JP4355294B2 - Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs - Google Patents
Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs Download PDFInfo
- Publication number
- JP4355294B2 JP4355294B2 JP2004571496A JP2004571496A JP4355294B2 JP 4355294 B2 JP4355294 B2 JP 4355294B2 JP 2004571496 A JP2004571496 A JP 2004571496A JP 2004571496 A JP2004571496 A JP 2004571496A JP 4355294 B2 JP4355294 B2 JP 4355294B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- tube
- discontinuous
- inclined inner
- enhanced heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002457 bidirectional effect Effects 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/424—Means comprising outside portions integral with inside portions
- F28F1/426—Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
技術分野
本発明は、不連続の両方向傾斜内部リブ付き増強熱交換管に関し、増強熱交換及び熱交換器の分野に属するものである。
TECHNICAL FIELD The present invention relates to an enhanced heat exchange tube with discontinuous bi-directionally inclined inner ribs and belongs to the field of enhanced heat exchange and heat exchangers.
背景技術
管状の熱交換器は、石油、化工、動力などの多数の分野で広くて大量に応用される。管状の熱交換器は、一般的に平滑で断面円形の管を用い、製造プロセスが簡単で、安全性がよく、コストが低いなどの利点があるが、平滑で断面円形の管の熱交換性能が不足の原因で、普通の管状の熱交換器は、体積が大きくなり、消耗材料が多いなどの欠点がある。このような状況を改変するために、普通の円形管の変わりに、各種の増強熱交換管が開発されて来た。三十年以来、壁面の流れ干渉増強技術に基づき、様々な対流熱交換増強素子が開発された。特に、ローリング工法により得られた表面粗い熱交換管、例えば螺旋状溝付管(spirally grooved tube)、横溝付管(transverse grooved tube)は、工程に広く成功裡に応用された。また、管内インサート(inserts)、例えば、ねじれたテープインサート(twisted-tape inserts)、スプリングインサート(spring inserts)なども広く応用されている。これら熱交換管は、流れ抵抗が大きく、内部リブまたは溝付近の逆流区域に汚れやすく、加工効率が低く、コストが高いという共通の欠点がある。
BACKGROUND ART Tubular heat exchangers are widely applied in large quantities in many fields such as petroleum, chemicals, and power. Tubular heat exchangers generally use smooth and circular cross-section tubes, and have advantages such as a simple manufacturing process, good safety, and low cost, but the heat exchange performance of smooth and circular cross-section tubes Due to the shortage, ordinary tubular heat exchangers have disadvantages such as an increase in volume and a large amount of consumable materials. In order to modify this situation, various types of enhanced heat exchange tubes have been developed instead of ordinary circular tubes. Since 30 years, various convective heat exchange enhancement elements have been developed based on wall flow interference enhancement technology. In particular, rough surface heat exchange tubes obtained by the rolling method, such as spirally grooved tubes and transverse grooved tubes, have been widely and successfully applied to the process. In-pipe inserts, such as twisted-tape inserts, spring inserts, etc. are also widely applied. These heat exchange tubes have the common drawbacks of high flow resistance, easy contamination in the backflow area near the internal ribs or grooves, low processing efficiency, and high cost.
発明の内容
本発明は、管内に不連続で、軸線と所定の角度があって両方向に傾斜するストリップ状の突起、即ち両方向傾斜内部リブを備える新規な増強熱交換管である不連続の両方向傾斜内部リブ付き増強熱交換管(Discrete Bidirectionally Inclined ribs tube、以下、DBIR管と称する)を提供することを目的とする。多数の両方向傾斜内部リブによって、流体は、管内に、特に内面付近に、縦方向の渦巻き及び/または他の方式の管内径方向流れを生じるので、熱交換を顕著に増強させる。これは、「対流熱交換場協同原則」(Guo
Z.Y,Mechanism and Control of Convective Heat Transfer-Coordination of Velocity
and Heat Flow Field,Chinese Science Bulletin, 46(7):596-599 Apr 2001参照)に合致し、即ち、流速場及び温度勾配場の協同程度を高める限り、抵抗の増加が少なくて熱伝達過程をよく増強することができる。「対流熱交換場協同原則」に基づいて管内の流れ及び熱交換を理論的に解析することによって、縦方向の渦巻きは、管内の対流熱交換を増強させる有効な方式である。縦方向の渦巻き及び管内径方向の流れは、一般的に流速場及び温度勾配場の協同程度を顕著に改善させて、管内の対流熱交換過程をよく増強させることができる。本発明におけるDBIR管は、螺旋状溝付管、横溝付管、ネジ付管及び粗いリブ付管よりも、乱流及び遷移区域によりよい増強熱交換効果及び低い抵抗損失を有し、従来の技術の欠点を克服または補うことができる。
SUMMARY OF THE INVENTION The present invention is a discontinuous bi-directional tilt that is a new enhanced heat exchange tube that is discontinuous in the tube and has a predetermined angle with the axis and tilts in both directions, i.e., a bi-directionally inclined internal rib. An object is to provide an enhanced heat exchange tube with internal ribs (Discrete Bidirectionally Inclined ribs tube, hereinafter referred to as DBIR tube). With a large number of bi-directionally inclined internal ribs, the fluid significantly enhances heat exchange as it creates longitudinal vortices and / or other types of internal tube flow in the tube, particularly near the inner surface. This is the “Cooperation Principle of the Convection Heat Exchange” (Guo
ZY, Mechanism and Control of Convective Heat Transfer-Coordination of Velocity
and Heat Flow Field, Chinese Science Bulletin, 46 (7): 596-599 Apr 2001), that is, as long as the cooperation between the flow velocity field and the temperature gradient field is increased, the increase in resistance is small and the heat transfer process is reduced. Can strengthen well. Longitudinal spirals are an effective way to enhance convective heat exchange in a tube by theoretically analyzing the flow and heat exchange in the tube based on the “convective heat exchange field cooperative principle”. Longitudinal vortices and tube bore flow generally can significantly improve the co-ordination of flow velocity and temperature gradient fields and can enhance the convective heat exchange process in the tube well. The DBIR tube in the present invention has a better enhanced heat exchange effect and lower resistance loss in the turbulent flow and transition zone than the spiral grooved tube, transverse grooved tube, threaded tube and rough ribbed tube. The drawbacks of can be overcome or compensated.
本発明は、管軸線に対して垂直な平面で切断した断面の形状が円形である前記増強熱交換管の内面に、不連続で管軸線と所定の角度を有して両方向に傾斜するストリップ状の突起である両方向傾斜内部リブ、即ち左旋方向傾斜内部リブ及び右旋方向傾斜内部リブを備える。両方向傾斜内部リブは、突起に対応する溝が増強熱交換管の外周面に形成されている。左旋方向傾斜内部リブは、管軸線の延びる方向に沿って間隔をあけて連続して設けられる。右旋方向傾斜内部リブは、管軸線の延びる方向に沿って間隔をあけて連続して設けられる。さらに、左旋方向傾斜内部リブと右旋方向傾斜内部リブとが、増強熱交換管の周方向に沿って交互に設けられる。前記両方向傾斜内部リブは、その高さが0.2d以下、周方向幅が0.5d以下、長さが2d以下であり(前記dは、前記管の流体力学の内径である)、周方向に隣接する左旋方向傾斜内部リブと右旋方向傾斜内部リブとから成る傾斜リブ対が、増強熱交換管内を流れる流体に対して縦方向の渦巻きを生ずる渦発生器を構成している。さらに、両方向傾斜内部リブの軸線と管軸線との間の角度は±(45〜50)度である(「+」が左旋方向傾斜、「−」が右旋方向傾斜を示す)ことを特徴とする不連続の両方向傾斜内部リブ付き増強熱交換管である。 The present invention provides a strip-like shape which is discontinuous and has a predetermined angle with the pipe axis and is inclined in both directions on the inner surface of the enhanced heat exchange pipe having a circular cross-sectional shape cut along a plane perpendicular to the pipe axis. Bi-directionally inclined internal ribs, that is, left-handed inclined inner ribs and right-handed inclined inner ribs. In the bidirectionally inclined inner rib, a groove corresponding to the protrusion is formed on the outer peripheral surface of the enhanced heat exchange tube. The left-handed inclined inner ribs are continuously provided at intervals along the direction in which the tube axis extends. The right-handed inclined internal ribs are continuously provided at intervals along the direction in which the tube axis extends. Furthermore, the left-handed inclined inner ribs and the right-handed inclined inner ribs are alternately provided along the circumferential direction of the enhanced heat exchange tube. The bi-directional tilt inner ribs, the height is 0.2d or less, the circumferential width of 0.5d or less, der Ri less length 2d (the d is the inner diameter of the fluid dynamics of the tube), the circumferential A pair of inclined ribs composed of a left-handed inclined inner rib and a right-handed inclined inner rib adjacent to each other constitute a vortex generator that generates a longitudinal vortex for the fluid flowing in the enhanced heat exchange tube. Further, the angle between the axis of the bi-directionally inclined inner rib and the tube axis is ± (45 to 50) degrees (“+” indicates a left-handed direction inclination and “−” indicates a right-handed direction inclination). It is an enhanced heat exchange tube with discontinuous bi-directionally inclined inner ribs.
前記両方向傾斜内部リブの断面形状は、円弧形、矩形、三角形、扇形、流線形、幾つの曲線及び直線からなる任意の形状の一種または数種の組合せであることが好ましい。 The cross-sectional shape of the bi-directionally inclined inner rib is preferably one or a combination of arbitrary shapes consisting of an arc, rectangle, triangle, fan, streamline, several curves and straight lines.
前記両方向傾斜内部リブの軸線は、直線、折線、キャンバー、スパイラル線及び曲線の任意の一種または数種の組合せであることが好ましい。 The axis of the bi-directionally inclined inner rib is preferably any one kind or a combination of several kinds of straight lines, broken lines, cambers, spiral lines and curves.
前記増強熱交換管の内面は、平滑な表面及び低いリブ付表面の任意の一種または数種の組合せであることが好ましい。 The inner surface of the enhanced heat exchange tubes is preferably any one or several combinations of smooth table Men及 beauty lower ribbed surface.
前記増強熱交換管の外面は、溝付表面、平滑な表面、低いリブ付表面及びひれ付表面の任意の一種または数種の組合せであることが好ましい。 It said outer surface of enhanced heat exchanger tubes, grooved surface, a smooth front surface is preferably any one or several combinations of lower ribbed surface and fins with the surface.
従来の技術と比べると、本発明は、増強熱伝達効果が顕著で、流れ抵抗が小さく、成形が簡単と言う利点がある。実施例1〜3の発明は、普通の円形管と比べると、乱流に対しては、一般的に熱伝達係数を80〜150%向上し、熱伝達効果のよい横溝付管よりも30%向上して流れ抵抗を20〜50%低下し、遷移区域対流熱交換については、その増強熱交換効果も顕著であるので、重要な工程実用価値がある。又、横溝付管及びネジリブ付管と比べると、本発明の両方向傾斜内部リブ付近に逆流(横方向の渦巻き)を生じにくく、管内に流れない領域がないことによって、よい汚れ防止効果がある。 Compared with the prior art, the present invention has the advantage that the enhanced heat transfer effect is remarkable, the flow resistance is small, and the molding is simple. The inventions of Examples 1 to 3 generally improve the heat transfer coefficient by 80 to 150% against turbulent flow compared to ordinary circular tubes, and 30% more than the lateral grooved tube having a good heat transfer effect. The flow resistance is improved by 20 to 50%, and the transition zone convection heat exchange has an important process practical value because its enhanced heat exchange effect is also remarkable. Further, as compared with a tube with a lateral groove and a tube with a threaded rib, a backflow (a lateral spiral) hardly occurs in the vicinity of the bi-directionally inclined inner rib of the present invention, and there is no region that does not flow in the tube, thereby providing a good antifouling effect.
発明の実施の形態
不連続の両方向傾斜内部リブ付き増強熱交換管は、熱交換管の内面に、不連続で軸線と所定の角度があって両方向に傾斜するストリップ状の突起である両方向傾斜内部リブを複数設置したものである。両方向傾斜内部リブは、一般的に、その高さが0.2d以下、周方向幅が0.5d以下、長さが2d以下である(dは、前記管の流体力学の内径である)。「不連続」とは、螺旋状溝付管(螺旋連続)、ネジ付管(ネジ連続)、横溝付管(周方向連続)に対し、所定の長さを有する粗面のもの(ストリップ状の突起)である。不連続の両方向傾斜内部リブ付き増強熱交換管は、普通の円形管、低いリブ付管またはネジ付管をモールディングまたはローリングにより製造し、または継目なし管をローリングする時に成形され、または継ぎ目管を溶接する時に成形されてもよい。管内の流体は、管壁にある複数の両方向傾斜内部リブにより複数の縦方向の渦巻き及び/または他の2次流れを生じ、且つ、渦巻き及び/または他の2次流れが管壁面付近に集中することによって、乱流熱交換及び遷移区域の対流熱交換の過程がよく増加される効果を果たす。
BEST MODE FOR CARRYING OUT THE INVENTION A discontinuous bi-directionally inclined internal ribbed enhanced heat exchange tube is a bi-directionally inclined interior that is a strip-like protrusion that is discontinuous and has a predetermined angle with an axis on the inner surface of the heat exchange tube. A plurality of ribs are installed. The bi-directionally inclined inner rib generally has a height of 0.2 d or less, a circumferential width of 0.5 d or less, and a length of 2 d or less (d is the hydrodynamic inner diameter of the tube). “Discontinuous” refers to a rough surface (strip-shaped) having a predetermined length with respect to a spiral grooved tube (helical continuous), a threaded tube (screw continuous), and a lateral grooved tube (circumferential continuous). Projection). Discontinuous bi-directionally inclined internal ribbed augmented heat exchange tubes are formed when molding ordinary round tubes, low ribbed tubes or threaded tubes by molding or rolling, or rolling seamless tubes. It may be formed when welding. The fluid in the tube causes a plurality of longitudinal spirals and / or other secondary flows due to a plurality of bidirectionally inclined inner ribs on the tube wall, and the spirals and / or other secondary flows are concentrated near the wall of the tube. By doing so, the process of turbulent heat exchange and convective heat exchange in the transition zone is effectively increased.
実施例1
図1は不連続の両方向傾斜内部リブ付き増強熱交換管の構造を示す。この管の内側に不連続の両方向螺旋状突起(不連続の両方向螺旋状内部リブと略する)を備え、管の外側に不連続の両方向螺旋状溝を備える。
Example 1
FIG. 1 shows the structure of an enhanced heat exchange tube with discontinuous bi-directionally inclined internal ribs. A discontinuous bidirectional spiral protrusion (abbreviated as discontinuous bidirectional spiral inner rib) is provided inside the tube, and a discontinuous bidirectional spiral groove is provided outside the tube.
図1及び図2において、符号1は管の内側の不連続の両方向螺旋状リブ、符号2は管の外側の不連続の両方向螺旋状溝を示す。螺旋状リブ及び螺旋状溝は、加工中に同時に形成されたものである。図1における符号dは熱交換管の流体力学の内径、符号Pはそれぞれの両方向傾斜内部リブの軸方向の長さ、符号Cは両方向傾斜内部リブの螺旋角である。図3において、符号hは両方向傾斜内部リブの高さである。P=0.3d、h=0.05d、C≒±45度(正値は右旋、負値は左旋を示す)である。
1 and 2,
実施例2
図4は他の不連続の両方向傾斜内部リブ付き増強熱交換管の一部が周方向に展開された構造を示す。この管の内面に不連続の両方向螺旋状突起(両方向傾斜内部リブ)を備え、管の外面は平滑な壁面である。
Example 2
FIG. 4 shows a structure in which a part of another heat dissipating heat exchange pipe with discontinuous bi-directionally inclined inner ribs is developed in the circumferential direction. The inner surface of the tube is provided with discontinuous bidirectional spiral protrusions (bidirectionally inclined inner ribs), and the outer surface of the tube is a smooth wall surface.
図4において、符号3は対称に配置された不連続の両方向螺旋状リブを示す。一つの右旋傾斜リブと、それと周方向に隣接する左旋傾斜リブで一つの渦発生器を構成し、同一の断面において、周方向に沿って四つの傾斜リブで二つの渦発生器を構成する。図4の符号Cは両方向傾斜内部リブの弦巻角で、C≒±50度(正値は右旋、負値は左旋を示す)であり、同図におけるCは右旋角である。図4において、符号4は、流体が不連続の両方向螺旋状内部リブによって内面付近に生じた縦方向の渦巻きを概略に示す。両方向傾斜内部リブによる縦方向の渦巻きは主に壁面付近に存在しているので、乱流の場合の熱交換強化の効果に優れた。不連続かつ所定の傾斜角度を有する両方向傾斜内部リブは、流体に横方向の渦巻きを生じさせにくいとともに、管内の流通面積の減少を少なくさせるので、このような管は、螺旋状溝付、横溝付及びネジ付熱交換管より、流れ抵抗がずっと小さい。 In FIG. 4, the code | symbol 3 shows the discontinuous bidirectional spiral rib arrange | positioned symmetrically. One vortex generator and one counterclockwise inclined rib adjacent in the circumferential direction constitute one vortex generator, and two vortex generators are constituted by four inclined ribs along the circumferential direction in the same cross section. . The symbol C in FIG. 4 is the winding angle of the bi-directionally inclined inner rib, and C≈ ± 50 degrees (a positive value indicates right-handed rotation and a negative value indicates left-handed rotation), and C in FIG. In FIG. 4, reference numeral 4 schematically shows a longitudinal spiral generated near the inner surface by a discontinuous bidirectional spiral internal rib. Longitudinal spirals due to the bi-directionally inclined inner ribs are mainly present near the wall surface, so the effect of enhancing heat exchange in the case of turbulent flow is excellent. Bi-directionally inclined internal ribs that are discontinuous and have a predetermined angle of inclination are less likely to cause lateral vortices in the fluid and reduce the reduction of the flow area within the tube. Flow resistance is much smaller than with heat exchanger tubes with screws.
実施例3
図5はさらに他の不連続の両方向傾斜内部リブ付き増強熱交換管の一部が周方向に展開された構造を示す。この管の内面に不連続の両方向螺旋状突起(両方向傾斜内部リブ)を備え、管の外面に不連続の両方向螺旋状溝を備える。
Example 3
FIG. 5 shows a structure in which a part of another intensified heat exchange tube with discontinuous bidirectionally inclined inner ribs is developed in the circumferential direction. A discontinuous bidirectional spiral protrusion (bidirectionally inclined inner rib) is provided on the inner surface of the tube, and a discontinuous bidirectional spiral groove is provided on the outer surface of the tube.
図5において、符号5は、管内に不対称に配置された不連続の両方向螺旋状リブ、符号6は管外に不対称に配置された不連続の両方向螺旋状溝を示す。管内に、一つの右旋傾斜リブと、それと周方向に隣接する左旋傾斜リブで一つの渦発生器を構成し、小さい部分の管(0.5dよりも小さい)の内面には、六つの傾斜リブで三つの渦発生器を構成する。
In FIG. 5,
不連続の両方向傾斜内部リブ付き増強熱交換管がローリングまたはモールディングにより成形されることは最適な製造方法である。不連続の管内両方向螺旋状リブ/管外両方向螺旋状溝付き熱交換管のローリング成形プロセスは、ロールの成型表面に不連続の扁平な突起(low-profile protrusions)を設置し、熱交換管がロールでローリングされる場合に、熱交換管の外面が扁平な突起で押し出されて不連続の両方向螺旋状溝に成形され、その管内に不連続の両方向螺旋状リブが成形される。管内に不連続の両方向螺旋状のリブを備えて管の外面が平滑である熱交換管については、その製造プロセスの一つは、管内にネジを備えて管外が平滑である管と類似であり、その製造プロセスのもう一つは、ローリングまたはモールディングにより成形された不連続の管内両方向螺旋状リブ/管外両方向螺旋状溝付き熱交換管を再加工する(冷間引抜など)。不連続の両方向傾斜内部リブ付き増強熱交換管のローリングまたはモールディング成形方法について、通常の螺旋状溝、横溝、ネジ表面付熱交換管より、製造効率が5〜10倍高く、これは、傾斜リブの不連続による利点であるので、その製造コストもそれに応じて低下される。 It is an optimal manufacturing method that the enhanced heat exchange tube with discontinuous bi-directionally inclined internal ribs is formed by rolling or molding. The rolling process of discontinuous in-tube bi-directional spiral ribs / out-of-tube bi-directional spiral grooved heat exchange tubes involves the installation of discontinuous low-profile protrusions on the roll molding surface, When rolling by a roll, the outer surface of the heat exchange tube is extruded with a flat protrusion and formed into a discontinuous bidirectional spiral groove, and a discontinuous bidirectional spiral rib is formed within the tube. For heat exchange tubes with discontinuous bi-directional helical ribs in the tube and a smooth outer surface of the tube, one of the manufacturing processes is similar to a tube with a screw in the tube and a smooth outer tube One of the manufacturing processes is to rework discontinuous in-tube bi-directional spiral ribs / ex-tube bi-directional spiral grooved heat exchange tubes formed by rolling or molding (such as cold drawing). About the rolling or molding method of the enhanced heat exchange pipe with discontinuous bi-directionally inclined inner ribs, the production efficiency is 5 to 10 times higher than that of ordinary heat exchange pipes with spiral grooves, lateral grooves, and thread surfaces. Manufacturing costs are reduced accordingly.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031251323A CN1211633C (en) | 2003-05-10 | 2003-05-10 | Non-continuous double diagonal internal rib reinforced heat exchange tube |
PCT/CN2003/000905 WO2004099698A1 (en) | 2003-05-10 | 2003-10-27 | Intensive heat exchange tube with discontinuous ribs |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006514733A JP2006514733A (en) | 2006-05-11 |
JP4355294B2 true JP4355294B2 (en) | 2009-10-28 |
Family
ID=29222884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004571496A Expired - Fee Related JP4355294B2 (en) | 2003-05-10 | 2003-10-27 | Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070000651A1 (en) |
JP (1) | JP4355294B2 (en) |
CN (1) | CN1211633C (en) |
AU (1) | AU2003280545A1 (en) |
WO (1) | WO2004099698A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451531C (en) * | 2005-03-25 | 2009-01-14 | 清华大学 | Water heater heat exchange tube |
JP2007333254A (en) * | 2006-06-13 | 2007-12-27 | Calsonic Kansei Corp | Tube for heat-exchanger |
JP2009264644A (en) * | 2008-04-24 | 2009-11-12 | Panasonic Corp | Heat exchanger |
JP5513738B2 (en) * | 2008-12-24 | 2014-06-04 | 東芝キヤリア株式会社 | Heat exchanger and heat pump water heater |
CN102435087A (en) * | 2011-09-21 | 2012-05-02 | 西安交通大学 | E-shaped axially-symmetrical strengthened heat-exchanging element |
CN102570696A (en) * | 2012-03-20 | 2012-07-11 | 中科盛创(青岛)电气有限公司 | Expansion tube type water-cooling base for motor |
CN102706180A (en) * | 2012-05-25 | 2012-10-03 | 南京白云化工环境监测有限公司 | Immersive coil type heat-exchanger |
DE102012022363A1 (en) * | 2012-11-15 | 2014-05-15 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Internal heat exchanger for a motor vehicle air conditioning system |
CN103940283B (en) * | 2014-04-02 | 2016-03-30 | 中国科学院广州能源研究所 | A kind of longitudinal turbulence works in coordination with generating polynomial heat transfer element |
CN105509534A (en) * | 2014-09-25 | 2016-04-20 | 天津市华春新能源技术发展有限公司 | Oblique-cone-shaped low-resistance fin tube |
CN104833256B (en) * | 2015-04-30 | 2016-10-05 | 湖南众合节能环保有限公司 | Manage interior compound intensified heat-transfer element and be provided with its heat exchanger tube |
CN104930880B (en) * | 2015-06-06 | 2017-04-05 | 浙江工业大学 | A kind of pulsation flow tube shell type heat exchanger and its heat-exchange method |
CN105115338B (en) * | 2015-08-31 | 2017-08-25 | 东南大学 | A kind of phase transition heat accumulation unit |
CN105486143A (en) * | 2015-12-18 | 2016-04-13 | 重庆东京散热器有限公司 | Radiating tube structure |
SE540857C2 (en) * | 2017-02-03 | 2018-12-04 | Valmet Oy | Heat transfer tube and method for manufacturing a heat transfer tube |
CN107270763B (en) * | 2017-03-23 | 2023-09-05 | 托普工业(江苏)有限公司 | Inner fin tube heat exchanger |
CN109724448B (en) * | 2017-10-27 | 2021-04-13 | 中国石油化工股份有限公司 | Enhanced heat transfer tube, cracking furnace and atmospheric and vacuum heating furnace |
CN109029020A (en) * | 2018-06-27 | 2018-12-18 | 芜湖盘云石磨新能源科技有限公司 | A kind of carbon dioxide refrigeration gas cooler |
DE112019003582T5 (en) * | 2018-07-13 | 2021-04-08 | Marelli Corporation | HEAT EXCHANGE TUBE, HEAT EXCHANGE TUBE MANUFACTURING PROCESS, AND HEAT EXCHANGERS |
CN111250028B (en) * | 2020-03-26 | 2022-02-08 | 河南城建学院 | Maillard reactor for recycling rectifying tower bottoms in soybean processing |
CN113701137B (en) * | 2020-11-03 | 2022-07-26 | 中北大学 | Steam boiler with optimized distribution of temperature-equalizing plates |
CN114100539A (en) * | 2021-11-02 | 2022-03-01 | 中国石化工程建设有限公司 | Intraductal enhanced heat transfer plug-in components and pyrolysis furnace |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826304A (en) * | 1967-10-11 | 1974-07-30 | Universal Oil Prod Co | Advantageous configuration of tubing for internal boiling |
US3902552A (en) * | 1973-05-10 | 1975-09-02 | Olin Corp | Patterned tubing |
US4470452A (en) * | 1982-05-19 | 1984-09-11 | Ford Motor Company | Turbulator radiator tube and radiator construction derived therefrom |
JPH06100432B2 (en) * | 1984-06-20 | 1994-12-12 | 株式会社日立製作所 | Heat transfer tube |
JPH0670556B2 (en) * | 1985-06-14 | 1994-09-07 | 株式会社日立製作所 | Heat transfer tube and manufacturing method thereof |
MX9305803A (en) * | 1992-10-02 | 1994-06-30 | Carrier Corp | HEAT TRANSFER TUBE WITH INTERNAL RIBS. |
SE500485C2 (en) * | 1992-11-30 | 1994-07-04 | Asea Brown Boveri | Cooling device for cooling the conductors of the bushings of a cryotank |
JP3266886B2 (en) * | 1993-02-24 | 2002-03-18 | 株式会社日立製作所 | Heat transfer tube |
US5577555A (en) * | 1993-02-24 | 1996-11-26 | Hitachi, Ltd. | Heat exchanger |
JPH07208888A (en) * | 1994-01-14 | 1995-08-11 | Toyo Radiator Co Ltd | Tube for heat exchanger for air conditioner and heat exchanger for air conditioner |
US5458191A (en) * | 1994-07-11 | 1995-10-17 | Carrier Corporation | Heat transfer tube |
US5791405A (en) * | 1995-07-14 | 1998-08-11 | Mitsubishi Shindoh Co., Ltd. | Heat transfer tube having grooved inner surface |
JP2842810B2 (en) * | 1995-07-14 | 1999-01-06 | 三菱伸銅株式会社 | Heat transfer tube with internal groove |
JP3541334B2 (en) * | 1996-03-22 | 2004-07-07 | 東洋ラジエーター株式会社 | Welded pipe with internal groove for heat exchanger for air conditioning |
SE517450C2 (en) * | 1999-06-18 | 2002-06-04 | Valeo Engine Cooling Ab | Fluid transport tubes and methods and apparatus for producing the same |
SE521816C2 (en) * | 1999-06-18 | 2003-12-09 | Valeo Engine Cooling Ab | Fluid transport pipes and vehicle coolers |
DE10127084B4 (en) * | 2000-06-17 | 2019-05-29 | Mahle International Gmbh | Heat exchanger, in particular for motor vehicles |
JP4638583B2 (en) * | 2000-09-11 | 2011-02-23 | チタンエックス エンジン クーリング ホールディング アクチボラグ | Fluid transport tube and automotive cooler comprising the tube |
JP2002130976A (en) * | 2000-10-30 | 2002-05-09 | Tokyo Gas Co Ltd | Heating tube for absorption heat-exchanger and the absorption heat-exchanger |
JP2002257432A (en) * | 2001-02-26 | 2002-09-11 | Furukawa Electric Co Ltd:The | Heat transfer pipe for absorber |
JP3774843B2 (en) * | 2001-05-25 | 2006-05-17 | マルヤス工業株式会社 | Multi-tube heat exchanger |
US7011150B2 (en) * | 2004-04-20 | 2006-03-14 | Tokyo Radiator Mfg. Co., Ltd. | Tube structure of multitubular heat exchanger |
-
2003
- 2003-05-10 CN CNB031251323A patent/CN1211633C/en not_active Expired - Fee Related
- 2003-10-27 AU AU2003280545A patent/AU2003280545A1/en not_active Abandoned
- 2003-10-27 US US10/555,837 patent/US20070000651A1/en not_active Abandoned
- 2003-10-27 WO PCT/CN2003/000905 patent/WO2004099698A1/en active Application Filing
- 2003-10-27 JP JP2004571496A patent/JP4355294B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1211633C (en) | 2005-07-20 |
CN1451937A (en) | 2003-10-29 |
US20070000651A1 (en) | 2007-01-04 |
WO2004099698A1 (en) | 2004-11-18 |
AU2003280545A1 (en) | 2004-11-26 |
JP2006514733A (en) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4355294B2 (en) | Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs | |
JP6172950B2 (en) | Double tube for heat exchanger | |
US20080149309A1 (en) | Hot Water Heat Transfer Pipe | |
EP2354743A2 (en) | Double-pipe heat exchanger | |
CN101182977A (en) | Inner chiasma spiral exterior three-dimensional diamond-type rib double-side intensify heat transfer pipe | |
WO2004076954A1 (en) | Reinforced heat exchange pipe with sections of round and ellipse of alternate change | |
CN1087162A (en) | Internally ribbed heat transfer tube | |
US20140262185A1 (en) | Heat Exchanger Containing Multiple Tubes, and Method of Making and Using Same | |
CN109724444B (en) | Heat transfer pipe and cracking furnace | |
US9891009B2 (en) | Tube for heat transfer | |
CN106767097A (en) | Heat exchange tube and double-pipe heat exchanger | |
CN206399267U (en) | Heat exchange tube and double-pipe heat exchanger | |
TW568999B (en) | Enhanced heat-exchanging tubes with alternating elliptical and circular cross sections | |
CN101949662B (en) | Novel high-efficiency heat exchange pipe for condenser of electric refrigeration unit | |
CN209386877U (en) | Efficient corrugated pipe | |
CN211400925U (en) | Heat exchange tube, heat exchanger and air conditioner | |
CN210862344U (en) | Efficient spiral snakelike heat exchange coil | |
CN218627912U (en) | Heat exchange tube, heat exchanger and air conditioner | |
CN106643259A (en) | Composite tooth-shaped internal thread copper pipe structure | |
JP2013213599A (en) | Heat exchanger | |
CN212300062U (en) | Evaporating pipe, evaporator and air conditioning equipment | |
CN211503806U (en) | Heat exchange tube, heat exchanger and air conditioner | |
CN216245777U (en) | Heat transfer pipe with transition surface on fin | |
CN215114142U (en) | Combined heat exchange tube | |
CN212567065U (en) | Heat exchange tube of air conditioner heat exchanger, air conditioner heat exchanger and air conditioning equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090731 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |