JP2018014795A - Power distribution control system and power distribution control method - Google Patents

Power distribution control system and power distribution control method Download PDF

Info

Publication number
JP2018014795A
JP2018014795A JP2016141742A JP2016141742A JP2018014795A JP 2018014795 A JP2018014795 A JP 2018014795A JP 2016141742 A JP2016141742 A JP 2016141742A JP 2016141742 A JP2016141742 A JP 2016141742A JP 2018014795 A JP2018014795 A JP 2018014795A
Authority
JP
Japan
Prior art keywords
power
power generation
generation amount
reference value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016141742A
Other languages
Japanese (ja)
Other versions
JP6751614B2 (en
Inventor
伸浩 森
Nobuhiro Mori
伸浩 森
中森 勇一
Yuichi Nakamori
勇一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016141742A priority Critical patent/JP6751614B2/en
Publication of JP2018014795A publication Critical patent/JP2018014795A/en
Priority to JP2020089947A priority patent/JP7032474B2/en
Application granted granted Critical
Publication of JP6751614B2 publication Critical patent/JP6751614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To provide a power distribution control system capable of suppressing a reduction in power conversion efficiency even when the power generation amount of a photovoltaic power generation device increases or decreases.SOLUTION: The power distribution control system includes: a power generation amount acquisition unit that acquires a power generation amount generated by a photovoltaic power generation device; and a power control unit that compares the obtained power generation amount with a reference value, and, when the power generation amount is less than the reference value, determines that the generated power is to be supplied to a DC load side, and, when the power generation amount is equal to or higher than the reference value, determines that the electric power is converted into an alternating current by the electric power conversion device.SELECTED DRAWING: Figure 1

Description

本発明は、配電制御システム、配電制御方法に関する。   The present invention relates to a power distribution control system and a power distribution control method.

太陽光発電(以下PV;Photovoltaic)及び蓄電池を備えた住宅が増加してきている。PVで発電した直流電力は、交流電力に変換され、自家使用もしくは分電盤を経由して系統へ逆潮流される。   Houses equipped with photovoltaic (Photovoltaic) and storage batteries are increasing. The DC power generated by PV is converted to AC power, which is used in-house or flows backward to the grid via a distribution board.

このような、直流と交流との電力変換においては、コンバータやパワーコンディショナーが用いられる。下記の特許文献1では、コンバータやパワーコンディショナーを用いるにあたり、2度以上の電力変換を行なわないようにすることで、電力変換による損失を抑えたり、最大電力点追従制御を行なう配電システムについて記載されている。また、下記の特許文献2では、蓄電池のインバータにおける電力変換の効率と電力の価格とを考慮して、蓄電池への充放電スケジュールを決定する蓄電池制御装置について記載されている。   In such power conversion between direct current and alternating current, a converter or a power conditioner is used. The following Patent Document 1 describes a power distribution system that suppresses power conversion loss or performs maximum power point tracking control by not performing power conversion twice or more when using a converter or power conditioner. ing. Patent Document 2 below describes a storage battery control device that determines a charging / discharging schedule for a storage battery in consideration of the efficiency of power conversion and the price of power in an inverter of the storage battery.

特許第5756903号公報Japanese Patent No. 5756903 特開2016−63629号公報Japanese Patent Laid-Open No. 2006-63629

しかしながら、PVは、太陽光をエネルギー源として発電するため、日射状況により、その発電量は大きく左右される。また、パワーコンディショナーは、PVの最大発電力に合わせて設置される。そのため、発電量が充分でない場合は、パワーコンディショナーの変換効率が低下することがある。   However, since PV generates power using sunlight as an energy source, the amount of power generation depends greatly on the solar radiation situation. The power conditioner is installed according to the maximum power generation of PV. Therefore, when the power generation amount is not sufficient, the conversion efficiency of the power conditioner may be reduced.

一方で、太陽光発電装置と蓄電池とを備えた住宅等において、特に冷暖房等の需要の低い時期では、一日の総発電量が蓄電池の容量を上回ることがある。近年、1つのパワーコンディショナーでPV用と蓄電池用両方に用いる一体型パワーコンディショナーという製品も出てきている。この製品では、PVで発電された電力を直流のまま蓄電池へ送って充電するため、直流から交流、再度交流から直流に変換して充電する既存の製品に比べると変換効率が大きく向上している。
しかしながら、このような一体型パワーコンディショナーを用いる場合であっても、PV発電電力が蓄電池の入力電力を越えてオーバーフローした部分を直流から交流に変換する場合や、蓄電池がフルに充電された後であって発電量が充分でない場合に、直流から交流に変換する場合の変換効率が低下する。
On the other hand, in a house provided with a solar power generation device and a storage battery, the total amount of power generated per day may exceed the capacity of the storage battery, particularly in periods of low demand such as air conditioning. In recent years, an integrated power conditioner that is used for both PV and storage batteries with a single power conditioner has come out. In this product, the power generated by PV is sent to the storage battery as DC and charged, so the conversion efficiency is greatly improved compared to the existing product that charges by converting from DC to AC and from AC to DC again. .
However, even when such an integrated power conditioner is used, when the PV generated power exceeds the input power of the storage battery and overflows from the direct current to the alternating current, or after the storage battery is fully charged If the power generation amount is insufficient, the conversion efficiency when converting from direct current to alternating current is reduced.

本発明は、このような事情に鑑みてなされたもので、その目的は、太陽光発電装置の発電量が増減する場合であっても、電力の変換効率の低減による電力損失を抑えることができる配電制御システム、配電制御方法を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is to suppress power loss due to reduction in power conversion efficiency even when the amount of power generated by a solar power generation device increases or decreases. A power distribution control system and a power distribution control method are provided.

上述した課題を解決するために、本発明は、太陽光発電装置によって発電される発電量を取得する発電量取得部と、前記取得された発電量と基準値とを比較し、前記発電量が前記基準値未満である場合には前記発電された電力を直流負荷側に供給すると判定し、前記発電量が前記基準値以上である場合には、前記電力を電力変換部によって交流に変換して逆潮流すると判定する電力制御部を有する。   In order to solve the above-described problem, the present invention compares a power generation amount acquisition unit that acquires a power generation amount generated by a solar power generation device, the acquired power generation amount and a reference value, and the power generation amount is When it is less than the reference value, it is determined that the generated power is supplied to the DC load side, and when the power generation amount is not less than the reference value, the power is converted into AC by a power conversion unit. It has an electric power control part which judges with a reverse power flow.

また、本発明は、上述の配電制御システムにおいて、前記電力制御部は、前記発電量が前記基準値以上である場合には、前記基準値を超えた発電量の少なくとも一部の発電電力を前記直流負荷側に供給すると判定し、残りの発電電力を交流に変換すると判定する。   Further, in the power distribution control system according to the present invention, when the power generation amount is equal to or greater than the reference value, the power control unit generates at least a part of the generated power exceeding the reference value. It determines with supplying to the DC load side, and determines with converting the remaining generated electric power into alternating current.

また、本発明は、上述の配電制御システムにおいて、蓄電装置を有し、前記電力制御部は、前記発電量が前記基準値未満である場合であって、供給対象の交流負荷が前記発電量を超える場合には、前記蓄電装置から放電させた電力と前記発電量に応じた電力を前記交流負荷に供給すると判定する。   Further, the present invention provides the above power distribution control system, further comprising a power storage device, wherein the power control unit is a case where the power generation amount is less than the reference value, and an AC load to be supplied is configured to reduce the power generation amount. When exceeding, it determines with supplying the electric power discharged from the said electrical storage apparatus and the electric power according to the said electric power generation amount to the said alternating current load.

また、本発明は、上述の配電制御システムにおいて、蓄電装置と、前記蓄電装置に蓄電が必要な電力量である必要電力量を求める必要電力予測部と、前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、前記電力制御部は、前記発電量が前記基準値を超える場合、前記必要電力量と前記予測発電量とに基づいて、前記蓄電装置が所定の時間までに目標充電量に到達するように充電する。   Further, the present invention provides a power storage device, a required power prediction unit that obtains a required power amount that is required for storing power in the power storage device, and power generation generated by the solar power generation device in the power distribution control system described above. A power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the amount, and the power control unit, based on the required power amount and the predicted power generation amount when the power generation amount exceeds the reference value Then, the power storage device is charged so as to reach the target charge amount by a predetermined time.

また、本発明は、上述の配電制御システムにおいて、蓄電装置と、前記蓄電装置に蓄電が必要な電力量である必要電力量を求める必要電力予測部と、前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、前記電力制御部は、前記発電量が前記基準値を超える場合、前記必要電力量と前記予測発電量とに基づいて、前記発電量の一部を前記蓄電装置に蓄電することで逆潮流電力量のピークカットを行なう。   Further, the present invention provides a power storage device, a required power prediction unit that obtains a required power amount that is required for storing power in the power storage device, and power generation generated by the solar power generation device in the power distribution control system described above. A power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the amount, and the power control unit, based on the required power amount and the predicted power generation amount when the power generation amount exceeds the reference value Then, a part of the power generation amount is stored in the power storage device to perform peak cut of the reverse flow power amount.

また、本発明は、上述の配電制御システムにおいて、前記電力制御部は、配電網と連系されていない場合には、前記発電量にかかわらず前記発電された電力によって前記直流負荷に供給する。   Further, according to the present invention, in the power distribution control system described above, when the power control unit is not connected to a power distribution network, the power control unit supplies the generated DC power to the DC load regardless of the power generation amount.

また、本発明は、上述の配電制御システムにおいて、前記基準値は、前記電力変換部の電力変換効率の基準を表す変換効率基準値であり、前記電力制御部は、前記取得された発電量に対応するパワーコンディショナーの電力変換効率と前記変換効率基準値とを比較する。   In the power distribution control system according to the present invention, the reference value is a conversion efficiency reference value indicating a reference of power conversion efficiency of the power conversion unit, and the power control unit is configured to calculate the acquired power generation amount. The power conversion efficiency of the corresponding power conditioner is compared with the conversion efficiency reference value.

また、本発明は、上述の配電制御システムにおいて、前記基準値は、前記蓄電装置の充放電状態に応じて異なる複数の基準値であり、前記電力制御部は、前記蓄電装置の充放電を行なった過去の履歴に基づいて、当該過去の履歴に応じた充放電状態に対応する基準値と前記発電量とを比較する。   Further, according to the present invention, in the power distribution control system described above, the reference value is a plurality of reference values that differ depending on a charge / discharge state of the power storage device, and the power control unit performs charge / discharge of the power storage device. Based on the past history, a reference value corresponding to the charge / discharge state corresponding to the past history is compared with the power generation amount.

また、本発明は、上述の配電制御システムにおいて、前記基準値は、前記蓄電装置の劣化状態に応じて異なる複数の基準値であり、前記電力制御部は、前記蓄電装置の劣化状態を検出した検出結果に基づいて、当該検出結果が示す劣化状態に対応する基準値と前記発電量とを比較する。   Further, according to the present invention, in the power distribution control system described above, the reference value is a plurality of reference values that differ depending on a deterioration state of the power storage device, and the power control unit detects a deterioration state of the power storage device. Based on the detection result, a reference value corresponding to the deterioration state indicated by the detection result is compared with the power generation amount.

また、本発明は、上述の配電制御システムにおいて、前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、前記基準値は、予測された発電量に応じて異なる複数の基準値であり、前記電力制御部は、前記発電量予測部によって得られた予測発電量に基づいて、当該予測発電量に応じた前記予測された発電量に対応する基準値と前記発電量とを比較する。   Further, the present invention includes a power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device in the above distribution control system, and the reference value is a prediction A plurality of reference values that differ depending on the generated power generation amount, and the power control unit, based on the predicted power generation amount obtained by the power generation amount prediction unit, the predicted power generation amount according to the predicted power generation amount Is compared with the power generation amount.

また、本発明は、上述の配電制御システムにおいて、前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、前記基準値は、前記太陽光発電装置によって発電される発電量と前記予測発電量との差に応じて異なる基準値が複数設定されており、前記電力制御部は、前記太陽光発電装置によって発電された発電量と前記発電量予測部によって得られた予測発電量との差を算出し、算出された差に応じた前記基準値と前記発電量を比較する。   Moreover, in the above-described power distribution control system, the present invention includes a power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device, and the reference value is the A plurality of different reference values are set according to the difference between the power generation amount generated by the solar power generation device and the predicted power generation amount, and the power control unit includes the power generation amount generated by the solar power generation device and the power generation amount A difference between the predicted power generation amount obtained by the power generation amount prediction unit is calculated, and the reference value corresponding to the calculated difference is compared with the power generation amount.

また、本発明は、上述の配電制御システムにおいて、前記電力変換部の電力変換効率に応じた基準値である第1基準値と、蓄電装置の充放電状態、蓄電装置の劣化状態、太陽光発電装置によって発電される発電量の予測値、の基準値項目のうちいずれが1つである第2項目における状態に応じて異なる複数の基準値である第2基準値群とを記憶する基準値記憶部を有し、前記電力制御部は、前記第1基準値を取得し、前記第2基準値群のうち第2項目に対応する取得結果に応じた第2基準値があるか否かを判定し、当該第2基準値がある場合には、前記第2基準値と前記発電量とを比較し、前記第2基準値がない場合には、前記第1基準値と前記発電量とを比較する。   Further, according to the present invention, in the power distribution control system described above, the first reference value that is a reference value according to the power conversion efficiency of the power conversion unit, the charge / discharge state of the power storage device, the deterioration state of the power storage device, solar power generation Reference value storage that stores a second reference value group that is a plurality of reference values that differ depending on the state of the second item, which is one of the reference value items of the predicted value of the amount of power generated by the device. The power control unit acquires the first reference value and determines whether there is a second reference value corresponding to an acquisition result corresponding to a second item in the second reference value group When there is the second reference value, the second reference value is compared with the power generation amount, and when there is no second reference value, the first reference value is compared with the power generation amount. To do.

また、本発明は、発電量取得部が、太陽光発電装置によって発電される発電量を取得し、電力制御部が、前記取得された発電量と基準値とを比較し、前記発電量が前記基準値未満である場合には前記発電された電力を直流負荷側に供給すると判定し、前記発電量が前記基準値以上である場合には、前記電力を電力変換装置によって交流に変換すると判定する配電制御方法である。   In the present invention, the power generation amount acquisition unit acquires the power generation amount generated by the solar power generation device, the power control unit compares the acquired power generation amount with a reference value, and the power generation amount is When it is less than the reference value, it is determined that the generated power is supplied to the DC load side. When the power generation amount is equal to or greater than the reference value, it is determined that the power is converted into AC by a power converter. This is a power distribution control method.

以上説明したように、この発明によれば、太陽光発電装置の発電量が増減する場合であっても、電力の変換ロスを低減することができる。   As described above, according to the present invention, it is possible to reduce power conversion loss even when the power generation amount of the solar power generation apparatus increases or decreases.

この発明の第1の実施形態における配電制御システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the power distribution control system in 1st Embodiment of this invention. 記憶部14に記憶される電力変換効率データの一例を示す図である。It is a figure which shows an example of the power conversion efficiency data memorize | stored in the memory | storage part. 配電制御システム1の動作を説明するフローチャートである。4 is a flowchart for explaining the operation of the power distribution control system 1. 第2の実施形態における配電制御システム1における電力変換について説明する図である。It is a figure explaining the power conversion in the power distribution control system 1 in 2nd Embodiment. 第4の実施形態における配電制御システム1における電力変換について説明する図である。It is a figure explaining the power conversion in the power distribution control system 1 in 4th Embodiment. 第5の実施形態における配電制御システム1における電力変換について説明する図である。It is a figure explaining the power conversion in the power distribution control system 1 in 5th Embodiment. 第6の実施形態における発電量と交流の電力に変換する電力量とについて説明する図である。It is a figure explaining the electric power generation amount in 6th Embodiment, and the electric energy converted into alternating current electric power. 第6の実施形態における発電量と交流の電力に変換する電力量とについて説明する図である。It is a figure explaining the electric power generation amount in 6th Embodiment, and the electric energy converted into alternating current electric power. 予測対象の日の天気予報情報が示す天候に応じて立案された充電計画について説明する図である。It is a figure explaining the charge plan drawn up according to the weather which the weather forecast information on the day for prediction shows. グリーンモードで充電する場合と、配電制御システム1によって充電する場合について説明する図である。It is a figure explaining the case where it charges by the green mode, and the case where it charges by the power distribution control system.

以下、本発明の一実施形態による配電制御システムについて図面を参照して説明する。
図1は、この発明の第1の実施形態における配電制御システムの構成を示す概略ブロック図である。
配電制御システム1は、太陽光発電装置10と、パワーコンディショナー(PCS)11と、蓄電装置12と、予測部13と、記憶部14と、電力制御部15、分電盤16を有する。
太陽光発電装置10は、太陽光を受けて発電をする。
PCS11は、太陽光発電装置10が発電した直流の電力を直流負荷(例えば、蓄電装置12)に供給する機能と、太陽光発電装置10が発電した直流の電力を交流の電力に変換して分電盤16に供給する機能と、蓄電装置12から供給される直流の電力を交流の電力に変換して分電盤16に供給する機能を有する。PCS11は、これらの電力供給機能について、電力制御部15からの指示に基づいて実行する。このPCS11としては、一体型パワーコンディショナーを用いることができる。
Hereinafter, a power distribution control system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram showing a configuration of a power distribution control system according to the first embodiment of the present invention.
The power distribution control system 1 includes a solar power generation device 10, a power conditioner (PCS) 11, a power storage device 12, a prediction unit 13, a storage unit 14, a power control unit 15, and a distribution board 16.
The solar power generation device 10 receives sunlight to generate power.
The PCS 11 has a function of supplying DC power generated by the solar power generation device 10 to a DC load (for example, the power storage device 12), and converts DC power generated by the solar power generation device 10 into AC power. It has a function of supplying to the switchboard 16 and a function of converting DC power supplied from the power storage device 12 into AC power and supplying it to the distribution board 16. The PCS 11 executes these power supply functions based on an instruction from the power control unit 15. An integrated power conditioner can be used as the PCS 11.

蓄電装置12は、蓄電時においてPCS11から供給される電力を充電し、放電時において充電された電力をPCS11に放電する。この蓄電装置12は、電力を蓄積することができればよく、例えば、蓄電池、電気二重層コンデンサ、フライホイール・バッテリー等を用いることができる。   The power storage device 12 charges the power supplied from the PCS 11 during power storage, and discharges the charged power to the PCS 11 during discharge. The power storage device 12 only needs to be able to store electric power. For example, a storage battery, an electric double layer capacitor, a flywheel battery, or the like can be used.

予測部13は、蓄電装置12に蓄電が必要な電力量である必要電力量を求める必要電力予測機能と、太陽光発電装置10によって発電される発電量の予測値である予測発電量を求める発電量予測機能と、を有する。
記憶部14は、基準値を記憶する。この基準値は、太陽光発電装置10によって発電される電力の基準を示す値である。また、この基準値は、パワーコンディショナー11の電力変換効率の基準を表す変換効率基準値を用いることもできる。また、記憶部14は、PCS11の電力変換効率と太陽光発電装置10の発電電力との関係を表す電力変換効率データを記憶する。
図2は、記憶部14に記憶される電力変換効率データの一例を示す図である。横軸は、太陽光発電装置10の発電電力であり、縦軸はPCS11の直流の電力から交流の電力に変換する場合の変換効率を示す電力変換効率である。ここで、発電電力がa(W)までの間において、PCS11の電力変換効率は0から増大する傾向にあるが、発電電力がa(W)以上の場合に比べて、電力変換効率が低いため、直流から交流に電力変換を行なうと、電力のロスが大きい。これに対し、発電電力がa(W)以上において、PCS11の電力変換効率は、η1以上であり、発電電力がa(W)未満の場合に比べて、増減が緩やかになる。このように、太陽光発電装置10の発電電力がa(W)以上の場合には、所定の電力変換効率(η1)以上の状態において、直流の電力を交流の電力に変換することができ、発電電力がa(W)未満の場合に比べて電力のロスを低減した状態で電力変換を行なうことができる。一方で、発電電力がa(W)未満の場合には、直流から交流への電力の変換を行なわずに、直流の電力のまま蓄電装置12に蓄電する。そのため、記憶部14は、所定の電力変換効率以上に達する発電電力(例えば、a(W))を記憶する。また、電力変換効率(例えば、η1)を記憶するようにしてもよい。
The prediction unit 13 includes a necessary power prediction function for obtaining a required power amount that is the amount of power that needs to be stored in the power storage device 12, and power generation for obtaining a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device 10. A quantity prediction function.
The storage unit 14 stores a reference value. This reference value is a value indicating the reference of the power generated by the solar power generation device 10. Further, as this reference value, a conversion efficiency reference value representing a reference of power conversion efficiency of the power conditioner 11 can be used. In addition, the storage unit 14 stores power conversion efficiency data representing the relationship between the power conversion efficiency of the PCS 11 and the generated power of the solar power generation device 10.
FIG. 2 is a diagram illustrating an example of power conversion efficiency data stored in the storage unit 14. The horizontal axis is the generated power of the photovoltaic power generation apparatus 10, and the vertical axis is the power conversion efficiency indicating the conversion efficiency when converting the DC power of the PCS 11 to the AC power. Here, the power conversion efficiency of the PCS 11 tends to increase from 0 until the generated power reaches a (W), but the power conversion efficiency is lower than that when the generated power is a (W) or more. When power is converted from direct current to alternating current, power loss is large. On the other hand, when the generated power is a (W) or more, the power conversion efficiency of the PCS 11 is η1 or more, and the increase / decrease is moderate compared to the case where the generated power is less than a (W). Thus, when the generated power of the solar power generation device 10 is a (W) or more, in a state of a predetermined power conversion efficiency (η1) or more, DC power can be converted to AC power, It is possible to perform power conversion in a state where power loss is reduced as compared with the case where the generated power is less than a (W). On the other hand, when the generated power is less than a (W), the power is stored in the power storage device 12 as the direct current power without converting the direct current power to the alternating current power. Therefore, the memory | storage part 14 memorize | stores the generated electric power (for example, a (W)) which reaches more than predetermined power conversion efficiency. Moreover, you may make it memorize | store power conversion efficiency (for example, (eta) 1).

図1に戻り、電力制御部15は、太陽光発電装置10からPCS11に対して入力された直流の電力がPCS11において測定された測定結果を、太陽光発電装置10によって発電される発電量としてPCS11から取得する。また、電力制御部15は、取得された発電量と記憶部14に記憶された基準値とを比較し、発電量が基準値未満である場合には発電された電力をPCS11から直流負荷(例えば、蓄電装置12や需要家内に設けられる直流負荷)に供給すると判定し、発電量が基準値以上である場合には、電力をPCS11によって交流に変換すると判定し、PCS11に対して、判定結果に従った電力変換を行なわせる。   Returning to FIG. 1, the power control unit 15 uses the measurement result obtained by measuring the DC power input from the solar power generation device 10 to the PCS 11 in the PCS 11 as the power generation amount generated by the solar power generation device 10. Get from. In addition, the power control unit 15 compares the acquired power generation amount with the reference value stored in the storage unit 14, and when the power generation amount is less than the reference value, the generated power is transferred from the PCS 11 to a DC load (for example, If the power generation amount is greater than or equal to the reference value, it is determined that the power is converted into AC by the PCS 11, and the determination result is given to the PCS 11. The power conversion is performed accordingly.

分電盤16は、電力制御部15からの指示に応じて、電力を系統に逆潮流させたり、室内負荷に電力を供給する。   In response to an instruction from the power control unit 15, the distribution board 16 causes power to flow backward through the system or supplies power to the indoor load.

図3は、配電制御システム1の動作を説明するフローチャートである。
電力制御部15は、太陽光発電装置10の発電量をPCS11から取得し(ステップS101)、得られた発電量と記憶部14に記憶された電力の基準を示す基準値とを比較する(ステップS102)。電力制御部15は、発電量が基準値以上である場合には(ステップS103−YES)、発電電力を交流の電力に変換するようPCS11に指示を出力する。この指示に従い、PCS11は、太陽光発電装置10から供給される直流の電力を交流の電力に変換し、分電盤16に供給する(ステップS104)。
一方、発電電力が基準値未満である場合(ステップS103−NO)、電力制御部15は、発電電力を蓄電装置12に出力させる指示をPCS11に出力する。この指示に従い、PCS11は、太陽光発電装置10から供給される直流の電力を蓄電装置12に供給する(ステップS105)。例えばPCS11は、太陽光発電装置10から出力される直流の電力の電圧レベルが蓄電装置12に充電可能な電圧レベルとなっており、この太陽光発電装置10から出力される直流の電力をそのまま蓄電装置12に供給することで蓄電装置12に充電をする。
FIG. 3 is a flowchart for explaining the operation of the power distribution control system 1.
The power control unit 15 acquires the power generation amount of the solar power generation apparatus 10 from the PCS 11 (step S101), and compares the obtained power generation amount with a reference value indicating a reference of power stored in the storage unit 14 (step S101). S102). When the power generation amount is equal to or greater than the reference value (step S103—YES), the power control unit 15 outputs an instruction to the PCS 11 to convert the generated power into AC power. In accordance with this instruction, the PCS 11 converts the DC power supplied from the solar power generation device 10 into AC power and supplies the AC power to the distribution board 16 (step S104).
On the other hand, when the generated power is less than the reference value (step S103—NO), the power control unit 15 outputs an instruction for causing the power storage device 12 to output the generated power to the PCS 11. In accordance with this instruction, the PCS 11 supplies DC power supplied from the solar power generation device 10 to the power storage device 12 (step S105). For example, in the PCS 11, the voltage level of the DC power output from the solar power generation device 10 is a voltage level at which the power storage device 12 can be charged, and the DC power output from the solar power generation device 10 is stored as it is. The power storage device 12 is charged by being supplied to the device 12.

電力制御部15は、一定時間の経過を待った後(ステップS106)、所定時間が経過したか否かを判定し(ステップS107)、所定時間が経過していなければ(ステップS107−YES)、ステップS106に移行する。
一方、電力制御部15は、所定時間が経過した場合には(ステップS107−NO)、電力制御を終了するか否かを判定し(ステップS108)、電力制御を終了しない場合には(ステップS108−NO)、ステップS101に移行し、発電量を取得し、電力制御を終了する場合には(ステップS108−YES)、この処理フローを終了する。
The power control unit 15 waits for a certain period of time (step S106) to determine whether a predetermined time has elapsed (step S107). If the predetermined time has not elapsed (step S107-YES), The process proceeds to S106.
On the other hand, when the predetermined time has elapsed (NO in step S107), the power control unit 15 determines whether or not to end the power control (step S108), and when not ending the power control (step S108). -NO), the process proceeds to step S101, the amount of power generation is acquired, and if the power control is to be ended (step S108-YES), this processing flow is ended.

このように、電力制御部15は、所定時間毎に電力量を取得して基準値と比較して交流の電力に変換するか蓄電装置12に供給するかを判定するようにしたので、太陽光発電装置10の付近の天候が変化したとしても、その天候の変化に伴って変化する電力量に応じて、蓄電装置12に供給するか交流の電力に変換するかを判定することができる。これにより、天候の変化によって発電量が変化したとしても、その発電量に応じて、電力変換に伴う電力のロスが所定よりも大きくなる場合には交流の電力に変換せずに蓄電装置12に充電し、電力変換に伴う電力のロスが所定以下である場合には、交流の電力に変換して分電盤16側に供給することができる。このように、発電量が小さく、電力変換に伴う電力のロスが大きい場合には交流の電力に変換せず、少ない発電量でも蓄電装置12に電力を蓄積していった方が、電力を有効活用することができる。   As described above, the power control unit 15 determines whether to acquire the amount of power every predetermined time and compare it with the reference value to convert to AC power or to supply it to the power storage device 12. Even if the weather in the vicinity of the power generation device 10 changes, it can be determined whether to supply to the power storage device 12 or convert to AC power according to the amount of power that changes with the change in the weather. As a result, even if the power generation amount changes due to a change in weather, if the power loss due to power conversion becomes larger than a predetermined amount according to the power generation amount, the power storage device 12 is not converted into AC power. When the battery is charged and the power loss accompanying power conversion is less than or equal to a predetermined value, it can be converted into AC power and supplied to the distribution board 16 side. As described above, when the power generation amount is small and the power loss due to power conversion is large, it is not converted to AC power, and it is more effective to store power in the power storage device 12 even with a small power generation amount. Can be used.

次に、上述の配電制御システム1における他の実施形態について説明する。以下説明する配電制御システム1の他の実施形態の構成は図1に示す構成と基本的には同じであるが、制御方法が一部異なるため、その相違点を説明する。
(第2の実施形態)
第1の実施形態において、PCS11は、太陽光発電装置10から得られた直流の電力を蓄電装置12にそのまま供給して充電したが、第2実施形態においては、太陽光発電装置10から得られた直流の電力の電圧レベルを、所定の電圧レベルに変換し、その直流の電力を蓄電装置12に供給して蓄電する。太陽光発電装置10から出力される電力の電圧レベルが、蓄電装置12に蓄電可能な電圧レベルに到達していない場合には、このようにしてDC/DCコンバータとして機能することで、蓄電装置12に蓄電することができる。このDC/DCの電力変換を行なう場合、その電力変換のロスが少なくなるような回路構成を用いることが好ましい。
図4は、第2の実施形態における配電制御システム1における電力変換について説明する図である。縦軸が発電量であり、横軸が時間である。電力制御部15は、発電量が基準値以上である場合には、太陽光発電装置10から得られた直流の電力をPCS11によってDC/AC変換を行なわせ、交流の電力として出力させ、発電量が基準値未満である場合には、太陽光発電装置10から得られた直流の電力をPCS11によってDC/DC変換を行なわせ、直流の電力として出力させ、蓄電装置12に充電させる。
Next, another embodiment in the above-described power distribution control system 1 will be described. The configuration of another embodiment of the power distribution control system 1 to be described below is basically the same as the configuration shown in FIG. 1, but the control method is partially different, so the difference will be described.
(Second Embodiment)
In the first embodiment, the PCS 11 supplies and charges the direct current power obtained from the solar power generation device 10 to the power storage device 12 as it is. However, in the second embodiment, the PCS 11 is obtained from the solar power generation device 10. The direct current voltage level is converted into a predetermined voltage level, and the direct current power is supplied to the power storage device 12 for storage. When the voltage level of the electric power output from the solar power generation device 10 has not reached the voltage level that can be stored in the power storage device 12, it functions as a DC / DC converter in this way, thereby the power storage device 12 Can be charged. When performing this DC / DC power conversion, it is preferable to use a circuit configuration that reduces the loss of the power conversion.
FIG. 4 is a diagram illustrating power conversion in the power distribution control system 1 according to the second embodiment. The vertical axis is the amount of power generation, and the horizontal axis is time. When the power generation amount is equal to or greater than the reference value, the power control unit 15 causes the DCS obtained from the solar power generation device 10 to be DC / AC converted by the PCS 11 and output as AC power, thereby generating the power generation amount. Is less than the reference value, DC / DC conversion is performed on the DC power obtained from the solar power generation device 10 by the PCS 11 to output the DC power as the DC power, and the power storage device 12 is charged.

(第3の実施形態)
第1の実施形態において、電力制御部15は、太陽光発電装置10の発電量と基準値とを比較する場合について説明したが、第3の実施形態においては、基準値として、電力変換効率の基準値(例えば、図2に示すη1)を記憶部14に記憶させておく。そして、電力制御部15は、発電量の測定値が得られた際に、図2に示す電力変換効率と発電電力との関係に基づいて、測定された発電電力に対応する電力変換効率を読み出す。そして、電力制御部15は、発電量に応じた電力変換効率と基準値とを比較し、発電量に応じた電力変換効率が基準値以上である場合に、太陽光発電装置10から出力される直流の電力をPCS11によって交流の電力に変換させ、発電量に応じた電力変換効率が基準値未満である場合には、太陽光発電装置10から出力される直流の電力を蓄電装置12に供給して蓄電する。
(Third embodiment)
In 1st Embodiment, although the electric power control part 15 demonstrated the case where the electric power generation amount of the solar power generation device 10 and a reference value were compared, in 3rd Embodiment, power conversion efficiency is used as a reference value. A reference value (for example, η 1 shown in FIG. 2) is stored in the storage unit 14. Then, when the measurement value of the power generation amount is obtained, the power control unit 15 reads the power conversion efficiency corresponding to the measured generated power based on the relationship between the power conversion efficiency and the generated power shown in FIG. . And the power control part 15 compares the power conversion efficiency according to electric power generation amount with a reference value, and when the power conversion efficiency according to electric power generation amount is more than a reference value, it is output from the solar power generation device 10. When the DC power is converted into AC power by the PCS 11 and the power conversion efficiency corresponding to the amount of power generation is less than the reference value, the DC power output from the solar power generation device 10 is supplied to the power storage device 12. To store electricity.

(第4の実施形態)
第1の実施形態において、電力制御部15は、太陽光発電装置10からの発電電力を全て、直流の電力として蓄電装置12に供給するか、交流の電力として分電盤16に供給して逆潮流させるかを制御するようにした。この第4の実施形態において、電力制御部15は、発電量が基準値以上である場合には、発電量が基準値以上である場合には、基準値を超えた発電量の少なくとも一部の発電電力を直流負荷側に供給すると判定し、残りの発電電力を交流に変換すると判定する。図5は、第4の実施形態における配電制御システム1における電力変換について説明する図である。縦軸が発電量であり、横軸が時間である。電力制御部15は、例えば、発電量が基準値以上である場合において、基準値を超えた電力については、直流負荷に供給し、基準値未満の電力については、PCS11によって直流の電力から交流の電力に変換するように制御する。また、電力制御部15は、基準値を超えた電力の全てを直流負荷に供給してもよいし、基準値を超えた電力のうち一部を直流負荷に供給するように制御してもよい。また、電力制御部15は、基準値を超えた電力の全てを直流負荷に供給するか、基準値を超えた電力のうち一部を直流負荷に供給するかについては、時間に応じて切り替えるようにしてもよい。例えば、逆潮流が発生しやすい日中の時間帯においては、基準値を超えた電力の全てを直流負荷に供給するようにし、それ以外の時間帯においては、基準値を超えた電力の一部を直流負荷に供給する。これにより、複数の需要家において、逆潮流が発生したとしても、逆潮流される電力のピークを低減することが可能である。
(Fourth embodiment)
In the first embodiment, the power control unit 15 supplies all the generated power from the solar power generation device 10 to the power storage device 12 as DC power, or supplies it to the distribution board 16 as AC power and reverses it. I tried to control the tide. In the fourth embodiment, when the power generation amount is equal to or greater than the reference value, the power control unit 15 performs at least a part of the power generation amount that exceeds the reference value when the power generation amount is equal to or greater than the reference value. It is determined that the generated power is supplied to the DC load side, and it is determined that the remaining generated power is converted to AC. FIG. 5 is a diagram illustrating power conversion in the power distribution control system 1 according to the fourth embodiment. The vertical axis is the amount of power generation, and the horizontal axis is time. For example, when the power generation amount is equal to or greater than a reference value, the power control unit 15 supplies the power exceeding the reference value to the DC load, and the power less than the reference value is converted from the DC power to the AC power by the PCS 11. Control to convert to electric power. Further, the power control unit 15 may supply all of the power exceeding the reference value to the DC load, or may control to supply a part of the power exceeding the reference value to the DC load. . Further, the power control unit 15 switches between supplying all of the power exceeding the reference value to the DC load or supplying a part of the power exceeding the reference value to the DC load according to time. It may be. For example, during the daytime hours when reverse power flow is likely to occur, all the power exceeding the reference value is supplied to the DC load, and in other times, part of the power exceeding the reference value is supplied. Is supplied to the DC load. Thereby, even if a reverse power flow occurs in a plurality of consumers, it is possible to reduce the peak of the reverse power flow.

(第5の実施形態)
第5の実施形態において、電力制御部15は、太陽光発電装置10の発電量が基準値未満である場合であって、供給対象の交流負荷(例えば、分電盤16に接続された需要家内の交流負荷)に対して供給が必要となる電力量が発電量を超える場合には、蓄電装置12から放電させた電力と、太陽光発電装置10から供給される発電電力とPCS11によって交流の電力に変換し、交流負荷に供給させる。図6は、第5の実施形態における配電制御システム1における電力変換について説明する図である。縦軸が発電量、横軸が時間である。ある時刻において発電された電力の電力量が基準値を越えていないが、太陽光発電装置10から得られた電力を交流負荷に電力を供給する必要がある場合、電力制御部15は、蓄電装置12から放電してPCS11に電力を供給させ、少なくとも放電された電力と発電量の合計が基準値以上となるようにするとともに、供給対象である交流負荷に対して必要な電力に到達するような電力を蓄電装置12から放電させる。ここでは、太陽光発電装置10から供給される電力量が基準値未満である場合であっても、蓄電装置12から放電させ、これらを合わせて基準値以上の電力量を得ることで、直流の電力から交流の電力に変換する際のロスを、太陽光発電装置10から供給される電力のみを電力変換する場合に比べて、低減することができる。このように、第5の実施形態では、太陽光発電装置10からの電力量が基準値を下回っていたとしても、交流負荷が大きい場合には、蓄電装置12から、少なくとも基準値を上回るまで放電を行ない、発電電力と合わせてDC/AC変換を行なう。
(Fifth embodiment)
In 5th Embodiment, the electric power control part 15 is a case where the electric power generation amount of the solar power generation device 10 is less than a reference value, Comprising: In the customer's AC load (for example, the consumer connected to the distribution board 16) If the amount of power that needs to be supplied to the AC load) exceeds the amount of power generation, the power discharged from the power storage device 12, the power generated from the solar power generation device 10, and the AC power generated by the PCS 11 are used. To be supplied to an AC load. FIG. 6 is a diagram illustrating power conversion in the power distribution control system 1 according to the fifth embodiment. The vertical axis is the amount of power generation, and the horizontal axis is time. When the amount of electric power generated at a certain time does not exceed the reference value but the electric power obtained from the solar power generation device 10 needs to be supplied to the AC load, the power control unit 15 The electric power is discharged from 12 and supplied to the PCS 11 so that at least the sum of the discharged electric power and the amount of power generation is equal to or greater than the reference value, and the necessary electric power for the AC load to be supplied is reached. Electric power is discharged from the power storage device 12. Here, even if the amount of power supplied from the solar power generation device 10 is less than the reference value, the power storage device 12 is discharged, and by combining these to obtain the amount of power equal to or greater than the reference value, Loss when converting from electric power to AC power can be reduced as compared with the case where only the electric power supplied from the solar power generation device 10 is converted. As described above, in the fifth embodiment, even when the amount of power from the solar power generation device 10 is below the reference value, when the AC load is large, the power storage device 12 discharges at least until the reference value is exceeded. And DC / AC conversion is performed together with the generated power.

(第6の実施形態)
第6の実施形態において、電力制御部15は、朝夕の日照が弱い時間帯は、太陽光発電装置10からの電力を全て蓄電装置12に蓄積する。太陽の高度が高くなり、発電量が基準値を超えるような時間帯においては、電力制御部15は、太陽光発電装置10からの電力の少なくとも基準値に相当する電力量について、PCS11によって交流の電力に変換させ、残りの電力は蓄電装置12に充電を行う。ここでは、DC/AC変換する電力量は、基準値以上であれば任意の電力量としてよい。
図7、図8は、第6の実施形態における発電量と交流の電力に変換する電力量とについて説明する図である。図7(a)、図8(a)の縦軸は発電量を表し、横軸は時間を表す。図7(b)、図8(b)の縦軸は発電量を表し、横軸は時間を表す。図7(a)、図8(a)において、朝の時間帯において0または0付近から発電量が増加し、昼の時間帯において発電量が最も高くなり、その後、夕方の時間帯において、発電量が0または0付近まで減少する。ここで、図7に示す場合において、発電量の基準値を超える時間帯(例えば昼の時間帯)については、図7(b)に示すように、太陽光発電装置10から得られる電力のうち、一定の電力については、直流の電力から交流の電力に変換する。電力制御部15によってこのような制御が行なわれることにより、図7(a)に示すように、朝の時間帯と夕方の時間帯において、発電量が基準値に到達していないため、発電電力は蓄電装置12に充電される。昼の時間帯において、発電量が基準値を超えると、充電される電力は一旦0またはほぼ0になるが、発電量が増大するにつれて充電される電力(発電量と交流の電力に変換される電力量の差)も増大し、夕方の時間帯に近づくにつれて0に近づき、発電量が基準値未満となった場合に、交流の電力への変換が行なわれなくなるため、太陽光発電装置10からの電力は全て蓄電装置12に蓄積される。
図8(b)に示す例では、太陽光発電装置10から得られる電力のうち、直流の電力から交流の電力に変換する変換量を時間の経過に応じて変える場合の一例について図示されており、ここでは、時間が経過するにつれて変換量が増大する場合について図示されている。このため、図8(a)に示すように、昼の時間帯において発電量が基準値を超えると、蓄電量が0または0付近から増大するが、交流の電力に変換される量も増大する。そのため、図8(a)では、昼の時間帯における蓄電量のピークが到来する時刻が、図7(a)の場合に比べて、早い時間帯となっている。
(Sixth embodiment)
In the sixth embodiment, the power control unit 15 accumulates all the power from the solar power generation device 10 in the power storage device 12 in the time zone when the morning and evening sunshine is weak. In a time zone in which the altitude of the sun is high and the power generation amount exceeds the reference value, the power control unit 15 uses the PCS 11 to exchange AC power for the power amount corresponding to at least the reference value of the power from the solar power generation device 10. The power is converted into electric power, and the remaining electric power is charged in the power storage device 12. Here, the amount of power for DC / AC conversion may be any amount of power as long as it is equal to or greater than a reference value.
7 and 8 are diagrams for explaining the power generation amount and the amount of power to be converted into AC power in the sixth embodiment. 7A and 8A, the vertical axis represents the power generation amount, and the horizontal axis represents time. In FIG. 7B and FIG. 8B, the vertical axis represents power generation, and the horizontal axis represents time. 7 (a) and 8 (a), the power generation amount increases from 0 or near zero in the morning time zone, and the power generation amount becomes the highest in the day time zone, and then the power generation amount in the evening time zone. The amount decreases to 0 or near zero. Here, in the case shown in FIG. 7, regarding the time zone exceeding the reference value of the power generation amount (for example, the day time zone), as shown in FIG. 7B, of the electric power obtained from the solar power generation device 10. For certain power, DC power is converted to AC power. When such control is performed by the power control unit 15, the power generation amount does not reach the reference value in the morning time zone and the evening time zone, as shown in FIG. Is charged in the power storage device 12. When the power generation amount exceeds the reference value in the daytime period, the charged power once becomes 0 or almost 0, but as the power generation amount increases, the charged power (converted into power generation amount and AC power). The difference in the amount of electric power) also increases, approaches 0 in the evening time zone, and when the power generation amount becomes less than the reference value, conversion to AC power is not performed. Is stored in the power storage device 12.
In the example illustrated in FIG. 8B, an example of changing the amount of conversion from DC power to AC power among the power obtained from the solar power generation device 10 according to the passage of time is illustrated. Here, the case where the conversion amount increases as time elapses is illustrated. For this reason, as shown in FIG. 8A, when the amount of power generation exceeds the reference value in the daytime period, the amount of stored electricity increases from 0 or near 0, but the amount converted to AC power also increases. . For this reason, in FIG. 8A, the time when the peak of the storage amount in the daytime time arrives is earlier than in the case of FIG.

(第7の実施形態)
この実施形態において、電力制御部15は、予測部13の必要電力予測機能や予測発電量予測機能を利用し、蓄電計画を生成し、太陽光発電装置10からの電力の利用計画を立案する。この実施形態では、例えば、朝夕の日照が弱い時間帯では、太陽光発電装置10から得られた電力を全て充電し、太陽の高度が高くなり、発電量が基準値を越えた時間帯(例えば昼の時間帯)においては、その時点における蓄電量とその日充電すべき充電量を計測、予測し、その日の日射量の予測値から、いつ充電すべきかの充電計画を生成し、その充電計画に従って充電を行う。日射量の予測値は、例えば、インターネットを介して接続される外部サーバから取得することができ、電力制御部15は、例えば、予測を行なう対象の日の前日に、予測対象日の日射量の予測値を外部サーバから受信する。予測部13は、必要電力を予測する場合、例えば、過去の数ヶ月から数年程度の電力使用履歴が記憶されたデータベースを参照し、予測対象日の天候、気温、室温等を天気予報サーバから取得し、これら天候、気温、室温の他に、季節、曜日等も含め最も類似する日において電力が使用された電力使用履歴を選択することで予測する。また、予測部13は、予測発電量を予測する場合、例えば、過去の数ヶ月から数年程度の発電履歴が記憶されたデータベースを参照し、予測対象日の天候、気温、室温等を天気予報サーバから取得し、これら天候、記憶、室温で最も類似する日において発電された発電履歴を選択することで予測する。
(Seventh embodiment)
In this embodiment, the power control unit 15 uses the necessary power prediction function and the predicted power generation amount prediction function of the prediction unit 13 to generate a power storage plan, and makes a power use plan from the solar power generation device 10. In this embodiment, for example, in the time zone when the morning and evening sunshine is weak, all the electric power obtained from the solar power generation device 10 is charged, the solar altitude is high, and the power generation amount exceeds the reference value (for example, In the daytime), measure and predict the amount of electricity stored at that time and the amount of charge that should be charged that day, generate a charge plan for when to charge from the predicted value of the amount of solar radiation for that day, and follow the charge plan Charge the battery. The predicted value of the amount of solar radiation can be acquired from, for example, an external server connected via the Internet, and the power control unit 15 can determine the amount of solar radiation on the prediction target day, for example, on the day before the target date of prediction. Receive predicted values from an external server. When predicting the required power, for example, the prediction unit 13 refers to a database in which a power usage history of about several months to several years in the past is stored, and the weather, temperature, room temperature, etc. of the prediction target day are referred to from the weather forecast server. In addition to these weather, temperature, and room temperature, it is predicted by selecting a power usage history in which power was used on the most similar day including the season and day of the week. Further, when predicting the predicted power generation amount, for example, the prediction unit 13 refers to a database in which the power generation history of the past several months to several years is stored, and predicts the weather, temperature, room temperature, etc. of the prediction target day. The prediction is made by selecting the power generation history generated from the server and generated on the most similar day in the weather, memory, and room temperature.

図9は、予測対象の日の天気予報情報が示す天候に応じて立案された充電計画について説明する図である。図9(a)の縦軸は発電量である、横軸は時間である。図9(b)の縦軸は交流変換量であり、横軸は時間である。図9(b)では、昼の時間帯における所定の時刻において交流に変換する量がピークとなるように充電計画が設定された場合について図示されている。ここでは、発電電力が基準値を越えると予測された時間帯であって、発電電力のうち少なくとも基準値に相当する電力量を交流の電力に変換し、その残りの電力を蓄電装置12に蓄電するような充電計画であり、その日の所定の時間(例えば夕方の時刻)までには、蓄電装置12の蓄電量が所定の値(例えば残量の目標値)となるような充電計画が生成される。また、図9(b)においては、交流の電力に変換する量は、昼の時間帯における所定の時間がピークとなるような計画が立案される。このため、図9(a)に示すように、昼の時間帯において発電量が基準値を超えると、蓄電量が0または0付近から増大する点において、図7(a)と同じである。しかし、交流の電力に変換される量が所定の時刻に増大するように制御されるため、図9(a)では、昼の時間帯における充電量のピーク値は、図7(a)に示す昼の時間帯における充電量のピーク値よりも低くなっている。   FIG. 9 is a diagram for explaining a charging plan designed according to the weather indicated by the weather forecast information for the prediction target day. In FIG. 9A, the vertical axis represents the amount of power generation, and the horizontal axis represents time. The vertical axis in FIG. 9B is the AC conversion amount, and the horizontal axis is time. FIG. 9B illustrates a case where the charging plan is set so that the amount to be converted into alternating current reaches a peak at a predetermined time in the daytime period. Here, it is a time zone in which the generated power is predicted to exceed the reference value, and at least the amount of power corresponding to the reference value of the generated power is converted into AC power, and the remaining power is stored in the power storage device 12. The charging plan is generated so that the amount of power stored in the power storage device 12 becomes a predetermined value (for example, the target value of the remaining amount) by a predetermined time (for example, evening time) of the day. The In FIG. 9B, the amount of AC power to be converted is planned such that a predetermined time in the daytime period peaks. For this reason, as shown in FIG. 9A, when the amount of power generation exceeds the reference value in the daytime period, the amount of stored electricity increases from 0 or near 0, which is the same as FIG. 7A. However, since the amount converted into AC power is controlled to increase at a predetermined time, in FIG. 9A, the peak value of the charge amount in the daytime period is shown in FIG. The charge amount is lower than the peak value in the daytime period.

図9(c)は、午後から曇天になるような日において充電計画に沿って配電制御が行なわれた場合を説明する図である。この場合、午後から曇天となり、発電量が低下することが予測されるため、発電量が基準値に到達した時点でただちに交流の電力への変換を開始するのではなく、発電量が基準値を越えた後も一定時間だけ充電を行ない、その後、交流の電力への変換を開始する。これにより、発電量が基準値に到達した時点で交流の電力への変換を行なうと、その日の所定の時刻までに蓄電装置12を目標の充電量までに達しないような曇りの天候であっても、発電量が基準値を越えてもある程度充電を継続することで、その日の所定の時刻までに蓄電装置12に目標の充電量まで充電することができる。   FIG.9 (c) is a figure explaining the case where power distribution control is performed along the charging plan on the day when it becomes cloudy from the afternoon. In this case, it is predicted that the amount of power generation will be cloudy in the afternoon and the power generation amount will decrease, so the conversion of the power generation amount to the reference value is not started immediately when the power generation amount reaches the reference value. After exceeding, the battery is charged for a certain time, and thereafter, conversion to AC power is started. Thus, when conversion to AC power is performed when the power generation amount reaches the reference value, the cloudy weather is such that the power storage device 12 does not reach the target charge amount by a predetermined time of the day. In addition, even if the power generation amount exceeds the reference value, charging is continued to some extent, so that the power storage device 12 can be charged to the target charge amount by a predetermined time of the day.

図9(d)は、日中に逆潮流のピークが生じないように逆潮流のピークカットをする場合を説明する図である。図9(d)において、縦軸が発電量であり、横軸が時間を表している。電力制御部15は、予測部13による予測結果に基づいて、日中の発電量が増大してピークを迎えるような予測結果が得られた場合には、発電量が基準値を超えた期間において、全て交流の電力に変換して逆潮流するのではなく、基準値を超える期間のうち少なくとも一部の期間において、基準値を超える発電量の一部を蓄電装置12の充電に割り当て、充電する。これにより、逆潮流される電力を低減させることができるため、系統側に逆潮流される電力のピークカットを行なうことができる。このような計画は、1つの需要家における配電制御システム1が実行するだけでなく、所定の地域内における複数の需要家におけるそれぞれの配電制御システム1が実行することで、その所定の地域全体として、逆潮流のピークを低減することができる。   FIG. 9D is a diagram for explaining a case where the peak of the reverse power flow is cut so that the peak of the reverse power flow does not occur during the daytime. In FIG. 9D, the vertical axis represents the power generation amount, and the horizontal axis represents time. In the period when the power generation amount exceeds the reference value, the power control unit 15 obtains a prediction result such that the power generation amount during the day reaches a peak based on the prediction result by the prediction unit 13. Instead of converting all the power into AC power and performing reverse power flow, in at least a part of the period exceeding the reference value, a part of the power generation amount exceeding the reference value is assigned to charge the power storage device 12 and charged. . Thereby, since the electric power which flows backward can be reduced, the peak cut of the electric power which flows backward to the system side can be performed. Such a plan is executed not only by the power distribution control system 1 in one consumer, but also by each power distribution control system 1 in a plurality of consumers in a predetermined area, so that the entire predetermined area The peak of reverse power flow can be reduced.

図10は、グリーンモードで充電する場合と、配電制御システム1によって充電する場合について説明する図である。図10(a)において、縦軸は充電量であり横軸は時間である。図10(b)において、縦軸はSOC(State Of Charge;充電比率)であり横軸は時間である。一般的なグリーンモードでは、発電電力を全て蓄電池に充電し、満充電になると全て逆潮流させるように制御される。そのため、図10(a)に示すように、充電開始から充電量が急峻に増加する(符号a2)。これに対して上述の配電制御システム1では、受電量を天候によって変動する発電量を考慮して適宜制御することができるため、充電量は、充電開始から緩やかに増加する(符号a1)。これにより、SOCについても、図10(b)に示すように、グリーンモードでは朝の時間帯において充電が行なわれ、昼の時間帯においては、SOCがほぼ100%に到達するため(符号a1)、昼の時間帯以降は全て逆潮流が行なわれる。これに対し、配電制御システム1では、昼の時間帯において緩やかに充電が行なわれ、夕方にはSOCがほぼ100%となるように充電されるため(符号a2)、昼の時間帯において、発電量の全てが逆潮流されるのではなく、一部が逆潮流されるため、逆潮流のピークを抑えることができる。   FIG. 10 is a diagram illustrating a case where charging is performed in the green mode and a case where charging is performed by the power distribution control system 1. In FIG. 10A, the vertical axis represents the charge amount and the horizontal axis represents time. In FIG. 10B, the vertical axis represents SOC (State Of Charge) and the horizontal axis represents time. In a general green mode, all the generated power is charged into the storage battery, and when the battery is fully charged, all power is controlled to flow backward. For this reason, as shown in FIG. 10A, the amount of charge sharply increases from the start of charging (reference a2). On the other hand, in the above-described power distribution control system 1, the amount of power received can be appropriately controlled in consideration of the amount of power generation that varies depending on the weather, so the amount of charge gradually increases from the start of charging (reference a1). As a result, as shown in FIG. 10B, the SOC is charged in the morning time zone in the green mode, and the SOC reaches almost 100% in the day time zone (reference number a1). In the daytime, all reverse currents occur. On the other hand, in the power distribution control system 1, since charging is performed slowly during the daytime and is charged so that the SOC becomes approximately 100% in the evening (reference a2), power generation is performed during the daytime. Since not all of the quantity is reversely flowed, but part of it is reversely flowed, the peak of reverse flow can be suppressed.

(第8の実施形態)
この実施形態において、記憶部14は、基準値として蓄電装置12の充放電状態に応じて異なる複数の基準値を記憶する。蓄電装置12の充放電状態に応じて異なる複数の基準値としては、例えば、蓄電装置12の残量に応じて異なる複数の基準値を用いることができる。また、例えば、充放電を行なった過去の履歴に応じて異なる複数の基準値を用いることができる。充放電を行なった過去の履歴としては、ある時刻T1から時刻T2までW1(kwh)の充電を行ない、時刻T3から時刻T4まではW2(kwh)の放電を行なった、等の種々の充放電の履歴があり、これらの履歴それぞれに対して異なる基準値を記憶するようにしてもよい。また、例えば、梅雨の時期など日射時間が少ない日が一定以上連続するような期間等、充放電のサイクル等が他の期間(春、夏、秋、冬)と異なる期間毎に異なる基準値を記憶するようにしてもよいし、長期的な電池の劣化状態(容量変化)に応じて、異なる基準値を記憶するようにしてもよい。
(Eighth embodiment)
In this embodiment, the memory | storage part 14 memorize | stores the some reference value which changes according to the charging / discharging state of the electrical storage apparatus 12 as a reference value. As the plurality of reference values that differ depending on the charge / discharge state of the power storage device 12, for example, a plurality of reference values that differ depending on the remaining amount of the power storage device 12 can be used. In addition, for example, a plurality of different reference values can be used depending on the past history of charge / discharge. The past charge / discharge history includes various charging / discharging such as charging W1 (kwh) from a certain time T1 to time T2 and discharging W2 (kwh) from time T3 to time T4. It is also possible to store different reference values for each of these histories. In addition, for example, a period in which days with less solar radiation continue for a certain period, such as the rainy season, etc., and the charge / discharge cycle etc. has different reference values for different periods (spring, summer, autumn, winter). You may make it memorize | store, You may make it memorize | store a different reference value according to a long-term deterioration state (capacity change) of a battery.

蓄電装置12の残量に応じて異なる複数の基準値を用いる場合、電力制御部15は、蓄電装置12の残量を蓄電装置12に設けられた残量測定部によって測定された測定結果を取得し、取得された残量に応じた基準値を記憶部14から読み出し、この基準値と発電量とを比較する。
充放電を行なった過去の履歴に応じて異なる複数の基準値を用いる場合、配電制御システム1は、蓄電装置12内の充放電を行なった履歴を記憶する充放電履歴記憶部を有し、電力制御部15は、蓄電装置12の充電または放電が行なわれると、その充電または放が行なわれた電力量(充電量または放電量)と充電または放電を行なった時刻とを対応付けて記憶する。そして、電力制御部15は、所定の期間における充電または放電が行なわれた電力量に対応する基準値を用いて比較する。
When using a plurality of different reference values depending on the remaining amount of the power storage device 12, the power control unit 15 acquires the measurement result of the remaining amount of the power storage device 12 measured by the remaining amount measuring unit provided in the power storage device 12. Then, a reference value corresponding to the acquired remaining amount is read from the storage unit 14, and this reference value is compared with the power generation amount.
When using a plurality of different reference values according to past histories of charge / discharge, the power distribution control system 1 includes a charge / discharge history storage unit that stores a history of charge / discharge in the power storage device 12, When power storage device 12 is charged or discharged, control unit 15 stores the amount of electric power (charge amount or discharge amount) charged or discharged and the time of charge or discharge in association with each other. And the electric power control part 15 compares using the reference value corresponding to the electric energy in which charge or discharge was performed in a predetermined period.

梅雨の時期など日射時間が少ない日が一定以上連続するような期間等、充放電のサイクル等が他の期間(春、夏、秋、冬)と異なる期間毎に異なる基準値を用いる場合、電力制御部15は、充放電履歴を参照する期間としてある程度の期間(例えば数週間や1ヶ月など)に基づいて、その期間に応じた基準値を用いて比較する。例えば、北半球において、冬は日照時間も短く、太陽の角度も低いため発電量が少ない。そのため基準値を他の季節の場合に比べて低い値の基準値を用いる。これにより、日照時間が短い時期であっても一定の充電量を確保することができる。一方、夏は日照時間が長いため、他の季節に比べて基準値を高い値の基準値を用いる。これにより、一定の充電量に抑えつつ逆潮流も行なうことができる。この場合、春と秋における基準値は冬の基準値より高く、夏の基準値より低い基準値を用いる。なお、ここでは、冬の基準値としては、PCS11の電力変換効率がη1に対応する発電電力値以上であることが望ましい。これにより、PCS11の電力変換の際に生じる電力のロスを一定以内に抑えつつ、季節毎の日照時間等に応じた充電量、あるいは逆潮流の量とすることができる。   When using different reference values for different periods of charge / discharge cycles, such as periods of rainy season, etc., where days with less solar radiation continue for a certain period or longer, etc., other periods (spring, summer, autumn, winter) Based on a certain period (for example, several weeks or one month) as a period for referring to the charge / discharge history, the control unit 15 performs comparison using a reference value corresponding to the period. For example, in the northern hemisphere, the amount of power generation is small in winter due to short sunshine hours and low sun angles. For this reason, a reference value having a lower value than that in other seasons is used. As a result, a certain amount of charge can be secured even when the sunshine time is short. On the other hand, since summer hours are long in summer, a reference value having a higher reference value than in other seasons is used. As a result, reverse power flow can be performed while keeping the amount of charge constant. In this case, the reference value in spring and autumn is higher than the reference value in winter and lower than the reference value in summer. Here, as the winter reference value, it is desirable that the power conversion efficiency of the PCS 11 is equal to or greater than the generated power value corresponding to η1. Thereby, it can be set as the charge amount according to the sunshine time etc. for every season, or the amount of a reverse power flow, suppressing the loss of the electric power which arises in the case of the power conversion of PCS11 within a fixed value.

長期的な電池の劣化状態(容量変化)に応じて、異なる基準値を用いる場合、電力制御部15は、所定の期間における蓄電装置12の劣化状態を監視し、その監視結果に応じた基準値を用いて比較する。   When a different reference value is used according to the long-term deterioration state (capacity change) of the battery, the power control unit 15 monitors the deterioration state of the power storage device 12 in a predetermined period, and the reference value according to the monitoring result Use to compare.

(第9の実施形態)
この実施形態において、記憶部14は、基準値として蓄電装置12の劣化状態に応じて異なる複数の基準値を記憶する。例えば、SOC(State Of Charge)の度合を表す複数のレベルが設定されており、この各レベルのそれぞれに異なる基準値を記憶する。基準値としては、蓄電装置12の電池の劣化状態において、劣化状態が進行しているほど低い基準値となるようにされた複数の基準値を用いる。そして、電力制御部15は、蓄電装置12のSOCを測定し、測定結果に応じたレベルを特定し、特定されたレベルに対応した基準値を用いて比較する。これにより、発電電力がある程度低い状態であっても逆潮流を行ないやすくなるように制御することができ、蓄電装置12の蓄電池の劣化が進行して充電可能量が減少していった場合には、充電可能量の範囲に収まるように充電量を絞ることができる。これにより、充電し難い状況であるにも関わらず充電を行なってしまうという充電時のロスを低減することができる。なお、ここでは、複数の基準値のうち、低い基準値とは、PCS11の電力変換効率がη1に対応する発電電力値以上であることが望ましい。これにより、PCS11の電力変換の際に生じる電力のロスを一定以内に抑えつつ、蓄電装置12の電池の劣化状態を考慮して充電時のロスを低減することができる。
(Ninth embodiment)
In this embodiment, the memory | storage part 14 memorize | stores the some reference value which changes according to the deterioration state of the electrical storage apparatus 12 as a reference value. For example, a plurality of levels indicating the degree of SOC (State Of Charge) are set, and different reference values are stored in the respective levels. As the reference value, a plurality of reference values that are set to lower reference values as the deterioration state progresses in the deterioration state of the battery of the power storage device 12 are used. Then, power control unit 15 measures the SOC of power storage device 12, identifies a level according to the measurement result, and compares the level using a reference value corresponding to the identified level. As a result, even if the generated power is low to some extent, it can be controlled to facilitate reverse flow, and when the storage battery of the power storage device 12 deteriorates and the chargeable amount decreases, The amount of charge can be narrowed down to be within the range of the chargeable amount. As a result, it is possible to reduce a loss at the time of charging that charging is performed even in a situation where charging is difficult. Here, it is desirable that the lower reference value among the plurality of reference values is such that the power conversion efficiency of the PCS 11 is equal to or greater than the generated power value corresponding to η1. Thereby, the loss at the time of charge can be reduced in consideration of the deterioration state of the battery of the power storage device 12 while suppressing the loss of power generated during the power conversion of the PCS 11 within a certain range.

(第10の実施形態)
この実施形態において、配電制御システム1は、太陽光発電装置10によって発電される発電量の予測値である予測発電量を求める発電量予測部を有する。記憶部14は、基準値として、予測された発電量に応じて異なる複数の基準値を記憶する。ここでは、異なる発電量に対してそれぞれ異なる基準値が対応づけされて記憶される。
電力制御部15は、発電量予測部によって得られた予測発電量に基づいて、当該予測発電量に応じた予測された発電量を特定し、特定された発電量に対応する基準値と発電量とを比較する。
(Tenth embodiment)
In this embodiment, the power distribution control system 1 includes a power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device 10. The storage unit 14 stores a plurality of reference values that differ according to the predicted power generation amount as reference values. Here, different reference values are stored in association with different power generation amounts.
The power control unit 15 specifies the predicted power generation amount corresponding to the predicted power generation amount based on the predicted power generation amount obtained by the power generation amount prediction unit, and the reference value and the power generation amount corresponding to the specified power generation amount And compare.

(第11の実施形態)
この実施形態において、配電制御システム1は、太陽光発電装置10によって発電される発電量の予測値である予測発電量を求める発電量予測部を有する。記憶部14は、基準値として太陽光発電装置10によって発電される発電量と予測発電量との差に応じて異なる基準値が複数設定され記憶する。基準値としては、発電量と予測発電量との差において、実際の発電量が予想発電量よりも大きいほど小さい基準値となるようにされた複数の基準値を用いる。また、この基準値としては、発電量と予測発電量との差において、実際の発電量が予想発電量よりも小さいほど大きな基準値となるようにされた複数の基準値を用いる。そして、電力制御部15は、太陽光発電装置10によって発電された発電量と発電量予測部によって得られた予測発電量との差を算出し、算出された差に応じた基準値を記憶部14から読み出し、この基準値と発電量を比較する。これにより、発電量が予測発電量を大きく超えるほど、基準値としては小さい値が用いられるため、逆潮流を行ないやすくなるように制御することができる。また、発電量が予測発電量以下であり、その差が大きいほど、基準値としては大きな値が用いられるため、発電量が少なく、電力変換時における電力のロスが生じやすい場面においては、電力変換をなるべく行なわず、充電するように制御することがで、電力のロスを抑えることができる。なお、ここでは、複数の基準値のうち、低い基準値とは、PCS11の電力変換効率がη1に対応する発電電力値以上であることが望ましい。
(Eleventh embodiment)
In this embodiment, the power distribution control system 1 includes a power generation amount prediction unit that obtains a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device 10. The storage unit 14 sets and stores a plurality of different reference values according to the difference between the power generation amount generated by the photovoltaic power generation apparatus 10 and the predicted power generation amount as a reference value. As the reference value, a plurality of reference values that are set to be smaller as the actual power generation amount is larger than the predicted power generation amount in the difference between the power generation amount and the predicted power generation amount are used. Further, as the reference value, a plurality of reference values that are set to be larger as the actual power generation amount is smaller than the predicted power generation amount in the difference between the power generation amount and the predicted power generation amount are used. Then, the power control unit 15 calculates a difference between the power generation amount generated by the solar power generation device 10 and the predicted power generation amount obtained by the power generation amount prediction unit, and stores a reference value corresponding to the calculated difference. 14 is read, and this reference value is compared with the power generation amount. As a result, as the power generation amount greatly exceeds the predicted power generation amount, a smaller value is used as the reference value. Therefore, control can be performed so that reverse power flow is facilitated. In addition, since the power generation amount is less than the predicted power generation amount and the difference is larger, a larger value is used as the reference value. Therefore, in a scene where the power generation amount is small and power loss is likely to occur during power conversion, power conversion It is possible to suppress power loss by performing control so that charging is performed without performing as much as possible. Here, it is desirable that the lower reference value among the plurality of reference values is such that the power conversion efficiency of the PCS 11 is equal to or greater than the generated power value corresponding to η1.

(第12の実施形態)
この実施形態において、記憶部14は、電力変換部の電力変換効率に応じた基準値である第1基準値と、蓄電装置12の充放電状態、蓄電装置12の劣化状態、太陽光発電装置10によって発電される発電量の予測値、の基準値項目のうちいずれが1つである第2項目における状態に応じて異なる複数の基準値である第2基準値群とを記憶する。そして、電力制御部15は、第1基準値を記憶部14から読み出し、第2基準値群のうち第2項目に対応する取得結果に応じた第2基準値があるか否かを判定し、当該第2基準値がある場合には、第2基準値と発電量とを比較し、第2基準値がない場合には、第1基準値と発電量とを比較する。ここで、第2項目のうちいずれの項目を用いるかは、例えば予め決められており、電力制御部15は、その項目に対応する測定値あるいは予測値等の取得結果を得る。そして、その取得結果と、予め決められた項目における第2基準値群のなかかから、取得結果に対応する第2基準値があるか否かを判定する。例えば、蓄電装置12の劣化状態を表すレベルが第1レベルと第2レベルがあり、現在の蓄電装置12の劣化レベルが第1レベルまたは第2レベルに該当する場合には、そのレベルに対応した第2基準値を用いる。一方、現在の蓄電装置12の劣化レベルが第0レベルや第3レベル等である場合には、対応する劣化レベルがないので、電力制御部15は、基準値として、第1基準値を用いる。
(Twelfth embodiment)
In this embodiment, the memory | storage part 14 is the 1st reference value which is a reference value according to the power conversion efficiency of a power converter, the charging / discharging state of the electrical storage apparatus 12, the deterioration state of the electrical storage apparatus 12, and the solar power generation device 10. The second reference value group that is a plurality of reference values that differ depending on the state of the second item, which is one of the reference value items of the predicted value of the power generation amount generated by. And the electric power control part 15 reads 1st reference value from the memory | storage part 14, determines whether there exists 2nd reference value according to the acquisition result corresponding to 2nd item among 2nd reference value groups, When there is the second reference value, the second reference value is compared with the power generation amount, and when there is no second reference value, the first reference value is compared with the power generation amount. Here, which item of the second items is used is determined in advance, for example, and the power control unit 15 obtains an acquisition result such as a measured value or a predicted value corresponding to the item. And it is determined whether there exists a 2nd reference value corresponding to an acquisition result from the acquisition result and the 2nd reference value group in a predetermined item. For example, when the degradation level of the power storage device 12 has a first level and a second level, and the current degradation level of the power storage device 12 corresponds to the first level or the second level, the level corresponds to the level. A second reference value is used. On the other hand, when the current degradation level of the power storage device 12 is the 0th level, the third level, or the like, there is no corresponding degradation level, so the power control unit 15 uses the first reference value as the reference value.

以上説明した実施形態において、電力制御部15は、系統(配電網)と連系されていない場合には、発電された電力量にかかわらず、発電された電力を蓄電装置に充電するようにしてもよい。   In the embodiment described above, the power control unit 15 charges the power storage device with the generated power regardless of the amount of generated power when not connected to the grid (distribution network). Also good.

また、以上、第1の実施形態から第7の実施形態について説明したが、少なくとも2つの実施形態を適宜組み合わせて配電制御システム1を構成するようにしてもよい。   Although the first to seventh embodiments have been described above, the power distribution control system 1 may be configured by appropriately combining at least two embodiments.

以上説明した実施形態によれば、発電量が十分なときにのみ逆潮流を行なうことにより、PCSにおける変換効率が高い状態の際に電力変換することができ、発電電力のロスを低減することができる。
また、1つの需要家だけでなく、所定の地域内における需要家における配電制御システム1のそれぞれが、上述の制御を行なうことで、発電量予測をしながら充電をしたり、ピーク時間帯に各需要家のそれぞれで集中して充電することで、太陽光発電装置からの発電電力の逆潮流が各需要から一気に集中してしまうような場合も解消することができる。特に、夏場においては、日中の発電量が地域全体で上昇するが、このような場合であっても、逆潮流のピークを抑えることができる。
According to the embodiment described above, by performing reverse power flow only when the amount of power generation is sufficient, power conversion can be performed when the conversion efficiency in the PCS is high, and loss of generated power can be reduced. it can.
Moreover, each of the power distribution control systems 1 not only for one consumer but also for a customer in a predetermined area performs charging as described above to perform power generation amount prediction, By concentrating and charging each of the consumers, it is possible to eliminate the case where the reverse power flow of the generated power from the solar power generation device is concentrated from each demand. In particular, in summer, the amount of power generated during the day increases throughout the region, but even in such a case, the peak of reverse power flow can be suppressed.

上述した実施形態における電力制御部15をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。   You may make it implement | achieve the electric power control part 15 in embodiment mentioned above with a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time. Further, the program may be a program for realizing a part of the above-described functions, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. You may implement | achieve using programmable logic devices, such as FPGA (Field Programmable Gate Array).

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

1 配電制御システム 10 太陽光発電装置
11 パワーコンディショナー 12 蓄電装置
13 予測部 14 記憶部
15 電力制御部 16 分電盤
DESCRIPTION OF SYMBOLS 1 Power distribution control system 10 Solar power generation device 11 Power conditioner 12 Power storage device 13 Prediction part 14 Storage part 15 Power control part 16 Distribution board

Claims (13)

太陽光発電装置によって発電される発電量を取得する発電量取得部と、
前記取得された発電量と基準値とを比較し、前記発電量が前記基準値未満である場合には前記発電された電力を直流負荷側に供給すると判定し、前記発電量が前記基準値以上である場合には、前記電力を電力変換部によって交流に変換して逆潮流すると判定する電力制御部
を有する配電制御システム。
A power generation amount acquisition unit for acquiring a power generation amount generated by the solar power generation device;
The acquired power generation amount is compared with a reference value, and when the power generation amount is less than the reference value, it is determined that the generated power is supplied to a DC load side, and the power generation amount is equal to or greater than the reference value. A power control unit that determines that the power is converted into alternating current by the power conversion unit and reverse power flow.
前記電力制御部は、
前記発電量が前記基準値以上である場合には、前記基準値を超えた発電量の少なくとも一部の発電電力を前記直流負荷側に供給すると判定し、残りの発電電力を交流に変換すると判定する
請求項1記載の配電制御システム。
The power control unit
When the power generation amount is equal to or greater than the reference value, it is determined that at least a part of the generated power exceeding the reference value is supplied to the DC load side, and the remaining power generation is determined to be converted to AC. The power distribution control system according to claim 1.
蓄電装置を有し、
前記電力制御部は、
前記発電量が前記基準値未満である場合であって、供給対象の交流負荷が前記発電量を超える場合には、前記蓄電装置から放電させた電力と前記発電量に応じた電力を前記交流負荷に供給すると判定する
請求項1または請求項2記載の配電制御システム。
Having a power storage device,
The power control unit
When the power generation amount is less than the reference value, and the AC load to be supplied exceeds the power generation amount, the power discharged from the power storage device and the power corresponding to the power generation amount are supplied to the AC load. The power distribution control system according to claim 1, wherein the power distribution control system is determined to be supplied to the power supply.
蓄電装置と、
前記蓄電装置に蓄電が必要な電力量である必要電力量を求める必要電力予測部と、
前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、
前記電力制御部は、
前記発電量が前記基準値を超える場合、前記必要電力量と前記予測発電量とに基づいて、前記蓄電装置が所定の時間までに目標充電量に到達するように充電する
請求項1または請求項2に記載の配電制御システム。
A power storage device;
A required power prediction unit for obtaining a required power amount that is an amount of power required to store power in the power storage device;
A power generation amount prediction unit for obtaining a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device,
The power control unit
When the power generation amount exceeds the reference value, the power storage device is charged based on the necessary power amount and the predicted power generation amount so as to reach a target charge amount by a predetermined time. 2. The power distribution control system according to 2.
蓄電装置と、
前記蓄電装置に蓄電が必要な電力量である必要電力量を求める必要電力予測部と、
前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、
前記電力制御部は、
前記発電量が前記基準値を超える場合、前記必要電力量と前記予測発電量とに基づいて、前記発電量の一部を前記蓄電装置に蓄電することで逆潮流電力量のピークカットを行なう
請求項1または請求項2に記載の配電制御システム。
A power storage device;
A required power prediction unit for obtaining a required power amount that is an amount of power required to store power in the power storage device;
A power generation amount prediction unit for obtaining a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device,
The power control unit
When the power generation amount exceeds the reference value, a peak cut of reverse power flow is performed by storing a part of the power generation amount in the power storage device based on the required power amount and the predicted power generation amount. The power distribution control system according to claim 1 or claim 2.
前記電力制御部は、
配電網と連系されていない場合には、前記発電量にかかわらず前記発電された電力によって前記直流負荷に供給する
請求項1から請求項5のうちいずれか1項に記載の配電制御システム。
The power control unit
The power distribution control system according to any one of claims 1 to 5, wherein, when not connected to a power distribution network, the generated power is supplied to the DC load regardless of the power generation amount.
前記基準値は、前記電力変換部の電力変換効率の基準を表す変換効率基準値であり、
前記電力制御部は、
前記取得された発電量に対応するパワーコンディショナーの電力変換効率と前記変換効率基準値とを比較する
ことを特徴とする請求項1から請求項6のうちいずれか1項に記載の配電制御システム。
The reference value is a conversion efficiency reference value representing a reference of power conversion efficiency of the power conversion unit,
The power control unit
The power distribution efficiency of the power conditioner corresponding to the acquired power generation amount is compared with the conversion efficiency reference value. The power distribution control system according to any one of claims 1 to 6.
前記基準値は、前記蓄電装置の充放電状態に応じて異なる複数の基準値であり、
前記電力制御部は、
前記蓄電装置の充放電を行なった過去の履歴に基づいて、当該過去の履歴に応じた充放電状態に対応する基準値と前記発電量とを比較する
ことを特徴とする請求項3から請求項5のうちいずれか1項に記載の配電制御システム。
The reference value is a plurality of reference values that differ depending on the charge / discharge state of the power storage device,
The power control unit
The power generation amount is compared with a reference value corresponding to a charge / discharge state corresponding to the past history based on a past history of charging / discharging the power storage device. The power distribution control system according to any one of 5.
前記基準値は、前記蓄電装置の劣化状態に応じて異なる複数の基準値であり、
前記電力制御部は、
前記蓄電装置の劣化状態を検出した検出結果に基づいて、当該検出結果が示す劣化状態に対応する基準値と前記発電量とを比較する
ことを特徴とする請求項3から請求項5のうちいずれか1項に記載の配電制御システム。
The reference value is a plurality of reference values that differ depending on the deterioration state of the power storage device,
The power control unit
The power generation amount is compared with a reference value corresponding to the deterioration state indicated by the detection result based on the detection result of detecting the deterioration state of the power storage device. The power distribution control system according to claim 1.
前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、
前記基準値は、予測された発電量に応じて異なる複数の基準値であり、
前記電力制御部は、
前記発電量予測部によって得られた予測発電量に基づいて、当該予測発電量に応じた前記予測された発電量に対応する基準値と前記発電量とを比較する
ことを特徴とする請求項1から請求項3のうちいずれか1項に記載の配電制御システム。
A power generation amount prediction unit for obtaining a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device,
The reference value is a plurality of reference values that differ depending on the predicted power generation amount,
The power control unit
The power generation amount is compared with a reference value corresponding to the predicted power generation amount according to the predicted power generation amount based on the predicted power generation amount obtained by the power generation amount prediction unit. The power distribution control system according to any one of claims 1 to 3.
前記太陽光発電装置によって発電される発電量の予測値である予測発電量を求める発電量予測部と、を有し、
前記基準値は、前記太陽光発電装置によって発電される発電量と前記予測発電量との差に応じて異なる基準値が複数設定されており、
前記電力制御部は、前記太陽光発電装置によって発電された発電量と前記発電量予測部によって得られた予測発電量との差を算出し、算出された差に応じた前記基準値と前記発電量を比較する
ことを特徴とする請求項1から請求項3のうちいずれか1項に記載の配電制御システム。
A power generation amount prediction unit for obtaining a predicted power generation amount that is a predicted value of the power generation amount generated by the solar power generation device,
The reference value is set with a plurality of different reference values according to the difference between the power generation amount generated by the solar power generation device and the predicted power generation amount,
The power control unit calculates a difference between a power generation amount generated by the photovoltaic power generation apparatus and a predicted power generation amount obtained by the power generation amount prediction unit, and the reference value according to the calculated difference and the power generation The power distribution control system according to any one of claims 1 to 3, wherein the amounts are compared.
前記電力変換部の電力変換効率に応じた基準値である第1基準値と、蓄電装置の充放電状態、蓄電装置の劣化状態、太陽光発電装置によって発電される発電量の予測値、の基準値項目のうちいずれが1つである第2項目における状態に応じて異なる複数の基準値である第2基準値群とを記憶する基準値記憶部を有し、前記電力制御部は、前記第1基準値を取得し、前記第2基準値群のうち第2項目に対応する取得結果に応じた第2基準値があるか否かを判定し、当該第2基準値がある場合には、前記第2基準値と前記発電量とを比較し、前記第2基準値がない場合には、前記第1基準値と前記発電量とを比較する
ことを特徴とする請求項1または請求項2に記載の配電制御システム。
A reference of a first reference value that is a reference value according to the power conversion efficiency of the power conversion unit, a charge / discharge state of the power storage device, a deterioration state of the power storage device, and a predicted value of the amount of power generated by the solar power generation device A reference value storage unit that stores a second reference value group that is a plurality of reference values that differ depending on the state of the second item, which is one of the value items, and the power control unit includes 1 reference value is acquired, it is determined whether there is a second reference value corresponding to the acquisition result corresponding to the second item in the second reference value group, and if there is the second reference value, 3. The second reference value and the power generation amount are compared, and if there is no second reference value, the first reference value and the power generation amount are compared. The power distribution control system described in 1.
発電量取得部が、太陽光発電装置によって発電される発電量を取得し、
電力制御部が、前記取得された発電量と基準値とを比較し、前記発電量が前記基準値未満である場合には前記発電された電力を直流負荷側に供給すると判定し、前記発電量が前記基準値以上である場合には、前記電力を電力変換装置によって交流に変換すると判定する
配電制御方法。
The power generation amount acquisition unit acquires the power generation amount generated by the solar power generation device,
The power control unit compares the acquired power generation amount with a reference value, and determines that the generated power is supplied to a DC load side when the power generation amount is less than the reference value, and the power generation amount A power distribution control method that determines that the power is converted into alternating current by a power converter when the power is greater than or equal to the reference value.
JP2016141742A 2016-07-19 2016-07-19 Distribution control system, distribution control method Active JP6751614B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016141742A JP6751614B2 (en) 2016-07-19 2016-07-19 Distribution control system, distribution control method
JP2020089947A JP7032474B2 (en) 2016-07-19 2020-05-22 Distribution control system, distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141742A JP6751614B2 (en) 2016-07-19 2016-07-19 Distribution control system, distribution control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020089947A Division JP7032474B2 (en) 2016-07-19 2020-05-22 Distribution control system, distribution control method

Publications (2)

Publication Number Publication Date
JP2018014795A true JP2018014795A (en) 2018-01-25
JP6751614B2 JP6751614B2 (en) 2020-09-09

Family

ID=61020540

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016141742A Active JP6751614B2 (en) 2016-07-19 2016-07-19 Distribution control system, distribution control method
JP2020089947A Active JP7032474B2 (en) 2016-07-19 2020-05-22 Distribution control system, distribution control method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020089947A Active JP7032474B2 (en) 2016-07-19 2020-05-22 Distribution control system, distribution control method

Country Status (1)

Country Link
JP (2) JP6751614B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103197A (en) * 2017-11-29 2019-06-24 オムロン株式会社 Power storage system
KR102232315B1 (en) * 2020-08-24 2021-03-25 (주)신호엔지니어링 Independent Solar power system based on environmental information
JP7312968B2 (en) 2020-02-21 2023-07-24 パナソニックIpマネジメント株式会社 ENERGY SYSTEM AND OPERATION METHOD THEREOF AND VIRTUAL POWER PLANT SYSTEM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130096A (en) * 2010-12-13 2012-07-05 Panasonic Corp Power control apparatus and power control system using the same
JP2012249471A (en) * 2011-05-30 2012-12-13 Panasonic Corp Power distribution system
JP2014030299A (en) * 2012-07-31 2014-02-13 Sharp Corp Power conditioner, storage battery and power supply system
JP2015177606A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Controller for distributed power supply system, power conditioner, distributed power supply system, and control method for distributed power supply system
JP2015192485A (en) * 2014-03-27 2015-11-02 株式会社東芝 Power control unit
JP2016063629A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Storage battery control device, storage battery control method and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330057A (en) * 2006-06-08 2007-12-20 Kawasaki Plant Systems Ltd Charge control method of solar light system with secondary battery
JP5271329B2 (en) * 2010-09-28 2013-08-21 株式会社東芝 Battery management system
EP3229333A4 (en) * 2014-12-02 2018-04-18 Sekisui Chemical Co., Ltd. Electric power control system, electric power control method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130096A (en) * 2010-12-13 2012-07-05 Panasonic Corp Power control apparatus and power control system using the same
JP2012249471A (en) * 2011-05-30 2012-12-13 Panasonic Corp Power distribution system
JP2014030299A (en) * 2012-07-31 2014-02-13 Sharp Corp Power conditioner, storage battery and power supply system
JP2015177606A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Controller for distributed power supply system, power conditioner, distributed power supply system, and control method for distributed power supply system
JP2015192485A (en) * 2014-03-27 2015-11-02 株式会社東芝 Power control unit
JP2016063629A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Storage battery control device, storage battery control method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103197A (en) * 2017-11-29 2019-06-24 オムロン株式会社 Power storage system
JP7312968B2 (en) 2020-02-21 2023-07-24 パナソニックIpマネジメント株式会社 ENERGY SYSTEM AND OPERATION METHOD THEREOF AND VIRTUAL POWER PLANT SYSTEM
KR102232315B1 (en) * 2020-08-24 2021-03-25 (주)신호엔지니어링 Independent Solar power system based on environmental information

Also Published As

Publication number Publication date
JP2020129962A (en) 2020-08-27
JP6751614B2 (en) 2020-09-09
JP7032474B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US10910846B2 (en) System and method for efficient charging of multiple battery cassettes
JP5584763B2 (en) DC power distribution system
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP5818499B2 (en) Storage battery operation control device, storage battery operation control method, and program thereof
JP7032474B2 (en) Distribution control system, distribution control method
Wang et al. Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response
JP6192531B2 (en) Power management system, power management apparatus, power management method, and program
JP6587336B2 (en) Renewable energy storage system
JPWO2017150376A1 (en) Power system
JP2012115003A (en) Control device and control method
JP2014033539A (en) Power controller, method, and program
JP2014064449A (en) Power management device, power management method, and program
Marańda Capacity degradation of lead-acid batteries under variable-depth cycling operation in photovoltaic system
Dagdougui et al. Power management strategy for sizing battery system for peak load limiting in a university campus
Hafiz et al. Energy storage management strategy based on dynamic programming and optimal sizing of PV panel-storage capacity for a residential system
Prapanukool et al. An appropriate battery capacity and operation schedule of battery energy storage system for PV Rooftop with net-metering scheme
JP5841279B2 (en) Electric power charging device
JP6228702B2 (en) Power management apparatus, power management method and program
JP6688981B2 (en) Battery control device
JP2017175785A (en) Power storage system, charge/discharge controller, control method therefor, and program
JP5912055B2 (en) Control apparatus and control method
JP2003018763A (en) Energy prediction method in solar power generation
CN113839404A (en) Near-zero energy consumption building self-power utilization maximization optimization method and system
JP2010263755A (en) Charge control method
JP7248997B1 (en) power generation control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6751614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250