JP4355687B2 - Operation method of solar system - Google Patents

Operation method of solar system Download PDF

Info

Publication number
JP4355687B2
JP4355687B2 JP2005198865A JP2005198865A JP4355687B2 JP 4355687 B2 JP4355687 B2 JP 4355687B2 JP 2005198865 A JP2005198865 A JP 2005198865A JP 2005198865 A JP2005198865 A JP 2005198865A JP 4355687 B2 JP4355687 B2 JP 4355687B2
Authority
JP
Japan
Prior art keywords
storage battery
capacity
voltage
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005198865A
Other languages
Japanese (ja)
Other versions
JP2007020304A (en
Inventor
努 新井
俊昭 籔本
隆之 川俣
正功 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005198865A priority Critical patent/JP4355687B2/en
Publication of JP2007020304A publication Critical patent/JP2007020304A/en
Application granted granted Critical
Publication of JP4355687B2 publication Critical patent/JP4355687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、ソーラーシステム例えばソーラー独立電源基地局の運転方法及びその運転装置に関する。   The present invention relates to a method for operating a solar system, for example, a solar independent power supply base station, and a driving apparatus therefor.

周知の如く、太陽電池と、この太陽電池に電気的に接続された変換器と、この変換器に電気的に接続された負荷と、前記変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムが知られている。   As is well known, a solar cell, a converter electrically connected to the solar cell, a load electrically connected to the converter, a storage battery electrically connected to the converter, and the storage battery A solar system is known that includes an external power generation device that is electrically connected to the power source.

こうしたソーラーシステムにおいて、ソーラー独立電源基地の蓄電池仕様を決定する場合、従来、過去のデータからの不日照発生日数を平均負荷電流から、不日照発生によってシステムダウンが起こらない程度の、安全率を比較的大きく見積もった蓄電池容量を決定していた。   In such a solar system, when determining the storage battery specifications of the solar independent power supply base, conventionally, comparing the safety factor to the extent that the system failure does not occur due to the occurrence of non-sunshine from the average load current from the past days The storage battery capacity that was largely estimated was determined.

しかしながら、この場合、過去の日照データの不日照期間をすべて網羅するような設計を行うため、最大スペックになってしまい、過度の容量を有する電池を設置していた。また、それでも設計時の予想を超えた不日照日が続いた場合には、システムダウンを起こしてしまう。   However, in this case, since the design is made so as to cover all the non-sunshine periods of the past sunshine data, the maximum specification is reached, and a battery having an excessive capacity is installed. Also, if the sun continues beyond the design expectations, the system will go down.

そのため、蓄電池の状態に関係なく定期的に管理者が現地へ赴き、定期的に設置された発電装置を手動で稼動させ、蓄電池への補充電・充電を行っていた。   Therefore, regardless of the state of the storage battery, the administrator periodically went to the site to manually operate the power generator installed regularly to perform supplementary charging / charging of the storage battery.

ソーラー独立電源基地の蓄電池仕様を決定する場合、過去のデータからの不日照発生日数と平均負荷電流から、不日照発生によってシステムダウンが起こらない程度の、安全率を比較的大きく見積もった蓄電池容量を決定する。この場合過去データの不日照期間をすべて網羅するような設計を行うため最大スペックになってしまう恐れがある。 When determining the storage battery specifications of the solar independent power supply base, the storage battery capacity with a relatively large estimated safety factor that does not cause system down due to the occurrence of non-sunshine from the past data and the average load current is calculated. decide. In this case, there is a risk that the maximum specification will be reached because the design covers all the unlit periods of past data.

また、設計時の予想を超えた不日照日が続いた場合にはシステムダウンを起こす為、過度の容量を有する電池を設置していた。そのため、蓄電池の状態に関係なく定期的に、管理者が現地へ赴き、定期的に設置された発電装置を手動で稼動させ、蓄電池への補充電・充電を行っていた。   In addition, a battery having an excessive capacity has been installed in order to cause the system to be down when the non-sunshine daylight exceeding the expectation at the time of design continues. For this reason, regardless of the state of the storage battery, the administrator regularly went to the site, manually operating the power generator installed regularly, and performing supplementary charging / charging of the storage battery.

特許文献1には、本発明のソーラーシステムと類似した点、すなわち蓄電池の充電状態を常時監視する点について記載されているが、これは蓄電池の状況に応じて負荷の運転方式を変化させるものであり、本発明のように蓄電池を外部発電装置により自動的に充電するものとは明らかに異なる。   Patent Document 1 describes a point similar to the solar system of the present invention, that is, a point that always monitors the state of charge of the storage battery, but this changes the driving method of the load according to the state of the storage battery. There is clearly a difference from the case where the storage battery is automatically charged by the external power generator as in the present invention.

特許文献2には、満充電時の蓄電池の開電圧が容量と密接な相関関係にあることを有効に利用して、蓄電池の性能劣化の状況を的確把握する点について記載されているものの、本発明のように蓄電池を外部発電装置により自動的に充電する点については何等記載がない。
特開平9−35757号公報 特開平8−228441号公報
Patent Document 2 describes the point of accurately grasping the state of performance deterioration of a storage battery by effectively using the fact that the open voltage of the storage battery at full charge has a close correlation with the capacity. There is no description about the point that the storage battery is automatically charged by the external power generator as in the invention.
JP-A-9-35757 JP-A-8-228441

過去データの不日照期間をすべて網羅するような蓄電池容量の過剰設計。   Excessive design of storage battery capacity to cover all the periods of non-sunshine in past data.

管理者が現地へ赴いての充電作業。仕様以上の不日照期間でのシステムダウン防止。
この発明は、こうした事情を考慮してなされたもので、過去の日照データの不日照期間を全て網羅するような蓄電池容量の過剰設計を回避するとともに、管理者が現地に赴いて充電作業することを回避し、さらには仕様以上の不日照期間でのシステムダウンを回避し得るソーラーシステムの運転方法及びその運転装置を提供することを目的とする。
Charging work when the administrator goes to the site. Prevents system downtime during non-sunshine periods beyond specifications.
The present invention has been made in consideration of such circumstances, and avoids excessive design of the storage battery capacity to cover all the non-sunshine periods of the past sunshine data, and the administrator visits the site to perform charging work. It is an object of the present invention to provide a solar system operating method and an operating device thereof capable of avoiding the above-mentioned problem and further avoiding the system down in the non-sunshine period exceeding the specification.

前記目的を達成するため、請求項1に対応する発明は、太陽電池と、この太陽電池に電気的に接続された電力変換器と、この電力変換器に電気的に接続された負荷と、前記電力変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムの運転方法において、
前記蓄電池電圧が充電設定電圧に達し、かつ該蓄電池の充電電流が連続下降傾向に入った状態になった時の蓄電池の残容量を定格容量に基づき得られ蓄電池残容量基準とし、この蓄電池残容量基準と前記蓄電池に流れる入出力電流と時間から求められる電流積算値により蓄電池推定稼動可能日数を求め、この求めた蓄電池推定稼動可能日数が所定の基準日数になったとき、前記外部発電装置により前記蓄電池の充電を行うことを特徴とするソーラーシステムの運転方法である。
In order to achieve the object, an invention corresponding to claim 1 includes a solar cell, a power converter electrically connected to the solar cell, a load electrically connected to the power converter, In a method for operating a solar system including a storage battery electrically connected to a power converter and an external power generation device electrically connected to the storage battery,
The remaining capacity of the storage battery when the storage battery voltage reaches the charge setting voltage and the charging current of the storage battery enters a state of continuously decreasing is used as a storage battery remaining capacity reference obtained based on the rated capacity, and the storage battery The external power generation device is calculated when the storage battery estimated operational days are obtained from the remaining capacity reference, the current integrated value obtained from the input / output current flowing through the storage battery and the time, and when the obtained storage battery estimated operational days reach a predetermined reference number of days. The operation method of the solar system, wherein the storage battery is charged by the above.

前記目的を達成するため、請求項2に対応する発明は、請求項1記載の前記蓄電池推定
稼動可能日数Dを、(3)式により求めることを特徴とするソーラーシステムの運転方法である。
D=(C80%−ΣkVT−CX%)/24I …(3)式
ただし、C80%蓄電池残容量基準で、前記蓄電池の定格容量値の80%蓄電池容量、kは変換係数、Vは蓄電池測定サンプリング時電圧(蓄電池の入出力電流を電圧変換して測定した電圧)、Tは前記蓄電池の電圧測定サンプリング時間、CX%は残しておきたい最少蓄電池容量、Iは前記負荷に流れる平均負荷電流である。
To achieve the aforementioned object, the present invention corresponding to claim 2, the battery estimated workable days D of claim 1, wherein a (3) Characteristics and to Luso over error system operation method of the determination of the expression.
D = (C80 % −ΣkVT− CX% ) / 24I (3) where C80 % is based on the remaining battery capacity, 80% of the rated capacity of the battery, k is a conversion coefficient, V Is the storage battery measurement sampling voltage (voltage measured by converting the input / output current of the storage battery), T is the voltage measurement sampling time of the storage battery, C X% is the minimum storage battery capacity to be kept, and I flows to the load Average load current.

D=(C80%−ΣkVT−CX%)/24I …(4)式 D = (C 80% −ΣkVT−C X% ) / 24I (4)

この発明によれば、電池容量が減少しても自動的に発電装置で充電するため容量が回復できるため、過去データの不日照期間をすべて網羅するような蓄電池容量の過剰設計の必要がなく、蓄電池電圧低下によるシステムダウンが回避できる。また、管理者が現地へ赴いての充電作業が無くなる。さらに、長期的な無人化が可能である。   According to this invention, even if the battery capacity decreases, the capacity can be recovered automatically by charging with the power generation device, so there is no need for excessive design of the storage battery capacity to cover all the non-sunshine periods of past data, System down due to battery voltage drop can be avoided. In addition, there is no charge work for the manager to go to the site. Furthermore, long-term unmanned operation is possible.

以下、この発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明に係るソーラーシステムSS及び運転装置DRについて図1を参照して説明する。
図中の符番1は、例えば建屋の屋上に設置される太陽電池(PV:Photovoltaic)を示す。この太陽電池1には、この出力電圧を例えば一定電圧に昇圧するための電力変換器例えばDC/DCコンバータ2を介して送受信装置や電灯等の負荷3が電気的に接続されている。また、コンバータ2には、太陽電池1からの電力を充電したり、負荷3への電力の供給を行う蓄電池4が接続されている。さらに、蓄電池4には、外部発電装置8が電気的に接続され、外部発電装置8により蓄電池4の容量が低下したとき充電可能に構成されている。以上述べた構成は、ソーラーシステムSSである。
First, the solar system SS and the driving device DR according to the present invention will be described with reference to FIG.
Reference numeral 1 in the figure indicates, for example, a solar cell (PV: Photovoltaic) installed on the roof of a building. The solar cell 1 is electrically connected to a load 3 such as a transmission / reception device or an electric lamp via a power converter such as a DC / DC converter 2 for boosting the output voltage to a constant voltage, for example. The converter 2 is connected to a storage battery 4 that charges power from the solar battery 1 and supplies power to the load 3. Furthermore, an external power generation device 8 is electrically connected to the storage battery 4 and is configured to be rechargeable when the capacity of the storage battery 4 is reduced by the external power generation device 8. The configuration described above is the solar system SS.

運転装置DRは、測定手段を構成する測定部5と、演算手段を構成する処理部6と、判断手段を構成する判断部7とを備えている。   The driving device DR includes a measurement unit 5 that constitutes a measurement unit, a processing unit 6 that constitutes a calculation unit, and a determination unit 7 that constitutes a determination unit.

測定部5は、蓄電池4の電圧と蓄電池の入出力電流を測定する。処理部6は、蓄電池4の定格容量値の80%蓄電池容量をC80%、変換係数をk、蓄電池測定サンプリング時電圧(蓄電池の入出力電流を電圧変換して測定した電圧)をV、蓄電池4の電圧測定サンプリング時間をT、残しておきたい最少蓄電池容量をCX%、負荷3に流れる平均負荷電流をIとしたとき、(5)式により蓄電池推定稼動可能日数Dを求める。
なお、測定電圧が充電設定電圧に達し、かつ該蓄電池の充電電流が連続下降傾向に入った状態を測定したときには、(5)式における蓄電池の残容量を演算する部分「C 80% −ΣkVT」のΣkVT(積算電流値)を0にリセットする。
The measuring unit 5 measures the voltage of the storage battery 4 and the input / output current of the storage battery . The processing unit 6 has an 80% storage battery capacity C 80% of the rated capacity value of the storage battery 4, a conversion coefficient k, a storage battery measurement sampling voltage (voltage measured by converting the input / output current of the storage battery), and the storage battery When the voltage measurement sampling time of 4 is T, the minimum storage battery capacity to be left is C X% , and the average load current flowing through the load 3 is I, the storage battery estimated operational days D are obtained by the equation ( 5).
When the measured voltage reaches the charge setting voltage and the state in which the charging current of the storage battery is in a continuous downward trend is measured, the part “C 80% −ΣkVT” for calculating the remaining capacity of the storage battery in equation (5) ΣkVT (integrated current value) is reset to zero.

D=(C80%−ΣkVT−CX%)/24I …(5)式
判断部7は、処理部6により求めた蓄電池推定稼動可能日数Dに基づき、外部発電装置8により蓄電池4の充電を行うかどうかの判断を行う。
D = (C 80% −ΣkVT−C X% ) / 24I (5) Formula The determination unit 7 charges the storage battery 4 by the external power generation device 8 based on the estimated number D of operational days for the storage battery obtained by the processing unit 6. Judge whether to do.

こうしたシステムにおいて、日照時は太陽電池1からの電力が電力変換器2を介して負荷3に供給されたり、蓄電池4の充電が行われる。一方、不日照時が続いたり或いは夜中には蓄電池4から負荷3へ電力が供給され、従って蓄電池の出力電圧が下がる。従って、測定部5で常時蓄電池4の電圧の測定を行い、処理部6にて蓄電池推定稼動可能日数Dを求める。そして、判断部7により、予め設定した設定値とを比較して外部発電装置8を運転するか否かを判断する。運転すると判断した場合は、外部発電装置8を作動させて蓄電池4に電力を供給して蓄電池4の不足分を補う。   In such a system, the electric power from the solar cell 1 is supplied to the load 3 via the power converter 2 or the storage battery 4 is charged during sunshine. On the other hand, electric power is supplied from the storage battery 4 to the load 3 during non-sunshine hours or at night, and thus the output voltage of the storage battery decreases. Therefore, the measurement unit 5 always measures the voltage of the storage battery 4, and the processing unit 6 obtains the estimated number D of operational days for the storage battery. Then, the determination unit 7 determines whether or not to operate the external power generator 8 by comparing with a preset set value. When it is determined that the vehicle is in operation, the external power generator 8 is operated to supply power to the storage battery 4 to make up for the shortage of the storage battery 4.

なお、前述したソーラーシステムSSは一例を示すもので、その構成は図1のものに限定されることはない。前述した外部発電装置8の起動時の電力は、例えば蓄電池4により供給される。   In addition, the solar system SS mentioned above shows an example, The structure is not limited to the thing of FIG. The electric power at the time of starting the external power generation device 8 described above is supplied by, for example, the storage battery 4.

通常、ソーラー独立電源基地局内の室温(室内温度)は、その外気温度(室外温度)に比べて比較的安定している。これは、ソーラー独立電源基地局の建屋の断熱性が高く、かつ室内の温度調整装置(空気調節器)によって調整しているため、外気温度変化を受けにくくなっている。   Usually, the room temperature (indoor temperature) in the solar independent power supply base station is relatively stable compared to the outside air temperature (outdoor temperature). This is because the thermal insulation of the building of the solar independent power base station is high and it is adjusted by an indoor temperature adjustment device (air conditioner), so it is less susceptible to changes in the outside air temperature.

図2は、これを説明するための、例えば2003年11月から2004年6月における室温と、外気温の温度変化を示している。図2の上の波形は室温を示し、図2の下の波形は外気温を示している。この2つの波形から、室温は比較的安定しているので、以下のようなデータ解析を行う際に温度の影響は無視できる範囲と考えられる。   For example, FIG. 2 shows the temperature change between the room temperature and the outside air temperature from November 2003 to June 2004, for example. The upper waveform in FIG. 2 shows the room temperature, and the lower waveform in FIG. 2 shows the outside air temperature. From these two waveforms, since the room temperature is relatively stable, it is considered that the influence of temperature is negligible when performing the following data analysis.

蓄電池4の充電は、太陽電池1の発電電力により行われている。また太陽電池1の容量は不日照後の蓄電池4への充電量を考慮して、蓄電池4からの夜間放電量に対し、発電量に十分に余裕のある太陽電池1の容量が選択されている。このため、晴れの多い時期では日の出に伴い蓄電池4への充電が始まりその後数時間経過し、設定の充電電圧値に達し充電電流の垂下が始まる。この時点で蓄電池4の容量が例えば約80%以上であることが蓄電池4の充電特性からわかる。なお、ここで蓄電池4の容量が例えば約80%以上としているのは、通常用いられている産業用の蓄電池では蓄電池4の容量が約80%以上となると垂下が起こるからであり、場合によっては蓄電池4の容量が80%に対してある幅があることも考えられる。 The storage battery 4 is charged by the power generated by the solar battery 1. In addition, the capacity of the solar cell 1 is selected in consideration of the amount of charge to the storage battery 4 after non-sunshine, and the capacity of the solar battery 1 having a sufficient margin for power generation relative to the amount of nighttime discharge from the storage battery 4 is selected. . For this reason, in the time when there is a lot of sunny days, charging of the storage battery 4 starts with sunrise, and then several hours pass, reaches the set charging voltage value, and starts drooping of the charging current. It can be seen from the charging characteristics of the storage battery 4 that the capacity of the storage battery 4 is, for example, about 80% or more at this time. In addition, the capacity | capacitance of the storage battery 4 shall be about 80% or more here, for the industrial storage battery used normally, since drooping will occur when the capacity | capacitance of the storage battery 4 becomes about 80% or more, depending on the case It is also conceivable that the capacity of the storage battery 4 has a certain width with respect to 80%.

以上述べたことから、蓄電池4の電圧・電流値の計測を行い、蓄電池4の電圧が設定の充電電圧に達しかつ蓄電池4の充電電流が垂下したら、その時の蓄電池4の容量は定格容量比80%と仮定し、その後の蓄電池4の容量の推定を行い、不日照での蓄電池容量低下発生を予想する。 As described above, the voltage / current value of the storage battery 4 is measured. When the voltage of the storage battery 4 reaches the set charging voltage and the charging current of the storage battery 4 drops, the capacity of the storage battery 4 at that time is 80% of the rated capacity ratio. Assuming%, the capacity of the storage battery 4 is estimated thereafter, and a decrease in the storage battery capacity due to non-sunshine is expected.

以上述べたことを、図5のフローチャートを参照して説明する。   The above will be described with reference to the flowchart of FIG.

1)始めに蓄電池4の電流の計測方法及び電流積算値の算出方法を述べる。 1) First, a method for measuring the current of the storage battery 4 and a method for calculating the integrated current value will be described.

蓄電池4の入出力電流を測定部5において、例えば変流器CTや分流器(シャント抵抗)等を使用し、蓄電池電流Iを電圧データとして計測を行うと同時に電流方向を識別できるように計測を行う(S1)。また蓄電池電圧Vの計測も行う(S1)。 In the measurement unit 5 output current of the battery 4, for example current transformers CT or shunt using (shunt resistor) and the like, the measurement so as to identify at the same time the current direction is performed to measure the battery current I B as a voltage data (S1). Moreover also performs measurement of the battery voltage V B (S1).

例えば、符号により電流方向の識別をし、蓄電池4への入力電流は−、出力電流は+とする。このときの測定電圧値(サンプリング電圧)をV1、V2、V3…、測定サンプリング時間をT[h]と置くと、測定電圧値から電流値への変換係数をkとすると、
電流積算値は、
(V1+V2+V3+…・)×k×T [Ah] …(6)式となる。
For example, the current direction is identified by a sign, and the input current to the storage battery 4 is − and the output current is +. If the measurement voltage value (sampling voltage) at this time is V1, V2, V3... And the measurement sampling time is T [h], the conversion coefficient from the measurement voltage value to the current value is k.
The integrated current value is
(V1 + V2 + V3 +...) × k × T [Ah] (6)

測定電圧値Vの符号別に計算を実行することで、蓄電池4からの放電量・蓄電池への充電量を算出することができる。なお、(6)式では、電圧値を電流値に変換しているのは、直接電流値を測定することが困難であるため、変流器CTや分流器を用いている。 By executing the calculation for each sign of the measured voltage value V, the discharge amount from the storage battery 4 and the charge amount to the storage battery can be calculated. In the equation (6), the voltage value is converted into the current value because it is difficult to directly measure the current value, and therefore a current transformer CT or a current shunt is used.

ソーラー独立電源基地局の日々の電流積算値(容量)推移の一例を図3に示している。   An example of daily current integrated value (capacity) transition of the solar independent power supply base station is shown in FIG.

また図3を蓄電池4の容量定格比換算した場合を図4に示している。 FIG. 4 shows a case where FIG. 3 is converted to the capacity rating ratio of the storage battery 4.

2)蓄電池4の容量の推定について述べる。図4で充電後の蓄電池定格容量比が80%
以上の時、蓄電池4が充電電圧に達し充電電流の垂下特性を確認できる(S2)。ソーラ
ー独立電源基地局に負荷3は主に通信機器装置であり、消費電力はほぼ一定で、設置され
ている蓄電池4の容量と比較し小さいため、蓄電池4に対して定電流放電と考えることと
する。負荷電流を とおき、1日の負荷電流量を算出すると、
ΣI×24=24I[Ah] …(7)式となる。
2) The estimation of the capacity of the storage battery 4 will be described. In FIG. 4, the storage battery rated capacity ratio after charging is 80%.
At the above time, the storage battery 4 reaches the charging voltage and the drooping characteristic of the charging current can be confirmed (S2). In the solar independent power base station, the load 3 is mainly a communication device, the power consumption is almost constant, and it is small compared to the capacity of the installed storage battery 4, so that the storage battery 4 is considered to be a constant current discharge. To do. When the load current is I 1 and the amount of load current per day is calculated,
ΣI 1 × 24 = 24I 1 [Ah] (7)

ここで、蓄電池容量のリセットタイミングを例えば12時〜16時に判断を行う。この時間帯に蓄電池の電圧と電流を測定したときに蓄電池4の電圧(蓄電池電圧)Vが充電設定電圧(基準電圧)Vに達しており、蓄電池4の充電電流が連続下降傾向であった。連続下降傾向とは、例えば5分毎にデータを取得し、3点以上連続して充電電流が下降(In−1>I>In+1)する場合である。(本実施形態では、電流を変換器や分流器により得られる電流を電圧データとして計測しているので、Vn−1>V>Vn+1である。)
この条件が満たされたときに蓄電池の残容量は蓄電池の定格容量の80%の容量を有すると見做し、『蓄電池容量80%』とする。このときの『蓄電池容量80%』を蓄電池残容量基準とし80%と置き、蓄電池の残容量として積算電流値はリセットされる。なお、天候が悪く充電電流が低下している場合には充電設定電圧(基準電圧) Vまで電圧は上昇しない。
Here, the reset timing of the remaining battery capacity is determined, for example, from 12:00 to 16:00. Voltage of the battery 4 when measuring the voltage and current of the storage battery during this time (battery voltage) V B has reached the charging setting voltage (reference voltage) V 0, there charging current of the battery 4 is in a continuous downward trend It was . A continuous downward trend is a case where, for example, data is acquired every 5 minutes, and the charging current decreases continuously (I n-1 > I n > I n + 1 ) for three or more points. (In this embodiment, since the current obtained by the converter or the shunt is measured as voltage data, V n−1 > V n > V n + 1 is satisfied.)
When this condition is satisfied, the remaining capacity of the storage battery is assumed to have a capacity of 80% of the rated capacity of the storage battery, and is set tostorage battery capacity 80%”. At this time, “storage battery capacity 80%” is used as a reference for the remaining battery capacity, and C 80% is set, and the accumulated current value is reset as the remaining capacity of the storage battery . The voltage does not increase if the weather is poor charging current has decreased to a charging set voltage (reference voltage) V 0.

そして蓄電池の残容量C 残容量 は、上記リセットタイミングで
残容量 =C 80% [Ah]とされる。この際、蓄電池の積算電流値はリセットされる(S3)。
その後、蓄電池4の放電中や、充電中でも蓄電池4の電圧VBが充電設定電圧V0に達しない場合、及びV0に達しても、充電電流が連続下降傾向(Vn−1>V>Vn+1)に無い場合、蓄電池の残容量は、蓄電池残容量基準C 80% から(6)式で示される電流積算値が減算演算され、
残容量=C80%−(V1+V2+V3+…・)×k×T [Ah] …(8)式となる。
なお、この時、前記に記載の通り、電圧(V1、V2、・・・)は、蓄電池の充電即ち入力電流は−、放電即ち出力電流は+とする。
そして、蓄電池容量Cx%までの推定稼動可能日数Dは(7)、(8)式から
D=[C残容量−Cx%]÷24I
=[C80%−(V1+V2+V3+…・)×k×T−Cx%]÷24I…(9)式となる(S4)。
The residual capacity C remaining capacity of the storage battery is at the reset timing
C remaining capacity = C 80% [Ah]. At this time, the accumulated current value of the storage battery is reset (S3).
Thereafter, when the storage battery 4 is being discharged or charged, the voltage V B of the storage battery 4 does not reach the charge setting voltage V 0 , and even if it reaches V 0 , the charging current tends to continuously decrease (V n-1 > V n > V n + 1 ), the remaining capacity of the storage battery is calculated by subtracting the accumulated current value expressed by the equation (6) from the storage battery remaining capacity reference C 80% ,
C remaining capacity = C 80% − (V1 + V2 + V3 +...) × k × T [Ah] (8)
At this time, as described above, the voltages (V1, V2,...) Are assumed to be − for charge of the storage battery, that is, input current, and + for discharge, that is, output current.
Then, the estimated operational days D up to the storage battery capacity C x% is calculated from the equations (7) and (8) as D = [C remaining capacity− C x% ] ÷ 24I 1
= [C 80% -(V1 + V2 + V3 +...) × k × T−C x% ] ÷ 24I 1 (9) (S4).

なお、(8)式において、C80%の意味は例えば50Ahの蓄電池を使用している場合、50Ah×80%=40Ahということを意味している。また、(9)式において、Cx%は、蓄電池容量の下限値が何%であるかを示しており、蓄電池4が完全放電(Cx%が0%)してしまうと蓄電池4の寿命が極端に短くなってしまうため、通常、Cx%は30%程度としている。 In the equation (8), the meaning of C 80% means that, for example, when a 50 Ah storage battery is used, 50 Ah × 80% = 40 Ah. Further, in the equation (9), C x% indicates how much the lower limit value of the storage battery capacity is, and if the storage battery 4 is completely discharged (C x% is 0%), the life of the storage battery 4 is reached. Therefore, C x% is normally set to about 30%.

この計算結果が、例えば、推定稼動可能日数が2日未満となった場合(S5)は、外部発電装置8に対して始動指令を与え(S6)、これにより蓄電池4への外部充電が自動的に行われ、この結果システムダウンは自動的に未然に防ぐことが可能である。外部発電装置は、蓄電池が満充電となったとき自動的に停止される。なお、外部発電装置8の燃料の補給は、例えば2ヶ月に1度又は外部発電装置8の起動回数を無線通信により通知することにより行う。 The calculation result is, for example, if the estimated workable number of days is less than 2 days (S5) gives a start command to the external power generator 8 (S6), the external charging of the battery 4 is This ensures This is done automatically, and as a result, system down can be prevented automatically. The external power generator is automatically stopped when the storage battery is fully charged. The fuel supply to the external power generation device 8 is performed, for example, every two months or by notifying the number of activations of the external power generation device 8 by wireless communication.

本発明によるソーラーシステムの運転方法及びその運転装置を説明するためのブロック図。The block diagram for demonstrating the operating method of the solar system by this invention, and its operating device. 図1のソーラ独立電源基地局における室温及び外気温のデータの一例を示す図。The figure which shows an example of the data of the room temperature in the solar independent power supply base station of FIG. 1, and external temperature. 図1のソーラ独立電源基地局の日々の電流積算値(容量)推移の一例を示す図。The figure which shows an example of daily electric current integrated value (capacity | capacitance) transition of the solar independent power supply base station of FIG. 図1の蓄電池の容量の定格を比較換算した例を示す図。The figure which shows the example which comparatively converted the rating of the capacity | capacitance of the storage battery of FIG. 図1の運転装置の機能を説明するためのフローチャート。The flowchart for demonstrating the function of the operating device of FIG.

符号の説明Explanation of symbols

SS…ソーラーシステム、DR…運転装置、1…太陽電池、2…電力変換器例えばDC/DCコンバータ、3…負荷、4…蓄電池、5…測定部、6…処理部、7…判断部、8…外部発電装置。   SS ... Solar system, DR ... Driving device, 1 ... Solar cell, 2 ... Power converter, for example, DC / DC converter, 3 ... Load, 4 ... Storage battery, 5 ... Measuring part, 6 ... Processing part, 7 ... Judgment part, 8 ... external power generator.

Claims (2)

太陽電池と、この太陽電池に電気的に接続された電力変換器と、この電力変換器に電気的に接続された負荷と、前記電力変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムの運転方法において、
前記蓄電池電圧が充電設定電圧に達し、かつ該蓄電池の充電電流が連続下降傾向に入った状態になった時の蓄電池の残容量を定格容量に基づき得られ蓄電池残容量基準とし、この蓄電池残容量基準と前記蓄電池に流れる入出力電流と時間から求められる電流積算値により蓄電池推定稼動可能日数を求め、この求めた蓄電池推定稼動可能日数が所定の基準日数になったとき、前記外部発電装置により前記蓄電池の充電を行うことを特徴とするソーラーシステムの運転方法。
A solar battery, a power converter electrically connected to the solar battery, a load electrically connected to the power converter, a storage battery electrically connected to the power converter, and the storage battery In a method for operating a solar system including an external power generator connected electrically,
The remaining capacity of the storage battery when the storage battery voltage reaches the charge setting voltage and the charging current of the storage battery enters a state of continuously decreasing is used as a storage battery remaining capacity reference obtained based on the rated capacity, and the storage battery When the estimated remaining number of days for the storage battery is determined based on the remaining capacity reference , the input / output current flowing through the storage battery, and the current integrated value obtained from the time, The method of operating a solar system, wherein the storage battery is charged by
前記蓄電池推定稼動可能日数Dは、(1)式により求めることを特徴とする請求項1記載のソーラーシステムの運転方法。
D=(C80%−ΣkVT−CX%)/24I … (1)式
ただし、C80%蓄電池残容量基準で、前記蓄電池の定格容量値の80%蓄電池容量、kは変換係数、Vは蓄電池測定サンプリング時電圧(蓄電池の入出力電流を電圧変換して測定した電圧)、Tは前記蓄電池の電圧測定サンプリング時間、CX%は残しておきたい最少蓄電池容量、Iは前記負荷に流れる平均負荷電流である。
The method for operating a solar system according to claim 1, wherein the estimated number of days D of estimated storage battery operation is obtained by equation (1).
D = (C80 % −ΣkVT− CX% ) / 24I (1) Formula where C80 % is a storage battery remaining capacity standard, 80% storage battery capacity of the rated capacity value of the storage battery, k is a conversion coefficient, V Is the storage battery measurement sampling voltage (voltage measured by converting the input / output current of the storage battery), T is the voltage measurement sampling time of the storage battery, C X% is the minimum storage battery capacity to be kept, and I flows to the load Average load current.
JP2005198865A 2005-07-07 2005-07-07 Operation method of solar system Expired - Fee Related JP4355687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198865A JP4355687B2 (en) 2005-07-07 2005-07-07 Operation method of solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198865A JP4355687B2 (en) 2005-07-07 2005-07-07 Operation method of solar system

Publications (2)

Publication Number Publication Date
JP2007020304A JP2007020304A (en) 2007-01-25
JP4355687B2 true JP4355687B2 (en) 2009-11-04

Family

ID=37756941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198865A Expired - Fee Related JP4355687B2 (en) 2005-07-07 2005-07-07 Operation method of solar system

Country Status (1)

Country Link
JP (1) JP4355687B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756187A (en) * 2018-12-29 2019-05-14 北京汇能精电科技股份有限公司 A kind of monitoring system of steam-electric power plant

Also Published As

Publication number Publication date
JP2007020304A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP5401003B2 (en) Solar power system
JP5584763B2 (en) DC power distribution system
US7476987B2 (en) Stand-alone wind turbine system, apparatus, and method suitable for operating the same
EP2660943A1 (en) Power controller
JP5028049B2 (en) Solar power system
US8975859B2 (en) Energy storage system
EP1986306B1 (en) Power supply system
CN108288852B (en) Independent DC power system and method
JP5175451B2 (en) Power supply system
JP2010148242A (en) Power conversion device, method for controlling charge and discharge of power conversion device, program for controlling power conversion device, and recording medium recorded with program for controlling power conversion device
WO2013175702A1 (en) Control system
JP2013042627A (en) Dc power supply control device and dc power supply control method
WO2020161765A1 (en) Direct-current power supply system
JP2019118238A (en) Control device, power storage system, and program
JP5794115B2 (en) POWER SUPPLY DEVICE, POWER CONTROL SYSTEM, AND ELECTRIC DEVICE STARTUP METHOD
JP4137784B2 (en) Solar power generator control system
JP4355687B2 (en) Operation method of solar system
KR101550304B1 (en) Appratus for portable self-electric generation
Patil et al. Design of maximum power point tracking (MPPT) based PV charger
JP2018014795A (en) Power distribution control system and power distribution control method
JP6207196B2 (en) DC power supply system
JP6041216B2 (en) Power feeding system and power feeding method
JP2014103819A (en) Charging device, charging method, power supply system and residual stored power amount measuring method thereof
JP2007300728A (en) Power generating device
JP4268948B2 (en) Operation method of solar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees