JP4356869B2 - Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor - Google Patents
Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor Download PDFInfo
- Publication number
- JP4356869B2 JP4356869B2 JP2003084940A JP2003084940A JP4356869B2 JP 4356869 B2 JP4356869 B2 JP 4356869B2 JP 2003084940 A JP2003084940 A JP 2003084940A JP 2003084940 A JP2003084940 A JP 2003084940A JP 4356869 B2 JP4356869 B2 JP 4356869B2
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- precipitates
- copper alloy
- crystals
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Sampling And Sample Adjustment (AREA)
- Extraction Or Liquid Replacement (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅合金中の晶・析出物を抽出分離する方法に関し、特に銅合金のマトリックス(銅合金中の晶・析出物以外の母相をいい、銅のほか固溶合金元素を含む。以下同じ)を溶解し、銅合金中の晶・析出物のみを抽出するのに用いる抽出分離用液、および該抽出分離用液を用いて銅合金中の晶・析出物を抽出分離する方法に関するものである。
【0002】
【従来の技術】
銅合金における銅や合金元素の固溶・析出といった冶金状態は、銅合金の品質に影響を及ぼすものであるが、その中でも特に、銅合金中に存在する晶・析出物の存在形態は、銅合金の品質に多大な影響を及ぼし、例えば、析出物を微細に分散させることで、強度や耐熱性といった特性をより高めることができる。
【0003】
従って、銅合金中に存在する晶・析出物の存在形態を十分把握することが、銅合金の特性を制御する上で重要となる。特に、銅合金中の添加元素の存在形態は、熱間圧延を施す場合や耐熱用途に使用される場合等に受ける熱履歴により変わってくるので、該熱履歴に応じて銅合金中の晶・析出物の存在形態を正しく把握することが、特性への影響を推測するうえで大変重要である。
【0004】
これまで銅合金中に存在する晶・析出物の評価は、SEM(scanning electron microscope)やTEM(transmission electron microscope)、X線回折法等の物理的な方法で行われてきた。しかしながらこれらの方法では、晶・析出物の組成やサイズを定性的に把握することしかできず、定量的な評価をすることができない。
【0005】
一方、銅合金のマトリックス部分を溶解して銅合金中に存在する晶・析出物を化学的に抽出し、該抽出物を評価する試みはこれまでなされていない。ステンレス鋼や超合金鋼を対象に、該鉄鋼中の介在物を抽出分離する方法はすでに提案されており、具体的には、例えば塩酸、硝酸、硫酸等の無機酸による溶解、ハロゲン−メタノール法による溶解、AA系電解抽出法やMS系電解抽出法による溶解等を利用して鉄鋼試料中の介在物を抽出分離する方法が提案されている。
【0006】
しかしこれらの方法は、鉄基合金中に含まれる介在物の抽出には良好に適用できるが、銅合金中に含まれる晶・析出物抽出に適用すると、銅等のマトリックスのみならず銅合金中に含まれる晶・析出物まで溶解されるので、銅合金中の晶・析出物を選択的に抽出分離することができない。
【0007】
また、アルミニウム合金中に含まれる析出物の抽出法として知られている熱フェノール抽出法では、銅合金が溶解しないため、銅合金中に含まれる晶・析出物を抽出することができない。
【0008】
ところで銅合金を化学的に溶解させる溶液としては、はんだ、めっき、塗装等の表面処理やエッチング加工に使用される塩化第二鉄溶液、塩化第二銅溶液、アンモニアアルカリ液、硫酸−過酸化水素混合液、硫酸、硝酸、塩酸等の無機酸のアンモニウム塩などが挙げられる。また特許文献1には、銅または銅合金を溶解させる方法として、スルホキシド化合物と活性ハロゲン化合物からなる溶液を用いる方法が提案されている。更に特許文献2には、銅または銅合金の溶解速度を高めることのできた溶解用液として、錯形成剤、酸化剤および無機酸のアンモニウム塩を含む水溶液等が示されている。
【0009】
しかしながら、銅合金中に含まれる晶・析出物の抽出に上記溶液や方法を適用すると、マトリックスと共に晶・析出物も溶解してしまう等の問題が生じるため、銅合金に含まれる晶・析出物を抽出分離することができない。
【0010】
【特許文献1】
特開昭63−50487号公報
【特許文献2】
特開平6−116756号公報
【0011】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、強度向上や脱酸等を目的に添加される元素に由来の銅合金中の析出物や固溶形態を正確に把握する手段の一環として、銅合金中の晶・析出物を溶失させることなく抽出分離するための方法を提供し、併せて該方法を実施するのに有用な抽出分離用液を提供することにある。
【0012】
【課題を解決するための手段】
本発明に係る銅合金中の晶・析出物の抽出分離用液とは、アミノ基(NH2基)を含む化合物およびアンモニウム塩よりなる群から選択される1種以上とアルコールを含むところに特徴を有するものであり、その代表的なものとして、酢酸アンモニウムおよびアルコール、または硝酸アンモニウムおよびアルコールを含むものが挙げられる。前記酢酸アンモニウムまたは硝酸アンモニウムの濃度は0.1質量%以上で飽和濃度以下とし、該抽出分離用液のpHは3〜12の範囲内とすることが好ましい。
【0013】
本発明は、この様な抽出分離用液に銅合金試料を浸漬して銅合金中の晶・析出物を不溶物として採取するところに特徴を有する銅合金中の晶・析出物の抽出分離方法も規定するものである。該方法は、前記銅合金試料を陽極にして電解を行うことが、効率的な観点等から好ましく、電解は、電流密度を0.1〜100mA/cm2として定電流電解法で行うことを好ましい実施形態とする。
【0014】
【発明の実施の形態】
本発明者らは前述した様な状況の下で、まず、銅合金中の銅および固溶元素(マトリックス)のみ溶解し、銅合金中の晶・析出物を溶失させることなく抽出分離できる抽出分離用液について検討を行った結果、アミノ基を含む化合物およびアンモニウム塩よりなる群から選択される1種以上を、アルコール溶媒に溶解した溶液を用いれば、溶液中で銅イオンが銅(II)アンミン錯体を形成して銅合金の溶解が良好に進行し、銅合金中の晶・析出物を損失させることなく抽出できることを見出した。
【0015】
前記アミノ基を含む化合物およびアンモニウム塩よりなる群から選択される1種以上を、アルコール溶媒に溶解した溶液として、酢酸アンモニウムまたは硝酸アンモニウムをアルコール溶媒に溶解した、酢酸アンモニウム−アルコール溶液、または硝酸アンモニウム−アルコール溶液が代表的なものとして挙げられる。
【0016】
前記アミノ基を含む化合物としては、アミノエタノール、アミノ安息香酸、アミノ蟻酸(別名:カルバミン酸)、アミノ酢酸、アミノケイ皮酸等が挙げられ、またアンモニウム塩としては、上記硝酸アンモニウムや酢酸アンモニウムの他に、硫酸アンモニウム等が挙げられ、これらを単独もしくは複数種類混合して用いることができる。また、前記アルコールの種類は特定されるものではなく、例えばメタノール、エタノール等を用いることができる。
【0017】
尚、本発明で定める抽出分離用液には、上記の様なアミノ基を含む化合物およびアンモニウム塩よりなる群から選択される1種以上と、アルコールを含む溶媒の他、後述するpH調整に用いる水酸化ナトリウム−メタノール溶液、酢酸、硝酸等が添加されていてもよい。
【0018】
銅合金のマトリックスを完全にかつ効率よく溶解するには、前記抽出分離用液中の酢酸アンモニウムまたは硝酸アンモニウムの濃度が0.1質量%以上であることが好ましく、より好ましくは0.15質量%以上である。一方、前記酢酸アンモニウムまたは硝酸アンモニウムの濃度が高くなるほどマトリックス成分の溶解量は増加するが、用いるアルコールに対し飽和濃度を超えて酢酸アンモニウムまたは硝酸アンモニウムが存在すると、未溶解の酢酸アンモニウムまたは硝酸アンモニウムが、抽出された晶・析出物とともに残渣として残り、定量誤差を招くおそれがあるので好ましくない。
【0019】
尚、上記濃度の抽出分離液の使用量は、用いる試料サイズによって適宜調整すればよく、例えば試料10gに対し、本発明にかかる抽出分離用液を約300mL以上の割合で使用すればよい。
【0020】
抽出分離用液のpHは、3〜12の範囲内に調整されていることが望ましい。pH3未満の強酸性域では、マトリックスの溶解速度が遅くなるからである。より好ましくはpH4以上に調整する。pHを高くすることでマトリックスの溶解は促進されるが、pHが極端に高くなると、銅合金中の固溶元素が水酸化物等の不溶性化合物として析出し、定量精度を低下させる原因になるので好ましくない。より好ましくはpH11以下とする。
【0021】
この様な溶液を用いることによって、例えばCu−Fe系銅合金、Cu−Ni−Si系銅合金、Cu−Cr系銅合金、Cu−Zr系銅合金を対象に、晶・析出物として、全ての銅合金に含まれる析出硬化型のFe単体、Fe−P系化合物、Ni−Si系化合物等を溶失させることなく抽出分離できる。
【0022】
上記抽出分離用液に浸漬させるだけでもマトリックスの溶解は進行するが、マトリックスの溶解時間を更に短縮して銅合金中の晶・析出物を効率よく抽出するには、前記抽出分離用液に銅合金試料を浸漬し、該銅合金試料を陽極として電解を行うのが良い。電解法としては、定電流電解や定電位電解等が挙げられるが、簡便な操業を行うことのできる定電流電解を採用することを推奨する。
【0023】
定電流電解を行う場合には、その電流密度を0.1〜100mA/cm2とするのがよい。電流密度が0.1mA/cm2未満では、電解によるマトリックスの溶解促進作用が有効に発揮されないからであり、より好ましくは0.15mA/cm2以上で行う。一方、前記電流密度が100mA/cm2を超えると、電極表面に銅を含む化合物が析出し、抽出残渣量の定量精度が悪くなるだけでなく、試料の溶解速度を低下させることにもなる。より好ましくは電流密度を95mA/cm2以下にして行う。
【0024】
定電流電解を行う際の他の条件は、規定する以外は従来公知の条件を採用すればよく、例えば、ガラス製等の電解槽に、前記抽出分離用液を入れ、陽極として銅合金試料を浸漬させ、陰極として白金、カーボン等を用いて行えばよい。
【0025】
本発明の方法は、前記抽出分離用液に銅合金試料を浸漬し、マトリックスを溶解する工程を含むところに特徴を有するのであって、その他の工程について特に規定されるものではなく、従来の方法を適用することができる。よって、例えば抽出分離に供する試料の前処理として、定量精度に悪影響を与えないよう銅合金試料の脱脂、メタノール中での超音波洗浄、研磨等を行うことが挙げられる。また、試料溶解後の反応溶液から晶・析出物を回収する工程では、遠心分離法を用いたり、吸引ろ過、加圧ろ過等のろ過方法にて、測定対象とする晶・析出物サイズに応じた孔径のメンブランフィルター等のフィルターを用いてろ過を行い、抽出された晶・析出物を回収することが挙げられる。
【0026】
また、前記抽出分離された晶・析出物の評価方法としては、定量を行う場合には、該晶・析出物をそのまま重量測定に供する他、該晶・析出物を一旦、酸やアルカリ等で溶解してICP(inductively coupled plasma)発光分光分析法等で化学成分組成を把握する方法等が挙げられる。また、SEM、TEM等を用いて晶・析出物種の同定を行うこともできる。
【0027】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0028】
実施例1
銅合金鋳片(Fe5.0質量%含有、残部銅)を900℃で加熱した後、急冷し、該鋳片から切り出した角材(10mm×10mm×10mm)を抽出分離用の銅合金試料として用いた。この銅合金試料を、表1に示す組成の抽出分離用液(いずれもpH8に調整)300mLに浸漬させ、該銅合金試料を陽極とし、白金を陰極として用い、電流密度20mA/cm2で定電流電解を行った。試料の溶解状態を観察しながらマトリックスを溶解させた後、ポリカーボネート製のメンブランフィルターを用いて該反応液を吸引ろ過し、回収した残渣を塩酸で溶解後、ICP発光分光分析法で晶・析出物の量を求めた。
【0029】
尚、上記定量結果の評価では、本発明で用いた銅合金試料中には晶・析出物としてFe単体析出物が存在すると考えられ、平衡状態図集[例えばMax Hansenら、Constitution of Binary Alloys(1985)]によると、Cu−Fe合金の二元状態図から900℃で加熱したCu−Fe合金(Fe:5.0質量%)のFe固溶限は1.6質量%であるので、3.4質量%(5.0質量%−1.6質量%)を前記試料中の晶・析出物量の計算基準値として対比に用いた。
【0030】
【表1】
【0031】
表1より、実験No.1および2は、本発明の要件を満たす溶液で抽出を行ったので、電解途中で溶解反応が停止することなく銅合金中の晶・析出物のみを選択的に抽出することができ、該晶・析出物量は前記計算値とほぼ一致している。
【0032】
これに対し、実験No.3〜12で用いた抽出分離用液は、本発明の規定要件を満たしていないので、晶・析出物の抽出分離を良好に行うことはできなかった。即ち実験No.3〜5では、電解中にスポンジ状の銅含有化合物が陰極表面に析出し、本来の析出物と共に捕集され、定量分析に大きな誤差を与えることが明らかであるため定量は行わなかった。実験No.6〜11では、マトリックスだけでなく晶・析出物も溶解したので銅合金中の晶・析出物量を測定できなかった。またNo.12では、試料の溶解がほとんど進まず、晶・析出物を抽出することができなかった。
【0033】
実施例2
前記実施例1と同様の銅合金試料を用い、抽出分離用液として酢酸アンモニウム−メタノール溶液を用いた場合の、該溶液の酢酸アンモニウム濃度およびpHを表2に示すように変化させ、溶解を浸漬のみ又は定電流電解法で行い、定電流電解法で行う場合には、表2に示すように電流密度を変化させ、銅合金試料を陽極にして行った。試料の溶解状態を観察しながらマトリックスを溶解させ、その後、実施例1と同様にして該反応液のろ過を行い残渣を回収した。実施例1と同様にして測定した抽出残渣量を表2に併記する。
【0034】
【表2】
【0035】
表2より、No.13〜17は、本発明の規定要件を満たす方法で晶・析出物の抽出分離を行っているので、晶・析出物であるFe単体析出物を精度良く抽出分離できていることがわかる。尚、試料の溶解は、実験No.13および14のように浸漬させるのみで行うよりも、実験No.15〜17のように定電流電解法を適用する方が、マトリックス溶解速度が速く、効率よく抽出分離できることがわかる。
【0036】
これに対しNo.18〜23は、本発明で推奨する要件を満たすものではないため、抽出分離が良好に行われないか定量結果が好ましくないものとなった。即ち、No.18は、抽出分離用液中の酢酸アンモニウム濃度が極端に小さいので、抽出残渣量が極端に少なく、抽出した晶・析出物量は前記計算基準値からの誤差が大きくなっている。No.19は、添加した酢酸アンモニウムがメタノールに対する飽和濃度を超えているため、酢酸アンモニウムが完全に溶解しなかった。この様な未溶解の酢酸アンモニウムが、晶・析出物とともに残渣として残り、分析値に大きな誤差を生じさせることが明らかであるため定量は行わなかった。
【0037】
No.20は、抽出分離用液のpHが本発明で好ましいとする範囲を外れているため、Cu母相の溶解速度が極端に低下し、晶・析出物の分析に必要な残渣量を得ることができなかった。No.21は抽出分離用液のpHが本発明で好ましいとする範囲を超えているため、試料中の固溶Feが水酸化物として析出し、定量精度に悪影響を及ぼす結果となった。
【0038】
No.22は、定電流電解時の電流密度が本発明で好ましいとする範囲を下回り極端に小さいため、Cu母相の溶解速度が遅くなり、晶・析出物の分析に必要な残渣量を得ることができなかった。またNo.23は、定電流電解時の電流密度が本発明で好ましいとする範囲を超えているため、電極表面に銅含有化合物が析出し、定量精度に悪影響を及ぼす結果となった。
【0039】
【発明の効果】
本発明法を銅合金中の晶・析出物の抽出分離に適用すれば、銅合金中の晶・析出物を損失することなく効率的に抽出できる。従ってこの方法で得られた銅合金中の晶・析出物の形状・化学組成・質量等を、定性・定量分析法で把握することによって、銅合金製品の晶・析出物に関する品質を最終ユーザーにまで保証できる他、製品開発時の晶・析出物の有用な評価手段としても適用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for extracting and separating crystals / precipitates in a copper alloy, and in particular, a matrix of copper alloy (refers to a parent phase other than crystals / precipitates in a copper alloy, and contains a solid solution alloy element in addition to copper. The same shall apply hereinafter) and an extraction / separation liquid used to extract only the crystals / precipitates in the copper alloy, and a method for extracting / separating the crystals / precipitates in the copper alloy using the extraction / separation liquid. Is.
[0002]
[Prior art]
The metallurgical state of copper alloy, such as solid solution and precipitation of copper and alloy elements, affects the quality of the copper alloy. Among them, the presence of crystals and precipitates present in the copper alloy It has a great influence on the quality of the alloy. For example, by finely dispersing precipitates, properties such as strength and heat resistance can be further enhanced.
[0003]
Therefore, it is important to control the characteristics of the copper alloy to fully grasp the existence form of crystals and precipitates present in the copper alloy. In particular, the presence form of the additive element in the copper alloy varies depending on the thermal history received when performing hot rolling or when used for heat resistant applications. It is very important to correctly grasp the existence form of precipitates in estimating the influence on the properties.
[0004]
Until now, evaluation of crystals and precipitates present in a copper alloy has been performed by physical methods such as SEM (scanning electron microscope), TEM (transmission electron microscope), and X-ray diffraction. However, these methods can only grasp the composition and size of crystals and precipitates qualitatively, and cannot quantitatively evaluate them.
[0005]
On the other hand, no attempt has been made to evaluate the extract by dissolving the matrix portion of the copper alloy to chemically extract crystals / precipitates present in the copper alloy. For stainless steel and superalloy steel, methods for extracting and separating inclusions in the steel have already been proposed. Specifically, for example, dissolution with inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, halogen-methanol method There has been proposed a method for extracting and separating inclusions in a steel sample by using dissolution by AA, dissolution by AA-based electrolytic extraction or MS-based electrolytic extraction.
[0006]
However, these methods can be successfully applied to the extraction of inclusions contained in iron-based alloys, but when applied to the extraction of crystals / precipitates contained in copper alloys, not only in the matrix such as copper but also in copper alloys. Since crystals and precipitates contained in the copper alloy are dissolved, the crystals and precipitates in the copper alloy cannot be selectively extracted and separated.
[0007]
Moreover, in the hot phenol extraction method known as a method for extracting precipitates contained in an aluminum alloy, since the copper alloy does not dissolve, crystals / precipitates contained in the copper alloy cannot be extracted.
[0008]
By the way, as a solution for chemically dissolving a copper alloy, ferric chloride solution, cupric chloride solution, ammonia alkaline solution, sulfuric acid-hydrogen peroxide used for surface treatment and etching processing of solder, plating, coating, etc. Examples thereof include mixed liquids, ammonium salts of inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid. Patent Document 1 proposes a method using a solution comprising a sulfoxide compound and an active halogen compound as a method for dissolving copper or a copper alloy. Furthermore, Patent Document 2 discloses an aqueous solution containing a complexing agent, an oxidizing agent, and an ammonium salt of an inorganic acid as a dissolving solution that can increase the dissolution rate of copper or a copper alloy.
[0009]
However, if the above solution or method is applied to the extraction of the crystals / precipitates contained in the copper alloy, problems such as dissolution of the crystals / precipitates together with the matrix occur, so the crystals / precipitates contained in the copper alloy Cannot be extracted and separated.
[0010]
[Patent Document 1]
JP 63-50487 A [Patent Document 2]
Japanese Patent Laid-Open No. 6-116756
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and its purpose is to accurately determine precipitates and solid solution forms in copper alloys derived from elements added for the purpose of strength improvement and deoxidation. As a part of the means for grasping the above, a method for extracting and separating crystals / precipitates in a copper alloy without leaching is provided, and also a liquid for extraction and separation useful for carrying out the method is provided. There is.
[0012]
[Means for Solving the Problems]
The liquid for extracting and separating crystals / precipitates in a copper alloy according to the present invention is characterized in that it contains at least one selected from the group consisting of a compound containing an amino group (NH 2 group) and an ammonium salt and an alcohol. Typical examples include those containing ammonium acetate and alcohol, or ammonium nitrate and alcohol. The concentration of the ammonium acetate or ammonium nitrate is preferably 0.1% by mass or more and the saturation concentration or less, and the pH of the extraction / separation liquid is preferably in the range of 3 to 12.
[0013]
The present invention provides a method for extracting and separating crystals / precipitates in a copper alloy, characterized in that the copper alloy sample is immersed in such a solution for extraction / separation and the crystals / precipitates in the copper alloy are collected as insolubles. It also prescribes. In the method, electrolysis is preferably performed using the copper alloy sample as an anode from an efficient viewpoint, and the electrolysis is preferably performed by a constant current electrolysis method with a current density of 0.1 to 100 mA / cm 2. Let it be an embodiment.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the present inventors first extract only copper and solid solution elements (matrix) in a copper alloy, and extract and separate them without losing crystals and precipitates in the copper alloy. As a result of examining the liquid for separation, if a solution in which one or more selected from the group consisting of a compound containing an amino group and an ammonium salt is dissolved in an alcohol solvent is used, the copper ion is copper (II) in the solution. It has been found that the dissolution of the copper alloy proceeds well by forming an ammine complex, and the crystals and precipitates in the copper alloy can be extracted without loss.
[0015]
An ammonium acetate-alcohol solution or ammonium nitrate-alcohol in which ammonium acetate or ammonium nitrate is dissolved in an alcohol solvent as a solution in which one or more selected from the group consisting of the amino group-containing compound and ammonium salt is dissolved in an alcohol solvent Solutions are typical.
[0016]
Examples of the compound containing an amino group include aminoethanol, aminobenzoic acid, amino formic acid (also known as carbamic acid), aminoacetic acid, aminocinnamic acid and the like, and ammonium salts other than the above ammonium nitrate and ammonium acetate. And ammonium sulfate. These may be used alone or in combination. Moreover, the kind of the said alcohol is not specified, For example, methanol, ethanol, etc. can be used.
[0017]
In addition, the extraction / separation liquid defined in the present invention is used for pH adjustment described later in addition to one or more selected from the group consisting of the above amino group-containing compound and ammonium salt, and a solvent containing alcohol. A sodium hydroxide-methanol solution, acetic acid, nitric acid or the like may be added.
[0018]
In order to completely and efficiently dissolve the copper alloy matrix, the concentration of ammonium acetate or ammonium nitrate in the extraction / separation liquid is preferably 0.1% by mass or more, more preferably 0.15% by mass or more. It is. On the other hand, as the concentration of ammonium acetate or ammonium nitrate increases, the amount of matrix component dissolved increases. However, if ammonium acetate or ammonium nitrate is present in excess of the saturation concentration relative to the alcohol used, undissolved ammonium acetate or ammonium nitrate is extracted. This is not preferable because it remains as a residue together with crystals and precipitates, which may lead to quantitative errors.
[0019]
The amount of the extraction / separation liquid having the above-mentioned concentration may be appropriately adjusted depending on the sample size to be used.
[0020]
It is desirable that the pH of the extraction / separation liquid is adjusted within a range of 3 to 12. This is because the dissolution rate of the matrix is slow in the strongly acidic region below pH 3. More preferably, the pH is adjusted to 4 or more. Although the dissolution of the matrix is promoted by increasing the pH, if the pH is extremely increased, the solid solution element in the copper alloy is precipitated as an insoluble compound such as a hydroxide, which causes a decrease in quantitative accuracy. It is not preferable. More preferably, the pH is 11 or less.
[0021]
By using such a solution, for example, Cu-Fe-based copper alloys, Cu-Ni-Si-based copper alloys, Cu-Cr-based copper alloys, Cu-Zr-based copper alloys, all as crystals and precipitates, The precipitation-hardening type Fe simple substance, Fe-P compound, Ni-Si compound and the like contained in the copper alloy can be extracted and separated without losing them.
[0022]
Although the dissolution of the matrix proceeds only by immersing it in the extraction / separation liquid, in order to further reduce the dissolution time of the matrix and efficiently extract crystals / precipitates in the copper alloy, the extraction / separation liquid contains copper. It is preferable to immerse the alloy sample and perform the electrolysis using the copper alloy sample as an anode. Examples of the electrolysis method include constant current electrolysis and constant potential electrolysis, but it is recommended to employ constant current electrolysis that allows simple operation.
[0023]
When performing constant current electrolysis, the current density is preferably 0.1 to 100 mA / cm 2 . If the current density is less than 0.1 mA / cm 2 , the effect of promoting the dissolution of the matrix by electrolysis is not effectively exhibited, and more preferably 0.15 mA / cm 2 or more. On the other hand, when the current density exceeds 100 mA / cm 2 , a compound containing copper is deposited on the electrode surface, which not only deteriorates the quantitative accuracy of the amount of extraction residue but also reduces the dissolution rate of the sample. More preferably, the current density is 95 mA / cm 2 or less.
[0024]
Other conditions for performing constant-current electrolysis may be conventionally known conditions except for prescribing. For example, the extraction and separation liquid is put in an electrolytic cell made of glass or the like, and a copper alloy sample is used as an anode. The immersion may be performed using platinum, carbon, or the like as the cathode.
[0025]
The method of the present invention is characterized in that it includes a step of immersing a copper alloy sample in the extraction / separation solution and dissolving the matrix, and is not particularly defined for the other steps. Can be applied. Therefore, for example, pretreatment of a sample to be subjected to extraction / separation includes degreasing a copper alloy sample, ultrasonic cleaning in methanol, polishing, etc. so as not to adversely affect the quantitative accuracy. In addition, in the process of recovering crystals / precipitates from the reaction solution after sample dissolution, depending on the size of crystals / precipitates to be measured by using a centrifugal separation method or a filtration method such as suction filtration or pressure filtration And filtering using a filter such as a membrane filter having a different pore size to recover the extracted crystals / precipitates.
[0026]
In addition, as a method for evaluating the extracted crystals / precipitates, in the case of quantification, in addition to subjecting the crystals / precipitates to weight measurement as they are, the crystals / precipitates are once treated with acid, alkali, or the like. Examples of the method include a method of dissolving and grasping a chemical component composition by ICP (inductively coupled plasma) emission spectroscopy. In addition, the crystal / precipitate species can be identified using SEM, TEM, or the like.
[0027]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0028]
Example 1
Copper alloy slab (containing 5.0 mass% Fe, the remaining copper) is heated at 900 ° C, then rapidly cooled, and the square material (10 mm x 10 mm x 10 mm) cut out from the slab is used as a copper alloy sample for extraction separation It was. This copper alloy sample was immersed in 300 mL of an extraction / separation liquid having the composition shown in Table 1 (both adjusted to pH 8), the copper alloy sample was used as an anode, platinum was used as a cathode, and a current density of 20 mA / cm 2 was determined. Current electrolysis was performed. The matrix is dissolved while observing the dissolution state of the sample, the reaction solution is suction filtered using a polycarbonate membrane filter, the collected residue is dissolved in hydrochloric acid, and then crystals and precipitates are analyzed by ICP emission spectrometry. The amount of was determined.
[0029]
In the evaluation of the above quantitative results, it is considered that Fe single precipitates exist as crystals and precipitates in the copper alloy sample used in the present invention, and an equilibrium diagram [for example, Max Hansen et al., Constitution of Binary Alloys ( 1985)], the Fe solid solubility limit of the Cu—Fe alloy (Fe: 5.0 mass%) heated at 900 ° C. is 1.6 mass% from the binary phase diagram of the Cu—Fe alloy. 4% by mass (5.0% by mass to 1.6% by mass) was used for comparison as a calculation reference value for the amount of crystals and precipitates in the sample.
[0030]
[Table 1]
[0031]
From Table 1, Experiment No. Since 1 and 2 were extracted with a solution satisfying the requirements of the present invention, only crystals and precipitates in the copper alloy could be selectively extracted without stopping the dissolution reaction during electrolysis. -The amount of precipitates is almost the same as the calculated value.
[0032]
In contrast, Experiment No. Since the extraction and separation liquids used in 3 to 12 did not satisfy the prescribed requirements of the present invention, the crystals and precipitates could not be extracted and separated satisfactorily. That is, Experiment No. In Nos. 3 to 5, since it was clear that a sponge-like copper-containing compound was deposited on the cathode surface during electrolysis and was collected together with the original deposit, it was apparent that a large error was given to the quantitative analysis, so the quantification was not performed. Experiment No. In 6 to 11, not only the matrix but also crystals / precipitates were dissolved, so the amount of crystals / precipitates in the copper alloy could not be measured. No. In No. 12, dissolution of the sample hardly progressed and crystals / precipitates could not be extracted.
[0033]
Example 2
When using the same copper alloy sample as in Example 1, and using an ammonium acetate-methanol solution as the extraction separation solution, the ammonium acetate concentration and pH of the solution were changed as shown in Table 2, and the dissolution was immersed. In the case of carrying out only by the constant current electrolysis method and by the constant current electrolysis method, the current density was changed as shown in Table 2, and the copper alloy sample was used as the anode. The matrix was dissolved while observing the dissolved state of the sample, and then the reaction solution was filtered in the same manner as in Example 1 to collect the residue. The amount of extraction residue measured in the same manner as in Example 1 is also shown in Table 2.
[0034]
[Table 2]
[0035]
From Table 2, no. In Nos. 13 to 17, since extraction and separation of crystals and precipitates are performed by a method that satisfies the prescribed requirements of the present invention, it can be seen that Fe single precipitates that are crystals and precipitates can be extracted and separated with high accuracy. In addition, dissolution of the sample was performed in Experiment No. Rather than just immersing as in Nos. 13 and 14, Experiment No. It can be seen that the constant current electrolysis method as in 15 to 17 has a faster matrix dissolution rate and can be efficiently extracted and separated.
[0036]
In contrast, no. Since 18-23 did not satisfy the requirements recommended in the present invention, the extraction and separation were not performed well or the quantitative results were not preferable. That is, no. No. 18 has an extremely small ammonium acetate concentration in the extraction / separation solution, so that the amount of extraction residue is extremely small, and the extracted crystal / precipitate amount has a large error from the above-mentioned calculation reference value. No. In No. 19, ammonium acetate was not completely dissolved because the added ammonium acetate exceeded the saturated concentration with respect to methanol. Since it was clear that such undissolved ammonium acetate remained as a residue together with crystals and precipitates, a large error was caused in the analysis value, and thus no quantification was performed.
[0037]
No. No. 20, because the pH of the extraction / separation liquid is outside the range that is preferred in the present invention, the dissolution rate of the Cu matrix is extremely reduced, and the amount of residue necessary for the analysis of crystals and precipitates can be obtained. could not. No. In No. 21, since the pH of the extraction / separation solution exceeded the range preferred in the present invention, the solid solution Fe in the sample was precipitated as a hydroxide, which adversely affected the quantitative accuracy.
[0038]
No. In No. 22, the current density during constant current electrolysis is extremely small below the range preferred in the present invention, so that the dissolution rate of the Cu parent phase becomes slow, and the amount of residue necessary for the analysis of crystals and precipitates can be obtained. could not. No. In No. 23, since the current density during constant current electrolysis exceeds the range that is preferable in the present invention, a copper-containing compound was deposited on the electrode surface, resulting in adverse effects on the quantitative accuracy.
[0039]
【The invention's effect】
If the method of the present invention is applied to extraction / separation of crystals / precipitates in a copper alloy, the crystals / precipitates in the copper alloy can be efficiently extracted without loss. Therefore, by grasping the shape, chemical composition, mass, etc. of crystals and precipitates in the copper alloy obtained by this method using qualitative and quantitative analysis methods, the quality of crystals and precipitates of copper alloy products can be improved to the end user. It can be used as a useful evaluation tool for crystals and precipitates during product development.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003084940A JP4356869B2 (en) | 2002-03-27 | 2003-03-26 | Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088601 | 2002-03-27 | ||
JP2003084940A JP4356869B2 (en) | 2002-03-27 | 2003-03-26 | Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004004009A JP2004004009A (en) | 2004-01-08 |
JP4356869B2 true JP4356869B2 (en) | 2009-11-04 |
Family
ID=30446121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003084940A Expired - Lifetime JP4356869B2 (en) | 2002-03-27 | 2003-03-26 | Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4356869B2 (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716187A (en) * | 1980-06-20 | 1982-01-27 | Furukawa Electric Co Ltd:The | Electrolytic refinery of copper |
JPS61295390A (en) * | 1985-06-24 | 1986-12-26 | Dowa Mining Co Ltd | Method for purifying copper electrolytic solution |
JPS6350487A (en) * | 1986-08-20 | 1988-03-03 | Res Dev Corp Of Japan | Chemical etchant for copper |
US5030427A (en) * | 1986-12-04 | 1991-07-09 | Monsanto Company | Gallium purification |
IT1213401B (en) * | 1986-12-11 | 1989-12-20 | Enichem Anic Spa | PURIFICATION PROCESS OF THE DIAMIDE OF OXALIC ACID. |
JP2732623B2 (en) * | 1988-11-30 | 1998-03-30 | 旭電化工業株式会社 | Etching method |
JP2765740B2 (en) * | 1990-01-10 | 1998-06-18 | 日立粉末冶金株式会社 | Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron |
AU668358B2 (en) * | 1991-08-14 | 1996-05-02 | Henkel Corporation | Copper recovery process |
JPH05295567A (en) * | 1992-04-15 | 1993-11-09 | Elochem Aetztechnik Gmbh | Corrosive solution |
JP3387529B2 (en) * | 1992-10-06 | 2003-03-17 | 朝日化学工業株式会社 | Chemical solution of copper and copper alloy |
JPH07224334A (en) * | 1993-12-16 | 1995-08-22 | Sangyo Souzou Kenkyusho | Separating and recovering method of copper |
JP3479677B2 (en) * | 1999-03-08 | 2003-12-15 | 宮崎大学長 | Method for selectively recovering copper ions from alkaline solution |
JP3912927B2 (en) * | 1999-05-10 | 2007-05-09 | 花王株式会社 | Polishing liquid composition |
JP2001115216A (en) * | 1999-10-14 | 2001-04-24 | Univ Miyazaki | Selective extractant for copper, silver and palladium and method for selective extraction and recovery of copper, silver and palladium using the same |
JP2001144055A (en) * | 1999-11-11 | 2001-05-25 | Hitachi Chem Co Ltd | Method of polishing substrate having metallic laminated film |
US6425850B1 (en) * | 2000-04-20 | 2002-07-30 | General Electric Company | Method for determining eta phase copper |
JP2002121626A (en) * | 2000-10-18 | 2002-04-26 | National Institute Of Advanced Industrial & Technology | Method for recovering valuable metal from plating sludge |
-
2003
- 2003-03-26 JP JP2003084940A patent/JP4356869B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004004009A (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3418711B1 (en) | Apparatus for electrolytic etching and dissolution and method for extracting metal compound particles | |
US4261738A (en) | Process for recovering precious metals from bimetallic material | |
EP3418712B1 (en) | Method for extracting metal compound particles, method for analyzing metal compound particles, and the use of the electrolyte solution for extracting metal compound particles present in a metal material | |
AU2017281847B2 (en) | Methods, materials and techniques for precious metal recovery | |
JP6919775B1 (en) | Method for extracting precipitates and / or inclusions, method for quantitative analysis of precipitates and / or inclusions, method for preparing electrolytic solution, and replica sample. | |
JP4356869B2 (en) | Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor | |
JP4321231B2 (en) | Method for removing chloride ions in non-ferrous metal sulfate solutions | |
JP7020447B2 (en) | A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample. | |
JP6969222B2 (en) | Cu-added steel sheet | |
JP7235593B2 (en) | Method for preparing sample for quantitative determination and method for producing silver chloride | |
JP3938909B2 (en) | Method for selectively recovering platinum and palladium from a sample containing platinum and palladium | |
JP7010411B2 (en) | A method for extracting precipitates and / or inclusions, a method for quantitative analysis of precipitates and / or inclusions, and an electrolytic solution. | |
JP2019135318A (en) | Manufacturing method of gold dust | |
JP7425419B1 (en) | Removal method for removing organic impurities from organic solvents containing impurities | |
JP7442891B1 (en) | How to dispose of lithium-ion battery waste | |
RU2742763C1 (en) | Silver-containing raw material processing method | |
JP5218742B2 (en) | Method for removing metal impurities from trivalent chromium plating bath | |
JP4399567B2 (en) | Liquid purification method of wet zinc smelting | |
JP2010008090A (en) | Analysis method of cao-containing inclusion in steel | |
JPS6354800B2 (en) | ||
EP0019678B1 (en) | Process for the treatment of rinse water of metal pieces having undergone a pickling by a strong acid | |
JP2023172587A (en) | Method for obtaining chlorine leachate from platinum group element-containing solution | |
JP5461055B2 (en) | Method for recovering and analyzing gold-containing plating layer | |
CN115867694A (en) | Gold potassium cyanide crystal and gold potassium cyanide solution | |
JPH06241963A (en) | Preparation of extracted replica film of aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040811 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090730 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4356869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |