JP4352842B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4352842B2
JP4352842B2 JP2003347341A JP2003347341A JP4352842B2 JP 4352842 B2 JP4352842 B2 JP 4352842B2 JP 2003347341 A JP2003347341 A JP 2003347341A JP 2003347341 A JP2003347341 A JP 2003347341A JP 4352842 B2 JP4352842 B2 JP 4352842B2
Authority
JP
Japan
Prior art keywords
catalyst
reducing agent
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003347341A
Other languages
Japanese (ja)
Other versions
JP2005113741A (en
Inventor
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003347341A priority Critical patent/JP4352842B2/en
Publication of JP2005113741A publication Critical patent/JP2005113741A/en
Application granted granted Critical
Publication of JP4352842B2 publication Critical patent/JP4352842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、内燃機関の排気浄化装置に関し、より詳細には、NOx触媒を担持した排気浄化触媒を排気通路に備える内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst carrying a NOx catalyst in an exhaust passage.

この種の排気浄化装置として、例えば、吸蔵還元型NOx触媒(以下、NOx触媒と称する)を排気通路に備えた排気浄化装置が知られている。
また、この種の排気浄化装置では、機関燃料中に含まれる硫黄成分に起因したNOx触媒の硫黄被毒(以下、SOx被毒と称する)を解消すべく、排気ガス中に還元剤を添加する還元剤添加装置を排気系に備えている。そして、この還元剤添加装置による還元剤の供給によって、排気浄化触媒のSOx被毒を解消して排気浄化能力の回復を図っている。
As this type of exhaust purification device, for example, an exhaust purification device provided with an NOx storage reduction catalyst (hereinafter referred to as NOx catalyst) in an exhaust passage is known.
In this type of exhaust purification device, a reducing agent is added to the exhaust gas in order to eliminate sulfur poisoning of the NOx catalyst (hereinafter referred to as SOx poisoning) caused by sulfur components contained in the engine fuel. A reducing agent addition device is provided in the exhaust system. Then, by supplying the reducing agent by the reducing agent addition device, SOx poisoning of the exhaust purification catalyst is eliminated, and the exhaust purification capability is recovered.

より詳しくは、NOx触媒をSOx離脱温度(例えば、650℃)以上に昇温するとともに、NOx触媒に流れ込む排気ガス中に還元剤を間欠的に添加することで、NOx触媒の周囲雰囲気を、理論空燃比近傍においてリーン空燃比又はリッチ空燃比とするSOx被毒回復制御が知られている(例えば、特許文献1)。また、NOx触媒の被毒量に応じて目標空燃比を徐々にリッチ空燃比側に移行させることで、SOxの放出濃度を低く抑えるSOx被毒回復制御(例えば、特許文献3)が知られている。また、NOx触媒の被毒量が多いほど、リーン期間よりもリッチ期間を長くするSOx被毒回復制御(例えば、特許文献4)、並びにSOx被毒回復制御の前段として、排気ガス中に還元剤を添加してNOx触媒を昇温させる昇温技術(例えば、特許文献2)等が知られている。
特開2001−82137号公報 特開平11−107827号公報 特開2000−161107号公報 特開2000−274232号公報
More specifically, the temperature of the NOx catalyst is raised to a temperature higher than the SOx separation temperature (for example, 650 ° C.), and the reducing agent is intermittently added to the exhaust gas flowing into the NOx catalyst. SOx poisoning recovery control is known in which a lean air-fuel ratio or a rich air-fuel ratio is set in the vicinity of the air-fuel ratio (for example, Patent Document 1). Further, SOx poisoning recovery control (for example, Patent Document 3) is known in which the target air-fuel ratio is gradually shifted to the rich air-fuel ratio side in accordance with the NOx catalyst poisoning amount to suppress the SOx emission concentration to a low level. Yes. In addition, as the NOx catalyst poisoning amount increases, SOx poisoning recovery control (for example, Patent Document 4) that makes the rich period longer than the lean period, and as a pre-stage of SOx poisoning recovery control, a reducing agent is contained in the exhaust gas. A temperature raising technique (for example, Patent Document 2) that raises the temperature of the NOx catalyst by adding NO is known.
JP 2001-82137 A Japanese Patent Laid-Open No. 11-107827 JP 2000-161107 A JP 2000-274232 A

ところで、本発明者らの鋭意研究によれば、従来のSOx被毒回復制御に於いて、種々の改善すべき点が見出された。
まず、着目すべき点として、SOx被毒回復制御の実行時には、NOx触媒に流れ込む排気ガス中に還元剤を添加するため、この還元剤が、ごく微量であるがSOx被毒回復制御の反応に供されること無く排気通路から排出されることもある。また、この還元剤は、雰囲気温度の低い排気通路の末端部分(テールエンド)において凝縮し、排気通路から白煙となって排出されるケースが見られた。
By the way, according to the intensive studies of the present inventors, various points to be improved have been found in the conventional SOx poisoning recovery control.
First, it should be noted that when the SOx poisoning recovery control is performed, a reducing agent is added to the exhaust gas flowing into the NOx catalyst. It may be discharged from the exhaust passage without being provided. In addition, in some cases, the reducing agent was condensed at the end portion (tail end) of the exhaust passage having a low ambient temperature and discharged as white smoke from the exhaust passage.

また、白煙の発生は、反応に供されなかった還元剤に起因するため、NOx触媒に供給すべき還元剤の供給量を減らすことで、その発生を抑制することができる。しかしながら、還元剤の供給量が少ない場合には、NOx触媒と還元剤の反応が緩慢になり、回復に要する時間が長くなる他、SOx被毒回復制御の確実性をも低下させる虞がある。   Moreover, since generation | occurrence | production of white smoke originates in the reducing agent which was not used for reaction, the generation | occurrence | production can be suppressed by reducing the supply amount of the reducing agent which should be supplied to a NOx catalyst. However, when the supply amount of the reducing agent is small, the reaction between the NOx catalyst and the reducing agent becomes slow, the time required for recovery becomes longer, and the reliability of the SOx poisoning recovery control may be lowered.

とりわけ、車両の走行に用いられる内燃機関のように、排気ガスの流量や流速が走行状況に応じて刻々と変化する内燃機関では、SOx被毒回復制御の確実性を求めるべく、制御上、ある程度の余裕を以て還元剤の添加量(制御値)を設定する必要があり、このような使用環境で運転される内燃機関においては、白煙の発生を抑制しつつ、SOx被毒回復制御の確実性を維持することは事実上困難であった。   In particular, in an internal combustion engine in which the flow rate and flow rate of exhaust gas change every moment according to the running state, such as an internal combustion engine used for running a vehicle, a certain degree of control is required in order to obtain certainty of SOx poisoning recovery control. It is necessary to set the amount of addition of the reducing agent (control value) with a margin of excess, and in an internal combustion engine operated in such a use environment, the reliability of SOx poisoning recovery control is suppressed while suppressing the generation of white smoke. It was virtually difficult to maintain.

また、さらなる着目点として、SOx被毒回復制御を短時間且つ少量の添加量で行うには、白煙の発生が懸念される単位時間あたりの添加量よりも、多くの添加量が求められる。しかしながら、白煙の発生が懸念される以上、この好適な添加量での還元剤の添加は困難であり、この制約の中で添加量の適切値を求めざる得なかった。つまり、従来では、白煙の発生が懸念されるため、SOx被毒回復制御を効率良く行うことができなかった。   Further, as a further point of interest, in order to perform SOx poisoning recovery control in a short time and with a small amount of addition, a larger amount of addition is required than the amount of addition per unit time in which generation of white smoke is a concern. However, as long as generation of white smoke is a concern, it is difficult to add the reducing agent at this preferred addition amount, and an appropriate value for the addition amount has to be obtained within this constraint. That is, conventionally, since there is a concern about the generation of white smoke, the SOx poisoning recovery control cannot be performed efficiently.

本発明は、上記した技術的背景を考慮してなされたもので、SOx被毒回復制御に伴う白煙の発生を抑えつつ、SOx被毒回復制御を効率良く実行可能な排気浄化技術の提供を課題とする。   The present invention has been made in consideration of the above-described technical background, and provides an exhaust purification technology capable of efficiently performing SOx poisoning recovery control while suppressing the generation of white smoke accompanying SOx poisoning recovery control. Let it be an issue.

上記した技術的課題を解決するため、本発明では以下の構成とした。
すなわち、本発明は、吸蔵還元型NOx触媒を担持した排気浄化触媒を排気通路に有し、且つこの排気浄化触媒に流れ込む排気ガス中に還元剤を供給することで、前記排気浄化触媒の周囲雰囲気を酸化雰囲気と還元雰囲気とに交互に変化させて前記排気浄化触媒の硫黄被毒を解消する被毒回復制御を実行する被毒回復手段を備えた内燃機関の排気浄化装置であって、
前記排気浄化触媒の下流には、被毒回復制御の反応に供されなかった還元剤成分の凝縮を回避し得る低沸点成分を含むように、前記還元剤成分の組成を変更する接触触媒であって、前記還元剤成分の組成を、少なくとも排気通路の末端開口部においてその凝縮を回避し得る沸点以下の低沸点成分を含む組成に変更する触媒物質を含み構成されている接触触媒が設けられていることを特徴とする。
In order to solve the above technical problem, the present invention has the following configuration.
That is, the present invention has an exhaust purification catalyst carrying an NOx storage reduction catalyst in the exhaust passage and supplies a reducing agent into the exhaust gas flowing into the exhaust purification catalyst, so that the ambient atmosphere of the exhaust purification catalyst An exhaust gas purification apparatus for an internal combustion engine comprising poisoning recovery means for performing poisoning recovery control for eliminating sulfur poisoning of the exhaust gas purification catalyst by alternately changing between an oxidizing atmosphere and a reducing atmosphere,
Wherein the downstream of the exhaust purifying catalyst, so as to include a low-boiling component can avoid condensation of the reducing agent component which has not been subjected to the reaction of the poisoning recovery control, by contacting catalysts to change the composition of the reducing agent component There is provided a catalytic catalyst comprising a catalytic substance for changing the composition of the reducing agent component to a composition containing a low boiling point component having a boiling point or less that can avoid condensation at least at the end opening of the exhaust passage. It is characterized by.

このように構成された本発明の排気浄化装置によれば、吸蔵還元型NOx触媒を担持した排気浄化触媒の下流に、被毒回復制御の反応に供されなかった還元剤成分の組成を低沸点成分を含む組成に変更して白煙の発生を抑制する接触触媒が設けられている。このため還元剤の供給時において、被毒回復制御の反応に供されなかった還元剤成分は、排気浄化触媒の下流に配置された接触触媒の通過に伴い低沸点化され、以て、還元剤成分の凝縮に伴う白煙の発生が抑制される。   According to the exhaust gas purification apparatus of the present invention configured as described above, the composition of the reducing agent component that has not been subjected to the poisoning recovery control downstream of the exhaust gas purification catalyst carrying the NOx storage reduction catalyst is reduced to the low boiling point. A contact catalyst that suppresses the generation of white smoke by changing to a composition containing components is provided. For this reason, when the reducing agent is supplied, the reducing agent component that has not been subjected to the poisoning recovery control reaction is lowered in boiling point with the passage of the contact catalyst disposed downstream of the exhaust purification catalyst, and thus the reducing agent The generation of white smoke accompanying the condensation of components is suppressed.

なお、ここで吸蔵還元型NOx触媒は、周囲雰囲気が高酸素濃度状態であるときに排気ガス中のNOxを吸蔵し、周囲雰囲気が低酸素濃度状態であり、且つ還元剤成分が存在するときには、吸蔵されたNOxを還元する機能を有する。また、吸蔵還元型NOx触媒を担持した排気浄化触媒としては、吸蔵還元型NOx触媒そのもので構成された排気浄化触媒、並びにフィルタ基材上に吸蔵還元型NOx触媒を担持してなるパティキュレートフィルタ等を例示できる。   Here, the NOx storage reduction catalyst stores NOx in the exhaust gas when the ambient atmosphere is in a high oxygen concentration state, and when the ambient atmosphere is in a low oxygen concentration state and a reducing agent component is present, It has a function of reducing the stored NOx. Further, examples of the exhaust purification catalyst carrying the NOx storage reduction catalyst include an exhaust purification catalyst composed of the NOx storage reduction catalyst itself, a particulate filter comprising an NOx storage reduction catalyst supported on a filter substrate, and the like. Can be illustrated.

また、前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を分解して、この還元剤成分の組成を前記低沸点成分を含む組成に改質する分解改質能を有する触媒物質を含む構成であってもよい。この構成によれば、還元剤成分の組成が、還元剤成分の分解によって低沸点成分を含む組成に改質される。   Further, the contact catalyst has a decomposition / reforming ability for decomposing a reducing agent component that has not been subjected to the poisoning recovery control reaction and reforming the composition of the reducing agent component to a composition containing the low boiling point component. The structure containing the catalyst substance which has may be sufficient. According to this configuration, the composition of the reducing agent component is modified to a composition containing a low boiling point component by decomposition of the reducing agent component.

また、前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を熱分解
して、低沸点成分に変更するクラッキング触媒であってもよい。また、前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を改質して、低沸点成分に変更する改質触媒であってもよい。また、接触触媒は、アルミナ、シリカ、ジルコニア、チタニア、及びゼオライトの少なくとも一つを担持した構成であってもよい。
Further, the contact catalyst may be a cracking catalyst that thermally decomposes a reducing agent component that has not been subjected to the poisoning recovery control reaction to change it to a low boiling point component. Further, the contact catalyst may be a reforming catalyst that modifies a reducing agent component that has not been subjected to the poisoning recovery control reaction and changes it to a low boiling point component. Further, the contact catalyst may be configured to support at least one of alumina, silica, zirconia, titania, and zeolite.

また、前記接触触媒は、前記排気浄化触媒の直下流に設けられている構成であっても良い。
この構成によれば、還元剤の反応によって発生する熱エネルギーを、接触触媒の活性化に利用することができる。なお、上記で直下流とは、望ましくは被毒回復制御の実行時において、接触触媒の温度を活性化温度以上に保つことができる排気浄化触媒からの距離内で設定される。
The contact catalyst may be provided immediately downstream of the exhaust purification catalyst.
According to this configuration, the thermal energy generated by the reaction of the reducing agent can be used for the activation of the contact catalyst. Note that the term “directly downstream” is preferably set within a distance from the exhaust purification catalyst that can keep the temperature of the contact catalyst at the activation temperature or higher when the poisoning recovery control is executed.

また、前記排気浄化触媒を収容するケーシングが前記排気通路に設けられ、
前記接触触媒は、前記排気浄化触媒の下流であって且つ前記ケーシングの内方に設けられている構成であってもよい。
Further, a casing for accommodating the exhaust purification catalyst is provided in the exhaust passage,
The contact catalyst may be provided downstream of the exhaust purification catalyst and inside the casing.

この構成によれば、排気浄化触媒を収容するケーシングに接触触媒が収容されるため、還元剤と排気浄化触媒の反応によって発生する熱エネルギーを効率良く、接触触媒に伝えることができる。   According to this configuration, since the contact catalyst is accommodated in the casing that accommodates the exhaust purification catalyst, the thermal energy generated by the reaction between the reducing agent and the exhaust purification catalyst can be efficiently transmitted to the contact catalyst.

このように本発明では、吸蔵還元型NOx触媒を担持してなる排気浄化触媒の下流において、排気浄化触媒の硫黄被毒の解消に供されなかった還元剤成分の凝縮を回避し得る低沸点成分を含むように、その還元剤成分の組成を変更することで白煙の発生を抑制している。
よって、排気浄化触媒に対する還元剤の供給時には、白煙の発生を抑制しつつ、排気浄化触媒の硫黄被毒を効率良く解消する上で好適な適切量の還元剤を供給することが可能になる。なお、上記した各種内容は、本発明の課題や技術的思想を逸脱しない範囲に於いて、可能な限り組み合わせることができる。
Thus, in the present invention, a low boiling point component that can avoid condensation of a reducing agent component that has not been used to eliminate sulfur poisoning of the exhaust purification catalyst downstream of the exhaust purification catalyst that supports the NOx storage reduction catalyst. Therefore, the generation of white smoke is suppressed by changing the composition of the reducing agent component.
Therefore, when supplying the reducing agent to the exhaust purification catalyst, it is possible to supply an appropriate amount of reducing agent suitable for efficiently eliminating sulfur poisoning of the exhaust purification catalyst while suppressing the generation of white smoke. . The various contents described above can be combined as much as possible without departing from the problems and technical ideas of the present invention.

このように本発明によれば、排気浄化触媒の硫黄被毒を解消するSOx被毒回復制御に伴う白煙の発生を抑えつつ、SOx被毒回復制御を効率良く実施可能な排気浄化技術を提供することができる。   As described above, according to the present invention, there is provided an exhaust purification technology capable of efficiently performing SOx poisoning recovery control while suppressing generation of white smoke accompanying SOx poisoning recovery control that eliminates sulfur poisoning of the exhaust purification catalyst. can do.

以下、本発明に係る内燃機関1の排気浄化装置について、その好適な実施形態を説明する。
また、本実施の形態では、本発明の排気浄化装置を車両駆動用のディーゼル機関に適用した例を挙げて説明する。また、図1は、本発明に係る内燃機関1と、その排気系および制御系で構成される排気浄化装置の概略構成を示す図である。
Hereinafter, preferred embodiments of an exhaust emission control device for an internal combustion engine 1 according to the present invention will be described.
In the present embodiment, an example in which the exhaust gas purification apparatus of the present invention is applied to a diesel engine for driving a vehicle will be described. FIG. 1 is a diagram showing a schematic configuration of an exhaust gas purification apparatus including an internal combustion engine 1 according to the present invention and an exhaust system and a control system thereof.

<内燃機関1とその排気系および制御系の概略構成>
内燃機関1は車両駆動用のディーゼル機関である。また、この内燃機関1の排気通路11の途中には、吸蔵還元型NOx触媒(以下、NOx触媒と称する)12と、フィルタ基材上にNOx触媒を担持してなるパティキュレートフィルタ13を収容したケーシング14(触媒コンバータ)が設けられている。なお、パティキュレートフィルタは、ケーシング14内に於いてNOx触媒12の下流に配置されている。
<Schematic configuration of the internal combustion engine 1 and its exhaust system and control system>
The internal combustion engine 1 is a diesel engine for driving a vehicle. Further, in the middle of the exhaust passage 11 of the internal combustion engine 1, an NOx storage reduction catalyst (hereinafter referred to as NOx catalyst) 12 and a particulate filter 13 carrying a NOx catalyst on a filter base material are accommodated. A casing 14 (catalytic converter) is provided. The particulate filter is disposed in the casing 14 downstream of the NOx catalyst 12.

また、ケーシング14内のパティキュレートフィルタ13の上流及び下流には、排気ガスの温度に対応する電気信号を出力する排気温度センサ21が設けられている。また、ケ
ーシング14の下流には、ケーシング14を経て流れ出る排気ガスの空燃比に対応した電気信号を出力する排気A/Fセンサ22が設けられている。また、機関本体1aの排気ポート(図示略)には、ケーシング14に流れ込む排気ガス中に、例えば、還元剤として機関燃料を供給するための還元剤供給弁5が設けられている。
An exhaust gas temperature sensor 21 that outputs an electrical signal corresponding to the temperature of the exhaust gas is provided upstream and downstream of the particulate filter 13 in the casing 14. Further, an exhaust A / F sensor 22 that outputs an electrical signal corresponding to the air-fuel ratio of the exhaust gas flowing out through the casing 14 is provided downstream of the casing 14. Further, the exhaust port (not shown) of the engine main body 1a is provided with a reducing agent supply valve 5 for supplying engine fuel as a reducing agent in the exhaust gas flowing into the casing 14, for example.

また、本実施の形態に示す内燃機関1は、この内燃機関1を制御するための各種プログラムを実行する電子制御ユニット(ECU:Electronic Control Unit)30を備えている。このECU30は、例えば、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御する制御装置である。また、ECU30は、排気A/Fセンサ22、排気温度センサ21等の各種センサの出力を読み込み、ケーシング14に流れ込む排気ガスの空燃比を排気A/Fセンサ22の出力値から推定している。また、ECU30は、ケーシング14内に設けられるパティキュレートフィルタ13の床温度を排気温度センサ21の出力値から推定している。
なお、ここで排気ガスの空燃比とは、還元剤が燃料以外の場合には、該還元剤の質量を燃料の質量に等価的に換算することによって求められる値である。
Further, the internal combustion engine 1 shown in the present embodiment includes an electronic control unit (ECU: Electronic Control Unit) 30 that executes various programs for controlling the internal combustion engine 1. The ECU 30 is a control device that controls the operating state of the internal combustion engine 1 in accordance with, for example, the operating conditions of the internal combustion engine 1 or the driver's request. Further, the ECU 30 reads the outputs of various sensors such as the exhaust A / F sensor 22 and the exhaust temperature sensor 21 and estimates the air-fuel ratio of the exhaust gas flowing into the casing 14 from the output value of the exhaust A / F sensor 22. Further, the ECU 30 estimates the floor temperature of the particulate filter 13 provided in the casing 14 from the output value of the exhaust temperature sensor 21.
Here, the air-fuel ratio of the exhaust gas is a value obtained by equivalently converting the mass of the reducing agent into the mass of the fuel when the reducing agent is other than fuel.

また、ECU30は、運転状態や排気ガスの空燃比、並びにパティキュレートフィルタ13の温度等を加味して決定した供給量で還元剤の供給を実行すべく、適宜のタイミングで還元剤供給弁5に開弁信号を出力している。なお、還元剤を供給すべき状況としては、例えば、NOx触媒12やパティキュレートフィルタ13に吸蔵された硫黄成分に起因したSOx被毒を解消すべき状況等を例示できる。   Further, the ECU 30 supplies the reducing agent supply valve 5 to the reducing agent supply valve 5 at an appropriate timing in order to supply the reducing agent with the supply amount determined in consideration of the operating state, the air-fuel ratio of the exhaust gas, the temperature of the particulate filter 13 and the like. A valve opening signal is output. Examples of the situation where the reducing agent should be supplied include a situation where SOx poisoning due to the sulfur component occluded in the NOx catalyst 12 or the particulate filter 13 should be eliminated.

このSOx被毒を解消すべき状況では、NOx触媒12やパティキュレートフィルタ13を650℃以上に昇温させた後、これらNOx触媒12及びパティキュレートフィルタ13を収容するケーシング14に流れ込む排気ガス中に還元剤を間欠的に添加して、その周囲雰囲気を、理論空燃比近傍においてリーン空燃比及びリッチ空燃比に交互に変化させる所謂「SOx被毒回復制御」をECU30で実行する。   In a situation where SOx poisoning is to be eliminated, the NOx catalyst 12 and the particulate filter 13 are heated to 650 ° C. or higher, and then are exhausted into the exhaust gas flowing into the casing 14 housing the NOx catalyst 12 and the particulate filter 13. The ECU 30 executes so-called “SOx poisoning recovery control” in which the reducing agent is intermittently added and the ambient atmosphere is alternately changed to a lean air-fuel ratio and a rich air-fuel ratio in the vicinity of the theoretical air-fuel ratio.

また、このSOx被毒回復制御の実行によって、硫黄成分(詳細には、硫酸バリウムBaSO4)の熱分解が促され、熱分解された硫黄成分は、ケーシング14に流れ込む排気ガスと共に、これらNOx触媒12及びパティキュレートフィルタ13から放出される。   Further, by executing this SOx poisoning recovery control, thermal decomposition of the sulfur component (specifically, barium sulfate BaSO4) is promoted, and the thermally decomposed sulfur component is combined with the exhaust gas flowing into the casing 14 and the NOx catalyst 12. And emitted from the particulate filter 13.

このように本実施の形態に示す内燃機関1では、NOx触媒12やパティキュレートフィルタ13に流れ込む排気ガス中に還元剤を供給することで、NOx触媒12及びパティキュレートフィルタ13の周囲雰囲気を酸化雰囲気(リッチ空燃比)と還元雰囲気(リーン空燃比)とに交互に変化させて硫黄被毒を解消するSOx被毒回復制御を適宜のタイミングで実行している。   As described above, in the internal combustion engine 1 shown in the present embodiment, the reducing agent is supplied into the exhaust gas flowing into the NOx catalyst 12 and the particulate filter 13, so that the ambient atmosphere of the NOx catalyst 12 and the particulate filter 13 is oxidized. The SOx poisoning recovery control is performed at an appropriate timing to alternately change between the (rich air fuel ratio) and the reducing atmosphere (lean air fuel ratio) to eliminate sulfur poisoning.

ところで、SOx被毒回復制御の実行時には、排気ガスに対する還元剤の供給を実施するため、状況によっては、その還元剤の一部がSOx被毒回復制御の反応に供されることなくケーシング14の下流に流れ出ることもある。また、この還元剤は、排気通路11の末端開口部で凝縮して白煙を生成することもある。
このため本実施の形態では、NOx触媒12及びパティキュレートフィルタ13を収容するケーシング14の下流にHCクラッキング触媒又は改質触媒等で構成される接触触媒15を収容したケーシング16を別途組み付け白煙の生成を抑制している。
By the way, when the SOx poisoning recovery control is executed, the reducing agent is supplied to the exhaust gas. Depending on the situation, a part of the reducing agent is not used for the reaction of the SOx poisoning recovery control. It may flow downstream. Further, the reducing agent may condense at the terminal opening of the exhaust passage 11 to generate white smoke.
For this reason, in the present embodiment, a casing 16 containing a contact catalyst 15 composed of an HC cracking catalyst or a reforming catalyst is separately assembled downstream of the casing 14 containing the NOx catalyst 12 and the particulate filter 13, and white smoke is produced. Generation is suppressed.

この接触触媒15を収容したケーシング16は、NOx触媒12及びパティキュレートフィルタ13を収容したケーシング14の直下流に設けられている。
また、好ましくは、SOx被毒回復制御の実行時において、接触触媒15の床温度を活性化温度以上(例えば400℃以上)に維持することができるケーシング14の至近距離
に、ケーシング16を配置している。
The casing 16 containing the contact catalyst 15 is provided immediately downstream of the casing 14 containing the NOx catalyst 12 and the particulate filter 13.
Preferably, the casing 16 is disposed at a close distance of the casing 14 that can maintain the bed temperature of the contact catalyst 15 at an activation temperature or higher (for example, 400 ° C. or higher) during execution of SOx poisoning recovery control. ing.

また、接触触媒15は、例えば、アルミナ、シリカ、ジルコニア、チタニア、ゼオライト等の触媒成分を少なくとも一種含んで構成された触媒であり、SOx被毒回復制御の反応に供されなかった還元剤成分は、図2に示すように接触触媒15を通過する過程で、排気通路11内での凝縮を回避し得る低沸点成分に変更される。   Further, the contact catalyst 15 is a catalyst configured to include at least one catalyst component such as alumina, silica, zirconia, titania, zeolite, etc., and the reducing agent component that has not been subjected to the SOx poisoning recovery control reaction is, for example, As shown in FIG. 2, in the process of passing through the contact catalyst 15, it is changed to a low boiling point component that can avoid condensation in the exhaust passage 11.

なお、図2は、接触触媒15の上流で採取した還元剤成分のスペクトルグラフである。また、図3は、接触触媒15の下流に於いて採取した還元剤成分のスペクトルグラフである。   FIG. 2 is a spectrum graph of the reducing agent component collected upstream of the contact catalyst 15. FIG. 3 is a spectrum graph of the reducing agent component collected downstream of the contact catalyst 15.

この図2にも示されるように、排気ガス中の還元剤成分は、白煙に成りやすい炭素数10以上の高沸点成分(cf C10;n−デカンの沸点=174℃)が、接触触媒15との接触によって分解されて、例えば炭素数5のペンタンに改質されるため、その沸点は、排気通路11の末端開口部においても凝縮し難い沸点37℃程度までに低くなる。よって、接触触媒15の下流では、SOx被毒回復制御の反応に供されなかった還元剤成分の低沸点化に伴い還元剤成分の凝縮が抑制され、以て、白煙の生成も抑制されることになる。   As shown in FIG. 2, the reducing agent component in the exhaust gas is a high boiling point component having 10 or more carbon atoms (cf C10; boiling point of n-decane = 174 ° C.) that tends to be white smoke. And is reformed to, for example, pentane having 5 carbon atoms, so that its boiling point is lowered to about 37 ° C., which is difficult to condense even at the end opening of the exhaust passage 11. Therefore, in the downstream of the contact catalyst 15, the condensation of the reducing agent component is suppressed as the boiling point of the reducing agent component that has not been subjected to the SOx poisoning recovery control reaction is reduced, and thus the generation of white smoke is also suppressed. It will be.

このように本実施の形態に示す内燃機関1の排気浄化装置では、NOx触媒12やパティキュレートフィルタ13等を収容するケーシング14の下流において、SOx被毒の解消に供されなかった還元剤成分の凝縮を回避し得る低沸点成分を含むように、還元剤成分の組成を変更することで白煙の発生を抑制している。   As described above, in the exhaust gas purification apparatus for the internal combustion engine 1 shown in the present embodiment, the reducing agent component that has not been used to eliminate SOx poisoning downstream of the casing 14 that houses the NOx catalyst 12, the particulate filter 13, and the like. Generation | occurence | production of white smoke is suppressed by changing the composition of a reducing agent component so that the low boiling point component which can avoid condensation is included.

このため、本実施の形態に示す内燃機関1のように、車両の走行状態の移り変わりによって、排気ガスの流量や流速が刻々と変化するような使用環境においても、白煙の発生を懸念することなく、制御上求められる適切量の還元剤を排気ガス中に供給することが可能になる。よって、SOx被毒回復制御の確実性を高めることができる。   For this reason, like the internal combustion engine 1 shown in the present embodiment, there is a concern that white smoke may be generated even in a usage environment in which the flow rate and flow rate of the exhaust gas change every moment due to changes in the running state of the vehicle. Instead, an appropriate amount of reducing agent required for control can be supplied into the exhaust gas. Therefore, the certainty of SOx poisoning recovery control can be improved.

また、NOx触媒12や、フィルタ基材上にNOx触媒を担持してなるパティキュレートフィルタ13等では、SOx被毒回復制御を短時間且つ少量の還元剤で行うにあたり、白煙の発生が懸念される単位時間あたりの供給量よりも、多くの供給量が求められるが、本発明によれば、白煙の発生を懸念することなく、必要量の還元剤をこれらNOx触媒12やパティキュレートフィルタ13に供給できるため、短時間且つ少量の還元剤でSOx被毒を解消できる。よって、還元剤として機関燃料を用いる本実施の形態に示すような内燃機関1では、燃費の削減をも期待できる。   In addition, in the NOx catalyst 12 or the particulate filter 13 having a NOx catalyst supported on the filter base material, white smoke may be generated when performing SOx poisoning recovery control in a short time with a small amount of reducing agent. However, according to the present invention, the NOx catalyst 12 and the particulate filter 13 are supplied with the necessary amount of reducing agent without concern about the generation of white smoke. Therefore, SOx poisoning can be eliminated in a short time with a small amount of reducing agent. Therefore, in the internal combustion engine 1 as shown in the present embodiment using engine fuel as the reducing agent, reduction in fuel consumption can be expected.

なお、上記した実施の形態は、あくまでも本発明の一実施形態であり、その詳細は、各種仕様に応じて適宜変更可能である。   Note that the above-described embodiment is merely an embodiment of the present invention, and details thereof can be appropriately changed according to various specifications.

まず、上記した実施の形態では、NOx触媒12及びパティキュレートフィルタ13を収容するケーシング14の下流に、例えば、別途ケーシング16を組み付けて接触触媒15を排気通路11中に配置するが、このケーシングとNOx触媒12及びパティキュレートフィルタ13を収容するケーシング14とを一体化して、パティキュレートフィルタ13の直下流に接触触媒15を配置するなどの構成も考えられる。   First, in the above-described embodiment, for example, a separate casing 16 is assembled downstream of the casing 14 housing the NOx catalyst 12 and the particulate filter 13 and the contact catalyst 15 is disposed in the exhaust passage 11. A configuration in which the NOx catalyst 12 and the casing 14 housing the particulate filter 13 are integrated and the contact catalyst 15 is disposed immediately downstream of the particulate filter 13 is also conceivable.

この例では、NOx触媒12、及びパティキュレートフィルタ13、並びに接触触媒15が一つのケーシングを供用するため、還元剤の反応によって発生する熱エネルギーを、接触触媒の活性化に効率良く利用することができる。   In this example, since the NOx catalyst 12, the particulate filter 13, and the contact catalyst 15 use a single casing, the thermal energy generated by the reaction of the reducing agent can be efficiently used for the activation of the contact catalyst. it can.

また、上記した実施の形態では、接触触媒15として、例えば、アルミナ、シリカ、ジ
ルコニア、チタニア、ゼオライト等の触媒成分を少なくとも一種含んで構成された触媒を採用しているが、必ずしもその必要はなく、SOx被毒回復制御の反応に供されなかった還元剤成分を分解して、この還元剤成分の組成を低沸点成分を含む組成に改質する分解改質能を有する触媒物質であれば、種々選択することが可能である。
このように、本発明に示す内燃機関1の排気浄化装置は、その詳細な構成に於いて種々変更可能である。
Further, in the above-described embodiment, as the contact catalyst 15, for example, a catalyst including at least one catalyst component such as alumina, silica, zirconia, titania, zeolite or the like is adopted, but it is not always necessary. If it is a catalytic substance having decomposition and reforming ability to decompose the reducing agent component that has not been subjected to the SOx poisoning recovery control reaction and reform the composition of the reducing agent component to a composition containing a low boiling point component, Various selections are possible.
Thus, the exhaust emission control device for the internal combustion engine 1 according to the present invention can be variously modified in its detailed configuration.

本発明の実施の形態に示す内燃機関と、その排気系および制御系からなる排気浄化装置の概略構成図。1 is a schematic configuration diagram of an exhaust emission control device including an internal combustion engine and an exhaust system and a control system thereof according to an embodiment of the present invention. 接触触媒の上流で採取した還元剤成分のスペクトルグラフ。The spectrum graph of the reducing agent component extract | collected upstream of the contact catalyst. 接触触媒の下流で採取した還元剤成分のスペクトルグラフ。The spectrum graph of the reducing agent component extract | collected downstream of the contact catalyst.

符号の説明Explanation of symbols

1 内燃機関
1a 機関本体
5 還元剤供給弁
11 排気通路
12 吸蔵還元型NOx触媒
13 パティキュレートフィルタ
14 ケーシング
15 接触触媒
16 ケーシング
21 排気温度センサ
22 排気A/Fセンサ
30 ECU
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 1a Engine main body 5 Reducing agent supply valve 11 Exhaust passage 12 Occlusion reduction type NOx catalyst 13 Particulate filter 14 Casing 15 Contact catalyst 16 Casing 21 Exhaust temperature sensor 22 Exhaust A / F sensor 30 ECU

Claims (7)

吸蔵還元型NOx触媒を担持した排気浄化触媒を排気通路に有し、且つこの排気浄化触媒に流れ込む排気ガス中に還元剤を供給することで、前記排気浄化触媒の周囲雰囲気を酸化雰囲気と還元雰囲気とに交互に変化させて前記排気浄化触媒の硫黄被毒を解消する被毒回復制御を実行する被毒回復手段を備えた内燃機関の排気浄化装置であって、
前記排気浄化触媒の下流には、被毒回復制御の反応に供されなかった還元剤成分の凝縮を回避し得る低沸点成分を含むように、前記還元剤成分の組成を変更する接触触媒であって、前記還元剤成分の組成を、少なくとも排気通路の末端開口部においてその凝縮を回避し得る沸点以下の低沸点成分を含む組成に変更する触媒物質を含み構成されている接触触媒が設けられていることを特徴とする内燃機関の排気浄化装置。
An exhaust purification catalyst carrying an NOx storage reduction catalyst is provided in the exhaust passage, and a reducing agent is supplied into the exhaust gas flowing into the exhaust purification catalyst, whereby the ambient atmosphere of the exhaust purification catalyst is changed to an oxidizing atmosphere and a reducing atmosphere. And an exhaust gas purification apparatus for an internal combustion engine comprising poisoning recovery means for executing poisoning recovery control for eliminating sulfur poisoning of the exhaust gas purification catalyst by alternately changing
Wherein the downstream of the exhaust purifying catalyst, so as to include a low-boiling component can avoid condensation of the reducing agent component which has not been subjected to the reaction of the poisoning recovery control, by contacting catalysts to change the composition of the reducing agent component There is provided a catalytic catalyst comprising a catalytic substance for changing the composition of the reducing agent component to a composition containing a low boiling point component having a boiling point or less that can avoid condensation at least at the end opening of the exhaust passage. An exhaust emission control device for an internal combustion engine.
前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を分解して、この還元剤成分の組成を前記低沸点成分を含む組成に改質する分解改質能を有する触媒物質を含み構成されていることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The catalyst having a decomposition and reforming ability for decomposing a reducing agent component that has not been subjected to the poisoning recovery control reaction and reforming the composition of the reducing agent component to a composition containing the low boiling point component. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is configured to contain a substance. 前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を熱分解して、低沸点成分に変更するクラッキング触媒であることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。 3. The internal combustion engine according to claim 1, wherein the contact catalyst is a cracking catalyst that thermally decomposes a reducing agent component that has not been subjected to the poisoning recovery control reaction to change it to a low boiling point component. 4. Engine exhaust purification system. 前記接触触媒は、前記被毒回復制御の反応に供されなかった還元剤成分を改質して、低沸点成分に変更する改質触媒であることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。 Said contact catalyst, wherein the reducing agent component which has not been subjected to the reaction of the poisoning recovery control by reforming, according to claim 1 or 2, characterized in that a reforming catalyst to change the low-boiling components An exhaust purification device for an internal combustion engine. 前記接触触媒は、アルミナ、シリカ、ジルコニア、チタニア、及びゼオライトの少なくとも一つを担持していることを特徴とする請求項1から4の何れかに記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to any one of claims 1 to 4, wherein the contact catalyst carries at least one of alumina, silica, zirconia, titania, and zeolite. 前記接触触媒は、前記排気浄化触媒の直下流に設けられていることを特徴とする請求項1から5の何れかに記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to any one of claims 1 to 5, wherein the contact catalyst is provided immediately downstream of the exhaust purification catalyst. 前記排気浄化触媒を収容するケーシングが前記排気通路に設けられ、
前記接触触媒は、前記排気浄化触媒の下流であって且つ前記ケーシングの内方に設けられていることを特徴とする請求項1から6の何れかに記載の内燃機関の排気浄化装置。
A casing that houses the exhaust purification catalyst is provided in the exhaust passage,
The exhaust purification device for an internal combustion engine according to any one of claims 1 to 6, wherein the contact catalyst is provided downstream of the exhaust purification catalyst and inside the casing.
JP2003347341A 2003-10-06 2003-10-06 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4352842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347341A JP4352842B2 (en) 2003-10-06 2003-10-06 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347341A JP4352842B2 (en) 2003-10-06 2003-10-06 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005113741A JP2005113741A (en) 2005-04-28
JP4352842B2 true JP4352842B2 (en) 2009-10-28

Family

ID=34539948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347341A Expired - Fee Related JP4352842B2 (en) 2003-10-06 2003-10-06 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4352842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548309B2 (en) * 2005-11-02 2010-09-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2005113741A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP5340305B2 (en) Method for treating nitrogen oxides in exhaust gas and system therefor
EP1674682B1 (en) Exhaust gas purifying apparatus for internal combustion engine
US20070003455A1 (en) Exhaust purifying device for internal combustion engine
US20100058742A1 (en) Exhaust emission control apparatus for internal combustion engine
JP2006242020A (en) Exhaust emission control device
JP4497158B2 (en) Exhaust gas purification device for internal combustion engine
JP4539758B2 (en) Exhaust gas purification device for internal combustion engine
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
JP2019203487A (en) Fuel reforming device and control method therefor
JP4352842B2 (en) Exhaust gas purification device for internal combustion engine
JP2008309043A (en) Exhaust emission control device for internal combustion engine
JP2006161768A (en) Exhaust emission control device
JP5149647B2 (en) Fuel reformer
JP2005201094A (en) Exhaust emission control system and exhaust emission control method
JP3861733B2 (en) Exhaust gas purification device for internal combustion engine
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2010007656A (en) Exhaust emission controller for internal combustion engine
JP2008144645A (en) Exhaust emission control device
JP2009047117A (en) Exhaust emission control method and exhaust emission control device
JP2019203388A (en) Exhaust emission control system
JP4877134B2 (en) Exhaust gas purification device
JP4166656B2 (en) Engine exhaust purification system
JP4877142B2 (en) Exhaust gas purification device
JP4867655B2 (en) Exhaust gas purification device for internal combustion engine
JP2006322329A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees