JP4356182B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4356182B2
JP4356182B2 JP2000084102A JP2000084102A JP4356182B2 JP 4356182 B2 JP4356182 B2 JP 4356182B2 JP 2000084102 A JP2000084102 A JP 2000084102A JP 2000084102 A JP2000084102 A JP 2000084102A JP 4356182 B2 JP4356182 B2 JP 4356182B2
Authority
JP
Japan
Prior art keywords
air
air conditioning
passage
room
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000084102A
Other languages
Japanese (ja)
Other versions
JP2001263731A (en
Inventor
裕司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000084102A priority Critical patent/JP4356182B2/en
Publication of JP2001263731A publication Critical patent/JP2001263731A/en
Application granted granted Critical
Publication of JP4356182B2 publication Critical patent/JP4356182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸着部材に水分を吸着させて除湿を行うようにした空調システムに関する。
【0002】
【従来の技術】
従来、この種の空調システムとしては、図3に示すものがある。この空調システムは、図示しない圧縮機と膨張機構とを有する圧縮機ユニット1と、蒸発器2と、凝縮器3とからなる冷凍機5を備えている。また、この空調システムは、シリカゲル、ゼオライト、アルミナ等の吸着剤を成形してなる円板状の吸着ロータ7と、顕熱を回収する回収熱交換器8を備える。さらに、この空調システムは、部屋10からの室内空気RAを、吸着ロータ7、回収熱交換器8、蒸発器2の順に通過させて、調和空気CAにして部屋10に戻す空調通路11を備えると共に、外気OAを、回収熱交換器8、凝縮器3、吸着ロータ7の順に通過させて、排気EAとして外部に放出する再生通路12を備えている。上記吸着ロータ7の各部は、回転により、空調通路11と再生通路12とに順次面する。
【0003】
そして、上記空調通路11に流入した室内空気RAは、まず、吸着ロータ7によって、水分が吸着され、かつ、吸着熱により加熱されて、加熱除湿空気となる。この加熱除湿空気は、回収熱交換器8によって、再生通路12を流れる空気と熱交換されて冷却され、さらに、蒸発器2によって、冷却されて、調和空気となって部屋10に戻される。
【0004】
一方、外気OAは、再生通路12に流入して、回収熱交換器8によって予熱され、さらに、凝縮器3によって加熱されて、加熱空気となる。この再生通路12の加熱空気は、空調通路11において水分を吸着した吸着ロータ7の部分から水分を奪って、吸着ロータ7を再生して、水分を含んだ排気EAとなって外部に排出される。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の空調システムでは、1つの空調通路11によって、室内空気RAを循環させて、除湿冷却された調和空気CAを室内に供給しているだけであるから、部屋10の換気ができないという問題があった。
【0006】
また、上記空調システムでは、1つの空調通路11によって、調和空気CAとすべき室内空気RAの全てを、吸着ロータ7と蒸発器2との両方を経由させて除湿しているので、圧力損失が大きく、空調通路11に空気を流通させる図示しないファンの負荷が大きくなるという問題があった。
【0007】
また、上記空調システムでは、室内空気RAから吸着ロータ7と蒸発器2との両方で水分を奪うようにしているが、室内空気RAは比較的湿度が低いから、吸着ロータ7が十分に水分を吸着できないという問題もあった。
【0008】
そこで、この発明の課題は、換気ができ、ファンの負荷が小さく、しかも、吸着ロータに十分に水分を吸着させることができる空調システムを提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明の空調システムは、
外気(OA)を順に吸着部材(7)、冷却手段(2)に経由させて室内に導く第1空調通路(21)と、
室内空気(RA)を上記冷却手段(2)を経由させて、上記吸着部材(7)を経由させないで、室内に導く第2空調通路(22)と
外気(OA)を加熱手段(3)を経由させて吸着部材(7)に導く再生通路(12)と、
上記第1空調通路(21)の吸着部材(7)と冷却手段(2)との間の空気と、上記再生通路(12,32)の加熱手段(3)の上流側の空気との間で熱交換をする回収熱交換器(8)と
を備え、
上記再生通路(12)を通過した空気は、外部に放出されることを特徴としている。
【0010】
上記構成によれば、比較的湿度が高い外気は、第1空調通路を流れて、まず、吸着部材によって除湿され、次に、冷却手段によって除湿され、かつ、冷却されて、室内に導かれる。一方、比較的湿度の低い室内空気は、第2空調通路を流れて、冷却手段のみによって、除湿され、冷却されて、室内に導かれる。
【0011】
このように、この空調システムでは、第1空調通路によって、室内に外気を導くので、室内の換気を行うことができる。
【0012】
また、この空調システムでは、第2空調通路によって、室内からの室内空気は吸着部材を経由しないで、冷却手段のみを経由しているので、室内空気が吸着部材を通過する場合に比べて、圧力損失が少なく、ファンの負荷が小さくなる。
【0013】
また、この空調システムでは、湿度の比較的高い外気のみが吸着部材を通過して、湿度の比較的低い室内空気が吸着部材を通過しないで、冷却手段のみを通過しているので、吸着部材の吸着機能が十分に発揮される。
【0014】
【0015】
また、上記構成によれば、再生通路に流入した外気は加熱手段によって加熱されて加熱空気となり、吸着部材はこの加熱空気によって水分が奪われて再生する。このように、吸着部材の再生に外気を使用しているので、再生のための空気の量を任意に設定できる。もし、室内空気を吸着ロータの再生に使用すると、室内の圧力に影響するので、風量を任意に設定することができない。
【0016】
【0017】
【0018】
【0019】
また、上記構成によれば、第1空調通路においては、吸着部材によって、除湿され、かつ、温度が上昇した空気は、回収熱交換器によって冷却されて、冷却手段に送られる。したがって、冷却手段の負荷が小さくなる。一方、再生通路においては、加熱手段の上流側で空気は、回収熱交換器で予熱される。したがって、加熱手段の負荷が小さくなる。その結果、エネルギーが節約される。
【0020】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0021】
図1に示すように、この空調システムは、図示しない圧縮機と膨張機構とを有する圧縮機ユニット1と、冷却手段の一例としての蒸発器2と、加熱手段の一例としての凝縮器3と、吸着部材の一例としての吸着ロータ7と、回収熱交換器8と、第1空調通路21と、第2空調通路22とを備える。上記第1空調通路21と第2空調通路22以外の構成要素は、図3に示す従来の空調システムの構成要素と同一なので、それらについては同一参照番号を付して、詳しい説明は省略する。
【0022】
上記第1空調通路21は、吸着ロータ7、回収熱交換器8、蒸発器2を順に経由する。図示しないファンによって、外気OAは第1空調通路21に流入して、部屋10に供給されるようになっている。また、上記第2空調通路22は蒸発器2のみを経由する。上記ファンによって、部屋10の室内空気RAは第2空調通路22に流入して部屋10に戻るようになっている。
【0023】
上記第1空調通路21、第2空調通路22、再生通路12、吸着ロータ7および冷凍機5は、一体化して、設置スペースを少なくし、製作および設置のコストを小さくしている。
【0024】
上記構成において、第1空調通路21に流入した比較的湿度の高い外気OAは、まず、吸着ロータ7によって、水分が吸着され、かつ、吸着熱で加熱されて、加熱除湿空気となる。この加熱除湿空気は、顕熱を回収するための回収熱交換器8によって、再生通路12を流れる空気と熱交換されて冷却され、さらに、蒸発器2によって、冷却されて、調和空気CAとなって部屋10に供給される。
【0025】
このように、部屋10に外気OAが調和空気CAとなって供給されるから、部屋10の換気を行うことができる。なお、部屋10の室内空気RAは換気口25から外部へ排出される。
【0026】
また、上記第2空調通路22に流入した比較的湿度の低い室内空気RAは、吸着ロータ7を経由しないで、蒸発器7によって冷却、除湿されて、調和空気CAとなって室内に供給される。なお、上記第2空調通路22は、蒸発器2のすぐ上流側、つまり、回収熱交換器8と蒸発器2との間の第1空調通路21に合流している。
【0027】
このように、この空調システムでは、第2空調通路22によって、部屋10からの室内空気RAが吸着ロータ7を経由しないで、蒸発器2のみを経由するので、室内空気RAが吸着ロータ7を通過する従来の場合に比べて、圧力損失が少なく、ファンの負荷が小さくなる。
【0028】
また、この空調システムでは、第1空調通路21によって、湿度の比較的高い外気OAのみが吸着ロータ7を経由する一方、第2空調通路22によって、湿度の比較的低い室内空気RAが吸着ロータ7を経由しないで、蒸発器2のみを経由するので、吸着ロータ7の吸着機能を十分に発揮させることができる。この実施形態では、第1空調通路21を通る外気OAと第2空調通路22を通る室内空気RAとの風量比は、2対8であるから、もし、比較的湿度の低い室内空気RAを吸着ロータ7に通すと、吸着ロータ7の吸着機能が十分に発揮できないのである。
【0029】
一方、上記再生通路12に流入した外気OAは、回収熱交換器8によって、第1空調通路21の加熱除湿空気と熱交換されて、予熱され、さらに、凝縮器3によって加熱されて、加熱空気となる。この再生通路12の加熱空気は、第1空調通路21において水分を吸着した吸着ロータ7の部分から水分を奪って、吸着ロータ7を再生して、水分を含んだ排気EAとなって外部に排出される。
【0030】
このように、上記再生通路12を流れる加熱された外気OAによって、吸着ロータ7を再生しているので、再生のための空気の量を任意に設定できる。もし、室内空気RAを吸着ロータ7の再生に使用すると、再生用の風量によって部屋10の圧力が変動するので、風量の設定を任意にすることができない。
【0031】
また、上記実施形態では、第1空調通路21において、吸着ロータ7によって、除湿され、かつ、加熱された加熱除湿空気は、回収熱交換器8によって冷却された後、蒸発器2によって冷却するので、蒸発器2の負荷を小さくすることができ、かつ、再生通路12において、凝縮器3の上流側で、外気OAを回収熱交換器8で予熱した後、凝縮器3で加熱するので、凝縮器3の負荷を小さくすることができる。したがって、上記蒸発器2、凝縮器3および圧縮機ユニット1からなる冷凍機5の能力を小さくでき、また、エネルギーのロスをなくすることができる。
【0032】
図2は参考例の空調システムを示し、この空調システムは再生通路32のみが図1に示す空調システムと異なる。したがって、図1の空調システムの構成要素と同一構成要素は同一参照番号をして説明を省略し、再生通路32について主に説明する。
【0033】
上記再生通路32は、室内空気RAを順に回収熱交換器8、凝縮器3、吸着ロータ7に導く。
【0034】
上記再生通路32に流入した比較的湿度の低い室内空気RAは、回収熱交換器8によって予熱された後、凝縮器3によって加熱されて加熱空気となる。この加熱空気によって、吸着ロータ7が再生させられる。
【0035】
このように、外気OAに比べて湿度の低い室内空気RAを加熱した加熱空気によって、吸着ロータ7を再生しているので、吸着ロータ7を効果的に再生することができる。
【0036】
なお、上記蒸発器2と凝縮器3との負荷のバランスをとって、凝縮器3側の圧力が異常に高くならないように、必要に応じて、図示しない補助凝縮器を設けてもよい。
【0037】
上記参考例の空調システムでは、吸着部材として、吸着ロータ7を用いたが、これに代えて、吸湿と再生が十分にできた段階で、第1空調通路に面する部分と再生通路に面する部分を切り換えるバッチ式の吸着部材を用いてもよい。また、加熱手段として凝縮器を用いたが、これに代えて、温水が供給される加熱コイル、電気ヒータ等を用いてもよい。また、冷却手段として蒸発器を用いたが、これに代えて、冷水が供給される冷却コイル等を用いてもよい。
【0038】
【発明の効果】
以上より明らかなように、請求項1の発明の空調システムによれば、比較的湿度が高い外気が、第1空調通路を流れて、まず、吸着部材によって除湿され、次に、冷却手段によって除湿され、かつ、冷却されて、室内に導かれる一方、比較的湿度の低い室内空気が、第2空調通路を流れて、冷却手段のみによって、除湿され、冷却されて、室内に導かれる。
【0039】
したがって、請求項1の空調システムによれば、第1空調通路によって、室内に外気を導くので、室内の換気を行うことができる。
【0040】
また、請求項1の空調システムによれば、第2空調通路によって、室内からの室内空気を吸着部材を経由させないで、冷却手段のみを経由させているので、室内空気を吸着部材を通過させる場合に比べて、圧力損失を少なくでき、したがって、ファンの負荷を小さくすることができる。
【0041】
また、請求項1の空調システムによれば、湿度の比較的高い外気のみを吸着ロータに経由させて、湿度の比較的低い室内空気を吸着部材を経由させないで、冷却手段のみを経由させているので、吸着部材の吸着機能を十分に発揮させることができる。
【0042】
また、請求項の発明の空調システムによれば、吸着部材の再生に外気を使用しているので、再生のための空気の量を任意に設定することができる。
【0043】
【0044】
また、請求項の発明の空調システムによれば、第1空調通路の吸着部材と冷却手段との間の空気と、上記再生通路の加熱手段の上流側の空気との間で、回収熱交換器で熱交換をするので、冷却手段の負荷を小さくでき、かつ、加熱手段の負荷を小さくすることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態の系統図である。
【図2】 参考例の系統図である。
【図3】 従来の空調システムの系統図である。
【符号の説明】
1 圧縮機ユニット
2 蒸発器
3 凝縮器
5 冷凍機
7 吸着ロータ
8 回収熱交換器
12,32 再生通路
21 第1空調通路
22 第2空調通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning system in which moisture is adsorbed by an adsorbing member to perform dehumidification.
[0002]
[Prior art]
Conventionally, this type of air conditioning system is shown in FIG. This air conditioning system includes a compressor unit 1 having a compressor and an expansion mechanism (not shown), an evaporator 2, and a refrigerator 5 including a condenser 3. The air conditioning system also includes a disk-like adsorption rotor 7 formed by molding an adsorbent such as silica gel, zeolite, and alumina, and a recovery heat exchanger 8 that recovers sensible heat. The air conditioning system further includes an air conditioning passage 11 that passes the indoor air RA from the room 10 in the order of the adsorption rotor 7, the recovered heat exchanger 8, and the evaporator 2, and returns the conditioned air CA to the room 10. The regeneration passage 12 is provided to allow the outside air OA to pass through the recovery heat exchanger 8, the condenser 3, and the adsorption rotor 7 in this order and to be discharged outside as exhaust EA. Each part of the adsorption rotor 7 sequentially faces the air conditioning passage 11 and the regeneration passage 12 by rotation.
[0003]
The indoor air RA flowing into the air conditioning passage 11 is first adsorbed by the adsorption rotor 7 and heated by the adsorption heat to become heated dehumidified air. This heated dehumidified air is cooled by the heat exchange with the air flowing through the regeneration passage 12 by the recovery heat exchanger 8, and further cooled by the evaporator 2 to be returned to the room 10 as conditioned air.
[0004]
On the other hand, the outside air OA flows into the regeneration passage 12, is preheated by the recovered heat exchanger 8, and further heated by the condenser 3 to become heated air. The heated air in the regeneration passage 12 removes moisture from the portion of the adsorption rotor 7 that has adsorbed moisture in the air conditioning passage 11, regenerates the adsorption rotor 7, and is exhausted to the outside as exhaust EA containing moisture. .
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional air conditioning system, the room air RA is circulated by the single air conditioning passage 11 and the conditioned air CA that has been dehumidified and cooled is supplied to the room. Therefore, the room 10 cannot be ventilated. There was a problem.
[0006]
Moreover, in the said air conditioning system, since all the indoor air RA which should be made into the conditioned air CA is dehumidified through both the adsorption | suction rotor 7 and the evaporator 2 by the one air conditioning path 11, pressure loss is low. There is a problem that the load of a fan (not shown) for circulating air through the air conditioning passage 11 is large.
[0007]
In the air conditioning system, moisture is taken away from the indoor air RA by both the adsorption rotor 7 and the evaporator 2. However, since the indoor air RA has a relatively low humidity, the adsorption rotor 7 sufficiently absorbs moisture. There was also a problem that it could not be adsorbed.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioning system in which ventilation can be performed, the load on the fan is small, and moisture can be sufficiently adsorbed by the adsorption rotor.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an air conditioning system of the invention of claim 1
A first air-conditioning passageway (21) for guiding outside air (OA) to the room through the adsorbing member (7) and the cooling means (2) in order,
A second air conditioning passage (22) that guides indoor air (RA) into the room through the cooling means (2) and not through the adsorption member (7) ;
A regeneration passage (12) for guiding outside air (OA) to the adsorbing member (7) through the heating means (3);
Between the air between the adsorbing member (7) of the first air conditioning passage (21) and the cooling means (2) and the air upstream of the heating means (3) of the regeneration passage (12, 32). With a recovered heat exchanger (8) for heat exchange
With
The air that has passed through the regeneration passage (12) is released to the outside .
[0010]
According to the above configuration, the outside air having a relatively high humidity flows through the first air conditioning passage, and is first dehumidified by the adsorption member, then dehumidified by the cooling means, cooled, and guided into the room. On the other hand, indoor air with relatively low humidity flows through the second air conditioning passage, is dehumidified and cooled only by the cooling means, and is guided indoors.
[0011]
Thus, in this air conditioning system, since the outside air is guided into the room by the first air conditioning passage, the room can be ventilated.
[0012]
Further, in this air conditioning system, the indoor air from the room does not pass through the adsorbing member but only through the cooling means by the second air conditioning passage, so that the pressure of the room air is higher than that in the case where the indoor air passes through the adsorbing member. Less loss and less fan load.
[0013]
Further, in this air conditioning system, only the outside air having a relatively high humidity passes through the adsorption member, and the indoor air having a relatively low humidity does not pass through the adsorption member and passes only the cooling means. Adsorption function is fully demonstrated.
[0014]
[0015]
According to the above configuration, the outside air that has flowed into the regeneration passage is heated by the heating means to become heated air, and the adsorption member is regenerated by removing moisture from the heated air. Thus, since the outside air is used for regeneration of the adsorption member, the amount of air for regeneration can be arbitrarily set. If room air is used for regeneration of the adsorption rotor, the air pressure cannot be set arbitrarily because it affects the pressure in the room.
[0016]
[0017]
[0018]
[0019]
Moreover, according to the said structure, in the 1st air-conditioning channel | path, the air which was dehumidified by the adsorption | suction member and the temperature rose is cooled by the collection | recovery heat exchanger, and is sent to a cooling means. Therefore, the load on the cooling means is reduced. On the other hand, in the regeneration passage, air is preheated by the recovery heat exchanger on the upstream side of the heating means. Therefore, the load on the heating means is reduced. As a result, energy is saved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0021]
As shown in FIG. 1, this air conditioning system includes a compressor unit 1 having a compressor and an expansion mechanism (not shown), an evaporator 2 as an example of a cooling means, a condenser 3 as an example of a heating means, An adsorption rotor 7 as an example of an adsorption member, a recovery heat exchanger 8, a first air conditioning passage 21, and a second air conditioning passage 22 are provided. Since the components other than the first air conditioning passage 21 and the second air conditioning passage 22 are the same as the components of the conventional air conditioning system shown in FIG. 3, the same reference numerals are assigned to them and detailed description thereof is omitted.
[0022]
The first air conditioning passage 21 passes through the adsorption rotor 7, the recovered heat exchanger 8, and the evaporator 2 in this order. The outside air OA flows into the first air conditioning passage 21 and is supplied to the room 10 by a fan (not shown). Further, the second air conditioning passage 22 passes only through the evaporator 2. By the fan, the room air RA in the room 10 flows into the second air conditioning passage 22 and returns to the room 10.
[0023]
The first air conditioning passage 21, the second air conditioning passage 22, the regeneration passage 12, the adsorption rotor 7, and the refrigerator 5 are integrated to reduce the installation space and the manufacturing and installation costs.
[0024]
In the above configuration, the relatively high humidity outside air OA that has flowed into the first air conditioning passage 21 is first adsorbed by the adsorption rotor 7 and heated by adsorption heat to become heated dehumidified air. This heated dehumidified air is cooled by heat exchange with the air flowing through the regeneration passage 12 by the recovery heat exchanger 8 for recovering sensible heat, and further cooled by the evaporator 2 to become conditioned air CA. And supplied to the room 10.
[0025]
Thus, since the outside air OA is supplied to the room 10 as the conditioned air CA, the room 10 can be ventilated. The room air RA in the room 10 is discharged to the outside from the ventilation port 25.
[0026]
The indoor air RA having a relatively low humidity that has flowed into the second air conditioning passage 22 is cooled and dehumidified by the evaporator 7 without passing through the adsorption rotor 7 and supplied to the room as conditioned air CA. . The second air conditioning passage 22 joins the first air conditioning passage 21 immediately upstream of the evaporator 2, that is, between the recovered heat exchanger 8 and the evaporator 2.
[0027]
Thus, in this air conditioning system, the room air RA from the room 10 does not pass through the adsorption rotor 7 but only through the evaporator 2 by the second air conditioning passage 22, so that the room air RA passes through the adsorption rotor 7. Compared to the conventional case, the pressure loss is small and the fan load is small.
[0028]
Further, in this air conditioning system, only the outside air OA having a relatively high humidity passes through the adsorption rotor 7 by the first air conditioning passage 21, while the indoor air RA having a relatively low humidity is absorbed by the adsorption rotor 7 by the second air conditioning passage 22. Therefore, the adsorption function of the adsorption rotor 7 can be fully exhibited. In this embodiment, since the air volume ratio between the outside air OA passing through the first air conditioning passage 21 and the room air RA passing through the second air conditioning passage 22 is 2 to 8, the indoor air RA having a relatively low humidity is adsorbed. If it passes through the rotor 7, the adsorption function of the adsorption rotor 7 cannot be fully exhibited.
[0029]
On the other hand, the outside air OA flowing into the regeneration passage 12 is heat-exchanged with the heated dehumidified air in the first air conditioning passage 21 by the recovered heat exchanger 8, preheated, and further heated by the condenser 3 to be heated air. It becomes. The heated air in the regeneration passage 12 removes moisture from the portion of the adsorption rotor 7 that has adsorbed moisture in the first air conditioning passage 21, regenerates the adsorption rotor 7, and is exhausted to the outside as exhaust EA containing moisture. Is done.
[0030]
Thus, since the adsorption rotor 7 is regenerated by the heated outside air OA flowing through the regeneration passage 12, the amount of air for regeneration can be arbitrarily set. If the room air RA is used for the regeneration of the adsorption rotor 7, the pressure of the room 10 varies depending on the amount of air for regeneration, so the air amount cannot be set arbitrarily.
[0031]
In the above embodiment, the dehumidified and heated heated dehumidified air in the first air conditioning passage 21 is cooled by the recovery heat exchanger 8 and then cooled by the evaporator 2. In addition, the load on the evaporator 2 can be reduced, and in the regeneration passage 12, the outdoor air OA is preheated by the recovery heat exchanger 8 and then heated by the condenser 3 on the upstream side of the condenser 3. The load on the vessel 3 can be reduced. Therefore, the capacity of the refrigerator 5 composed of the evaporator 2, the condenser 3, and the compressor unit 1 can be reduced, and energy loss can be eliminated.
[0032]
FIG. 2 shows an air conditioning system of a reference example , which is different from the air conditioning system shown in FIG. Therefore, the same components as those of the air conditioning system of FIG. 1 are denoted by the same reference numerals and description thereof is omitted, and the regeneration passage 32 will be mainly described.
[0033]
The regeneration passage 32 guides the indoor air RA to the recovery heat exchanger 8, the condenser 3, and the adsorption rotor 7 in order.
[0034]
The indoor air RA having a relatively low humidity flowing into the regeneration passage 32 is preheated by the recovery heat exchanger 8 and then heated by the condenser 3 to become heated air. The adsorption rotor 7 is regenerated by the heated air.
[0035]
Thus, since the adsorption | suction rotor 7 is reproduced | regenerated with the heated air which heated the indoor air RA with low humidity compared with external air OA, the adsorption | suction rotor 7 can be reproduced | regenerated effectively.
[0036]
In addition, you may provide the auxiliary condenser which is not shown in figure as needed so that the load of the said evaporator 2 and the condenser 3 may be balanced and the pressure by the side of the condenser 3 may not become high abnormally.
[0037]
In the air conditioning system of the above reference example , the adsorption rotor 7 is used as the adsorption member, but instead, the portion facing the first air conditioning passage and the regeneration passage are in a stage where moisture absorption and regeneration are sufficiently performed. You may use the batch-type adsorption | suction member which switches a part. Moreover, although the condenser was used as a heating means, it may replace with this and may use the heating coil, electric heater, etc. to which warm water is supplied. Further, although the evaporator is used as the cooling means, a cooling coil or the like to which cold water is supplied may be used instead.
[0038]
【The invention's effect】
As is clear from the above, according to the air conditioning system of the first aspect of the present invention, outside air having a relatively high humidity flows through the first air conditioning passage and is first dehumidified by the adsorbing member and then dehumidified by the cooling means. The indoor air having a relatively low humidity flows through the second air conditioning passage, is dehumidified only by the cooling means, is cooled, and is led into the room.
[0039]
Therefore, according to the air conditioning system of the first aspect, since the outside air is guided into the room by the first air conditioning passage, the room can be ventilated.
[0040]
Further, according to the air conditioning system of the first aspect, the indoor air from the room is not passed through the adsorption member by the second air conditioning passage, and only the cooling means is passed, so that the room air is allowed to pass through the adsorption member. In comparison with the above, the pressure loss can be reduced, and therefore the load on the fan can be reduced.
[0041]
According to the air conditioning system of the first aspect, only the outside air having a relatively high humidity is passed through the adsorption rotor, and the room air having a relatively low humidity is not passed through the adsorption member but only through the cooling means. Therefore, the adsorption function of the adsorption member can be sufficiently exhibited.
[0042]
Further , according to the air conditioning system of the first aspect of the invention, since the outside air is used for the regeneration of the adsorption member, the amount of air for regeneration can be arbitrarily set.
[0043]
[0044]
Further, according to the air conditioning system of the invention of claim 1, the air between the suction member and the cooling means of the first air conditioning passage, between the upstream side of the air heating means of the regeneration passage, withdrawing heat exchanger Since heat is exchanged in the vessel, the load on the cooling means can be reduced, and the load on the heating means can be reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of the present invention.
FIG. 2 is a system diagram of a reference example .
FIG. 3 is a system diagram of a conventional air conditioning system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor unit 2 Evaporator 3 Condenser 5 Refrigerator 7 Adsorption rotor 8 Recovery | restoration heat exchanger 12, 32 Reproduction | regeneration channel | path 21 1st air conditioning path 22 2nd air conditioning path

Claims (1)

外気(OA)を順に吸着部材(7)、冷却手段(2)に経由させて室内に導く第1空調通路(21)と、
室内空気(RA)を上記冷却手段(2)を経由させて、上記吸着部材(7)を経由させないで、室内に導く第2空調通路(22)と
外気(OA)を加熱手段(3)を経由させて吸着部材(7)に導く再生通路(12)と、
上記第1空調通路(21)の吸着部材(7)と冷却手段(2)との間の空気と、上記再生通路(12,32)の加熱手段(3)の上流側の空気との間で熱交換をする回収熱交換器(8)と
を備え、
上記再生通路(12)を通過した空気は、外部に放出されることを特徴とする空調システム。
A first air-conditioning passageway (21) for guiding outside air (OA) to the room through the adsorbing member (7) and the cooling means (2) in order,
A second air conditioning passage (22) that guides indoor air (RA) into the room through the cooling means (2) and not through the adsorption member (7) ;
A regeneration passage (12) for guiding outside air (OA) to the adsorbing member (7) through the heating means (3);
Between the air between the adsorbing member (7) of the first air conditioning passage (21) and the cooling means (2) and the air upstream of the heating means (3) of the regeneration passage (12, 32). With a recovered heat exchanger (8) for heat exchange
With
The air conditioning system characterized in that the air that has passed through the regeneration passage (12) is discharged to the outside .
JP2000084102A 2000-03-24 2000-03-24 Air conditioning system Expired - Fee Related JP4356182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084102A JP4356182B2 (en) 2000-03-24 2000-03-24 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084102A JP4356182B2 (en) 2000-03-24 2000-03-24 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2001263731A JP2001263731A (en) 2001-09-26
JP4356182B2 true JP4356182B2 (en) 2009-11-04

Family

ID=18600630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084102A Expired - Fee Related JP4356182B2 (en) 2000-03-24 2000-03-24 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4356182B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164721A (en) * 2001-11-29 2003-06-10 Daikin Ind Ltd Humidifier unit of air conditioner
JP4892271B2 (en) * 2006-04-13 2012-03-07 新日本空調株式会社 Air conditioning system
JP5311734B2 (en) * 2006-11-01 2013-10-09 三洋電機株式会社 Air conditioner
JP2008190800A (en) * 2007-02-06 2008-08-21 Fuji Electric Retail Systems Co Ltd Dehumidifying air-conditioning device

Also Published As

Publication number Publication date
JP2001263731A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US6199394B1 (en) Air conditioning system
US7930896B2 (en) Air conditioning system
JP3680149B2 (en) Air conditioner
US20230022397A1 (en) Air quality adjustment system
AU2006253462B2 (en) Air conditioning system
JPH11132506A (en) Dehumidification air conditioner and operation thereof
JP2009275955A (en) Desiccant air-conditioning device
WO2005036063A1 (en) Air conditioner
WO2006028167A1 (en) Humidity controller
JP4273555B2 (en) Air conditioning system
KR20200092221A (en) An air conditioning system
JP2001263764A (en) Humidity regulating system
JP3711834B2 (en) Humidity control system
JP2968224B2 (en) Air conditioners and air conditioning systems
JP4356182B2 (en) Air conditioning system
JP4300631B2 (en) Air conditioner
JPH10205819A (en) Air conditioner and air conditioning system
JP4599670B2 (en) Humidity control device
JP3435531B2 (en) Air conditioner using dehumidifying cooler
JP3933264B2 (en) Dehumidification air conditioning system
JP2002018228A (en) Humidity controlling apparatus
JP2002317964A (en) Air conditioner
JP2001263732A (en) Humidity control system
JP2002349905A (en) Desiccant air-conditioning device corresponding to heating type
JP4641860B2 (en) Air conditioner using solar wall unit and desiccant unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees