JP4268948B2 - Operation method of solar system - Google Patents

Operation method of solar system Download PDF

Info

Publication number
JP4268948B2
JP4268948B2 JP2005034818A JP2005034818A JP4268948B2 JP 4268948 B2 JP4268948 B2 JP 4268948B2 JP 2005034818 A JP2005034818 A JP 2005034818A JP 2005034818 A JP2005034818 A JP 2005034818A JP 4268948 B2 JP4268948 B2 JP 4268948B2
Authority
JP
Japan
Prior art keywords
data
voltage
storage battery
battery
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034818A
Other languages
Japanese (ja)
Other versions
JP2006223056A (en
Inventor
努 新井
俊昭 籔本
隆之 川俣
正功 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005034818A priority Critical patent/JP4268948B2/en
Publication of JP2006223056A publication Critical patent/JP2006223056A/en
Application granted granted Critical
Publication of JP4268948B2 publication Critical patent/JP4268948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、ソーラーシステムの運転方法に関する。   The present invention relates to a method for operating a solar system.

周知の如く、太陽電池と、この太陽電池に電気的に接続された変換器と、この変換器に電気的に接続された負荷と、前記変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムが知られている。   As is well known, a solar cell, a converter electrically connected to the solar cell, a load electrically connected to the converter, a storage battery electrically connected to the converter, and the storage battery A solar system is known that includes an external power generation device that is electrically connected to the power source.

こうしたソーラーシステムにおいて、ソーラー独立電源基地の蓄電池仕様を決定する場合、従来、過去のデータからの不日照発生日数を平均負荷電流から、不日照発生によってシステムダウンが起こらない程度の、安全率を比較的大きく見積もった蓄電池容量を決定していた。   In such a solar system, when determining the storage battery specifications of the solar independent power supply base, conventionally, comparing the safety factor to the extent that the system failure does not occur due to the occurrence of non-sunshine from the average load current from the past days The storage battery capacity that was largely estimated was determined.

しかしながら、この場合、過去データの不日照期間をすべて網羅するような設計を行うため、最大スペックになってしまい、過度の容量を有する電池を設置していた。また、それでも設計時の予想を超えた不日照日が続いた場合には、システムダウンを起こしてしまう。   However, in this case, since the design is performed so as to cover all the periods of non-sunshine in the past data, the maximum specification is reached, and a battery having an excessive capacity has been installed. Also, if the sun continues beyond the design expectations, the system will go down.

そのため、蓄電池の状態に関係なく定期的に管理者が現地へ赴き、定期的に設置された発電装置を手動で稼動させ、蓄電池への補充電・充電を行っていた。   Therefore, regardless of the state of the storage battery, the administrator periodically went to the site to manually operate the power generator installed regularly to perform supplementary charging / charging of the storage battery.

従来、電池の残量を測定する装置や、太陽電池を用いた自発式道路標識装置等に関する技術としては、下記の特許文献1〜3が知られている。特許文献1は、電圧と放置時間との2値に基づいて電池の残量を測定する方法及び装置に関する。特許文献2は、自発光式道路標識体に外部電力入力端子を設け、外部電力入力端子に外部電源装置を接続することにより、太陽電池によって発生した電力に加えて外部電源装置からの外部電力も蓄電装置に充電するようにした自発光式道路標識体及び自発光式道路標識装置に関する。特許文献3は、太陽電池と外部電源の両方から内蔵バッテリーへの電源供給を可能にすると共に、電源供給されていることを自動的に確認できる電源装置に関する。
特開平11−133122号公報 特開平11−222824号公報 特開2003−111303号公報
Conventionally, Patent Documents 1 to 3 listed below are known as technologies relating to a device for measuring the remaining amount of a battery, a spontaneous road sign device using a solar cell, and the like. Patent Document 1 relates to a method and an apparatus for measuring the remaining amount of a battery based on a binary value of a voltage and a leaving time. In Patent Document 2, an external power input terminal is provided on a self-luminous road sign body, and an external power supply device is connected to the external power input terminal, so that external power from the external power supply device is also generated in addition to power generated by a solar cell. The present invention relates to a self-light-emitting road sign body and a self-light-emitting road sign device configured to charge a power storage device. Patent Document 3 relates to a power supply apparatus that enables power supply to a built-in battery from both a solar battery and an external power supply and that can automatically confirm that power is being supplied.
JP-A-11-133122 JP-A-11-222824 JP 2003-111303 A

この発明は、こうした事情を考慮してなされたもので、過去データの不日照期間を全て網羅するような蓄電池容量の過剰設計を回避するとともに、管理者が現地に赴いて充電作業することを回避し、さらには仕様以上の不日照期間でのシステムダウンを回避しえるソーラー独立電源基地局の運転方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and avoids excessive design of the storage battery capacity to cover all the non-sunshine periods of the past data, and avoids the administrator visiting the site for charging work. Furthermore, it is an object of the present invention to provide a method for operating a solar independent power supply base station that can avoid a system down in a non-sunshine period exceeding the specification.

この発明に係るソーラーシステムの運転方法は、太陽電池と、この太陽電池に電気的に接続された変換器と、この変換器に電気的に接続された負荷と、前記変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムの運転方法において、
不日照日が続いて蓄電池への充電が行われない場合、定時刻における蓄電池の電圧データより、電池放電特性を利用して電池電圧が減少傾向にあるデータ3点から、当該データ3点を通る電圧と時間との二次式を算出する工程と、この二次式より電池電圧降下状態を予想して、放電注意レベルの電池電圧に達するまでの時間を算出する工程と、算出された時間に基づいて蓄電池への充電を外部発電装置により行う工程とを具備することを特徴とする。
A method for operating a solar system according to the present invention includes a solar cell, a converter electrically connected to the solar cell, a load electrically connected to the converter, and an electrical connection to the converter. In a method for operating a solar system comprising a storage battery and an external power generation device electrically connected to the storage battery,
If the storage battery is not charged due to non-sunshine days, the battery voltage data from the battery voltage characteristics at a fixed time will be used to pass the data 3 points from the 3 points where the battery voltage tends to decrease. A step of calculating a secondary expression of voltage and time, a step of predicting a battery voltage drop state from this secondary expression, and calculating a time to reach a battery voltage at a discharge caution level; and And charging the storage battery with an external power generator.

この発明によれば、電池容量が減少しても自動的に発電装置で充電するため容量が回復でき、過去データの不日照期間をすべて網羅するような蓄電池容量の過剰設計の必要がなく、蓄電池の電圧低下によるシステムダウンを回避できる。また、管理者が現地へ赴いて充電作業することがなくなる。更に、長期的な無人化が可能である。   According to the present invention, even if the battery capacity decreases, the capacity can be recovered automatically by charging with the power generation device, and it is not necessary to overdesign the storage battery capacity so as to cover all the non-sunshine periods of past data. The system down due to the voltage drop can be avoided. In addition, the manager does not go to the site to charge. Furthermore, long-term unmanned operation is possible.

以下、本発明について更に詳しく説明する。
まず、本発明に係るソーラーシステムについて図1を参照して説明する。
図中の符番1は、例えば建屋の屋上に設置される太陽電池(PV:Photovoltaic)を示す。この太陽電池1には、DC/DCコンバータ(変換器)2を介して送受信部や電灯等の負荷3が電気的に接続されている。また、前記変換器2には、太陽電池1からの電力を充電したり、負荷3への電力の供給を行う蓄電池4が接続されている。この蓄電池4には、測定部5、処理部6、判断部7及び外部発電装置8が順次電気的に接続されている。また、外部発電装置8は蓄電池4と電気的に接続されている。前記測定部5は、蓄電池4の電圧を測定する機能を有している。前記処理部5は、後に詳述するように、蓄電池の3点の電圧データに基づいて電圧と時間による二次式を近似的に求めたり、放電終止電圧予想日を求める等の処理を行う機能を有する。前記判断部7は、求めた放電終止電圧予想日と設定値とを比較して、外部発電装置8をONするか否かの判断を行う機能を有する。
Hereinafter, the present invention will be described in more detail.
First, a solar system according to the present invention will be described with reference to FIG.
Reference numeral 1 in the figure indicates, for example, a solar cell (PV: Photovoltaic) installed on the roof of a building. A load 3 such as a transmission / reception unit or an electric lamp is electrically connected to the solar cell 1 via a DC / DC converter (converter) 2. The converter 2 is connected to a storage battery 4 that charges power from the solar battery 1 or supplies power to the load 3. A measuring unit 5, a processing unit 6, a determination unit 7 and an external power generator 8 are sequentially electrically connected to the storage battery 4. The external power generator 8 is electrically connected to the storage battery 4. The measurement unit 5 has a function of measuring the voltage of the storage battery 4. As will be described in detail later, the processing unit 5 has a function of performing a process such as approximately obtaining a quadratic expression based on voltage and time based on voltage data of three points of the storage battery, or obtaining an expected discharge end voltage. Have The determination unit 7 has a function of determining whether or not to turn on the external power generation device 8 by comparing the calculated expected end-of-discharge voltage date with a set value.

こうしたシステムにおいて、日照時は太陽電池1からの電力が変換器2を介して負荷3に供給されたり、蓄電池4の充電が行われる。一方、不日照時が続いたり或いは夜中には蓄電池4から負荷3へ電力が供給され、従って蓄電池の出力電圧が下がる。従って、測定部5で常時蓄電池4の電圧の測定を行い、処理部6にて所定の3点のデータに基づい上記二次式を求めて、放電終止電圧予想日を求める。そして、判断部7により、予め設定した設定値と求めた予想日を比較して外部発電装置8をONするか否かを判断する。ONすると判断した場合は、外部発電装置8を作動させて蓄電池4に電力を供給して蓄電池4の不足分を補う。   In such a system, the power from the solar cell 1 is supplied to the load 3 via the converter 2 or the storage battery 4 is charged during sunshine. On the other hand, electric power is supplied from the storage battery 4 to the load 3 during non-sunshine hours or at night, and thus the output voltage of the storage battery decreases. Therefore, the measurement unit 5 always measures the voltage of the storage battery 4, and the processing unit 6 obtains the above secondary expression based on predetermined three points of data to obtain the expected end-of-discharge voltage date. Then, the determination unit 7 determines whether or not the external power generation device 8 is to be turned on by comparing a preset set value with the calculated expected date. When it is determined to be ON, the external power generation device 8 is operated to supply power to the storage battery 4 to compensate for the shortage of the storage battery 4.

なお、上述したソーラーシステムは一例を示すもので、その構成は図1のものに限定されることはない。   In addition, the solar system mentioned above shows an example, The structure is not limited to the thing of FIG.

電圧データからの近似式の求め方は、以下のように行う。ここで、近似式は2次式のため、データ3点あれば決定することができる。
[データ3点の求め方]
まず、電池電圧が減少する傾向にある3点を使用する。データは、日照のない時間帯で放電側にある一定時刻、例えば午前4時電池電圧を使用する。この3点は、例えばデータ1、データ2及びデータ3がデータ箱に格納され、新規に得られたデータ4と比較して使用する。
The method for obtaining the approximate expression from the voltage data is as follows. Here, since the approximate expression is a quadratic expression, it can be determined if there are three data points.
[How to find 3 data points]
First, three points where the battery voltage tends to decrease are used. The data uses a certain time on the discharge side in a time zone without sunlight, for example, a battery voltage at 4 am. For example, data 1, data 2 and data 3 are stored in a data box and used in comparison with newly obtained data 4.

[3点を通る近似曲線の求め方]
次に、3点を通る近似曲線を求める。ここで、各データ1〜3は、常に
「データ1>データ2>データ3」
の関係にある。比較方法は次のように行う。
[How to find an approximate curve that passes through three points]
Next, an approximate curve passing through three points is obtained. Here, each data 1-3 is always
Data 1> Data 2> Data 3”
Are in a relationship. The comparison method is performed as follows.

1.データ3>データ4の場合
データ2、データ3、データ4から2次式を算出する。
2.データ3=データ4の場合
データ1、データ2、データ3から2次式を算出する。
3.データ3<データ4の場合
(3-1) データ2>データ4の場合
データ1、データ2、データ4から2次式を算出する。
(3-2) データ2=データ4の場合
算出しない→推定しない
(3-3) データ2<データ4の場合
(3-3-1) データ1>データ4の場合
算出しない→推定しない
(3-3-2) データ1=データ4の場合
算出しない→推定しない
(3-3-3) データ1<データ4の場合
算出しない→推定しない
データ箱に3点のデータがある場合のみ、日照不足による電圧下降傾向にあると考え、不日照補償の時間を推定する。また、それ以外のデータ箱に空が存在するときは、充電状態が回復傾向にあると考えられるため、不日照補償の時間の推定を行わない。
1. When data 3> data 4
A quadratic expression is calculated from data 2, data 3, and data 4.
2. When data 3 = data 4
A quadratic expression is calculated from data 1, data 2, and data 3.
3. When data 3 <data 4
(3-1) Data 2> Data 4
A quadratic expression is calculated from data 1, data 2, and data 4.
(3-2) When data 2 = data 4
Not calculated → not estimated
(3-3) Data 2 <Data 4
(3-3-1) When data 1> data 4
Not calculated → not estimated
(3-3-2) When data 1 = data 4
Not calculated → not estimated
(3-3-3) When data 1 <data 4
Not calculated → not estimated Only when there are three data points in the data box, it is considered that the voltage tends to decrease due to lack of sunshine, and the time for non-sunshine compensation is estimated. In addition, when there is an empty space in the other data boxes, it is considered that the state of charge is in a recovery tendency, and thus the estimation of the non-sunshine compensation time is not performed.

次に、3点のデータからの不日照補償の時間を推定する方法を説明する。
まず、電池の終止放電(1.9V)までの放電特性は、ほぼ2次式によって近似できることを利用して、測定された3点を通る2次式を求める。次に、その式から不日照補償(放電終止電圧に達するまでの時間)の時間を算出する。
Next, a method for estimating the non-sunshine compensation time from three points of data will be described.
First, using the fact that the discharge characteristics up to the final discharge (1.9 V) of the battery can be approximated by a quadratic equation, a quadratic equation passing through three measured points is obtained. Next, the time of non-sunshine compensation (time to reach the discharge end voltage) is calculated from the equation.

まず、求める2次式を、
aX+bX+c=Y …(1)
と置く。次に、データ(時間X、電圧Y)3点を例えば(X、Y)、(X、Y)、(X、Y)とし、これらを上記式(1)に代入し、
a(X+bX+c=Y
a(X+bX+c=Y
a(X+bX+c=Y
とする。これらを整理すると、下記数1に示す式(2)のような関係が成り立つ。また、式(2)において、符号Aを下記数2に示す式(3)とすると、式(2)は下記数3に示す式(4)となる。

Figure 0004268948
First, the quadratic expression to be obtained is
aX 2 + bX + c = Y (1)
Put it. Next, three points of data (time X, voltage Y) are set as, for example, (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ), and these are substituted into the above equation (1). ,
a (X 1 ) 2 + bX 1 + c = Y 1
a (X 2 ) 2 + bX 2 + c = Y 2
a (X 3 ) 2 + bX 3 + c = Y 3
And If these are rearranged, the relationship shown in the following formula (2) is established. Further, in the equation (2), when the symbol A is the equation (3) shown in the following equation 2, the equation (2) becomes the equation (4) shown in the following equation 3.
Figure 0004268948

Figure 0004268948
Figure 0004268948

Figure 0004268948
Figure 0004268948

上記式(4)の両辺にA−1(行列Aの逆行列)をかけると、下記数4に示す式(5)となり、2次式の各係数a,b,cを求めることができる。

Figure 0004268948
When A −1 (inverse matrix of matrix A) is applied to both sides of the above equation (4), equation (5) shown in the following equation 4 is obtained, and the coefficients a, b, and c of the quadratic equation can be obtained.
Figure 0004268948

次に、係数a,b,cを求めるために3点のデータを、(−1、V)、(0、V)、(1、V)とすると、下記数5に示す式(6)となり、A−1は下記数6に示す式(7)となる。

Figure 0004268948
Next, in order to obtain the coefficients a, b, and c, if the three points of data are (−1, V 1 ), (0, V 2 ), (1, V 3 ), the following equation (5) 6), and A −1 is represented by Equation (7) shown in Equation 6 below.
Figure 0004268948

Figure 0004268948
Figure 0004268948

上記式(7)から係数a,b,cを求めると、
a=(−Y+2Y−Y)/(−2)
b=(Y−Y)/(−2)
c=Y
となる。
When the coefficients a, b, and c are obtained from the above equation (7),
a = (− Y 1 + 2Y 2 −Y 3 ) / (− 2)
b = (Y 1 −Y 3 ) / (− 2)
c = Y 2
It becomes.

[放電終止電圧1.9Vに達する時間の算出方法]
次に、放電終止電圧1.9Vに達する時間を算出する。
はじめに、上記式(1)でY=1.9VとなるXを求める。Y=1.9を式(1)に代入する。
aX+bX+c=1.9
c−1.9=dと置くと、
aX+bX+d=0
となり、
1) b−4ac≧0の場合
Xは次式で求まる。
X={−b±(b−4ad)1/2}/2a
2) b−4ac<0の場合
解なしで、放電傾向であるが、充電量が前日に比べて増え、回復傾向にあると考えられ時間算出を行わない。
[Calculation method of time to reach end-of-discharge voltage of 1.9V]
Next, the time to reach the discharge end voltage 1.9V is calculated.
First, X where Y = 1.9V is obtained from the above equation (1). Substitute Y = 1.9 into equation (1).
aX 2 + bX + c = 1.9
If we put c-1.9 = d,
aX 2 + bX + d = 0
And
1) When b 2 -4ac ≧ 0
X is obtained by the following equation.
X = {− b ± (b 2 −4ad) 1/2 } / 2a
2) When b 2 -4ac <0
Although there is no solution, there is a tendency to discharge, but the amount of charge increases compared to the previous day, and it is considered that there is a tendency to recover, and time calculation is not performed.

ここで、上記1)より求めた解X,X(X≦X)とし、X−1、X−1の値を比較し、1より大きく、小さい値のほうを、放電終止電圧1.9Vに達するまでの時間とする。 Here, the solutions X 1 and X 2 (X 1 ≦ X 2 ) obtained from 1) above are compared, and the values of X 1 −1 and X 2 −1 are compared. The time required to reach a final voltage of 1.9V.

なお、上述した方式はデータ3点を通る二次式を求める方式であるが、この式が一次式になった場合は、この一次式で放電終止電圧1.9Vに達するXを求め、X−1を放電終止電圧に達するまでの時間とする。   The above-described method is a method for obtaining a quadratic expression that passes through three data points. When this expression becomes a primary expression, X that reaches the discharge end voltage of 1.9 V is obtained by this primary expression, and X− Let 1 be the time to reach the discharge end voltage.

次に、放電終止電圧に達するまでの時間が算出され、その時間が2日以内の場合は蓄電圧電圧低下でのシステムダウンが起こることが予想される。そして、この結果を得て自動運転制御の発電装置へ運転信号が入力され、予め設定された時間可動し、蓄電池へ充電を行う。このようにして、蓄電圧電圧低下でのシステムダウンを防止する。   Next, the time required to reach the end-of-discharge voltage is calculated, and if the time is within 2 days, it is expected that the system will be down due to a decrease in the storage voltage. Then, this result is obtained, and an operation signal is input to the power generator for automatic operation control, which is movable for a preset time, and charges the storage battery. In this way, system down due to a decrease in the storage voltage is prevented.

なお、上述した設定時間が2日というのは一例であり、本発明はこの時間に限定されない。   Note that the setting time described above is two days, and the present invention is not limited to this time.

次に、具体的な一実施例について説明する。
(実施例)
2003年12月の電池電圧データの一部は、下記表1に示す通りである。但し、電池電圧は午前4時の時刻のデータを示す。

Figure 0004268948
Next, a specific example will be described.
(Example)
Part of battery voltage data for December 2003 is as shown in Table 1 below. However, the battery voltage indicates data at 4 am.
Figure 0004268948

また、上記電池電圧データ、データ日平均及び陸別日照時間は図2に示すようになる。   The battery voltage data, the data daily average, and the land-based sunshine hours are as shown in FIG.

次に、放電終止電圧に達するまでの予想をするために、2次式を決定する。ここで、決定するためのデータ3点を先に述べたルールに従い選ぶ。即ち、12月10日に蓄電池電圧は2.039Vであったので、これをデータ1としデータ箱に格納する。蓄電池電圧は翌11日には2.038Vと低下したので、これをデータ2として格納する。しかし、12日には2.059Vと回復したので、先のデータ2は消去し、新たに12日の2.059Vをデータ1として格納する。そして、13日には2.056Vと低下したので、これをデータ2として格納し、その後15日まで2.056Vと同一であったので、12日の2.059Vと13日の2.056Vの2つの値を格納し続ける。次に、16日に2.054Vと低下したので、これをデータ3として格納すると共に、これでデータ1>データ2>データ3の条件が整ったので、この3点を用いて2次式を算出することとなる。更に、翌17日のデータ4は2.043Vと更に低下したので、格納するのはデータ2の2.056とデータ3の2.054とデータ4の2.043の3点となる。以下、ルールに従い選んだ(格納された)データは、下記表2に示すとおりである。

Figure 0004268948
Next, a quadratic expression is determined in order to make a prediction until the discharge end voltage is reached. Here, three points of data for determination are selected according to the rules described above. That is, since the battery voltage was 2.039 V on December 10, this is stored as data 1 in the data box. Since the storage battery voltage dropped to 2.038 V on the following 11th day, this is stored as data 2. However, since it recovered to 2.059 V on the 12th, the previous data 2 is deleted, and 2.059 V on the 12th is newly stored as data 1. And since it dropped to 2.056V on the 13th, it was stored as data 2 and was the same as 2.056V until the 15th, so 2.059V on the 12th and 2.056V on the 13th Continue to store two values. Next, since it decreased to 2.054V on the 16th, it was stored as data 3, and now the condition of data 1> data 2> data 3 was satisfied. Will be calculated. Further, since the data 4 on the next 17th is further lowered to 2.043 V, the data 2 is stored at 2.056, the data 3 is 2.054, and the data 4 is 2.043. The data selected (stored) according to the rules are as shown in Table 2 below.
Figure 0004268948

上記表2において、データが横に3点並んだ場合に、2次式を決定し、予想を行う。そのときのグラフは、図3に示すようになる。図3において、横軸は2003年12月の日々を示す。   In Table 2 above, when the data are arranged side by side, a quadratic expression is determined and prediction is performed. The graph at that time is as shown in FIG. In FIG. 3, the horizontal axis represents the days of December 2003.

そして、2次式を決定し、放電終止電圧1.9Vに達する時間を予想する。例えば、16日、17日で予想してみる。16日、17日のデータから2次式を決定する。この式と描く曲線をグラフに示すと、図4に示すようになる。図4において、横軸は2003年12月の日々を示す。また、図4中の曲線(a)は16日での予想による曲線で、Y=0.000X−0.0085x+2.089となる。一方、曲線(b)は17日での予想による曲線で、Y=−0.0045X−0.0565x+1.879となる。 Then, a quadratic equation is determined, and a time for reaching the discharge end voltage of 1.9 V is predicted. For example, let's predict on the 16th and 17th. A quadratic equation is determined from the data on the 16th and 17th. When this equation and the curve drawn are shown in the graph, it is as shown in FIG. In FIG. 4, the horizontal axis shows the days of December 2003. Moreover, the curve (a) in FIG. 4 is a curve predicted by the 16th day, and becomes Y = 0.000X 2 −0.0085x + 2.089. On the other hand, the curve (b) is a curve predicted on the 17th, and becomes Y = −0.0045X 2 −0.0565x + 1.879.

ここで、16日での予想では、電池電圧は下降傾向にあるが、充電量が前日に比べ増えているので、回復傾向と判定し、放電終止電圧にいたる心配はないとして、予想を行わない。また、17日での予想では、約4日で放電終止電圧にいたる結果となる。
同様な方法で、放電終止電圧にいたる時間が、2日以下となった場合には、発電装置を自動で稼動させ、蓄電池への充電を行う。
Here, in the prediction on the 16th, the battery voltage is in a downward trend, but since the amount of charge has increased compared to the previous day, it is determined that there is a recovery tendency and there is no concern of reaching the end-of-discharge voltage. . Further, in the prediction on the 17th, the discharge end voltage is reached in about 4 days.
In the same manner, when the time to reach the final discharge voltage is 2 days or less, the power generation device is automatically operated to charge the storage battery.

このように、上記実施例によれば、蓄電池の電圧を測定部により常時測定し、不日照日が続いて蓄電池への充電が行われない場合、定時刻における蓄電池の電圧データより、電池放電特性を利用してデータ3点を通る電圧と時間との二次式を算出し、該二次式より電池電圧降下状態を予想して、放電注意レベルの電池電圧に達するまでの時間を算出した後、算出された時間に基づいて蓄電池への充電を外部発電装置により行う。従って、電池容量が減少しても自動的に外部発電装置で充電するため容量が回復でき、過去データの不日照期間をすべて網羅するような蓄電池容量の過剰設計の必要がなく、蓄電池の電圧低下によるシステムダウンを回避できる。また、管理者が現地へ赴いて充電作業することがなくなる。更に、長期的な無人化が可能である。   Thus, according to the above embodiment, when the storage battery voltage is constantly measured by the measurement unit and the non-sunshine day continues and the storage battery is not charged, the battery discharge characteristics are obtained from the storage battery voltage data at a fixed time. After calculating the secondary expression of the voltage and time passing through the three data points using the, and predicting the battery voltage drop state from the secondary expression, and calculating the time to reach the battery voltage of the discharge attention level Based on the calculated time, the storage battery is charged by the external power generator. Therefore, even if the battery capacity is reduced, it is automatically charged by the external power generator, so the capacity can be recovered, and there is no need to overdesign the storage battery capacity to cover all the non-sunshine periods of past data, and the battery voltage drops. System down due to can be avoided. In addition, the manager does not go to the site to charge. Furthermore, long-term unmanned operation is possible.

なお、この発明は、前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

この発明に係るソーラーシステムを説明するためのブロック図。The block diagram for demonstrating the solar system which concerns on this invention. この発明の実施例に係る電池電圧データ、データ日平均及び陸別日照時間との関係を示す特性図。The characteristic view which shows the relationship between the battery voltage data which concerns on the Example of this invention, a data daily average, and the sunshine time according to land. この発明の実施例に係る2次式を決定するためのデータに基づく電池電圧特性図。The battery voltage characteristic view based on the data for determining the quadratic formula which concerns on the Example of this invention. この発明に係る放電終止電圧を予測するための2次曲線を示す図。The figure which shows the quadratic curve for estimating the discharge end voltage which concerns on this invention.

符号の説明Explanation of symbols

1…太陽電池、2…変換器、3…負荷、4…蓄電池、5…測定部、6…処理部、7…判断部、8…外部発電装置。 DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... Converter, 3 ... Load, 4 ... Storage battery, 5 ... Measuring part, 6 ... Processing part, 7 ... Judgment part, 8 ... External power generator.

Claims (1)

太陽電池と、この太陽電池に電気的に接続された変換器と、この変換器に電気的に接続された負荷と、前記変換器に電気的に接続された蓄電池と、この蓄電池に電気的に接続された外部発電装置とを備えたソーラーシステムの運転方法において、
不日照日が続いて蓄電池への充電が行われない場合、定時刻における蓄電池の電圧データより、電池放電特性を利用して電池電圧が減少傾向にあるデータ3点から、当該データ3点を通る電圧と時間との二次式を算出する工程と、この二次式より電池電圧降下状態を予想して、放電注意レベルの電池電圧に達するまでの時間を算出する工程と、算出された時間に基づいて蓄電池への充電を外部発電装置により行う工程とを具備することを特徴とするソーラーシステムの運転方法。
A solar cell, a converter electrically connected to the solar cell, a load electrically connected to the converter, a storage battery electrically connected to the converter, and an electrical connection to the storage battery In a method for operating a solar system including a connected external power generator,
If the storage battery is not charged due to non-sunshine days, the battery voltage data from the battery voltage characteristics at a fixed time will be used to pass the data 3 points from the 3 points where the battery voltage tends to decrease. A step of calculating a secondary expression of voltage and time, a step of predicting a battery voltage drop state from this secondary expression, and calculating a time to reach a battery voltage at a discharge caution level; and And a step of charging the storage battery with an external power generator based on the method.
JP2005034818A 2005-02-10 2005-02-10 Operation method of solar system Expired - Fee Related JP4268948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034818A JP4268948B2 (en) 2005-02-10 2005-02-10 Operation method of solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034818A JP4268948B2 (en) 2005-02-10 2005-02-10 Operation method of solar system

Publications (2)

Publication Number Publication Date
JP2006223056A JP2006223056A (en) 2006-08-24
JP4268948B2 true JP4268948B2 (en) 2009-05-27

Family

ID=36984987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034818A Expired - Fee Related JP4268948B2 (en) 2005-02-10 2005-02-10 Operation method of solar system

Country Status (1)

Country Link
JP (1) JP4268948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421138A1 (en) * 2010-08-18 2012-02-22 ABB Oy Transformer-isolated switching converter

Also Published As

Publication number Publication date
JP2006223056A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
EP2587623B1 (en) Dc power distribution system
JP5625005B2 (en) Stand-alone power supply system
US10355517B2 (en) Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
Glavin et al. Optimisation of a photovoltaic battery ultracapacitor hybrid energy storage system
US9496748B2 (en) Integrated power system control method and related apparatus with energy storage element
WO2016092774A1 (en) Power supply system
US20130285610A1 (en) Power control apparatus, method, program, and integrated circuit, and storage battery unit
RU2396666C1 (en) Electric power supply system of space vehicle
JP2016119728A (en) Storage battery charge/discharge control device and storage battery charge/discharge control method
JPWO2020161765A1 (en) DC power supply system
US20110204852A1 (en) Power storage system
JP6189092B2 (en) Multi-purpose control device for grid storage battery
JP4268948B2 (en) Operation method of solar system
WO2016098704A1 (en) Demand power prediction device, demand power prediction method, and program
Nakamura et al. Green base station using robust solar system and high performance lithium ion battery for next generation wireless network (5G) and against mega disaster
Yan et al. Comparative study of coordinated photovoltaic and battery control strategies on the battery lifetime in stand-alone dc microgrids
JP6207196B2 (en) DC power supply system
JP2003018763A (en) Energy prediction method in solar power generation
JPH05252671A (en) Control system for photovoltaic power generation
Luna et al. Online energy management system for distributed generators in a grid-connected microgrid
US9831714B2 (en) Battery storage system and controlling method of the same
KR102053812B1 (en) Method and system for controlling power conversion system connected to hybrid battery
JP6030365B2 (en) Power supply system
CN109463023B (en) Solar power generation equipment
WO2018105645A1 (en) Operation control system, and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees