1搬送ローラ対1が停止することにより後行紙P2の搬送が停止する(図1のステップS1〜ステップS5)。
次に、図8に示すように、先行紙後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図9に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される(図10参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=V1/(V2−V1)×(t1−Ta)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。
2: An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with zero gap in continuous feeding FIGS. 7 to 11 show the case where continuous feeding is performed without leaving a gap in the feeding section. FIG. 6 is a schematic cross-sectional view when sheets are fed overlapping due to variations in the sheet standby position. First, as shown in FIG. 7, the paper continuously fed by the paper feeding unit is fed with the leading paper and the trailing paper at a sheet interval of 0, and the trailing edge of the leading paper P1 is the nip of the first conveying roller pair 1. At the timing after exiting the section (in this example, the timing when 10 mm is fed from the first transport roller pair 1), the transport of the succeeding paper P2 is stopped by stopping the first transport roller pair 1 (FIG. 1). Steps S1 to S5).
Next, as shown in FIG. 8, when it is detected that the trailing edge of the preceding sheet has passed through the sheet sensor b, the conveyance of the trailing sheet P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 9, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S9 to step S10 in FIG. 1), and from the measured value of t1 onward. The subsequent paper transport speed and timing are determined by the control unit (see FIG. 10). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = V1 / (V2−V1) × (t1−Ta), Tc = Ta−t1, corrected paper The distance target value = 15 mm.

本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算することにより決められる(図10において、t1=60ms、Ta=41.4msなのでt1≧Ta、よって、ここから時間Tbだけ後行紙を増速して搬送する。Tb=V1/(V2−V1)×(t1−Ta)=362/(500−362)×(0.060−0.0414)=48.8ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=60msであり、設定値Ta=41.4msより大きく、t1≧Taである。このため、後行紙は後行紙先端が用紙センサbに達してから時間Tbを経過するまでの区間で通常の用紙線速V1より速い増速線速V2で後行紙が搬送されるように第1搬送ローラ対1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図11参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11、ステップS12〜ステップS17)。
増速時間Tbは、Tb=(t1−Ta)×V1/(V2−V1)、ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、の計算式にて求められる値である。増速時間Tb経過後に後行紙の搬送が通常用紙線速V1に切替わったときの紙間距離は、
補正後紙間距離=t1×V1−Tb×(V2−V1)、上記式Tb=(t1−Ta)×V1/(V2−V1)より、補正後紙間時間=t1×V1−{(t1−Ta)×V1/(V2−V1)}×(V2−V1)=Ta×V1=L
となり、狙いの紙間距離Lに補正される。この例では、増速時間Tbの設定によって補正後の紙間距離=Lとなるようにしている。
In this example, the conveyance speed and timing of the succeeding paper are determined by calculating from the paper interval time t1 in the control unit (in FIG. 10, since t1 = 60 ms and Ta = 41.4 ms, t1 ≧ Ta. The subsequent sheet is accelerated at the time Tb from the time Tb = V1 / (V2−V1) × (t1−Ta) = 362 / (500−362) × (0.060−0.0414) = 48. .8 ms) can be determined by referring to a data table stored in the control unit.
In this example, the measured paper interval time t1 = 60 ms, which is larger than the set value Ta = 41.4 ms, and t1 ≧ Ta. For this reason, the succeeding paper is transported at a speed increasing linear velocity V2 higher than the normal paper linear velocity V1 in a section from the time when the leading edge of the succeeding paper reaches the paper sensor b until the time Tb elapses. Then, the number of rotations of the first conveying roller pair 1 is controlled, and the sheet is conveyed at the normal sheet linear velocity V1 after the elapse of time Tb (see FIG. 11). When the number of fed sheets reaches the set value, the operation is terminated (Step S11, Step S12 to Step S17 in FIG. 1).
The acceleration time Tb is Tb = (t1-Ta) × V1 / (V2-V1), where Ta = L / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = The value obtained from the calculation formula of the paper linear velocity during acceleration. The distance between the sheets when the conveyance of the succeeding sheet is switched to the normal sheet linear speed V1 after the acceleration time Tb has elapsed is:
Corrected inter-paper distance = t1 × V1−Tb × (V2−V1), and after the above equation Tb = (t1−Ta) × V1 / (V2−V1), corrected inter-paper time = t1 × V1 − {(t1 -Ta) * V1 / (V2-V1)} * (V2-V1) = Ta * V1 = L
Thus, the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L is set by setting the acceleration time Tb.

3:連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例
この例では給紙部で紙間0を狙って連続給紙の動作を行うが、用紙のスリップ等で若干の紙間があいた状態で搬送される場合である(紙間があることを除いては上記2の例と同じ動作を行う。)。図12〜図16は、給紙部で紙間を空けずに連続給紙を行ったときに、給紙部では紙間があいていない(=紙間0mm)状態で連続給紙されるが、その後後行紙P2の用紙スリップにより(後行紙は分離部の負荷がかかるのでスリップによる搬送の遅れを生じやすい。)若干の紙間があいた状態で用紙が送られる場合の概略断面図である。
まず、給紙部で連続して給紙された用紙は、図12のように先行紙P1と後行紙P2が若干の紙間Aをあけて(ここではA=10mm)で送られ、先行紙後端が第1搬送ローラ対1のニップ部を抜けた以降のタイミング(この例では第1搬送ローラ対1から10mm送られたタイミング)で第1搬送ローラ対1が停止することにより後行紙の搬送が停止する(図1のステップS1〜ステップS5)。
次に、図13に示すように、先行紙後端が用紙センサbを抜けたことが検知されると、第1搬送ローラ対1の駆動開始により後行紙の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図1のステップS6〜ステップS8)。
次に、図14に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図1のステップS9〜ステップS10)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される(図15参照)。なお、この例では、Ta=L/V1=15mm/(362mm/s)=41.4ms、Tb=V1/(V2−V1)×(t1−Ta)、Tc=Ta−t1、補正後の紙間距離狙い値=15mmとする。
3: Example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are transported with a slight gap between them in continuous feeding. In this example, the sheet feeding unit performs continuous feeding operation aiming at zero sheet spacing. However, this is a case where the sheet is conveyed with a slight gap between the sheets due to slipping of the sheet (the same operation as the above example 2 is performed except that there is a gap between sheets). In FIGS. 12 to 16, when continuous feeding is performed without a gap between the papers in the paper feeding unit, the paper feeding unit continuously feeds paper with no paper gap (= 0 mm between papers). Then, due to the paper slip of the subsequent paper P2 (the subsequent paper is likely to cause a delay in conveyance due to the slip because of the load on the separation unit), and is a schematic cross-sectional view when the paper is fed with a slight paper gap is there.
First, as shown in FIG. 12, the paper continuously fed by the paper feeding unit is sent with a slight paper gap A (A = 10 mm in this case) between the preceding paper P1 and the following paper P2, and the preceding paper P1 When the first conveying roller pair 1 stops at the timing after the trailing edge of the paper has passed through the nip portion of the first conveying roller pair 1 (in this example, the timing when 10 mm is fed from the first conveying roller pair 1), Paper conveyance stops (steps S1 to S5 in FIG. 1).
Next, as shown in FIG. 13, when it is detected that the trailing edge of the preceding sheet has passed through the sheet sensor b, the conveyance of the succeeding sheet is resumed by the start of driving of the first conveying roller pair 1. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S6 to S8 in FIG. 1).
Next, as shown in FIG. 14, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S9 to step S10 in FIG. 1), and from the measured value of t1 onward. The subsequent paper transport speed and timing are determined by the control unit (see FIG. 15). In this example, Ta = L / V1 = 15 mm / (362 mm / s) = 41.4 ms, Tb = V1 / (V2−V1) × (t1−Ta), Tc = Ta−t1, corrected paper The distance target value = 15 mm.

本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図15において、t1=80ms、Ta=41.4msなのでt1≧Ta、よって、ここから時間Tbだけ後行紙を増速して搬送する)。Tb=V1/(V2−V1)×(t1−Ta)=362/(500−362)×(0.080−0.0414)=101.3ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=80msであり、設定値Ta=41.4msより大きく、t1≧Taである。このため、後行紙は後行紙先端が用紙センサbに達してから時間Tb経過までの区間で通常の用紙線速V1より速い増速線速V2で後行紙が搬送されるように第1搬送ローラ対1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図16参照)。そして、給紙枚数が設定値に達すると動作を終了する(図1のステップS11、ステップS12〜ステップS17)。
増速時間Tbは、Tb=(t1−Ta)×V1/(V2−V1)、ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、の計算式にて求められる値である。増速時間Tb経過後に後行紙の搬送が通常用紙線速V1に切替わったときの紙間距離は、
補正後紙間距離=t1×V1−Tb×(V2−V1)、上記式Tb=(t1−Ta)×V1/(V2−V1)より、補正後紙間時間=t1×V1−{(t1−Ta)×V1/(V2−V1)}×(V2−V1)=Ta×V1=L
となり、狙いの紙間距離Lに補正される。この例では、増速時間Tbの設定によって補正後の紙間距離=Lとなるようにしている。
したがって、実施例1では、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態、即ち用紙線速が安定している状態となる位置(第1搬送ローラ対1のニップよりも下流側)であることから、従来、用紙線速の不安定な給紙部で紙間をあけていたのに対して、本発明では紙間のバラツキを小さく抑えることができる。また、用紙センサにより紙間時間を測定し、その値により後行紙の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキの低減が可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
In this example, the conveyance speed and timing of the succeeding paper are determined by calculation from the paper interval time t1 in the control unit (in FIG. 15, since t1 = 80 ms and Ta = 41.4 ms, t1 ≧ Ta. The subsequent paper is accelerated and conveyed by Tb). Tb = V1 / (V2-V1) * (t1-Ta) = 362 / (500-362) * (0.080-0.0414) = 101.3 ms) refers to the data table stored in the control unit There is also a way to decide.
In this example, the measured paper interval time t1 = 80 ms, which is larger than the set value Ta = 41.4 ms, and t1 ≧ Ta. For this reason, the succeeding sheet is fed so that the succeeding sheet is conveyed at a speed increasing linear velocity V2 higher than the normal sheet linear velocity V1 in a section from the leading edge of the trailing sheet reaching the sheet sensor b to the lapse of time Tb. The number of rotations of the one conveying roller pair 1 is controlled, and the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 16). When the number of fed sheets reaches the set value, the operation is terminated (Step S11, Step S12 to Step S17 in FIG. 1).
The acceleration time Tb is Tb = (t1-Ta) × V1 / (V2-V1), where Ta = L / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = The value obtained from the calculation formula of the paper linear velocity during acceleration. The distance between the sheets when the conveyance of the succeeding sheet is switched to the normal sheet linear speed V1 after the acceleration time Tb has elapsed is:
Corrected inter-paper distance = t1 × V1−Tb × (V2−V1), and after the above equation Tb = (t1−Ta) × V1 / (V2−V1), corrected inter-paper time = t1 × V1 − {(t1 -Ta) * V1 / (V2-V1)} * (V2-V1) = Ta * V1 = L
Thus, the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L is set by setting the acceleration time Tb.
Therefore, in the first embodiment, the position where the space between the sheets is spaced is sufficiently large with respect to the conveyance load (separation load, sheet stiffness, conveyance load due to sliding with the guide plate, etc.), That is, since it is a position where the sheet linear speed is stable (downstream from the nip of the first conveying roller pair 1), conventionally, a sheet feeding section with an unstable sheet linear speed has been used. On the other hand, in the present invention, the variation between the papers can be suppressed small. In addition, the paper interval is measured by the paper sensor, the acceleration time and timing of the succeeding paper are determined based on the measured values, and correction between the papers is performed, so that it is possible to reduce the variation between the corrected papers. . As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.

また、測定した紙間時間が大きいとき(上記1、3の例)は後行紙線速を増速(V2)させて、ある時間Tbだけ搬送することで紙間を詰め、その後通常の用紙線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、測定した紙間時間が小さいとき(上記1の例)は、後行紙をある時間Tc停止することで紙間をあけ、その後通常の用紙線速V1で搬送を再開することで紙間のバラツキを低減することが可能となる。
また、上記の時間Tb、TcをTb=(t1−Ta)×V1/(V2−V1)、ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Tc=Ta−t1と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
また、給紙前の用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙を紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正を可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙の用紙線速を速くすることで、測定時の紙間をより小さくすることが可能である。これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから以降の後行紙用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間(紙間隔が短いこと)による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う機能を備えた用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから、小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Also, when the measured inter-paper time is large (examples 1 and 3 above), the trailing paper linear velocity is increased (V2), and the paper interval is reduced by transporting the paper for a certain time Tb, and then normal paper is used. By returning to the linear velocity V1, it is possible to reduce the variation between the sheets.
When the measured paper interval time is small (example 1 above), the subsequent paper is stopped by stopping for a certain time Tc, and then the conveyance is resumed at the normal paper linear velocity V1. It becomes possible to reduce the variation of the.
The above times Tb and Tc are set to Tb = (t1−Ta) × V1 / (V2−V1), where Ta = L / V1, L = target inter-paper distance after correction, V1 = normal paper line By setting the speed, V2 = speed paper linear speed, and Tc = Ta−t1, it is possible to make the corrected inter-paper distance≈the target inter-paper distance L, and effectively reduce the variation between the papers. It becomes possible to make it.
Also, even if there is variation in the standby position of the paper before feeding, even if some of the paper is fed overlapped when the paper is fed continuously without gaps due to the variation in the standby position, when the trailing paper stops Since the leading edge of the succeeding paper does not reach the paper sensor b, the paper sensor b can detect the sensor missing timing of the preceding paper and measure the paper interval time t1 even when the paper is overlapped. Correction between papers is possible. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet before the sheet interval time measurement by the sheet sensor b, it is possible to further reduce the sheet interval at the time of measurement. As a result, the measurement paper interval time t1 and its variation can be made smaller in advance, so that it is possible to cope with a larger variation between the papers in addition to the effect of the subsequent sheet linear velocity and the paper interval correction by the conveyance timing.
By providing a paper conveyance device that corrects this paper gap in the image forming apparatus, it is possible to keep the paper gap small, so productivity is improved by small paper gaps (short paper gaps), low cost, and durability is increased. Effects such as calming can be obtained.
In addition, by providing a paper conveyance device having a function for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to the small paper gap and low cost. In addition, effects such as improved durability and calming can be obtained.

実施例2は実施例1と比べて、各時間Ta、Tb、Tcの設定内容と、時間Tcの後行紙停止後の後行紙動作のみが異なる。給紙コロ、搬送ロ−ラ、センサ等の構成要素は同一のものであり、同じ場所に配置されている。図19において、構成上の差はない。実施例2では、図18のフローチャート、図2〜図16、図17及び図19を用いて説明する。また、実施例2では、以下の3つの場合について説明する。
4:連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例(図18、図19、図2〜図4、図17、図6)
5:連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例(図18、図19、図7〜図11)
6:連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例(図18、図19、図12〜図16)
4:連続給紙にて先行紙後端と後行紙先端が重なって送られる場合の例
図2〜図4、図17、図6は給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図2のように、先行紙後端と後行紙先端が重なって送られ、先行紙後端が第1搬送ローラ対1を抜けた以降のタイミング(この例では第1搬送ローラ対1から10mm送られたタイミング)で、第1搬送ローラ対1が停止することにより後 行紙の搬送が停止する(図18のステップS21〜ステップS25)。
このときの重なり量の最大値Dmaxは、用紙セット時の用紙先端待機位置(A)から分離部(B)までの距離LA−Bであり(この例では24.5mm)、用紙センサbの位置は搬送ローラ1からの距離LE−Gであり、重なり量の最大値Dmax=LA−Bより大きいことから、後行紙先端は用紙センサbに達していない位置で停止している。
The second embodiment differs from the first embodiment only in the setting contents of the times Ta, Tb, and Tc, and the subsequent sheet operation after stopping the subsequent sheet at the time Tc. Constituent elements such as a paper feed roller, a transport roller, and a sensor are the same and are disposed at the same place. In FIG. 19, there is no structural difference. The second embodiment will be described with reference to the flowchart of FIG. 18 and FIGS. 2 to 16, 17 and 19. In the second embodiment, the following three cases will be described.
4: Examples in which the trailing edge of the preceding paper and the leading edge of the succeeding paper are overlapped and fed in continuous paper feeding (FIGS. 18, 19, 2 to 4, 17, and 6)
5: An example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are fed with zero gap between continuous sheets (FIGS. 18, 19, and 7 to 11).
6: Example in the case where the leading edge of the preceding sheet and the leading edge of the succeeding sheet are conveyed with a slight gap between them in continuous feeding (FIGS. 18, 19, and 12 to 16).
4: Example in which the leading edge of the preceding sheet and the leading edge of the succeeding sheet are overlapped and fed in continuous feeding FIGS. 2 to 4, 17, and 6 show that the sheet feeding unit continuously feeds the sheet without gaps FIG. 10 is a schematic cross-sectional view when sheets are overlapped and fed due to variations in the sheet standby position when performed. First, as shown in FIG. 2, the paper continuously fed by the paper feeding unit is fed with the trailing edge of the preceding sheet and the leading edge of the trailing sheet overlapping, and the trailing edge of the leading sheet passes through the first conveyance roller pair 1. At the subsequent timing (in this example, the timing when 10 mm is fed from the first conveying roller pair 1), the conveyance of the succeeding paper is stopped by stopping the first conveying roller pair 1 (step S21 to step S21 in FIG. 18). S25).
The maximum value Dmax of the overlap amount at this time is the distance LA-B (24.5 mm in this example) from the paper leading edge standby position (A) to the separating portion (B) when setting paper, and the position of the paper sensor b. Is the distance LE-G from the conveying roller 1 and is larger than the maximum overlap amount Dmax = LA-B, so that the leading edge of the succeeding sheet stops at a position where it does not reach the sheet sensor b.

次に、図3に示すように、先行紙後端が用紙センサbを抜けたことが検知されると、後行紙P2の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図18のステップS26〜ステップS28)。
次に、図4に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図18のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される(図5参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=V1/(V2−V1)×(t1−Ta)+Td、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値L=15mmとする。
本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図5において、t1=11ms、Ta=49msなのでt1<Ta、よってここから時間Tcだけ後行紙を停止する。Tc=Ta−t1=49−11=38ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=11msであり、設定値Ta=49msより小さく、t1<Taである。このため、後行紙は後行紙先端が用紙センサbに達したタイミングで第1搬送ローラ対1の駆動を停止され、後行紙の搬送が停止した後、時間Tc経過後に図17の状態において増速線速V2で搬送を再開される(図18のステップS31、ステップS35〜ステップS37)。
停止時間Tcは、Tc=Ta−t1、ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間の計算式にて求められる値である。
停止時間Tc経過後に後行紙の搬送が通常用紙線速V1で再開されたときの紙間距離は、
紙間距離=(t1+Tc)×V1={t1+(Ta−T1)}×V1=Ta×V1
となる。
その後、増速時間Td経過後、図6のように後行紙は用紙線速を通常線速V1に戻される(図18のステップS38、ステップS34)。
このときの紙間距離は補正後紙間距離=Ta×V1−Td×V2+Td×V1=Ta×V1−Td×(V2−V1)となる。上式Ta={L+Td×(V2−V1)}/V1より、
補正後紙間距離={L+Td×(V2−V1)}/V1×V1−Td×(V2−V1)=L
となり、狙いの紙間距離Lに補正される。この例では、停止時間Tcの設定によって補正後の紙間距離=Lとなるようにしている。そして、給紙枚数が設定値に達すると動作を終了する(図18のステップS39)。
Next, as shown in FIG. 3, when it is detected that the trailing edge of the preceding sheet has passed through the sheet sensor b, the conveyance of the succeeding sheet P2 is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 18).
Next, as shown in FIG. 4, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S29 to step S30 in FIG. 18), and the measured value of t1 is used thereafter. The subsequent paper conveyance speed and timing are determined by the control unit (see FIG. 5). In this example, Ta = {L + Td * (V2-V1)} / V1 = {15 + 0.02 * (500-362)} / 362 = 49 ms, Tb = V1 / (V2-V1) * (t1-Ta ) + Td, Tc = Ta−t1, Td = 20 ms (fixed time), and the corrected inter-paper distance target value L = 15 mm.
In this example, the conveyance speed and timing of the succeeding paper are determined by calculation from the paper interval time t1 in the control unit (in FIG. 5, since t1 = 11 ms and Ta = 49 ms, t1 <Ta, and therefore after this time Tc. There is also a method in which the line paper is stopped (Tc = Ta−t1 = 49−11 = 38 ms) by referring to the data table stored in the control unit.
In this example, the measured inter-paper time t1 = 11 ms, which is smaller than the set value Ta = 49 ms, and t1 <Ta. For this reason, in the succeeding sheet, the driving of the first conveying roller pair 1 is stopped at the timing when the leading end of the succeeding sheet reaches the sheet sensor b, and the state of FIG. Then, the conveyance is resumed at the increased linear velocity V2 (step S31, step S35 to step S37 in FIG. 18).
Stop time Tc is Tc = Ta−t1, where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = acceleration Hour sheet linear velocity, Td = a value obtained by a calculation formula of a fixed time.
The distance between the sheets when the conveyance of the succeeding sheet is resumed at the normal sheet linear velocity V1 after the stop time Tc has elapsed is:
Distance between paper = (t1 + Tc) × V1 = {t1 + (Ta−T1)} × V1 = Ta × V1
It becomes.
Thereafter, after the acceleration time Td elapses, the succeeding paper is returned to the normal linear velocity V1 as shown in FIG. 6 (steps S38 and S34 in FIG. 18).
The inter-paper distance at this time is corrected inter-paper distance = Ta * V1-Td * V2 + Td * V1 = Ta * V1-Td * (V2-V1). From the above formula Ta = {L + Td × (V2−V1)} / V1,
Distance between paper after correction = {L + Td × (V2−V1)} / V1 × V1−Td × (V2−V1) = L
Thus, the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L by setting the stop time Tc. When the number of fed sheets reaches the set value, the operation is terminated (step S39 in FIG. 18).

5:連続給紙にて先行紙後端と後行紙先端が紙間0で送られる場合の例
図7〜図11は、給紙部で紙間を空けずに連続給紙を行ったときに用紙待機位置のバラツキにより用紙が重なって送られる場合の概略断面図である。まず、給紙部で連続して給紙された用紙は、図7のように、先行紙と後行紙が紙間0で送られ、先行紙後端が第1搬送ローラ対1を抜けた以降のタイミング(この例ではで第1搬送ローラ対1から10mm送られたタイミング)で第1搬送ローラ対1が停止することにより後行紙の搬送が停止する(図18のステップS21〜ステップS25)。
次に、図8に示すように、先行紙後端が用紙センサbを抜けたことが検知されると、後行紙の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図18のステップS26〜ステップS28)。
次に、図9に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図18のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される。(図10参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=V1/(V2−V1)×(t1−Ta)+Td、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値L=15mmとする。
5: Example in which the leading edge of the preceding paper and the leading edge of the succeeding paper are fed with zero paper in continuous paper feeding FIGS. 7 to 11 show the case where the paper feeding unit performs continuous paper feeding without leaving a paper gap. FIG. 6 is a schematic cross-sectional view when sheets are fed overlapping due to variations in the sheet standby position. First, as shown in FIG. 7, the paper continuously fed by the paper feeding unit is fed between the preceding paper and the succeeding paper with a sheet interval of 0, and the trailing edge of the preceding paper has passed through the first conveying roller pair 1. Subsequent sheet conveyance is stopped by stopping the first conveyance roller pair 1 at the subsequent timing (in this example, the timing when 10 mm is fed from the first conveyance roller pair 1) (steps S21 to S25 in FIG. 18). ).
Next, as shown in FIG. 8, when it is detected that the trailing edge of the preceding sheet has passed through the sheet sensor b, the conveyance of the succeeding sheet is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 18).
Next, as shown in FIG. 9, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (step S29 to step S30 in FIG. 18), and the measured t1 value and thereafter are thereafter. The subsequent paper transport speed and timing are determined by the control unit. (See FIG. 10). In this example, Ta = {L + Td * (V2-V1)} / V1 = {15 + 0.02 * (500-362)} / 362 = 49 ms, Tb = V1 / (V2-V1) * (t1-Ta ) + Td, Tc = Ta−t1, Td = 20 ms (fixed time), and the corrected inter-paper distance target value L = 15 mm.

本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図10において、t1=60ms、Ta=49msなのでt1≧Ta、よって、ここから時間Tbだけ後行紙を増速して搬送する。Tb=V1/(V2−V1)×(t1−Ta)+Td=362/(500−362)×(0.060−0.049)+0.02=48.9ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=60msであり、設定値Ta=49msより大きく、t1≧Taである。このため、後行紙は後行紙先端が用紙センサbに達してから時間Tb経過までの区間で通常の用紙線速V1より速い増速線速V2で後行紙が搬送されるように第1搬送ローラ対1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図11参照)。そして、給紙枚数が設定値に達すると動作を終了する(図18のステップS31、ステップS32〜ステップS39)。
この増速時間Tbは、Tb=(t1−Ta)×V1/(V2−V1)+Td、ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間、の計算式にて求められる値である。増速時間Tb経過後に後行紙の搬送が通常用紙線速V1に切替わったときの紙間距離は、
補正後紙間距離=t1×V1−Tb×(V2−V1)、上記式Tb=(t1−Ta)×V1/(V2−V1)+Td、Ta={L+Td×(V2−V1)}/V1より、補正後紙間時間=t1×V1−{(t1−Ta)×V1/(V2−V1)+Td}×(V2−V1)=Ta×V1−Td×(V2−V1)={L+Td×(V2−V1)}/V1×V1−Td×(V2−V1)=Lとなり、狙いの紙間距離Lに補正される。この例では、増速時間Tbの設定によって補正後の紙間距離=Lとなるようにしている。
In this example, the conveyance speed and timing of the succeeding paper are determined by calculation from the paper interval time t1 in the control unit (in FIG. 10, since t1 = 60 ms and Ta = 49 ms, t1 ≧ Ta, and therefore only the time Tb from here. The following paper is accelerated and conveyed: Tb = V1 / (V2−V1) × (t1−Ta) + Td = 362 / (500−362) × (0.060−0.049) + 0.02 = 48 .9 ms) can be determined by referring to a data table stored in the control unit.
In this example, the measured inter-paper time t1 = 60 ms, which is larger than the set value Ta = 49 ms, and t1 ≧ Ta. For this reason, the succeeding sheet is fed so that the succeeding sheet is conveyed at a speed increasing linear velocity V2 higher than the normal sheet linear velocity V1 in a section from the leading edge of the trailing sheet reaching the sheet sensor b to the lapse of time Tb. The number of rotations of the one conveying roller pair 1 is controlled, and the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 11). When the number of fed sheets reaches the set value, the operation is terminated (steps S31 and S32 to S39 in FIG. 18).
The acceleration time Tb is Tb = (t1−Ta) × V1 / (V2−V1) + Td, where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction. , V1 = normal sheet linear velocity, V2 = accelerated sheet linear velocity, and Td = a constant time. The distance between the sheets when the conveyance of the succeeding sheet is switched to the normal sheet linear speed V1 after the acceleration time Tb has elapsed is:
Corrected distance between sheets = t1 × V1−Tb × (V2−V1), the above formula Tb = (t1−Ta) × V1 / (V2−V1) + Td, Ta = {L + Td × (V2−V1)} / V1 Thus, the inter-sheet time after correction = t1 × V1 − {(t1−Ta) × V1 / (V2−V1) + Td} × (V2−V1) = Ta × V1−Td × (V2−V1) = {L + Td × (V2−V1)} / V1 × V1−Td × (V2−V1) = L, and the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L is set by setting the acceleration time Tb.

6:連続給紙にて先行紙後端と後行紙先端が若干の紙間があいた状態で搬送される場合の例
この例は給紙部で紙間0を狙って連続給紙の動作を行うが、用紙のスリップ等で若干の紙間があいた状態で搬送される場合である(紙間があることを除いては上記5の例と同じ動作を行う。)。図12〜図16は、給紙部で紙間を空けずに連続給紙を行ったときに、給紙部では紙間があいていない(=紙間0mm)で連続給紙されるが、その後後行紙の用紙スリップにより(後行紙は分離部の負荷がかかるのでスリップによる搬送の遅れを生じやすい。)若干の紙間があいた状態で用紙が送られる場合の概略断面図である。
まず、給紙部で連続して給紙された用紙は、図12のように先行紙と後行紙が若干の紙間Aをあけて(ここではA=10mm)で送られ、先行紙後端が第1搬送ローラ対1を抜けた以降のタイミング(この例では第1搬送ローラ対1から10mm送られたタイミング)で第1搬送ローラ対1が停止することにより後行紙の搬送が停止する(図18のステップS21〜ステップS25)。
次に、図13に示すように、先行紙後端が用紙センサbを抜けたことが検知されると、後行紙の搬送が再開される。このときの用紙線速は増速線速V2=500mm/sである。また、同時に用紙センサbにより紙間時間t1の測定が開始される(図18のステップS26〜ステップS28)。
次に、図14に示すように、後行紙先端が用紙センサbに達すると、紙間時間t1の測定が完了され(図18のステップS29〜ステップS30)、測定されたt1の値から以降の後行紙の搬送速度、タイミングが制御部にて決定される(図15参照)。なお、この例では、Ta={L+Td×(V2−V1)}/V1={15+0.02×(500−362)}/362=49ms、Tb=V1/(V2−V1)×(t1−Ta)+Td、Tc=Ta−t1、Td=20ms(一定時間)、補正後の紙間距離狙い値L=15mmとする。
6: Example of transporting paper with the trailing edge of the preceding paper and the leading edge of the succeeding paper with a slight gap between them in this example. However, this is a case where the sheet is conveyed with a slight gap between the sheets due to slipping of the sheet (the same operation as the above example 5 is performed except that there is a gap between sheets). In FIGS. 12 to 16, when continuous paper feeding is performed without a gap between papers in the paper feeding unit, the paper feeding unit continuously feeds paper with no paper gap (= 0 mm between papers). FIG. 6 is a schematic cross-sectional view when the paper is fed in a state where there is a slight gap between papers due to subsequent paper slip (following paper is likely to cause a delay in conveyance due to slip because a load is applied to the separation unit).
First, as shown in FIG. 12, the paper continuously fed by the paper feed unit is sent with a slight space A (here A = 10 mm) between the preceding paper and the following paper, and after the preceding paper. The conveyance of the succeeding paper is stopped by stopping the first conveyance roller pair 1 at the timing after the end passes through the first conveyance roller pair 1 (in this example, the timing when 10 mm is sent from the first conveyance roller pair 1). (Steps S21 to S25 in FIG. 18).
Next, as shown in FIG. 13, when it is detected that the trailing edge of the preceding sheet has passed through the sheet sensor b, the conveyance of the succeeding sheet is resumed. The sheet linear velocity at this time is the increased linear velocity V2 = 500 mm / s. At the same time, the paper sensor b starts measuring the paper interval time t1 (steps S26 to S28 in FIG. 18).
Next, as shown in FIG. 14, when the leading edge of the succeeding paper reaches the paper sensor b, the measurement of the paper interval time t1 is completed (Step S29 to Step S30 in FIG. 18), and from the measured value of t1, The subsequent paper transport speed and timing are determined by the control unit (see FIG. 15). In this example, Ta = {L + Td * (V2-V1)} / V1 = {15 + 0.02 * (500-362)} / 362 = 49 ms, Tb = V1 / (V2-V1) * (t1-Ta ) + Td, Tc = Ta−t1, Td = 20 ms (fixed time), and the corrected inter-paper distance target value L = 15 mm.

本例では、後行紙の搬送速度、タイミングは制御部にて紙間時間t1から演算により決められる(図15において、t1=80ms、Ta=49msなのでt1≧Ta、よって、ここから時間Tbだけ後行紙を増速して搬送する。Tb=V1/(V2−V1)×(t1−Ta)+Td=362/(500−362)×(0.080−0.049)+0.02=101.3ms)が、制御部に格納されたデータテーブルを参照して決める方法もある。
本例では、測定された紙間時間t1=80msであり、設定値Ta=49msより大きく、t1≧Taである。このため、後行紙は後行紙先端が用紙センサbに達してから時間Tb経過までの区間で通常の用紙線速V1より速い増速線速V2で後行紙が搬送されるように第1搬送ローラ対1の回転数を制御し、時間Tb経過後に通常用紙線速V1で搬送される(図16参照)。そして、給紙枚数が設定値に達すると動作を終了する(図18のステップS31、ステップS32〜ステップS39)。
増速時間Tbは、Tb=(t1−Ta)×V1/(V2−V1)+Td、ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間、の計算式にて求められる値である。増速時間Tb経過後に後行紙の搬送が通常用紙線速V1に切替わったときの紙間距離は、
補正後紙間距離=t1×V1−Tb×(V2−V1)、上記式Tb=(t1−Ta)×V1/(V2−V1)+Td、Ta={L+Td×(V2−V1)}/V1より、補正後紙間時間=t1×V1−{(t1−Ta)×V1/(V2−V1)+Td}×(V2−V1)=Ta×V1−Td×(V2−V1)={L+Td×(V2−V1)}/V1×V1−Td×(V2−V1)=Lとなり、狙いの紙間距離Lに補正される。この例では、増速時間Tbの設定によって補正後の紙間距離=Lとなるようにしている。
したがって、実施例2では、用紙の紙間が空けられる位置が搬送の負荷(分離負荷、用紙のコシ、ガイド板との摺動などによる搬送負荷など)に対して充分に搬送力が大きい状態(用紙線速が安定している)であることから、従来のように用紙線速の不安定な給紙部で紙間をあけるのに対して紙間のバラツキを小さく抑えることができる。また、センサにより紙間時間を測定し、その値により後行紙の増速時間、タイミング等を決定し、紙間の補正を行うことから補正後の紙間のバラツキの低減が可能である。これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
In this example, the conveyance speed and timing of the succeeding paper are determined by calculation from the paper interval time t1 in the control unit (in FIG. 15, since t1 = 80 ms and Ta = 49 ms, t1 ≧ Ta, so only the time Tb from here. The following paper is accelerated and conveyed: Tb = V1 / (V2−V1) × (t1−Ta) + Td = 362 / (500−362) × (0.080−0.049) + 0.02 = 101 .3 ms) can be determined by referring to the data table stored in the control unit.
In this example, the measured paper interval time t1 = 80 ms, which is larger than the set value Ta = 49 ms, and t1 ≧ Ta. For this reason, the succeeding sheet is fed so that the succeeding sheet is conveyed at a speed increasing linear velocity V2 higher than the normal sheet linear velocity V1 in a section from the leading edge of the trailing sheet reaching the sheet sensor b to the lapse of time Tb. The number of rotations of the one conveying roller pair 1 is controlled, and the sheet is conveyed at the normal sheet linear velocity V1 after the time Tb has elapsed (see FIG. 16). When the number of fed sheets reaches the set value, the operation is terminated (steps S31 and S32 to S39 in FIG. 18).
The acceleration time Tb is Tb = (t1−Ta) × V1 / (V2−V1) + Td, where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction, This is a value obtained by the following equation: V1 = normal sheet linear velocity, V2 = accelerated sheet linear velocity, and Td = constant time. The distance between the sheets when the conveyance of the succeeding sheet is switched to the normal sheet linear speed V1 after the acceleration time Tb has elapsed is:
Corrected distance between sheets = t1 × V1−Tb × (V2−V1), the above formula Tb = (t1−Ta) × V1 / (V2−V1) + Td, Ta = {L + Td × (V2−V1)} / V1 Thus, the inter-sheet time after correction = t1 × V1 − {(t1−Ta) × V1 / (V2−V1) + Td} × (V2−V1) = Ta × V1−Td × (V2−V1) = {L + Td × (V2−V1)} / V1 × V1−Td × (V2−V1) = L, and the target inter-paper distance L is corrected. In this example, the corrected inter-paper distance = L is set by setting the acceleration time Tb.
Therefore, in the second embodiment, the position where the space between the sheets is spaced is sufficiently large with respect to the conveyance load (separation load, conveyance of the sheet, conveyance load due to sliding with the guide plate, etc.) ( Therefore, it is possible to suppress the variation between papers as compared to the conventional paper feeding unit where the paper linear speed is unstable. In addition, since the time between sheets is measured by a sensor, the acceleration time, timing, etc. of the succeeding paper are determined based on the measured values, and correction between the papers is performed, so that variation between the corrected papers can be reduced. As a result, it is possible to reduce the set value between sheets that has been set in consideration of the variation between sheets.

また、測定した紙間時間が大きいとき(上記5、6の例)は後行紙線速を増速(V2)させて、ある時間Tb搬送することで紙間を詰め、その後通常の用紙線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、測定した紙間時間が小さいとき(上記4の例)は後行紙をある時間Tc停止することで紙間をあけ、その後一定時間Tdの間だけ増速V2で搬送を再開し、その後通常の用紙線速V1に戻すことで紙間のバラツキを低減することが可能となる。
また、上記の時間Tb、TcをTb=(t1−Ta)×V1/(V2−V1)+Td、ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間、Tc=Ta−t1と設定することにより、補正後の紙間距離≒狙いの紙間距離Lとすることができ、紙間のバラツキを効果的に減少させることが可能となる。
また、用紙の待機位置のバラツキがある場合でも待機位置のバラツキにより用紙を紙間を空けず連続給紙する場合に用紙の一部が重なって送られる場合でも後行紙停止時に後行紙先端が用紙センサbに達しないことから、用紙が重なっている状態でも用紙センサbにより先行紙のセンサ抜けタイミングの検知、紙間時間t1の測定が可能であり、これにより上記のような紙間の補正が可能である。この結果として、紙間のバラツキを抑えることが可能であり、これにより、紙間のバラツキを考慮して設定していた紙間の設定値を小さくすることが可能となる。
また、用紙センサbによる紙間時間測定の前に後行紙の用紙線速を速くすることで測定時の紙間をより小さくすることが可能である。これにより、測定紙間時間t1とそのバラツキもあらかじめより小さくできることから以降の後行紙用紙線速、搬送タイミングによる紙間補正の効果と合わせてより大きな紙間のバラツキに対応可能である。
画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
また、電子写真方式の画像形成装置にこの紙間補正を行う用紙搬送装置を設けることで紙間バラツキを小さく保つことが可能なことから小紙間による生産性向上、低コスト、耐久性UP、静穏化等の効果を得ることができる。
Also, when the measured paper interval time is large (examples 5 and 6 above), the subsequent paper linear velocity is increased (V2) and the paper interval is reduced by transporting for a certain time Tb, and then the normal paper By returning to the speed V1, it is possible to reduce the variation between the sheets.
Also, when the measured paper interval time is small (example 4 above), the succeeding paper is stopped for a certain time Tc to clear the paper interval, and thereafter the conveyance is resumed at a speed increase V2 for a fixed time Td. By returning to the normal sheet linear velocity V1, it is possible to reduce variations between sheets.
The above times Tb and Tc are set to Tb = (t1−Ta) × V1 / (V2−V1) + Td, where Ta = {L + Td × (V2−V1)} / V1, L = target paper after correction By setting the distance, V1 = normal sheet linear velocity, V2 = accelerated sheet linear velocity, Td = constant time, and Tc = Ta−t1, the corrected inter-paper distance≈the target inter-paper distance L This makes it possible to effectively reduce the variation between the papers.
Even if there is variation in the standby position of the paper, the leading edge of the succeeding paper when the trailing paper is stopped even if the paper is partially overlapped when the paper is continuously fed without gaps due to the variation in the standby position. Since the sheet sensor b does not reach the sheet sensor b, the sheet sensor b can detect the timing of sensor removal of the preceding sheet and measure the sheet interval time t1 even when the sheets overlap. Correction is possible. As a result, it is possible to suppress the variation between the papers, and thereby it is possible to reduce the set value between the papers set in consideration of the variation between the papers.
Further, by increasing the sheet linear speed of the succeeding sheet before the sheet interval time measurement by the sheet sensor b, it is possible to reduce the sheet interval at the time of measurement. As a result, the measurement paper interval time t1 and its variation can be made smaller in advance, so that it is possible to cope with a larger variation between the papers in addition to the effect of the subsequent sheet linear velocity and the paper interval correction by the conveyance timing.
By providing a paper transport device that corrects this gap in the image forming device, it is possible to keep the gap between the papers small, thereby improving productivity, reducing costs, improving durability, and calming. Obtainable.
In addition, by providing a paper conveyance device for correcting the paper gap in the electrophotographic image forming apparatus, it is possible to keep the paper gap small, thereby improving productivity due to small paper gaps, low cost, and improving durability. Effects such as calming can be obtained.

実施例1における動作を示すフローチャートである。3 is a flowchart illustrating an operation in the first embodiment. 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その1)である。FIG. 2 is a schematic cross-sectional view of a paper transport device (paper overlap when paper is fed, part 1). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その2)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (paper overlap when paper is fed, Part 2). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その3)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (with paper overlap during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その4)である。FIG. 4 is a schematic cross-sectional view of a paper transport device (with paper overlap during paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時用紙重なり有り、その5)である。FIG. 6 is a schematic cross-sectional view of a paper conveying apparatus (with paper overlap during paper feeding, part 5). 用紙搬送装置の概略断面図(給紙時紙間なし、その1)である。FIG. 3 is a schematic cross-sectional view of the sheet transport device (no sheet space when feeding, part 1). 用紙搬送装置の概略断面図(給紙時紙間なし、その2)である。FIG. 3 is a schematic cross-sectional view of the paper transport device (No paper during feeding, part 2). 用紙搬送装置の概略断面図(給紙時紙間なし、その3)である。FIG. 3 is a schematic cross-sectional view of a paper transport device (no paper space during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時紙間なし、その4)である。FIG. 4 is a schematic cross-sectional view of a paper transport device (No space during paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時紙間なし、その5)である。FIG. 6 is a schematic cross-sectional view of the paper transport device (no paper gap during paper feeding, part 5). 用紙搬送装置の概略断面図(給紙時紙間有り、その1)である。FIG. 2 is a schematic cross-sectional view of a paper transport device (there is a paper gap during paper feeding, part 1). 用紙搬送装置の概略断面図(給紙時紙間有り、その2)である。FIG. 3 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 2). 用紙搬送装置の概略断面図(給紙時紙間有り、その3)である。FIG. 4 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 3). 用紙搬送装置の概略断面図(給紙時紙間有り、その4)である。FIG. 6 is a schematic cross-sectional view of the paper transport device (there is a paper gap at the time of paper feeding, part 4). 用紙搬送装置の概略断面図(給紙時紙間有り、その5)である。FIG. 5 is a schematic cross-sectional view of the paper transport device (there is a paper gap during paper feeding, part 5). 実施例2の用紙搬送装置の概略断面図(給紙時用紙重なり有り、その4’)である。FIG. 4 is a schematic cross-sectional view of a paper conveying apparatus according to a second exemplary embodiment (paper overlap at the time of paper feeding, 4 ′). 実施例2における動作を示すフローチャートである。10 is a flowchart illustrating an operation in the second embodiment. 従来の用紙搬送装置(FRR分離方式を使用)の横断面図である。It is a cross-sectional view of a conventional paper transport device (using the FRR separation method).

符号の説明Explanation of symbols

1 第1搬送ローラ対
1a 用紙積載部
2 第2搬送ローラ対
2a 用紙
3 ピックアップローラ
4 フィードローラ
5 リバースローラ
6 感光体
7 転写ローラ
a、b、c、F 用紙センサ
DESCRIPTION OF SYMBOLS 1 1st conveyance roller pair 1a Paper stacking part 2 2nd conveyance roller pair 2a Paper 3 Pickup roller 4 Feed roller 5 Reverse roller 6 Photoconductor 7 Transfer roller a, b, c, F Paper sensor

Claims (10)

用紙を用紙積載部から送り出すための給紙ローラと、
用紙を1枚に分離するための分離手段と、
前記給紙ローラより下流の搬送路に設けられ、用紙を搬送する第1搬送ローラ対と、
前記第1搬送ローラ対より下流の搬送路に設けられ、用紙を搬送する第2搬送ローラ対と、
前記第1搬送ローラ対と前記第2搬送ローラ対の間に位置する用紙センサと、
制御部と、を備え、
前記制御部は、連続して給紙を行う場合には、前記用紙積載部から給紙する際に用紙の間隔をあけずに連続して給紙を行い、先行紙の後端が前記第1搬送ローラ対を抜けた以降のタイミングで前記第2搬送ローラ対の駆動は切らずに先行紙の搬送を続けたまま前記第1搬送ローラ対の駆動を切って後行紙の搬送を止めることにより、前記第1搬送ローラ対と前記第2搬送ローラ対の間で紙間距離を空けて以降搬送し、
前記用紙センサにより前記用紙センサ位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラ対の駆動を開始して後行紙を搬送すると共に、先行紙後端が前記用紙センサを抜けてから後行紙先端が前記用紙センサに達するまでの紙間時間t1の測定を行い、測定された紙間時間t1の値に応じて後行紙先端が前記第1搬送ローラ対に達した後に後行紙を用紙線速V2で増速して搬送する時間、あるいは後行紙を停止する時間等の搬送タイミングを決定することを特徴とする用紙搬送装置。
A paper feed roller for feeding paper from the paper stacking unit;
Separating means for separating the paper into one sheet;
A first conveyance roller pair provided in a conveyance path downstream of the paper feed roller and configured to convey paper;
A second conveying roller pair that is provided in a conveying path downstream from the first conveying roller pair and conveys paper;
A paper sensor positioned between the first transport roller pair and the second transport roller pair;
A control unit,
When continuously feeding paper from the paper stacking unit, the control unit continuously feeds paper with no gap between the papers, and the trailing edge of the preceding paper is the first paper. By stopping driving the first conveying roller pair while continuing to convey the preceding paper without stopping the driving of the second conveying roller pair at the timing after passing through the conveying roller pair, , After the distance between the first transport roller pair and the second transport roller pair, and then transported,
Drive of the first transport roller pair is started after a certain time T1 (≧ 0) after the trailing edge of the preceding paper sheet is detected, triggered by the detection of the trailing edge of the preceding sheet by the sheet sensor. Then, the succeeding sheet is conveyed, and the sheet interval time t1 from when the trailing end of the preceding sheet passes through the sheet sensor to when the leading end of the succeeding sheet reaches the sheet sensor is measured. Depending on the value of the sheet, the conveyance timing such as the time for conveying the trailing sheet at a linear velocity V2 after the leading edge of the trailing sheet reaches the first conveying roller pair or the time for stopping the trailing sheet is set. A paper conveying apparatus characterized by determining.
請求項1記載の用紙搬送装置において、
前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングは紙間時間t1≧設定時間Taのとき(ただしTa=一定値)、前記用紙センサ位置に後行紙先端が達した後、時間Tbの間は前記第1搬送ローラ対の回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、用紙センサ位置に後行紙先端が達した後、時間Tb経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように設定したことを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
The control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor, and the transporting speed and timing of the succeeding sheet after the sheet spacing time t1 is measured is the sheet spacing time t1 ≧ the set time Ta. (Ta = constant value), after the leading edge of the succeeding paper reaches the paper sensor position, the paper linear speed is higher than the normal speed by increasing the rotation speed of the first conveying roller pair for a time Tb. After the trailing paper is conveyed at V2 and the leading edge of the succeeding paper reaches the paper sensor position, after the time Tb has elapsed, the rotation speed of the first conveying roller pair is returned to the normal rotation speed, so that the normal line speed is reached. A paper transporting device, which is set to transport subsequent paper at V1.
請求項1記載の用紙搬送装置において、
前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングが紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tcの間は前記第1搬送ローラ対の回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tcを経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように制御することを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
When it is detected that the leading edge of the succeeding sheet has reached the position of the sheet sensor and the sheet interval time t1 is measured, the conveyance speed and timing of the succeeding sheet satisfy the condition of the sheet interval time t1 <the set time Ta (where Ta = The constant value), after the leading edge of the succeeding sheet reaches the position of the sheet sensor, the conveyance of the succeeding sheet is stopped by stopping the rotation of the first conveying roller pair for a time Tc, and the sheet sensor After the leading edge of the succeeding paper has reached the position of, the time of passing the time Tc is such that the following paper is transported at the normal paper linear speed V1 by returning the rotational speed of the first transport roller pair to the normal rotational speed. A sheet conveying device characterized in that the control is performed.
請求項1記載の用紙搬送装置において、
前記制御部は、前記用紙センサの位置に後行紙先端が達したことが検知され、紙間時間t1が測定された後の後行紙の搬送速度、タイミングが紙間時間t1<設定時間Taのとき(ただしTa=一定値)、前記用紙センサの位置に後行紙先端が達した後、時間Tcの間は前記第1搬送ローラ対の回転を停止することで後行紙の搬送を停止し、前記用紙センサの位置に後行紙先端が達した後、時間Tc経過後はそこから更に時間Td経過するまでは前記第1搬送ローラ対の回転数を上げることで通常の速度より速い用紙線速V2で後行紙を搬送し、時間Tdを経過後は前記第1搬送ローラ対の回転数を通常の回転数に戻すことで通常の用紙線速V1で後行紙を搬送するように制御することを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 1,
The control unit detects that the leading edge of the succeeding sheet has reached the position of the sheet sensor and measures the sheet conveying time t1 after the sheet spacing time t1 is measured. (Ta = constant value) After the leading edge of the succeeding sheet reaches the position of the sheet sensor, the transport of the succeeding sheet is stopped by stopping the rotation of the first conveying roller pair for a time Tc. Then, after the leading edge of the succeeding paper reaches the position of the paper sensor, after the time Tc elapses, the paper is faster than the normal speed by increasing the rotation speed of the first conveying roller pair until the time Td elapses thereafter. The succeeding sheet is conveyed at the linear speed V2, and after the time Td, the following sheet is conveyed at the normal sheet linear speed V1 by returning the rotation speed of the first conveying roller pair to the normal rotation speed. A paper conveying device characterized by controlling.
請求項2又は3に記載の用紙搬送装置において、
時間TbがTb=(t1−Ta)×V1/(V2−V1)であり(ただし、Ta=L/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速)、時間TcがTc=Ta−t1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値であることを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 2 or 3,
Time Tb is Tb = (t1−Ta) × V1 / (V2−V1) (where Ta = L / V1, L = target inter-paper distance after correction, V1 = normal sheet linear velocity, V2 = (Paper speed at the time of acceleration) and time Tc are calculated values obtained from the relationship of Tc = Ta-t1, or data set in the data table in advance so as to obtain the same effect as the case where the calculated values are used. A sheet conveying apparatus characterized in that the value is obtained with reference to FIG.
請求項2又は4記載の用紙搬送装置において、
時間TbがTb=(t1−Ta)×V1/(V2−V1)+Tdであり(ただし、Ta={L+Td×(V2−V1)}/V1、L=補正後の狙いの紙間距離、V1=通常の用紙線速、V2=増速時用紙線速、Td=一定時間)、時間TcがTc=Ta−t1の関係から得られる計算値又は前記計算値を用いた場合と同様の効果を得られるように予めデータテーブル内に設定してあるデータを参照して求められる値であることを特徴とする用紙搬送装置。
In the paper conveyance device according to claim 2 or 4,
Time Tb is Tb = (t1−Ta) × V1 / (V2−V1) + Td (where Ta = {L + Td × (V2−V1)} / V1, L = target inter-paper distance after correction, V1 = Normal sheet linear velocity, V2 = Increased paper linear velocity, Td = Constant time), Time Tc is a calculated value obtained from the relationship of Tc = Ta-t1, or the same effect as when using the calculated value A sheet conveying device characterized in that the value is obtained by referring to data set in advance in a data table so as to be obtained.
請求項1〜6のいずれか一項に記載の用紙搬送装置において、
前記用紙センサと前記第1搬送ローラ対との間の距離を、前記用紙積載部に積載された用紙の先端位置から前記分離手段までの距離よりも大きく設定したことを特徴とする用紙搬送装置。
In the paper conveyance device according to any one of claims 1 to 6,
The paper transport apparatus according to claim 1, wherein a distance between the paper sensor and the first transport roller pair is set to be larger than a distance from a front end position of the paper stacked on the paper stacking unit to the separation unit.
請求項1〜7のいずれか一項に記載の用紙搬送装置において、
前記制御部は、前記用紙センサにより前記用紙センサ位置を先行紙後端が抜けたことが検知されたことをトリガとして先行紙用紙後端抜け後一定時間T1(≧0)後に前記第1搬送ローラ対の駆動を開始する際の前記第1搬送ローラ対により送られる後行紙の用紙線速は、前記第1搬送ローラ対の駆動開始から前記用紙センサに後行紙先端が達するまでの一部の区間、あるいは全区間において後行紙用紙線速が通常線速V1より速い増速線速V2にて送られるように前記第1搬送ローラ対の回転数を制御することを特徴とする用紙搬送装置。
In the paper conveyance device according to any one of claims 1 to 7,
The control unit uses the first transport roller after a predetermined time T1 (≧ 0) after the trailing edge of the preceding paper sheet as a trigger when the sheet sensor detects that the trailing edge of the preceding sheet has been removed from the paper sensor position. The sheet linear speed of the succeeding sheet sent by the first conveying roller pair when the pair driving is started is a part from the start of driving of the first conveying roller pair until the leading edge of the succeeding sheet reaches the sheet sensor. The sheet conveyance is characterized in that the rotation speed of the first conveyance roller pair is controlled so that the subsequent sheet linear velocity is fed at a speed increasing linear velocity V2 higher than the normal linear velocity V1 in this section or all sections. apparatus.
用紙に画像を形成するための画像形成部と、
前記画像形成部に用紙を搬送する請求項1〜8のいずれか一項に記載の用紙搬送装置とを備えたことを特徴とする画像形成装置。
An image forming unit for forming an image on paper;
An image forming apparatus comprising: the sheet conveying apparatus according to claim 1, which conveys a sheet to the image forming unit.
請求項9記載の画像形成装置において、
前記画像形成部は電子写真方式で形成したトナー画像を用紙に転写して用紙上に画像を形成することを特徴とする画像形成装置。
The image forming apparatus according to claim 9.
An image forming apparatus, wherein the image forming unit transfers a toner image formed by an electrophotographic method onto a sheet to form an image on the sheet.
JP2004329860A 2004-11-12 2004-11-12 Paper transport device and image forming apparatus using the same Expired - Fee Related JP4358086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329860A JP4358086B2 (en) 2004-11-12 2004-11-12 Paper transport device and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329860A JP4358086B2 (en) 2004-11-12 2004-11-12 Paper transport device and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006137579A JP2006137579A (en) 2006-06-01
JP4358086B2 true JP4358086B2 (en) 2009-11-04

Family

ID=36618635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329860A Expired - Fee Related JP4358086B2 (en) 2004-11-12 2004-11-12 Paper transport device and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4358086B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570941B2 (en) * 2004-11-19 2010-10-27 株式会社リコー Paper transport device and image forming apparatus using the same
JP2008087916A (en) 2006-10-02 2008-04-17 Sharp Corp Sheet conveying device
JP6740625B2 (en) * 2016-02-09 2020-08-19 セイコーエプソン株式会社 Transport device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049342B2 (en) * 1991-09-26 2000-06-05 富士ゼロックス株式会社 Paper feeder
JP3715842B2 (en) * 1999-07-30 2005-11-16 キヤノン株式会社 Printing apparatus and printing medium feeding method in the printing apparatus
JP2003176045A (en) * 2001-12-07 2003-06-24 Ricoh Co Ltd Paper conveying device, and image forming device
JP4174310B2 (en) * 2001-12-12 2008-10-29 キヤノン株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP2006137579A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7068969B2 (en) Method and apparatus for image forming capable of performing fast and stable sheet transfer operations
US7497430B2 (en) Image forming apparatus, image forming method, and sheet feeding apparatus capable of effectively feeding sheets
JP5581811B2 (en) Image forming apparatus
US8109499B2 (en) Methods for moving a media sheet within an imaging device
JP5750413B2 (en) Recording medium conveying apparatus and image forming apparatus
JP2009122415A (en) Image forming system
JP2017159989A (en) Sheet conveying device and image forming device
JP5366508B2 (en) Image forming apparatus
JP6650802B2 (en) Image forming apparatus and feeding apparatus
JP4570941B2 (en) Paper transport device and image forming apparatus using the same
US20100164164A1 (en) Sheet carrying device
JP2019099377A (en) Transport device and image formation device
JP4358086B2 (en) Paper transport device and image forming apparatus using the same
US10203635B2 (en) Image forming apparatus, method for image forming apparatus, and program
JP2004315177A (en) Paper transporting device and image forming device
JP2005213039A (en) Paper feeding device and image forming device
JP4510273B2 (en) Paper feeding device
JP4359212B2 (en) Paper transport device
US8141870B2 (en) Methods for moving a media sheet within an imaging device
JP7229748B2 (en) Paper feeder and image forming device
JP4749276B2 (en) Image forming apparatus
JP4893610B2 (en) Recording material transport apparatus and image forming apparatus using the same
JP6173096B2 (en) Image forming apparatus
JP2006240755A (en) Paper feeder, and image forming device
JP3896249B2 (en) Paper feeding method in image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees