JP4355308B2 - Scroll fluid machinery - Google Patents

Scroll fluid machinery Download PDF

Info

Publication number
JP4355308B2
JP4355308B2 JP2005253530A JP2005253530A JP4355308B2 JP 4355308 B2 JP4355308 B2 JP 4355308B2 JP 2005253530 A JP2005253530 A JP 2005253530A JP 2005253530 A JP2005253530 A JP 2005253530A JP 4355308 B2 JP4355308 B2 JP 4355308B2
Authority
JP
Japan
Prior art keywords
scroll
compression chamber
flow path
orbiting scroll
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005253530A
Other languages
Japanese (ja)
Other versions
JP2007064147A (en
Inventor
利行 寺井
健一 大島
昌浩 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005253530A priority Critical patent/JP4355308B2/en
Priority to CN201110144337.6A priority patent/CN102207088B/en
Priority to KR1020060083200A priority patent/KR100811398B1/en
Priority to CNA2006101288721A priority patent/CN1924358A/en
Publication of JP2007064147A publication Critical patent/JP2007064147A/en
Application granted granted Critical
Publication of JP4355308B2 publication Critical patent/JP4355308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0028Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Description

冷凍空調装置や空気圧縮機等に用いられる流体圧縮機および流体搬送機械に係り、特に、スクロール圧縮機に関する   The present invention relates to fluid compressors and fluid transfer machines used for refrigeration air conditioners and air compressors, and more particularly to scroll compressors.

従来、ルームエアコンに適用されたスクロール圧縮機において、台板上に渦巻状のラップを形成した固定スクロールと旋回スクロールを互いにラップが向かい合うようにかみ合わせて、複数の圧縮室を形成し、旋回スクロール背面に背圧を印加し両スクロールの鏡板(台板の周辺部)を接触させ、かつ旋回スクロール背面に自転防止機構を備えて旋回スクロールを自転させずに旋回運動することによって、圧縮室容積を連続的に縮小し流体圧縮を行うような構成を備えたものは、例えば、特許文献1等で公知である。   Conventionally, in a scroll compressor applied to a room air conditioner, a fixed scroll having a spiral wrap formed on a base plate and a orbiting scroll are meshed so that the wraps face each other to form a plurality of compression chambers, and the rear surface of the orbiting scroll By applying back pressure to the end plate of both scrolls (peripheral parts of the base plate) and bringing the anti-rotation mechanism on the back of the orbiting scroll, the orbiting scroll does not rotate, so that the compression chamber volume continues. For example, Japanese Patent Application Laid-Open No. H10-228707 discloses a device that is configured to be reduced in size and perform fluid compression.

そして、特許文献1においては、旋回スクロールのラップおよび台板を貫通する貫通孔を設け、この貫通孔を通して軸受部の高圧領域から背圧領域や圧縮室へ給油することで圧縮室のシール性を向上させる(油膜シールを形成する)ことが示されている。
特開2004−225644号公報
And in patent document 1, the through-hole which penetrates the lap | wrap and baseplate of a turning scroll is provided, and the sealing property of a compression chamber is provided by supplying oil from the high pressure area | region of a bearing part to a back pressure area | region or a compression chamber through this through hole. It is shown to improve (form an oil film seal).
JP 2004-225644 A

上記の特許文献1に開示されたスクロール圧縮機において課題となるのは、冷凍サイクルからの液冷媒を多量に吸入した場合、非圧縮性の液冷媒を圧縮して圧縮室内に高い液圧(運転時に冷媒ガスを圧縮することにより得られる圧力範囲を超えた圧力)が発生する事態である。特許文献1に示されたスクロール圧縮機では、旋回スクロールのラップおよび台板を貫通する貫通孔を設けているため、圧縮室側から貫通孔を通って非圧縮室領域(背圧領域又は軸受部)へと液冷媒が流入することが考えられる。液冷媒が流入すると、背圧領域又は軸受部での潤滑性低下および液冷媒の発泡による油膜切れ等を生じ、信頼性を低下させる可能性がある。   The problem with the scroll compressor disclosed in Patent Document 1 is that when a large amount of liquid refrigerant from the refrigeration cycle is sucked, the non-compressible liquid refrigerant is compressed to increase the hydraulic pressure (operation) in the compression chamber. This sometimes occurs when the pressure exceeds the pressure range obtained by compressing the refrigerant gas. In the scroll compressor shown in Patent Document 1, since a through-hole penetrating the orbiting scroll lap and the base plate is provided, the non-compression chamber region (back pressure region or bearing portion) passes through the through-hole from the compression chamber side. It is conceivable that the liquid refrigerant flows into When the liquid refrigerant flows in, there is a possibility that the lubricity deteriorates in the back pressure region or the bearing portion, the oil film is cut off due to the foaming of the liquid refrigerant, and the reliability is lowered.

また、低温条件下で一定時間運転を停止した場合、圧縮機(圧縮機構とモータからなるもの)内の油に冷媒が溶解しており油の油中冷媒比率が高い場合において発生しやすい現象として、背圧領域で冷媒の溶解した油が発泡して背圧が上昇し、旋回スクロール押し付け力の増大や、発泡により生じた冷媒ガス(通常動作時に圧縮室に入る冷媒ガスより高い圧力の冷媒ガス)が圧縮室に流入して圧縮室内の圧力が想定外に上昇することで、性能や信頼性を低下させるという課題があった。   In addition, when the operation is stopped for a certain period of time under low temperature conditions, this phenomenon is likely to occur when the refrigerant is dissolved in the oil in the compressor (comprising the compression mechanism and motor) and the ratio of oil to oil is high. In the back pressure region, the oil in which the refrigerant is dissolved foams and the back pressure rises, increasing the pressing force of the orbiting scroll, and refrigerant gas generated by foaming (refrigerant gas having higher pressure than the refrigerant gas entering the compression chamber during normal operation) ) Flows into the compression chamber and the pressure in the compression chamber rises unexpectedly, causing a problem of reducing performance and reliability.

本発明の目的は、圧縮室内への液冷媒の吸い込み時に液圧縮された高圧液を、旋回スクロールの連通流路を介して背圧領域などに入り込ませることなく外部排出させるとともに、冷媒を多く含んだ油が背圧領域などで発泡し背圧が上昇した際に、旋回スクロールの連通流路を介して圧縮室内に流入した冷媒を容易に排出させるスクロール圧縮機を提供することにある。   An object of the present invention is to discharge a high-pressure liquid compressed when liquid refrigerant is sucked into a compression chamber to the outside without entering a back pressure region or the like via a communication flow path of the orbiting scroll and includes a large amount of refrigerant. An object of the present invention is to provide a scroll compressor that easily discharges the refrigerant that has flowed into the compression chamber through the communication flow path of the orbiting scroll when the oil foams in the back pressure region and the back pressure rises.

前記課題を解決するために、本発明は主として次のような構成を採用する。
渦巻状のラップを設けた固定スクロールと旋回スクロールとを互いのラップが向かい合うようにかみ合わせて複数の圧縮室を形成し、前記旋回スクロールの背面に背圧を印加し、前記旋回スクロールを自転させずに旋回運動させることにより前記圧縮室の容積を連続的に縮小し流体圧縮を行うスクロール圧縮機において、前記圧縮室から前記旋回スクロールの背圧領域又は軸受部などの前記圧縮室以外の領域に連通する連通流路を、前記旋回スクロールのラップと台板に設け、
前記旋回スクロールのラップに設けられた連通流路につながる圧縮室の室内所定圧力流体を外部に開放するリリーフ機構を、前記固定スクロールに設ける構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A plurality of compression chambers are formed by meshing a fixed scroll provided with a spiral wrap and a turning scroll so that the wraps face each other, and back pressure is applied to the back of the turning scroll so that the turning scroll does not rotate. In a scroll compressor that performs fluid compression by continuously reducing the volume of the compression chamber by rotating it, the compression chamber communicates with a region other than the compression chamber, such as a back pressure region of the orbiting scroll or a bearing portion. A communication flow path is provided in the wrapping and base plate of the orbiting scroll,
A relief mechanism for opening a predetermined pressure fluid in a compression chamber connected to a communication channel provided in the wrap of the orbiting scroll to the outside is provided in the fixed scroll.

また、前記スクロール圧縮機において、前記固定スクロールに設けたリリーフ機構の流路抵抗を前記連通流路の流路抵抗より小さくする構成とする。   In the scroll compressor, the flow path resistance of the relief mechanism provided in the fixed scroll is configured to be smaller than the flow path resistance of the communication flow path.

また、渦巻状のラップを設けた固定スクロールと旋回スクロールとを互いのラップが向かい合うようにかみ合わせて複数の圧縮室を形成し、前記旋回スクロールの背面に背圧を印加し、前記旋回スクロールを自転させずに旋回運動させることにより前記圧縮室の容積を連続的に縮小し流体圧縮を行うスクロール圧縮機において、
前記圧縮室から前記旋回スクロールの背圧領域又は軸受部などの前記圧縮室以外の領域に連通する連通流路を、前記旋回スクロールのラップと台板に設け、
前記旋回スクロールのラップに設けられた連通流路につながる圧縮室の室内所定圧力流体を外部に開放するリリーフ機構を、前記固定スクロールに設け、
前記旋回スクロールに設けた連通流路には、流体の流れ方向によって流路抵抗の変化する流路抵抗変化機構を設け、
前記流路抵抗変化機構は、前記圧縮室から前記圧縮室以外の領域への流体流れ方向の第1の流路抵抗を大きくし、前記圧縮室以外の領域から前記圧縮室への流体流れ方向の第2の流路抵抗を小さくする機能を有し、
前記固定スクロールに設けたリリーフ機構の流路抵抗を前記流路抵抗変化機構の前記第1の流路抵抗より小さくする構成とする。
Further, a plurality of compression chambers are formed by meshing a fixed scroll provided with a spiral wrap and a orbiting scroll so that the laps face each other, and back pressure is applied to the back of the orbiting scroll to rotate the orbiting scroll. In a scroll compressor that performs fluid compression by continuously reducing the volume of the compression chamber by swirling without making a fluid movement,
A communication channel that communicates from the compression chamber to a region other than the compression chamber, such as a back pressure region or a bearing portion of the orbiting scroll, is provided in the wrap and base plate of the orbiting scroll,
A relief mechanism for opening a predetermined pressure fluid in a compression chamber connected to a communication flow path provided in the wrap of the orbiting scroll to the outside is provided in the fixed scroll;
The communication flow path provided in the orbiting scroll is provided with a flow path resistance change mechanism in which the flow path resistance changes according to the flow direction of the fluid,
The flow path resistance changing mechanism increases a first flow path resistance in a fluid flow direction from the compression chamber to a region other than the compression chamber, and increases a fluid flow direction from the region other than the compression chamber to the compression chamber. Having a function of reducing the second flow path resistance;
The flow path resistance of the relief mechanism provided on the fixed scroll is configured to be smaller than the first flow path resistance of the flow path resistance changing mechanism.

本発明によると、特に、液状の流体が圧縮室側から圧縮室以外の領域(例えば、背圧領域、旋回スクロール軸受部など)へ流入することを低減し、高効率および高信頼な圧縮機を提供することができる。   According to the present invention, in particular, it is possible to reduce the inflow of liquid fluid from the compression chamber side to regions other than the compression chamber (for example, the back pressure region, the orbiting scroll bearing portion, etc.), and to achieve a highly efficient and highly reliable compressor. Can be provided.

また、背圧領域へ冷媒を多く含んだ油が給油されて発泡した場合においても、背圧領域および圧縮室内の不要な圧力上昇を抑制し、圧縮機の性能および信頼性を向上させることが可能となる。   In addition, even when oil containing a large amount of refrigerant is supplied to the back pressure region and foamed, unnecessary pressure rise in the back pressure region and the compression chamber can be suppressed, and the performance and reliability of the compressor can be improved. It becomes.

本発明の実施形態に係るスクロール圧縮機について、図1〜図5を参照しながら以下詳細に説明する。図1は本発明の実施形態に係るスクロール圧縮機における圧縮室の断面を示し、図2のA−A’線の断面図である。図2は本実施形態に係るスクロール圧縮機における概略的な全体構成を示す図である。図3は本実施形態に係るスクロール圧縮機における旋回スクロールのラップに設けた連通流路の抵抗変化の一例を示す図である。図4は本実施形態に関する旋回スクロールのラップに設けた連通流路の抵抗変化の他例を示す図である。図5は本実施形態に関する旋回スクロールのラップに設けた連通流路の抵抗変化の更なる例を示す図である。   A scroll compressor according to an embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a sectional view of a compression chamber in a scroll compressor according to an embodiment of the present invention, and is a sectional view taken along line A-A ′ of FIG. 2. FIG. 2 is a diagram showing a schematic overall configuration of the scroll compressor according to the present embodiment. FIG. 3 is a diagram illustrating an example of resistance change of the communication flow path provided in the orbiting scroll wrap in the scroll compressor according to the present embodiment. FIG. 4 is a diagram showing another example of the resistance change of the communication channel provided in the orbiting scroll lap according to the present embodiment. FIG. 5 is a diagram showing a further example of resistance change of the communication flow path provided in the orbiting scroll lap according to the present embodiment.

図面において、1は流体入口、2は流体出口、3は中間出口、5は旋回スクロール台板、6は固定スクロール台板、7は旋回スクロール鏡板、8は固定スクロール鏡板、10は固定スクロール、11はリリーフ機構、12,12a,12bはリリーフポート、15は旋回スクロールラップ、16は固定スクロールラップ、20は旋回スクロール、21は貫通孔、22は逆流低減機構、23は流体ダイオード、30,30a,30bは圧縮室、31は背圧領域、40は隙間、50はフレーム、60はシャフト、70は自転防止機構、80は背圧調整機構をそれぞれ表す。   In the drawings, 1 is a fluid inlet, 2 is a fluid outlet, 3 is an intermediate outlet, 5 is an orbiting scroll base plate, 6 is a fixed scroll base plate, 7 is an orbiting scroll end plate, 8 is a fixed scroll end plate, 10 is a fixed scroll, 11 Is a relief port, 12, 12a, 12b is a relief port, 15 is a turning scroll wrap, 16 is a fixed scroll wrap, 20 is a turning scroll, 21 is a through hole, 22 is a backflow reduction mechanism, 23 is a fluid diode, 30, 30a, 30b represents a compression chamber, 31 represents a back pressure region, 40 represents a gap, 50 represents a frame, 60 represents a shaft, 70 represents a rotation prevention mechanism, and 80 represents a back pressure adjustment mechanism.

図1と図2において、本実施形態に係るスクロール圧縮機は、主にステータとロータからなるモータ(不図示)と、主に圧縮室30a,30bと固定スクロール10と旋回スクロール20と背圧領域31からなる圧縮機構と、から構成される。このスクロール圧縮機が冷凍サイクルに適用される場合に、冷凍サイクルに用いられる冷媒ガスは、流体入口1に導入されて圧縮室30a,30bを通ることで圧縮され、中間出口3から圧縮ガスが送出されてスクロール圧縮機の内部を経て流体出口2から出力されることになる。   1 and 2, the scroll compressor according to the present embodiment includes a motor (not shown) mainly composed of a stator and a rotor, mainly compression chambers 30a and 30b, a fixed scroll 10, a turning scroll 20, and a back pressure region. And a compression mechanism composed of 31. When this scroll compressor is applied to a refrigeration cycle, refrigerant gas used in the refrigeration cycle is introduced into the fluid inlet 1 and compressed by passing through the compression chambers 30a and 30b, and the compressed gas is sent out from the intermediate outlet 3. Then, the fluid is output from the fluid outlet 2 through the inside of the scroll compressor.

図3に示す図示構造からも分かるように、本実施形態に係るスクロール圧縮機は、固定スクロール台板6上に渦巻状のラップ16を形成した固定スクロール10と、ラップ15を形成した旋回スクロール20とが互いにラップ15,16を向かい合うようにかみ合わされて複数の圧縮室30a,30bが形成され、この旋回スクロール5背面に背圧を印加し両スクロールの鏡板7,8を接触させている。さらに、旋回スクロール5背面に自転防止機構70を備えており旋回スクロール5を自転させずに旋回運動させることにより、圧縮室30の容積を連続的に縮小し流体圧縮を行うようになっている。   As can be seen from the illustrated structure shown in FIG. 3, the scroll compressor according to this embodiment includes a fixed scroll 10 in which a spiral wrap 16 is formed on a fixed scroll base plate 6, and a turning scroll 20 in which a wrap 15 is formed. Are engaged with each other so that the wraps 15 and 16 face each other, and a plurality of compression chambers 30a and 30b are formed, and back pressure is applied to the back surface of the orbiting scroll 5 to bring the end plates 7 and 8 of both scrolls into contact with each other. Further, a rotation prevention mechanism 70 is provided on the rear surface of the orbiting scroll 5, and the orbiting scroll 5 is orbited without rotating, whereby the volume of the compression chamber 30 is continuously reduced and fluid compression is performed.

また、旋回スクロール20のラップ15には、一端を旋回スクロール20のラップ端面に開口し、他端を背圧領域31に繋がる貫通孔21が設けられている。すなわち、貫通孔21はラップ15と台板5を貫通している孔である。貫通孔21の開口部(ラップ端面側の開口部)を挟んで圧縮室30aと30bが形成される(図1参照)。この際、図3を参照すると、ラップの端面側と固定スクロール10の台板6との間は隙間40が形成されている。そうすると、圧縮室30と背圧領域31との間には隙間40及び貫通孔21が形成されていて、圧縮室30は、隙間40と貫通孔21からなる連通流路を介して、背圧領域31に連通していることになる。   Further, the wrap 15 of the orbiting scroll 20 is provided with a through hole 21 having one end opened on the wrap end surface of the orbiting scroll 20 and the other end connected to the back pressure region 31. That is, the through hole 21 is a hole that penetrates the wrap 15 and the base plate 5. Compression chambers 30a and 30b are formed across the opening of the through hole 21 (the opening on the wrap end face side) (see FIG. 1). At this time, referring to FIG. 3, a gap 40 is formed between the end face side of the wrap and the base plate 6 of the fixed scroll 10. Then, the clearance 40 and the through hole 21 are formed between the compression chamber 30 and the back pressure region 31, and the compression chamber 30 is connected to the back pressure region via the communication channel including the clearance 40 and the through hole 21. 31 is communicated.

また、本実施形態においては、圧縮室30aには固定スクロール10に設けたリリーフポート12aが開口しており、同様に圧縮室30bにはリリーフポート12bが開口するように構成されており、この構成が本実施形態に係るスクロール圧縮機の特徴の1つである。ここで、リリーフポート12を有するリリーフ機構11の機能は、圧縮室30が予め設定された所定圧力に達すれば当該圧力を外部に開放するものである。   In the present embodiment, the compression chamber 30a has a relief port 12a provided in the fixed scroll 10, and similarly, the compression chamber 30b has a relief port 12b opened. Is one of the features of the scroll compressor according to the present embodiment. Here, the function of the relief mechanism 11 having the relief port 12 is to release the pressure to the outside when the compression chamber 30 reaches a predetermined pressure set in advance.

なお、背圧領域31の背圧は圧縮機運転中に旋回スクロール20の台板5の反圧縮室側に作用し旋回スクロール20を固定スクロール10に押し付ける力を発生し、圧縮に必要な密閉性を得つつ摺動損失を低減するように設定する。ここで、背圧は圧縮機内に吐出圧力を軸受部を介して減圧し背圧領域に導入する。一方で固定スクロール10内に設けた弁体とバネを組み合わせた背圧調整機構80を介して背圧室から略吸込圧力となる圧縮室へ背圧室の冷媒ガスを排出する。また、旋回スクロール20に設けた貫通孔21を介して背圧領域より圧縮室内の背圧に近い領域に排出する構成とする。背圧調整機構80を介して圧縮室の吸込領域に流入する流体は、吸込流体に比べて高温高圧であるため流入した際に再膨張したり吸い込んだ流体を加熱させる等の影響があるが、貫通孔21を背圧領域31と流体の圧力や温度等の条件が近い領域に流入させるように配置することで、上記の損失を低減することができる。   Note that the back pressure in the back pressure region 31 acts on the side opposite to the compression chamber of the base plate 5 of the orbiting scroll 20 during the compressor operation, and generates a force for pressing the orbiting scroll 20 against the fixed scroll 10, so that the sealing property required for compression Is set so as to reduce sliding loss. Here, the back pressure reduces the discharge pressure into the compressor via the bearing portion and introduces it into the back pressure region. On the other hand, the refrigerant gas in the back pressure chamber is discharged from the back pressure chamber to the compression chamber having a substantially suction pressure through a back pressure adjusting mechanism 80 that combines a valve body and a spring provided in the fixed scroll 10. Further, the exhaust gas is discharged to a region closer to the back pressure in the compression chamber than the back pressure region through a through hole 21 provided in the orbiting scroll 20. Although the fluid flowing into the suction region of the compression chamber via the back pressure adjusting mechanism 80 has a higher temperature and pressure than the suction fluid, there is an influence such as re-expansion when the fluid flows in or heating the sucked fluid. By disposing the through-hole 21 so as to flow into a region where conditions such as the pressure and temperature of the fluid are close to those of the back pressure region 31, the above loss can be reduced.

このように、本実施形態は、圧縮室30にリリーフ機構11を設けることによって、冷凍サイクルからの液戻り等による圧縮室への液吸い込み発生時に、リリーフポートから液冷媒が容易に排出され、さらに、この液冷媒の排出によって、貫通孔21を通した背圧領域31への液冷媒の流入を低減し、性能や信頼性をより高めることが可能である。このように、圧縮室内の液冷媒を連通流路を通して背圧領域又は旋回スクロールの軸受部に導入させなくしているのでる。   As described above, in the present embodiment, by providing the relief mechanism 11 in the compression chamber 30, the liquid refrigerant is easily discharged from the relief port when the suction of the liquid into the compression chamber due to the liquid return from the refrigeration cycle or the like occurs. By discharging the liquid refrigerant, it is possible to reduce the inflow of the liquid refrigerant to the back pressure region 31 through the through hole 21, and to further improve performance and reliability. In this way, the liquid refrigerant in the compression chamber is not introduced into the back pressure region or the bearing portion of the orbiting scroll through the communication channel.

次に、リリーフ機構(圧縮室30及び固定スクロール10に設置)と関連する連通流路の機能及び作用について以下説明する。旋回スクロール20は、固定スクロール10とフレーム50との間の所定空間内に、シャフト60や自転防止機構70とともに組み込まれている。通常運転中においては、旋回スクロール20は、背圧領域31の背圧の作用により、図2の図示構成例で上方に向かって固定スクロール10に押し付けられて旋回運転している。   Next, the function and operation of the communication channel related to the relief mechanism (installed in the compression chamber 30 and the fixed scroll 10) will be described below. The orbiting scroll 20 is incorporated in a predetermined space between the fixed scroll 10 and the frame 50 together with the shaft 60 and the rotation prevention mechanism 70. During the normal operation, the orbiting scroll 20 is pushed by the fixed scroll 10 in the illustrated configuration example of FIG.

しかし、圧縮室への液冷媒の流入による液冷媒の圧縮の場合には(圧縮室の想定外圧力上昇を引き起こす)、この上昇圧力によって旋回スクロール20は固定スクロール10から離脱して、下方にあるフレーム50に接触しながら運転される場合もある。そうすると、旋回スクロール20のラップ15を貫通する貫通孔21と、通常運転時においては浮上した状態でのクリアランス(隙間40)及び液圧縮時においては下方に離脱した状態でのクリアランス(隙間40)とを考慮に入れて、リリーフ機構11の流路抵抗を、圧縮室30と背圧領域31とを連通する連通流路(旋回スクロール20の台板5及びラップ15を貫通する貫通孔21+隙間40)の流路抵抗よりも小さく設定することが望ましい。換言すると、圧縮室30での圧力上昇時には、圧縮室内の液冷媒を、連通流路を介した背圧領域31又は軸受部に連通させるのではなくて、リリーフ機構11を通して排出することが望ましいこととなる。
このために、フレーム50の配置関係により左右されるクリアランス40の大小や貫通孔21の寸法形状としては、適宜に流路の断面積を小さくしたり、図3に示すように断面積を段階的に変化したり(実際の加工に際して容易に流路抵抗を適宜可変できる)、または連続的に変化するような形状等により実現することができる。
However, in the case of compression of the liquid refrigerant due to the inflow of the liquid refrigerant into the compression chamber (causes an unexpected pressure increase in the compression chamber), the orbiting scroll 20 is separated from the fixed scroll 10 by this increased pressure and is below. In some cases, the vehicle is operated while being in contact with the frame 50. Then, the through-hole 21 that penetrates the wrap 15 of the orbiting scroll 20, the clearance in the floating state (gap 40) during normal operation, and the clearance (gap 40) in the state separated downward during liquid compression In consideration of the above, the flow resistance of the relief mechanism 11 is defined as a communication flow path that connects the compression chamber 30 and the back pressure region 31 (through hole 21 + gap 40 passing through the base plate 5 and the wrap 15 of the orbiting scroll 20). It is desirable to set it smaller than the flow path resistance. In other words, when the pressure in the compression chamber 30 rises, it is desirable to discharge the liquid refrigerant in the compression chamber through the relief mechanism 11 instead of communicating with the back pressure region 31 or the bearing portion via the communication channel. It becomes.
For this reason, as the size of the clearance 40 and the size and shape of the through hole 21 which are influenced by the arrangement relationship of the frame 50, the cross-sectional area of the flow path is appropriately reduced, or the cross-sectional area is stepwise as shown in FIG. (The flow path resistance can be easily changed as appropriate during actual processing) or a shape that continuously changes.

次に、連通流路の流路抵抗を変化させる他の構成例について、図4と図5を参照しながら以下説明する。図4は旋回スクロール20内に逆流低減機構を備えた例を示す。旋回スクロール20に逆流低減機構22を設け、背圧領域31から圧縮室30に流入する場合には抵抗が小さく、逆流時(液媒体圧縮による想定外の圧力上昇時の流れ)においては流路抵抗を大きくして逆流を低減する。図4の上図から分かるように、背圧領域からの圧力によって、スプリング付勢されたスライダがスプリングに抗して右動して、背圧領域からの流体が抵抗少なく圧縮室に送られる(圧縮室のシール性確保)。これに対して、図4の下図に図示構造は、スプリング付勢されたスライダが連通流路を塞ぎ、圧縮機からの液冷媒流路の抵抗は増大するように機能するものである。   Next, another configuration example for changing the channel resistance of the communication channel will be described below with reference to FIGS. 4 and 5. FIG. 4 shows an example in which a reverse flow reduction mechanism is provided in the orbiting scroll 20. When the orbiting scroll 20 is provided with the backflow reduction mechanism 22 and flows into the compression chamber 30 from the back pressure region 31, the resistance is small, and the flow path resistance during backflow (a flow at an unexpected pressure increase due to liquid medium compression). To increase the backflow. As can be seen from the upper diagram of FIG. 4, the spring-biased slider moves to the right against the spring by the pressure from the back pressure region, and the fluid from the back pressure region is sent to the compression chamber with less resistance ( Ensuring sealing performance of the compression chamber). On the other hand, the structure shown in the lower diagram of FIG. 4 functions so that the spring-biased slider blocks the communication flow path and the resistance of the liquid refrigerant flow path from the compressor increases.

逆流低減機構としては、他に弁体と弾性体を組み合わせたものや液冷媒の温度低下に反応した温度感応による機構があり、また、図5に示すような流れる方向により流路抵抗が変化する、いわゆる流体ダイオード23を使用してもよい。特に、旋回スクロール20が、回転軸方向に上下する隙間が大きい場合には液冷媒の逆流もより発生しやすいため、上述した逆流低減機構は更に効果的である。なお、逆流を低減するだけでなく逆流を抑止できる構造であっても当然良い。   Other backflow reduction mechanisms include a combination of a valve body and an elastic body, and a mechanism based on temperature sensitivity in response to a temperature drop of the liquid refrigerant, and the flow path resistance changes depending on the flow direction as shown in FIG. A so-called fluidic diode 23 may be used. In particular, when the orbiting scroll 20 has a large gap that moves up and down in the direction of the rotation axis, the back flow of the liquid refrigerant is more likely to occur, so the above-described back flow reduction mechanism is more effective. Of course, a structure that can not only reduce the backflow but also suppress the backflow is acceptable.

以上説明したように、本発明の実施形態に係るスクロール圧縮機は、背圧領域と圧縮室との連通流路を介して再膨張や加熱による損失の低減を図りつつ、圧縮室での液冷媒圧縮による圧力上昇時には当該連通流路を通して冷媒が背圧領域に入り込まないように、圧縮室並びに固定スクロールにリリーフ機構を設けたことを主たる特徴とするものである。   As described above, the scroll compressor according to the embodiment of the present invention can reduce the liquid refrigerant in the compression chamber while reducing loss due to re-expansion and heating through the communication flow path between the back pressure region and the compression chamber. The main feature is that a relief mechanism is provided in the compression chamber and the fixed scroll so that the refrigerant does not enter the back pressure region through the communication channel when the pressure rises due to compression.

具体的な構成及び作用としては、旋回スクロールラップに圧縮室と圧縮室以外を連通する連通流路(具体例では貫通孔)を設け、連通流路の圧縮室側の開口部に連通する圧縮室に関して固定スクロールにリリーフ機構が開口できるように配置することで、液冷媒の吸い込み時に容易に排出しつつ圧縮室以外への液冷媒の進入を低減するものである。また、圧縮室以外の背圧領域や軸受部などでの冷媒を多く含んだ油が発泡した場合には、旋回スクロールの流路を通じて圧縮室に排出されるだけでなく、さらに固定スクロールから排出されることで、背圧領域と圧縮室の不要な圧力上昇も低減するものである。圧縮室と背圧領域を連通する圧縮機を例として説明したが、旋回スクロールに圧縮室と軸受部を連通する貫通孔を備えた圧縮機においても同様の効果が得られる。なお、以上の説明ではスクロール圧縮機を例示して説明したが、本発明はこれに限らず流体圧縮機および流体搬送機械に適用可能な技術である。   As a specific configuration and action, the orbiting scroll wrap is provided with a communication channel (a through hole in a specific example) that communicates between the compression chamber and other than the compression chamber, and the compression chamber communicates with the opening on the compression chamber side of the communication channel. By disposing the relief mechanism on the fixed scroll so that the relief mechanism can be opened, the liquid refrigerant can be prevented from entering other than the compression chamber while being easily discharged when the liquid refrigerant is sucked. In addition, when oil containing a large amount of refrigerant in the back pressure region other than the compression chamber or in the bearing portion is foamed, it is not only discharged to the compression chamber through the flow path of the orbiting scroll, but also discharged from the fixed scroll. Thus, unnecessary pressure rises in the back pressure region and the compression chamber are also reduced. Although the description has been given of the compressor communicating with the compression chamber and the back pressure region as an example, the same effect can be obtained with a compressor provided with a through-hole communicating with the orbiting scroll between the compression chamber and the bearing portion. In the above description, the scroll compressor has been described as an example, but the present invention is not limited to this and is a technique applicable to a fluid compressor and a fluid transport machine.

本発明の実施形態に係るスクロール圧縮機における圧縮室の断面を示し、図2のA−A’線の矢印断面図である。FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2, showing a cross section of a compression chamber in the scroll compressor according to the embodiment of the present invention. 本実施形態に係るスクロール圧縮機における概略的な全体構成を示す図である。It is a figure which shows the schematic whole structure in the scroll compressor which concerns on this embodiment. 本実施形態に係るスクロール圧縮機における旋回スクロールのラップに設けた連通流路の抵抗変化の一例を示す図である。It is a figure which shows an example of resistance change of the communication flow path provided in the wrap of the turning scroll in the scroll compressor which concerns on this embodiment. 本実施形態に関する旋回スクロールのラップに設けた連通流路の抵抗変化の他例を示す図である。It is a figure which shows the other example of resistance change of the communication flow path provided in the wrap of the turning scroll regarding this embodiment. 本実施形態に関する旋回スクロールのラップに設けた連通流路の抵抗変化の更なる例を示す図である。It is a figure which shows the further example of resistance change of the communication flow path provided in the wrap of the turning scroll regarding this embodiment.

符号の説明Explanation of symbols

1 流体入口
2 流体出口
3 中間出口
5 旋回スクロール台板
6 固定スクロール台板
7 旋回スクロール鏡板
8 固定スクロール鏡板
10 固定スクロール
11 リリーフ機構
12,12a,12b リリーフポート
15 旋回スクロールラップ
16 固定スクロールラップ
20 旋回スクロール
21 貫通孔
22 逆流低減機構
23 流体ダイオード
30,30a,30b 圧縮室
31 背圧領域
40 隙間
50 フレーム
60 シャフト
70 自転防止機構
80 背圧調整機構
DESCRIPTION OF SYMBOLS 1 Fluid inlet 2 Fluid outlet 3 Intermediate outlet 5 Orbiting scroll base plate 6 Fixed scroll base plate 7 Orbiting scroll end plate 8 Fixed scroll end plate 10 Fixed scroll 11 Relief mechanism 12, 12a, 12b Relief port 15 Orbiting scroll wrap 16 Fixed scroll wrap 20 Orbit Scroll 21 Through-hole 22 Backflow reduction mechanism 23 Fluid diode 30, 30a, 30b Compression chamber 31 Back pressure region 40 Clearance 50 Frame 60 Shaft 70 Rotation prevention mechanism 80 Back pressure adjustment mechanism

Claims (7)

渦巻状のラップを設けた固定スクロールと旋回スクロールとを互いのラップが向かい合うようにかみ合わせて複数の圧縮室を形成し、前記旋回スクロールの背面に背圧を印加し、前記旋回スクロールを自転させずに旋回運動させることにより前記圧縮室の容積を連続的に縮小し流体圧縮を行うスクロール圧縮機において、
前記圧縮室から前記旋回スクロールの背圧領域又は軸受部などの前記圧縮室以外の領域に連通する連通流路を、前記旋回スクロールのラップと台板に設け、
前記旋回スクロールのラップに設けられた連通流路につながる圧縮室の室内所定圧力流体を外部に開放するリリーフ機構を、前記固定スクロールに設ける
ことを特徴とするスクロール圧縮機。
A plurality of compression chambers are formed by meshing a fixed scroll provided with a spiral wrap and a turning scroll so that the wraps face each other, and back pressure is applied to the back of the turning scroll so that the turning scroll does not rotate. In a scroll compressor that performs fluid compression by continuously reducing the volume of the compression chamber by revolving to
A communication channel that communicates from the compression chamber to a region other than the compression chamber, such as a back pressure region or a bearing portion of the orbiting scroll, is provided in the wrap and base plate of the orbiting scroll,
A scroll compressor characterized in that a relief mechanism for opening a predetermined pressure fluid in a compression chamber connected to a communication channel provided in a lap of the orbiting scroll to the outside is provided in the fixed scroll.
請求項1において、
前記連通流路は、前記旋回スクロールのラップと台板を貫通する貫通孔と、前記旋回スクロールのラップ端面と前記固定スクロールの台板との間の隙間と、からなることを特徴とするスクロール圧縮機。
In claim 1,
The communication flow path is composed of a through-hole penetrating the wrap and base plate of the orbiting scroll, and a gap between the wrap end surface of the orbiting scroll and the base plate of the fixed scroll. Machine.
請求項1又は2において、
前記旋回スクロールのラップに設けられた連通流路の開口部に隣り合ってつながる複数の圧縮室に前記リリーフ機構が設けられることを特徴とするスクロール圧縮機。
In claim 1 or 2,
A scroll compressor characterized in that the relief mechanism is provided in a plurality of compression chambers connected adjacent to an opening of a communication flow path provided in a lap of the orbiting scroll.
請求項1、2又は3において、
前記固定スクロールに設けたリリーフ機構の流路抵抗を前記連通流路の流路抵抗より小さくすることを特徴とするスクロール圧縮機。
In claim 1, 2 or 3,
A scroll compressor characterized in that a channel resistance of a relief mechanism provided in the fixed scroll is made smaller than a channel resistance of the communication channel.
請求項2において、
前記旋回スクロールに設けた貫通孔の断面積を段階的又は連続的に変化させ、
前記固定スクロールに設けたリリーフ機構の流路抵抗を前記連通流路の流路抵抗より小さくする
ことを特徴とするスクロール圧縮機。
In claim 2,
Changing the cross-sectional area of the through hole provided in the orbiting scroll stepwise or continuously,
A scroll compressor characterized in that a channel resistance of a relief mechanism provided in the fixed scroll is made smaller than a channel resistance of the communication channel.
渦巻状のラップを設けた固定スクロールと旋回スクロールとを互いのラップが向かい合うようにかみ合わせて複数の圧縮室を形成し、前記旋回スクロールの背面に背圧を印加し、前記旋回スクロールを自転させずに旋回運動させることにより前記圧縮室の容積を連続的に縮小し流体圧縮を行うスクロール圧縮機において、
前記圧縮室から前記旋回スクロールの背圧領域又は軸受部などの前記圧縮室以外の領域に連通する連通流路を、前記旋回スクロールのラップと台板に設け、
前記旋回スクロールのラップに設けられた連通流路につながる圧縮室の室内所定圧力流体を外部に開放するリリーフ機構を、前記固定スクロールに設け、
前記旋回スクロールに設けた連通流路には、流体の流れ方向によって流路抵抗の変化する流路抵抗変化機構を設け、
前記流路抵抗変化機構は、前記圧縮室から前記圧縮室以外の領域への流体流れ方向の第1の流路抵抗を大きくし、前記圧縮室以外の領域から前記圧縮室への流体流れ方向の第2の流路抵抗を小さくする機能を有し、
前記固定スクロールに設けたリリーフ機構の流路抵抗を前記流路抵抗変化機構の前記第1の流路抵抗より小さくする
ことを特徴とするスクロール圧縮機。
A plurality of compression chambers are formed by meshing a fixed scroll provided with a spiral wrap and a turning scroll so that the wraps face each other, and back pressure is applied to the back of the turning scroll so that the turning scroll does not rotate. In a scroll compressor that performs fluid compression by continuously reducing the volume of the compression chamber by revolving to
A communication channel that communicates from the compression chamber to a region other than the compression chamber, such as a back pressure region or a bearing portion of the orbiting scroll, is provided in the wrap and base plate of the orbiting scroll,
A relief mechanism for opening a predetermined pressure fluid in a compression chamber connected to a communication flow path provided in the wrap of the orbiting scroll to the outside is provided in the fixed scroll;
The communication flow path provided in the orbiting scroll is provided with a flow path resistance change mechanism in which the flow path resistance changes according to the flow direction of the fluid,
The flow path resistance changing mechanism increases a first flow path resistance in a fluid flow direction from the compression chamber to a region other than the compression chamber, and increases a fluid flow direction from the region other than the compression chamber to the compression chamber. Having a function of reducing the second flow path resistance;
A scroll compressor characterized in that a flow path resistance of a relief mechanism provided on the fixed scroll is made smaller than the first flow path resistance of the flow path resistance changing mechanism.
請求項6において、
前記流路抵抗変化機構は流体ダイオードであることを特徴とするスクロール圧縮機。
In claim 6,
The scroll compressor, wherein the flow path resistance change mechanism is a fluid diode.
JP2005253530A 2005-09-01 2005-09-01 Scroll fluid machinery Expired - Fee Related JP4355308B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005253530A JP4355308B2 (en) 2005-09-01 2005-09-01 Scroll fluid machinery
CN201110144337.6A CN102207088B (en) 2005-09-01 2006-08-31 Scroll fluid machine
KR1020060083200A KR100811398B1 (en) 2005-09-01 2006-08-31 Scroll fluid machine
CNA2006101288721A CN1924358A (en) 2005-09-01 2006-08-31 Eddy liquid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253530A JP4355308B2 (en) 2005-09-01 2005-09-01 Scroll fluid machinery

Publications (2)

Publication Number Publication Date
JP2007064147A JP2007064147A (en) 2007-03-15
JP4355308B2 true JP4355308B2 (en) 2009-10-28

Family

ID=37817126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253530A Expired - Fee Related JP4355308B2 (en) 2005-09-01 2005-09-01 Scroll fluid machinery

Country Status (3)

Country Link
JP (1) JP4355308B2 (en)
KR (1) KR100811398B1 (en)
CN (2) CN1924358A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512259B (en) * 2013-03-21 2016-04-20 广东美芝制冷设备有限公司 Heat pump, refrigeration system
JP7280726B2 (en) 2019-03-20 2023-05-24 サンデン株式会社 scroll compressor
CN112922828B (en) * 2021-03-08 2023-03-14 青岛科技大学 Prevent pressure pulsation's vortex liquid pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830471B2 (en) * 1986-12-04 1996-03-27 株式会社日立製作所 Air conditioner equipped with an inverter-driven scroll compressor
JPH04132889A (en) * 1990-09-20 1992-05-07 Tokico Ltd Scroll type fluid machine
JPH051677A (en) * 1991-06-27 1993-01-08 Hitachi Ltd Scroll compressor
JPH0626472A (en) * 1992-07-10 1994-02-01 Toshiba Corp Scroll compressor
CN1182835A (en) * 1996-11-19 1998-05-27 刘文化 Vortex compressor
US5762483A (en) * 1997-01-28 1998-06-09 Carrier Corporation Scroll compressor with controlled fluid venting to back pressure chamber
JP4107903B2 (en) 2002-07-29 2008-06-25 株式会社デンソー Scroll compressor

Also Published As

Publication number Publication date
CN102207088A (en) 2011-10-05
JP2007064147A (en) 2007-03-15
CN102207088B (en) 2015-06-17
KR100811398B1 (en) 2008-03-07
CN1924358A (en) 2007-03-07
KR20070026177A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP3635794B2 (en) Scroll gas compressor
US6537043B1 (en) Compressor discharge valve having a contoured body with a uniform thickness
US5863191A (en) Scroll compressor having a discharge muffler chamber
JP4892238B2 (en) Scroll compressor
JP4680616B2 (en) Scroll compressor capacity variable device
JP2010106780A (en) Scroll compressor
JP2011027076A (en) Scroll compressor
JP5507756B2 (en) Scroll compressor
JP4519489B2 (en) Scroll compressor
US20070217938A1 (en) Scroll compressor with bypass apparatus
JP2959457B2 (en) Scroll gas compressor
JP3028054B2 (en) Scroll gas compressor
JP2006299806A (en) Scroll compressor
JP4355308B2 (en) Scroll fluid machinery
JP2010265756A (en) Scroll compressor
WO2005010372A1 (en) Scroll compressor
JP4604968B2 (en) Scroll compressor
JP2005002886A (en) Scroll compressor
JP3027930B2 (en) Scroll gas compressor
JP2956555B2 (en) Scroll gas compressor
JPH09217690A (en) Scroll gas compressor
JP2008115767A (en) Scroll compressor
JP2005163745A (en) Scroll compressor
JP5071355B2 (en) Scroll compressor
JP2001041183A (en) Scroll gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090612

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Ref document number: 4355308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees