JP4166656B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP4166656B2
JP4166656B2 JP2003339247A JP2003339247A JP4166656B2 JP 4166656 B2 JP4166656 B2 JP 4166656B2 JP 2003339247 A JP2003339247 A JP 2003339247A JP 2003339247 A JP2003339247 A JP 2003339247A JP 4166656 B2 JP4166656 B2 JP 4166656B2
Authority
JP
Japan
Prior art keywords
catalyst
reducing agent
temperature
storage tank
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003339247A
Other languages
Japanese (ja)
Other versions
JP2005105915A (en
Inventor
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003339247A priority Critical patent/JP4166656B2/en
Priority to US10/572,558 priority patent/US7849674B2/en
Priority to PCT/JP2004/012743 priority patent/WO2005028826A1/en
Priority to EP04787623A priority patent/EP1669567B1/en
Priority to EP11191519.5A priority patent/EP2426328B1/en
Priority to EP11191521.1A priority patent/EP2426329B1/en
Publication of JP2005105915A publication Critical patent/JP2005105915A/en
Application granted granted Critical
Publication of JP4166656B2 publication Critical patent/JP4166656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs

Description

本発明は、還元剤を用いて排気中の窒素酸化物(NOx)を還元除去するエンジンの排気浄化装置(以下「排気浄化装置」という)に関し、特に、還元剤を貯蔵する貯蔵タンクの開閉時に発生する悪臭を低減する技術に関する。   TECHNICAL FIELD The present invention relates to an engine exhaust purification device (hereinafter referred to as “exhaust purification device”) that reduces and removes nitrogen oxides (NOx) in exhaust using a reducing agent, and in particular, when a storage tank that stores the reducing agent is opened and closed. The present invention relates to a technique for reducing generated bad odor.

エンジンの排気に含まれるNOxを除去する触媒浄化システムとして、特開2000−27627号公報(特許文献1)に開示された排気浄化装置が提案されている。
かかる排気浄化装置は、エンジンの排気系に還元触媒を配設し、還元触媒の排気上流に還元剤を噴射供給することにより、排気中のNOxと還元剤とを触媒還元反応させて、NOxを無害成分に浄化処理するものである。還元剤は、常温において液体状態で貯蔵タンクに貯蔵され、エンジン運転状態に対応した必要量が噴射ノズルから噴射供給される。また、還元反応は、NOxと反応性が良好なアンモニアを用いるもので、還元剤としては、排気熱及び排気中の水蒸気により加水分解してアンモニアを容易に発生する尿素水溶液が用いられる。
特開2000−27627号公報
As a catalyst purification system for removing NOx contained in engine exhaust, an exhaust purification device disclosed in Japanese Patent Laid-Open No. 2000-27627 (Patent Document 1) has been proposed.
Such an exhaust purification device has a reduction catalyst disposed in an exhaust system of an engine, and injects and supplies a reducing agent upstream of the exhaust of the reduction catalyst to cause a catalytic reduction reaction between NOx in the exhaust and the reducing agent, thereby reducing NOx. It purifies to harmless components. The reducing agent is stored in a storage tank in a liquid state at room temperature, and a required amount corresponding to the engine operating state is injected and supplied from the injection nozzle. The reduction reaction uses ammonia having good reactivity with NOx, and as the reducing agent, an aqueous urea solution that is easily hydrolyzed by exhaust heat and water vapor in the exhaust to generate ammonia is used.
JP 2000-27627 A

ところで、上記従来の排気浄化装置によると、周囲温度の変化などに伴って貯蔵タンクが高温になると、その内部に貯蔵される尿素水溶液が化学反応を起こしてアンモニア系ガスとなり、貯蔵タンクの上部空間に充満してしまう。そして、尿素水溶液を補充するときなど、作業者が貯蔵タンクの注入キャップを取り外すと、充満したアンモニア系ガスが外部に漏れ出し、悪臭が発生してしまうおそれがあった。なお、かかる悪臭は、還元剤として尿素水溶液を用いたときに限らず、アンモニア水溶液,炭化水素を主成分とした軽油などを用いたときにも同様に発生してしまう。   By the way, according to the above-described conventional exhaust purification device, when the storage tank becomes hot as the ambient temperature changes or the like, the urea aqueous solution stored in the storage tank causes a chemical reaction to become ammonia-based gas, and the upper space of the storage tank. Will be full. When an operator removes the injection cap of the storage tank, for example, when replenishing the urea aqueous solution, the filled ammonia-based gas leaks to the outside, and there is a possibility that a bad odor may be generated. Such malodors are generated not only when a urea aqueous solution is used as a reducing agent, but also when an ammonia aqueous solution, light oil mainly containing hydrocarbons, or the like is used.

そこで、本発明は以上のような従来の問題点に鑑み、貯蔵タンクの上部空間内の気体を酸化触媒で酸化させつつ適宜放出することで、貯蔵タンク開閉時に発生する悪臭を抑制したエンジンの排気浄化装置を提供することを目的とする。   Therefore, in view of the above-described conventional problems, the present invention appropriately discharges the gas in the upper space of the storage tank while oxidizing it with an oxidation catalyst, thereby suppressing the exhaust of the engine that suppresses bad odor generated when the storage tank is opened and closed. An object is to provide a purification device.

このため、請求項1記載の発明では、エンジン排気系に配設され、窒素酸化物を還元剤により還元浄化する還元触媒と、前記還元剤を貯蔵する貯蔵タンクと、該貯蔵タンクに貯蔵された還元剤を前記還元触媒に供給する還元剤供給装置と、前記貯蔵タンクの上部空間内の気体を強制的に排出する強制排出装置と、該強制排出装置により排出された気体を一時的に吸着する吸着装置と、該吸着装置から離脱した気体を酸化させる酸化触媒と、前記貯蔵タンク内の還元剤温度を検出する還元剤温度検出手段と、該還元剤温度検出手段により検出された還元剤温度が第1の所定値以上であるときに、前記強制排出装置を作動させる作動制御手段と、を含んでエンジンの排気浄化装置を構成したことを特徴とする。 Therefore, in the first aspect of the present invention, the reduction catalyst is disposed in the engine exhaust system and reduces and purifies nitrogen oxides with a reducing agent, the storage tank for storing the reducing agent, and the storage tank stored in the storage tank. A reducing agent supply device that supplies the reducing agent to the reduction catalyst, a forced exhaust device that forcibly exhausts the gas in the upper space of the storage tank, and a gas that is exhausted by the forced exhaust device is temporarily adsorbed. An adsorbing device, an oxidation catalyst for oxidizing the gas separated from the adsorbing device, a reducing agent temperature detecting means for detecting a reducing agent temperature in the storage tank, and a reducing agent temperature detected by the reducing agent temperature detecting means And an operation control means for operating the forcible exhaust device when it is equal to or greater than a first predetermined value .

請求項2記載の発明では、前記酸化触媒の触媒温度を検出する触媒温度検出手段と、該触媒温度検出手段により検出された触媒温度に基づいて、前記酸化触媒を活性化させる触媒活性化手段と、を備えたことを特徴とする。 In the invention of claim 2, catalyst temperature detection means for detecting the catalyst temperature of the oxidation catalyst, and catalyst activation means for activating the oxidation catalyst based on the catalyst temperature detected by the catalyst temperature detection means; , Provided.

請求項3記載の発明では、前記酸化触媒を加熱する加熱装置を備え、前記触媒活性化手段は、前記触媒温度検出手段により検出された触媒温度が前記酸化触媒の活性温度以上になるように、前記加熱装置を制御することを特徴とする。
請求項4記載の発明では、前記触媒温度検出手段により検出された触媒温度が第2の所定値以上であるときに、前記加熱装置の作動を停止させる加熱停止手段を備えたことを特徴とする。
In a third aspect of the invention, the apparatus includes a heating device that heats the oxidation catalyst, and the catalyst activation means is configured such that the catalyst temperature detected by the catalyst temperature detection means is equal to or higher than the activation temperature of the oxidation catalyst. The heating device is controlled.
According to a fourth aspect of the present invention, there is provided heating stop means for stopping the operation of the heating device when the catalyst temperature detected by the catalyst temperature detection means is equal to or higher than a second predetermined value. .

請求項5記載の発明では、前記吸着装置は、モルデナイト、コバルト担持モルデナイト又は活性炭であることを特徴とする。
請求項6記載の発明では、前記酸化触媒は、電熱ハニカム触媒であることを特徴とする。
The invention according to claim 5 is characterized in that the adsorption device is mordenite, cobalt-supported mordenite, or activated carbon.
The invention according to claim 6 is characterized in that the oxidation catalyst is an electrothermal honeycomb catalyst.

請求項1記載の発明によれば、エンジンの排気中に含まれる窒素酸化物は、還元剤供給装置により貯蔵タンクから供給された還元剤を用いて、還元触媒において還元浄化され無害物質となった後、大気中に排出される。一方、周囲温度の変化などに伴って貯蔵タンク内の温度が上昇すると、還元剤の一部が化学反応又は気化して気体となり、貯蔵タンクの上部空間に充満する。貯蔵タンクの上部空間内の気体は、強制排出装置により貯蔵タンクから強制的に排出され、吸着装置に一時的に吸着される。そして、吸着装置に吸着された気体は、所定条件が満たされると徐々に離脱し、酸化触媒において酸化されて無害物質に転化された後、大気中に放出される。   According to the first aspect of the present invention, the nitrogen oxide contained in the exhaust of the engine is reduced and purified by the reduction catalyst using the reducing agent supplied from the storage tank by the reducing agent supply device to become a harmless substance. After that, it is discharged into the atmosphere. On the other hand, when the temperature in the storage tank rises with a change in ambient temperature or the like, a part of the reducing agent chemically reacts or vaporizes to become gas and fills the upper space of the storage tank. The gas in the upper space of the storage tank is forcibly discharged from the storage tank by the forced discharge device and is temporarily adsorbed by the adsorption device. The gas adsorbed by the adsorption device is gradually separated when a predetermined condition is satisfied, is oxidized in the oxidation catalyst and converted into a harmless substance, and then released into the atmosphere.

従って、貯蔵タンク内の還元剤から気体が発生する状況下であっても、その上部空間内の気体が強制的に排出されるので、そこに残留する気体濃度が大幅に低下する。このため、貯蔵タンクに還元剤を補充しようとして注入キャップを取り外しても、作業者が還元剤の臭いを感じ難くなり、貯蔵タンクの開閉時に発生する悪臭を低減することができる。また、貯蔵タンクの上部空間から強制的に排出された気体は、吸着装置により一時的に吸着された後徐々に離脱し、酸化触媒において酸化されるので、貯蔵タンク周囲で気体臭が漂うことも防止される。   Therefore, even in a situation where gas is generated from the reducing agent in the storage tank, the gas in the upper space is forcibly discharged, so that the concentration of the gas remaining there is greatly reduced. For this reason, even if the injection cap is removed in order to replenish the storage tank with the reducing agent, it becomes difficult for the operator to feel the odor of the reducing agent, and the bad odor generated when the storage tank is opened and closed can be reduced. In addition, the gas forcedly discharged from the upper space of the storage tank is temporarily adsorbed by the adsorption device and then gradually desorbs and is oxidized in the oxidation catalyst, so that a gas odor may drift around the storage tank. Is prevented.

このとき、貯蔵タンク内の還元剤温度が第1の所定温度以上であるとき、即ち、還元剤から気体が発生する可能性があるときのみ、強制排出装置が作動されるので、不必要な強制排出装置の作動が防止される。このため、強制排出装置の作動音及びその作動に要するエネルギを必要最小限に抑制することができる。
請求項2記載の発明によれば、酸化触媒の触媒温度に基づいてその活性化が行われるので、還元剤から発生した気体の酸化が不十分となることを防止することができる。
At this time, the forced discharge device is activated only when the reducing agent temperature in the storage tank is equal to or higher than the first predetermined temperature, that is, when there is a possibility that gas is generated from the reducing agent. The operation of the discharge device is prevented. For this reason, the operation sound of the forced discharge device and the energy required for the operation can be suppressed to the minimum necessary.
According to the second aspect of the present invention, since the activation is performed based on the catalyst temperature of the oxidation catalyst, the oxidation of the gas generated from the reducing agent can be prevented from becoming insufficient.

請求項3記載の発明によれば、酸化触媒の触媒温度がその活性温度以上となるように、酸化触媒を加熱する加熱装置が制御されるので、酸化触媒を確実に活性状態に保持することができる。
請求項4記載の発明によれば、酸化触媒の触媒温度が第2の所定値以上、即ち、酸化触媒が十分活性化されている温度以上であるときには、加熱装置の作動が停止されるので、加熱装置で消費されるエネルギを抑制しつつ、酸化触媒が必要以上に昇温することによる熱害を防止することができる。
According to the third aspect of the invention, since the heating device for heating the oxidation catalyst is controlled so that the catalyst temperature of the oxidation catalyst becomes equal to or higher than the activation temperature, the oxidation catalyst can be reliably maintained in the active state. it can.
According to the invention of claim 4 , when the catalyst temperature of the oxidation catalyst is equal to or higher than the second predetermined value, that is, the temperature at which the oxidation catalyst is sufficiently activated, the operation of the heating device is stopped. While suppressing the energy consumed by the heating device, it is possible to prevent thermal damage caused by the temperature of the oxidation catalyst being increased more than necessary.

請求項5記載の発明によれば、吸着装置をモルデナイト,コバルト担持モルデナイト又は活性炭とすることで、貯蔵タンクの上部空間から強制的に排出された気体を効率良く吸着することができる。
請求項6記載の発明によれば、酸化触媒を電熱ハニカム触媒とすることで、還元剤から発生した気体の流通抵抗の増大を抑制しつつ、加熱装置を容易に構成することができる。
According to invention of Claim 5, the gas forcedly discharged from the upper space of the storage tank can be adsorb | sucked efficiently by making an adsorption | suction apparatus into mordenite, cobalt carrying | support mordenite, or activated carbon .
According to the sixth aspect of the invention, by using the electrocatalytic honeycomb catalyst as the oxidation catalyst, the heating device can be easily configured while suppressing an increase in the flow resistance of the gas generated from the reducing agent.

以下、添付された図面を参照して本発明を詳述する。
図1は、本発明を具現化した排気浄化装置の構成を示す。
エンジン10の排気は、排気マニフォールド12からその下流に向けて、酸化触媒14,NOx還元触媒16及びスリップ式アンモニア酸化触媒18が夫々配設された排気管20を通過して大気中に排出される。また、NOx還元触媒16の排気上流には、貯蔵タンク22に貯蔵される液体還元剤が、還元剤供給装置24及び噴射ノズル26を経由して、空気と共に噴射供給される。ここで、液体還元剤としては、本実施形態では、加水分解によりアンモニアを容易に発生する尿素水溶液を用いるが、NOx還元触媒16の還元反応に対応して、炭化水素を主成分とする軽油などを用いるようにしてもよい。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows the configuration of an exhaust emission control device embodying the present invention.
The exhaust from the engine 10 is exhausted from the exhaust manifold 12 to the downstream through an exhaust pipe 20 in which an oxidation catalyst 14, a NOx reduction catalyst 16, and a slip-type ammonia oxidation catalyst 18 are respectively disposed. . Further, the liquid reducing agent stored in the storage tank 22 is injected and supplied together with air to the upstream side of the exhaust of the NOx reduction catalyst 16 via the reducing agent supply device 24 and the injection nozzle 26. Here, as the liquid reducing agent, a urea aqueous solution that easily generates ammonia by hydrolysis is used as the liquid reducing agent. However, in response to the reduction reaction of the NOx reduction catalyst 16, a light oil containing hydrocarbon as a main component is used. May be used.

また、貯蔵タンク22の天壁には、尿素水溶液を補充するための注入キャップ28が着脱可能に取り付けられると共に、上部空間内の気体(アンモニア系ガス)を強制的に排出する電動ファンなどの強制排出装置30が取り付けられる。そして、強制排出装置30の吐出側には、強制排出された気体を一時的に吸着するモルデナイト,コバルト担持モルデナイト又は活性炭などの吸着装置32、及び、吸着装置32から離脱した気体を酸化させる酸化触媒34が、この順番で配設される。ここで、酸化触媒34としては、流通抵抗が小さいハニカム担体に触媒金属などをウォッシュコートすると共に、その活性化を促進する電熱ヒータなどの加熱装置が内蔵された電熱ハニカム触媒を用いることが望ましい。なお、加熱装置は、酸化触媒34に内蔵される構成に限らず、これに併設される構成としてもよい。   Further, an injection cap 28 for replenishing the urea aqueous solution is detachably attached to the top wall of the storage tank 22 and a forced fan such as an electric fan for forcibly discharging the gas (ammonia-based gas) in the upper space. A discharge device 30 is attached. Further, on the discharge side of the forced exhaust device 30, an adsorption device 32 such as mordenite, cobalt-supported mordenite or activated carbon that temporarily adsorbs the forced exhaust gas, and an oxidation catalyst that oxidizes the gas separated from the adsorption device 32. 34 are arranged in this order. Here, as the oxidation catalyst 34, it is desirable to use an electrothermal honeycomb catalyst in which a catalytic metal or the like is wash-coated on a honeycomb carrier having a low flow resistance and a heating device such as an electric heater for promoting the activation is incorporated. Note that the heating device is not limited to the configuration built in the oxidation catalyst 34, and may be configured to be provided in addition thereto.

一方、排気浄化装置の制御系として、貯蔵タンク22内の尿素水溶液温度を検出する還元剤温度センサ36(還元剤温度検出手段)と、酸化触媒34の触媒温度を検出する触媒温度センサ38(触媒温度検出手段)と、コンピュータを内蔵した制御装置40と、が備えられる。そして、制御装置40は、ROM(Read Only Memory)に記憶された制御プログラムにより、エンジン回転速度及び燃料噴射量などのエンジン運転状態に応じて還元剤供給装置24を制御すると共に、還元剤温度センサ36及び触媒温度センサ38からの温度信号に基づいて、強制排出装置30及び酸化触媒34を活性化する加熱装置を制御する。なお、制御装置40により、作動制御手段,触媒活性化手段及び加熱停止手段が夫々実現される。   On the other hand, as a control system of the exhaust purification device, a reducing agent temperature sensor 36 (reducing agent temperature detecting means) that detects the urea aqueous solution temperature in the storage tank 22 and a catalyst temperature sensor 38 (catalyst) that detects the catalyst temperature of the oxidation catalyst 34. Temperature detecting means) and a control device 40 incorporating a computer. Then, the control device 40 controls the reducing agent supply device 24 according to the engine operating state such as the engine speed and the fuel injection amount by a control program stored in a ROM (Read Only Memory), and the reducing agent temperature sensor. Based on the temperature signals from 36 and the catalyst temperature sensor 38, the heating device for activating the forced discharge device 30 and the oxidation catalyst 34 is controlled. The control device 40 realizes an operation control means, a catalyst activation means, and a heating stop means.

図2は、エンジン始動後、制御装置40において所定時間間隔で繰り返し実行される制御内容を示すフローチャートである。
ステップ1(図では「S1」と略記する。以下同様)では、還元剤温度センサ36から尿素水溶液温度が読み込まれる。
ステップ2では、尿素水溶液温度が所定値T1以上であるか否か、即ち、尿素水溶液からアンモニア系ガスが発生する温度(例えば80℃)より若干低い第1の所定温度に達しているか否かが判定される。そして、尿素水溶液温度が所定値T1以上であればステップ3へと進む一方(Yes)、尿素水溶液温度が所定値T1未満であれば処理を終了する(No)。
FIG. 2 is a flowchart showing the control contents repeatedly executed at predetermined time intervals in the control device 40 after the engine is started.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the urea aqueous solution temperature is read from the reducing agent temperature sensor 36.
In step 2, whether the urea aqueous solution temperature is a predetermined value above T 1, i.e., whether or not reached slightly lower first predetermined temperature than the temperature (e.g. 80 ° C.) of ammonia-based gas is generated from the urea aqueous solution Is determined. If the urea aqueous solution temperature is equal to or higher than the predetermined value T 1 , the process proceeds to step 3 (Yes), while if the urea aqueous solution temperature is lower than the predetermined value T 1 , the process is ended (No).

ステップ3では、貯蔵タンク22内の尿素水溶液温度が所定値T1以上、即ち、アンモニア系ガスが発生する温度より若干低い温度に達しているため、強制排出装置30を所定時間作動させ、貯蔵タンク22の上部空間内のアンモニア系ガスを強制的に排出させる。
なお、ステップ1〜ステップ3における一連の処理が作動制御手段に該当する。
ステップ4では、触媒温度センサ38から酸化触媒34の触媒温度が読み込まれる。
In step 3, the urea aqueous solution temperature in the storage tank 22 is a predetermined value above T 1, i.e., since the ammonia-based gas has reached a temperature slightly lower than the temperatures generated to actuate the forced discharge device 30 a predetermined time, the storage tank The ammonia gas in the upper space of 22 is forcibly discharged.
In addition, a series of processes in step 1 to step 3 correspond to the operation control means.
In step 4, the catalyst temperature of the oxidation catalyst 34 is read from the catalyst temperature sensor 38.

ステップ5では、酸化触媒34の触媒温度が所定値T2以下であるか否か、即ち、触媒温度が酸化触媒34の活性化温度(例えば200℃)に達しているか否かが判定される。そして、触媒温度が所定値T2以下であれば酸化触媒34が未活性であるので、ステップ6に進み(Yes)、加熱装置に対して通電が開始される。一方、触媒温度が所定値T2より高ければステップ7へと進む(No)。 In step 5, the catalyst temperature of the oxidation catalyst 34 is equal to or less than a predetermined value T 2, i.e., the catalyst temperature is whether reached the activation temperature of the oxidation catalyst 34 (for example, 200 ° C.) is determined. Since the catalyst temperature oxidation catalyst 34 equal to or less than a predetermined value T 2 is in a non-active, the process proceeds to step 6 (Yes), the energization is started the heating device. On the other hand, the catalyst temperature goes to step 7 is higher than a predetermined value T 2 (No).

ステップ7では、酸化触媒34の触媒温度が所定値T3以上であるか否か、即ち、酸化触媒34が十分活性化されている第2の所定値(例えば400℃)以上であるか否かが判定される。そして、触媒温度が所定値T3以上であれば酸化触媒34が十分活性化されているので、ステップ8へと進み(Yes)、不必要な電力消費を抑制すべく加熱装置への通電を停止させる。一方、触媒温度が所定値T3未満であれば、触媒温度を所定値T2〜T3に維持すべく、そのときの触媒温度に応じて加熱装置への電流が増減される。 In step 7, whether or not the catalyst temperature of the oxidation catalyst 34 is equal to or higher than a predetermined value T 3, that is, whether or not the oxidation catalyst 34 is equal to or higher than a second predetermined value (for example, 400 ° C.) that is sufficiently activated. Is determined. If the catalyst temperature is equal to or higher than the predetermined value T 3 , the oxidation catalyst 34 is sufficiently activated, so the process proceeds to step 8 (Yes), and the energization to the heating device is stopped to suppress unnecessary power consumption. Let On the other hand, if the catalyst temperature is lower than the predetermined value T 3 , the current to the heating device is increased or decreased according to the catalyst temperature at that time in order to maintain the catalyst temperature at the predetermined values T 2 to T 3 .

なお、ステップ4〜ステップ9における一連の処理が触媒活性化手段に、ステップ4,ステップ7及びステップ8における一連の処理が加熱停止手段に夫々該当する。
次に、かかる構成からなる排気浄化装置の作用について説明する。
エンジン10からの排気は、排気マニフォールド12及び排気管20を通って酸化触媒14へと導かれる。酸化触媒14では、その下流に位置するNOx還元触媒16でのNOx浄化効率を向上させるべく、排気中の一部の一酸化窒素(NO)を酸化して、二酸化窒素(NO2)に転化させる。酸化触媒14にてNOとNO2との構成比率が改善された排気は、排気管20を通ってNOx還元触媒16へと導かれる。一方、NOx還元触媒16の排気上流に位置する噴射ノズル26から、エンジン運転状態に応じた尿素水溶液が空気と共に噴射供給され、排気熱及び排気中の水蒸気により加水分解してアンモニアとなりつつ、排気と共にNOx還元触媒16へと供給される。そして、NOx還元触媒16では、アンモニアを用いた還元反応により、排気中のNOxを水及び無害なガスに転化して、NOx浄化が行われる。また、還元反応に寄与せず、NOx還元触媒16を通過した余剰のアンモニアは、NOx還元触媒16の排気下流に位置するスリップ式アンモニア酸化触媒18により、大気中に放出しても無害な物質に転化される。
A series of processes in Step 4 to Step 9 corresponds to the catalyst activation means, and a series of processes in Step 4, Step 7 and Step 8 correspond to the heating stop means.
Next, the operation of the exhaust emission control device having such a configuration will be described.
Exhaust gas from the engine 10 is guided to the oxidation catalyst 14 through the exhaust manifold 12 and the exhaust pipe 20. The oxidation catalyst 14 oxidizes a portion of the nitrogen monoxide (NO) in the exhaust gas to convert it into nitrogen dioxide (NO 2 ) in order to improve the NOx purification efficiency in the NOx reduction catalyst 16 located downstream thereof. . Exhaust gas in which the composition ratio of NO and NO 2 is improved by the oxidation catalyst 14 is guided to the NOx reduction catalyst 16 through the exhaust pipe 20. On the other hand, urea aqueous solution corresponding to the engine operating state is injected and supplied from the injection nozzle 26 located upstream of the NOx reduction catalyst 16 together with air, and is hydrolyzed by the exhaust heat and water vapor in the exhaust to become ammonia, together with the exhaust. It is supplied to the NOx reduction catalyst 16. In the NOx reduction catalyst 16, NOx purification is performed by converting NOx in the exhaust into water and harmless gas by a reduction reaction using ammonia. Further, surplus ammonia that has not contributed to the reduction reaction and has passed through the NOx reduction catalyst 16 is made harmless even if released into the atmosphere by the slip-type ammonia oxidation catalyst 18 located downstream of the NOx reduction catalyst 16. Converted.

一方、周囲温度の変化などに伴って貯蔵タンク22内の温度が上昇すると、尿素水溶液が化学変化を起こしてアンモニア系ガスとなり、これが貯蔵タンク22の上部空間に充満する。このとき、尿素水溶液温度が所定値T1以上となるので、制御装置40により強制排出装置30が所定時間作動される。このため、貯蔵タンク22の上部空間内のアンモニア系ガスは、強制排出装置30により強制的に排出され、吸着装置32に一時的に吸着される。そして、吸着装置32に吸着されたアンモニア系ガスは、所定条件が満たされると徐々に離脱し、酸化触媒34において酸化されて無害物質に転化された後、大気中に放出される。 On the other hand, when the temperature in the storage tank 22 rises due to a change in ambient temperature or the like, the urea aqueous solution undergoes a chemical change to become ammonia-based gas, which fills the upper space of the storage tank 22. At this time, since the urea aqueous solution temperature becomes a predetermined value above T 1, forcible discharge device 30 is operated for a predetermined time by the control unit 40. For this reason, the ammonia gas in the upper space of the storage tank 22 is forcibly discharged by the forced discharge device 30 and temporarily adsorbed by the adsorption device 32. The ammonia-based gas adsorbed by the adsorption device 32 is gradually separated when a predetermined condition is satisfied, is oxidized in the oxidation catalyst 34 and converted into a harmless substance, and then released into the atmosphere.

従って、貯蔵タンク22内の尿素水溶液からアンモニア系ガスが発生する状況下では、その上部空間内のアンモニア系ガスが強制的に排出されるので、そこに残留するアンモニア濃度が大幅に低下する。このため、尿素水溶液を補充しようとして注入キャップ28を取り外しても、アンモニア濃度が低いことから、作業者がアンモニア臭を感じ難くなり、貯蔵タンク22の開閉時に発生する悪臭を低減することができる。また、貯蔵タンク22の上部空間から強制的に排出されたアンモニア系ガスは、吸着装置32により一時的に吸着された後徐々に離脱し、酸化触媒34において酸化されるので、貯蔵タンク22周囲でアンモニア臭が漂うことを防止できる。   Therefore, under the situation where ammonia-based gas is generated from the urea aqueous solution in the storage tank 22, the ammonia-based gas in the upper space is forcibly discharged, so that the concentration of ammonia remaining therein is greatly reduced. For this reason, even if the injection cap 28 is removed in order to replenish the urea aqueous solution, the ammonia concentration is low, so that it is difficult for the operator to feel the ammonia odor and the bad odor generated when the storage tank 22 is opened and closed can be reduced. Further, the ammonia-based gas forcibly discharged from the upper space of the storage tank 22 is temporarily adsorbed by the adsorption device 32 and then gradually desorbed and is oxidized in the oxidation catalyst 34. Ammonia odor can be prevented from drifting.

また、酸化触媒34の触媒温度が、活性温度以上の所定温度範囲に維持されるように、加熱装置が制御されるので、不必要な電力消費を抑制しつつ、酸化触媒34を活性状態に保持することができる。特に、酸化触媒34の触媒温度が所定温度T3以上、即ち、酸化触媒34が十分活性化されているときには、加熱装置の作動が停止されるので、酸化触媒34が必要以上に昇温することがなく、熱害を防止することができる。 In addition, since the heating device is controlled so that the catalyst temperature of the oxidation catalyst 34 is maintained within a predetermined temperature range equal to or higher than the activation temperature, the oxidation catalyst 34 is kept in an active state while suppressing unnecessary power consumption. can do. In particular, when the catalyst temperature of the oxidation catalyst 34 is equal to or higher than the predetermined temperature T 3 , that is, when the oxidation catalyst 34 is sufficiently activated, the operation of the heating device is stopped, so that the oxidation catalyst 34 is heated more than necessary. No heat damage can be prevented.

本発明を具現化した排気浄化装置の構成図Configuration diagram of an exhaust emission control device embodying the present invention 制御装置で実行される制御内容を示すフローチャートFlow chart showing control contents executed by control device

符号の説明Explanation of symbols

10 エンジン
16 NOx還元触媒
20 排気管
22 貯蔵タンク
24 還元剤供給装置
30 強制排出装置
32 吸着装置
34 酸化触媒
36 還元剤温度センサ
38 触媒温度センサ
40 制御装置
DESCRIPTION OF SYMBOLS 10 Engine 16 NOx reduction catalyst 20 Exhaust pipe 22 Storage tank 24 Reducing agent supply apparatus 30 Forced discharge apparatus 32 Adsorption apparatus 34 Oxidation catalyst 36 Reducing agent temperature sensor 38 Catalyst temperature sensor 40 Control apparatus

Claims (6)

エンジン排気系に配設され、窒素酸化物を還元剤により還元浄化する還元触媒と、
前記還元剤を貯蔵する貯蔵タンクと、
該貯蔵タンクに貯蔵された還元剤を前記還元触媒に供給する還元剤供給装置と、
前記貯蔵タンクの上部空間内の気体を強制的に排出する強制排出装置と、
該強制排出装置により排出された気体を一時的に吸着する吸着装置と、
該吸着装置から離脱した気体を酸化させる酸化触媒と、
前記貯蔵タンク内の還元剤温度を検出する還元剤温度検出手段と、
該還元剤温度検出手段により検出された還元剤温度が第1の所定値以上であるときに、前記強制排出装置を作動させる作動制御手段と、
を含んで構成されたことを特徴とするエンジンの排気浄化装置。
A reduction catalyst disposed in the engine exhaust system for reducing and purifying nitrogen oxides with a reducing agent;
A storage tank for storing the reducing agent;
A reducing agent supply device for supplying the reducing agent stored in the storage tank to the reduction catalyst;
A forced discharge device for forcibly discharging the gas in the upper space of the storage tank;
An adsorption device for temporarily adsorbing the gas discharged by the forced discharge device;
An oxidation catalyst for oxidizing the gas separated from the adsorption device;
Reducing agent temperature detecting means for detecting the reducing agent temperature in the storage tank;
An operation control means for operating the forced discharge device when the reducing agent temperature detected by the reducing agent temperature detecting means is equal to or higher than a first predetermined value;
An exhaust emission control device for an engine characterized by comprising:
前記酸化触媒の触媒温度を検出する触媒温度検出手段と、
該触媒温度検出手段により検出された触媒温度に基づいて、前記酸化触媒を活性化させる触媒活性化手段と、
を備えたことを特徴とする請求項1記載のエンジンの排気浄化装置。
Catalyst temperature detecting means for detecting the catalyst temperature of the oxidation catalyst;
Catalyst activation means for activating the oxidation catalyst based on the catalyst temperature detected by the catalyst temperature detection means;
The exhaust emission control device for an engine according to claim 1, further comprising:
前記酸化触媒を加熱する加熱装置を備え、
前記触媒活性化手段は、前記触媒温度検出手段により検出された触媒温度が前記酸化触媒の活性温度以上になるように、前記加熱装置を制御することを特徴とする請求項2記載のエンジンの排気浄化装置。
A heating device for heating the oxidation catalyst;
The engine exhaust according to claim 2, wherein the catalyst activating means controls the heating device so that the catalyst temperature detected by the catalyst temperature detecting means becomes equal to or higher than the activation temperature of the oxidation catalyst. Purification equipment.
前記触媒温度検出手段により検出された触媒温度が第2の所定値以上であるときに、前記加熱装置の作動を停止させる加熱停止手段を備えたことを特徴とする請求項3記載のエンジンの排気浄化装置。 The engine exhaust according to claim 3 , further comprising a heating stop means for stopping the operation of the heating device when the catalyst temperature detected by the catalyst temperature detecting means is equal to or higher than a second predetermined value. Purification equipment. 前記吸着装置は、モルデナイト、コバルト担持モルデナイト又は活性炭であることを特徴とする請求項1〜請求項4のいずれか1つに記載のエンジンの排気浄化装置。 5. The engine exhaust gas purification apparatus according to claim 1, wherein the adsorption device is mordenite, cobalt-supported mordenite, or activated carbon . 前記酸化触媒は、電熱ハニカム触媒であることを特徴とする請求項1〜請求項5のいずれか1つに記載のエンジンの排気浄化装置。 The engine exhaust purification apparatus according to any one of claims 1 to 5, wherein the oxidation catalyst is an electrothermal honeycomb catalyst .
JP2003339247A 2003-09-19 2003-09-30 Engine exhaust purification system Expired - Lifetime JP4166656B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003339247A JP4166656B2 (en) 2003-09-30 2003-09-30 Engine exhaust purification system
US10/572,558 US7849674B2 (en) 2003-09-19 2004-09-02 Exhaust emission purifying apparatus for engine
PCT/JP2004/012743 WO2005028826A1 (en) 2003-09-19 2004-09-02 Exhaust gas purification device of engine
EP04787623A EP1669567B1 (en) 2003-09-19 2004-09-02 Exhaust gas purification device of engine
EP11191519.5A EP2426328B1 (en) 2003-09-19 2004-09-02 Exhaust gas purification device of engine
EP11191521.1A EP2426329B1 (en) 2003-09-19 2004-09-02 Exhaust gas purification device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339247A JP4166656B2 (en) 2003-09-30 2003-09-30 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2005105915A JP2005105915A (en) 2005-04-21
JP4166656B2 true JP4166656B2 (en) 2008-10-15

Family

ID=34534484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339247A Expired - Lifetime JP4166656B2 (en) 2003-09-19 2003-09-30 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4166656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325725B2 (en) 2008-02-14 2009-09-02 トヨタ自動車株式会社 Urea water supply device for internal combustion engine
CN102575551B (en) * 2009-06-18 2015-08-12 康明斯知识产权公司 For equipment, system and method that reductant line heating controls

Also Published As

Publication number Publication date
JP2005105915A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP2426329B1 (en) Exhaust gas purification device of engine
US7550125B2 (en) Exhaust gas purification system
JP2020196646A (en) Reforming system
JP5239678B2 (en) Engine exhaust purification system
JP2007100578A (en) Exhaust emission control device of internal combustion engine
JP4500698B2 (en) Exhaust gas treatment equipment
JP2012159029A (en) Apparatus and method for producing nitrogen dioxide, and exhaust emission control system
JP2007100572A (en) Exhaust emission control device of internal combustion engine
JP2009167942A (en) Exhaust emission control device
JP4166656B2 (en) Engine exhaust purification system
JP6070402B2 (en) Chemical heat storage device
JP5582122B2 (en) Apparatus and method for exhaust purification of internal combustion engine
JP5018687B2 (en) Exhaust gas purification device for internal combustion engine
JP2010019079A (en) Exhaust emission control device
JP4166655B2 (en) Engine exhaust purification system
JP4803026B2 (en) Exhaust gas purification device for internal combustion engine
JP2009047117A (en) Exhaust emission control method and exhaust emission control device
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JPH1181990A (en) Device for adding reductant for exhaust gas purifying catalyst
JP2011185161A (en) Exhaust emission control device
JP4352842B2 (en) Exhaust gas purification device for internal combustion engine
JP2008267177A (en) Exhaust emission control device
JP2008291673A (en) Exhaust emission control device for engine
JP2021183829A (en) Exhaust emission control system and exhaust emission control device
JP2021110257A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4166656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371