JP4352743B2 - Oxygen enrichment equipment - Google Patents

Oxygen enrichment equipment Download PDF

Info

Publication number
JP4352743B2
JP4352743B2 JP2003099985A JP2003099985A JP4352743B2 JP 4352743 B2 JP4352743 B2 JP 4352743B2 JP 2003099985 A JP2003099985 A JP 2003099985A JP 2003099985 A JP2003099985 A JP 2003099985A JP 4352743 B2 JP4352743 B2 JP 4352743B2
Authority
JP
Japan
Prior art keywords
oxygen
suction
suction means
oxygen enrichment
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099985A
Other languages
Japanese (ja)
Other versions
JP2004305827A (en
Inventor
博之 香山
徹 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003099985A priority Critical patent/JP4352743B2/en
Publication of JP2004305827A publication Critical patent/JP2004305827A/en
Application granted granted Critical
Publication of JP4352743B2 publication Critical patent/JP4352743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気中の酸素を濃縮する酸素富化装置、特に酸素を選択的に透過する膜型の酸素富化装置に関するものである。
【0002】
【従来の技術】
従来、この種の酸素富化装置は吸引手段としてルーツ式等、ロータリー形の吸引ポンプを使用している(例えば、特許文献1参照)。
【0003】
図10は、前記特許文献1に記載された従来の酸素富化装置を示すものである。図10において、1は吸引用送風機、2は酸素富化膜ユニット、3は吸引ポンプ(吸引手段)、4はロータ、5はケーシング、アは空気の流れである。
【0004】
【特許文献1】
特開昭62−191018号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、ロータリー形の真空ポンプを使用しているので、吸引手段である真空ポンプの寿命が長く、メンテナンスが比較的容易である反面、圧力と風量の能力に対して外寸が大きく、運転音が大きい。また防音壁や吸音材などの防音構成を施して運転音を下げるためには、さらに外寸が大きくなる。さらにロータの熱膨張によってロータ同士やケーシングが接触して動作停止しないように、冷却構成が必要となり、さらに外寸が大きくなることがある。また構成上、ロータは高い寸法精度が要求され、小型のロータを製造するのが困難である。これらの要因により吸引ポンプの小型化が困難であり、つまりこの吸引ポンプを内蔵する酸素富化装置の小型化が困難であるという課題を有していた。
【0006】
本発明は前記従来の課題を解決するもので、吸引手段として送風機を使用することで、吸引手段を小型にし、小型の酸素富化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の酸素富化装置は、空気中の窒素に比べて酸素の透過速度が早い酸素富化膜ユニットと、前記酸素富化膜ユニットの下流側に配され、前記酸素富化膜ユニットに吸引圧力を与える吸引手段と、前記吸引手段の排気口に接続された連通管と、前記連通管を通過した酸素富化空気を本体外部へ排出する本体の排気口と、前記酸素富化ユニットと前記吸引手段の吸気口との間を繋ぐ配管と、前記連通管との間を連結するように設けられた管路切換え部とを前記本体内に備え、前記管路切換え部は、通常運転時には前記酸素富化膜ユニット、前記吸引手段の吸気口、前記吸引手段の排気口、前記連通管という順に空気を流し、運転停止時には前記連通管、前記吸引手段の吸引口、前記吸引手段の排気口、前記酸素富化膜ユニットという順に空気を流すことを特徴とするものである。これによって、圧力と風量の能力に対して吸引手段を小型化でき、この小型の吸引手段をもちいることで酸素富化装置も小型化できるものである。また、運転停止時に酸素富化膜ユニットと吸引手段との間、さらに吸引手段の内部に残留している高濃度酸素と高湿である空気を排出して、吸引手段の酸化、錆化による老朽化を防止することができる。
【0008】
【発明の実施の形態】
請求項1に記載した発明は、空気中の窒素に比べて酸素の透過速度が早い酸素富化膜ユニットと、前記酸素富化膜ユニットの下流側に配され、前記酸素富化膜ユニットに吸引圧力を与える吸引手段と、前記吸引手段の排気口に接続された連通管と、前記連通管を通過した酸素富化空気を本体外部へ排出する本体の排気口と、前記酸素富化ユニットと前記吸引手段の吸気口との間を繋ぐ配管と、前記連通管との間を連結するように設けられた管路切換え部とを前記本体内に備え、前記管路切換え部は、通常運転時には前記酸素富化膜ユニット、前記吸引手段の吸気口、前記吸引手段の排気口、前記連通管という順に空気を流し、運転停止時には前記連通管、前記吸引手段の吸引口、前記吸引手段の排気口、前記酸素富化膜ユニットという順に空気を流すことを特徴とする酸素富化装置としたものである。これによって、圧力と風量の能力に対して吸引手段を小型化でき、この小型の吸引手段を用いることで酸素富化装置も小型化できる。また、運転停止時に酸素富化膜ユニットと吸引手段との間、さらに吸引手段の内部に残留している高濃度酸素と高湿である空気を排出して、吸引手段の酸化、錆化による老朽化を防止することができる。
【0009】
請求項2に記載した発明は、特に、請求項1記載の吸引手段を遠心式の送風機としたので、吸込圧力を高めることが容易で、圧力損失の高く酸素富化能力の高い酸素富化膜ユニットを使用でき、高い濃度の酸素を吐出すことができる。
【0010】
請求項3に記載した発明は、特に、請求項1に記載の吸引手段を軸流式の送風機とした
ので、空気中より僅かに高い濃度の酸素を大量に吐出すことができる。
【0011】
請求項4に記載した発明は、特に、請求項1記載の吸引手段が分子ポンプである構成としたものである。これによって、圧力と風量の能力に対して吸引手段を小型かつ軽量化でき、つまり小型かつ軽量である酸素富化装置を実現するものである。
【0012】
請求項5に記載した発明は、特に、請求項1記載の吸引手段がターボ形のドライ真空ポンプである構成としたものである。これによって圧力と風量の能力に対して吸引手段を小型かつ軽量化でき、つまり小型かつ軽量である酸素富化装置を実現するものである。
【0013】
請求項6に記載した発明は、特に、請求項1記載の吸引手段がスクロール形のドライ真空ポンプである構成としたものである。これによって圧力と風量の能力に対して吸引手段を小型かつ軽量化でき、つまり小型かつ軽量である酸素富化装置を実現するものである。
【0014】
請求項7に記載した発明は、特に、請求項1記載の吸引手段がヘリカル溝形のドライ真空ポンプである構成としたものである。これによって圧力と風量の能力に対して吸引手段を小型かつ軽量化でき、つまり小型かつ軽量である酸素富化装置を実現するものである。
【0016】
請求項8に記載した発明は、特に、請求項1記載の吸引手段がピストン形のドライ真空ポンプであり、前記ドライ真空ポンプのピストンをリニアモータと一体化し、前記ピストンを往復運動させて吸引圧力を発生させる構成としたものである。これによって小型で運
転音が小さい吸引手段とすることができ、防音構成を付加する必要がなく、小型の酸素富化装置を実現するものである。
【0018】
【実施例】
以下、本発明の実施例について図面を参照しながら説明する。
【0019】
(実施例1)
図1は本発明の第1の実施例における酸素富化装置の全体構成図であり、図2は、同、酸素富化装置の吸引手段の構成を表す断面図である。
【0020】
図1、図2において、21は酸素富化装置の本体(以下、単に本体と称す)、22は本体21側面の上方側に設けた吸気口であり、この吸気口22には吸気フィルタ23を設けてあり、さらに本体21内部には軸流式の吸気用送風機24が連通している。25は吸気用送風機24の排気口側に設けた排気ガイドで、この送風ガイドの下流側には、酸素富化膜ユニット26を設けている。酸素富化膜ユニット26は、複数の酸素富化膜から構成されており、各酸素富化膜へ空気を流す複数の吸気スリット27と窒素富化空気を排出する排気スリット28を有し、酸素富化空気を排出する酸素排気口29を有している。
【0021】
30は吸引手段である遠心式の送風機で、この送風機30の吸気口31と酸素排気口29との間には、ラッパ状の案内管32を設けている。送風機30は酸素富化膜ユニット26の下方に位置し、吸気口31を上方に向けて配置してあり、下方には防振と防音を兼ねたウレタンなどのダンパ部33を配している。送風機30の側方には排気口34を有しており、さらに連通管35が接続され、水分凝縮部36、物理的または電気的に空気以外の不純物を除去する不純物質除去部37、電磁弁などの排気調整弁38が連通し、吸気口22とは反対側に酸素富化空気を排出する排気口39を設けている。
【0022】
40は若干窒素富化となった空気が排出される案内管であり、この案内管40の内部には、送風機30と制御回路41の一部または全部が内包されており、排気用送風機42へと接続している。このとき制御回路41に接続された放熱フィンのみが案内管40内に突出しているだけでも構わない。43は排気口であり、排気用送風機42が収められており、最外部には排気フィルタ44を設けてある。45は排気口に設けた下向きの偏向ガイドで、排気口43の最上部に1枚設けているが、排気口43内に複数設けても構わない。
【0023】
なお吸気フィルタ、排気フィルタは、粗塵、細塵、臭気等、種々の物質を捕らえるために各々に特化したフィルタを多層に配置しても構わない。また吸気用送風機、排気用送風機は、遠心式であっても構わない。
【0024】
また制御回路41は、送風機30のインバータ回路の他、吸気用送風機、排気用送風機、排気調節弁38の動作を制御するものである。
【0025】
ここで吸引手段である送風機30について詳細を述べる。この送風機30は遠心式であり、モータ51内の回転軸52には羽根車53が固定されている。羽根車53の外周には、モータ51に固定された静翼54を有しており、この静翼54の下方でかつモータ51の側方には整流部55を設けてあり、さらにこの整流部55の側面には排気口34を配している。軸受け56はシール型の軸受けを使用しているが、空気軸受けまたは磁気軸受けが望ましい。
【0026】
なお送風機とは圧力が0.1MPa以下のものを示し、とくに本実施例では0.05MPa以下のものを使用している。
【0027】
以下、本実施例の動作について説明する。制御回路41からの指示で吸気用送風機24と排気用送風機42が運転を開始する。これによって吸気口22から空気を吸い込む。このとき吸気フィルタ23にて塵埃を取り除いている。吸気用送風機24を通過した空気は送風ガイド25で均一に広がりながら酸素富化ユニット26の吸気スリット27へと流れ込む(矢印A)。さらに酸素富化ユニット26を通過した空気は、排気スリット28から案内管40を通過し、排気用送風機42に引き込まれ、排気フィルタ44にて再度塵埃が取り除かれ、排気口43から本体21外部へ排出される。このとき偏向ガイド45が下方を向いているので、排気も下方へと流れ出る(矢印B)。
【0028】
この状態で吸引手段である送風機30を運転させる。すなわちインバータ回路を含む制御回路41からの指示でモータ51の回転軸52が回転し、同時にこの回転軸52に固定されている羽根車53も回転し送風機30の吸気口31側に吸引力が発生する。送風機30の吸気口31は案内管32によって酸素富化ユニット26の酸素排気口29と連結しているので、大気圧下より高い濃度の酸素富化空気が酸素排気口29から送風機30へと連続的に流れ込む(矢印E)。羽根車53を通過した酸素富化空気は静翼54を通過し、整流部55で一様に整流され排気口34から送風機30外へと排出される(矢印C・F)。その後、連結管35を通過し、水分凝集部36で大気圧下より過剰に含まれた水分を取り除き、さらに不純物質除去部37にて、送風機や管路内で発生した不純物をも取り除く。最後に排気調整弁38を通過した酸素富化空気は排気口39から本体外部へ排出される(矢印D)。
【0029】
このとき案内管40を通過するのは若干窒素が富化された空気で、制御回路41と送風機30とくにモータ51の冷却を行うものである。
【0030】
このようにして本実施例の酸素富化装置を使用することによって、ロータリー形とくにツール式と比べて、遠心式(ターボ形)のドライ真空ポンプは一般的に容積が5分の1、質量が8分の1であるので、大気圧での酸素濃度以上を連続的に排出する程度の遠心式の送風機では、それ以上の小型、軽量化が望めるものである。この結果、吸引手段を小型にでき、つまり小型である酸素富化装置を実現するものである。
【0031】
(実施例2)
図3は、本発明の第2の実施例における酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0032】
図3において、本実施例の吸引手段は、軸流式の送風機で、羽根車53と静翼54の組が多段に連なっており、酸素排気口29から吸気された酸素富化空気は羽根車53、静翼54、整流部55を通過し連続的に大気圧での酸素濃度以上の空気を排出できる(矢印E・G)。この結果、吸引手段を小型にでき、つまり小型である酸素富化装置を実現するものである。
【0033】
(実施例3)
図4は、本発明の第3の実施例である酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0034】
図4において、本実施例の吸引手段は、ターボ分子ポンプで、羽根車53と静翼54の組が多段に連なっており、酸素排気口29から吸気された酸素富化空気は羽根車53、静翼54、整流部55を通過し連続的に大気圧での酸素濃度以上の空気を排出できる(矢印E・H)。この結果、吸引手段を小型・軽量にでき、つまり小型・軽量である酸素富化装置を実現するものである。
【0035】
なお簡易に製造が可能な羽根車53が平板形状である分子ポンプでも近い効果は得られる。
【0036】
(実施例4)
図5は、本発明の第4の実施例における酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0037】
図5において、本実施例の吸引手段は、スクール形のドライ真空ポンプで、旋回スクロール61、固定スクール62、吐出し弁63から構成されており、旋回スクロール61が偏心回転して吸引力を発生させる(矢印E・I)。運転音が低く、防振・防音構成を大きく設ける必要がない。この結果、吸引手段を小型・軽量にでき、つまり小型・軽量である酸素富化装置を実現するものである。
【0038】
(実施例5)
図6は、本発明の第5の実施例における酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0039】
図6において、本実施例の吸引手段は、ヘリカル溝形のドライ真空ポンプで、溝を切ったロータ71内にモータ51を内蔵している。酸素排気口29から吸気された酸素富化空気はロータ71、整流部55を通過し連続的に大気圧での酸素濃度以上の空気を排出できる(矢印E・J)。この結果、吸引手段を小型にでき、つまり小型である酸素富化装置を実現するものである。
【0040】
(実施例6)
図7は、本発明の第6の実施例における酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0041】
図7において、本実施例の吸引手段は、超音波振動子81で区切られた第1、第2の減圧室82、83と、2箇所の切換え弁84とがあり、超音波振動子81の動作と連動して切換え弁84が流路の切換えを行い、吸引力を発生させる(第1の減圧室使用時:矢印E・K・M・O、第2の減圧室使用時:矢印E・L・N・O)。運転音が無く、防振、防音構成を設ける必要がない。この結果、吸引手段を小型、軽量にでき、つまり小型、軽量である酸素富化装置を実現するものである。
【0042】
(実施例7)
図8は、本発明の第7の実施例における酸素富化装置の吸引手段の構成を表す断面図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0043】
図8において、本実施例の吸引手段は、ピストン形のドライ真空ポンプで、上下可動するピストン91の内壁にN・S極の磁石92を交互に埋設してあり、ケーシング93には電磁石94を配しており、リニアモータとして構成している(矢印E・P・Q・R)。さらに運転音が極めて低く、防振、防音構成を大きく設ける必要がない。この結果、吸引手段を小型、軽量にでき、つまり小型、軽量である酸素富化装置を実現するものである。
【0044】
(実施例8)
図9(a)は、本発明の第8の実施例における酸素富化装置の吸引手段運転時の状態を示す構成図、図9(b)は、同、吸引手段運転停止時の状態を示す構成図である。なお吸引手段30以外の構成は実施例1と同様であるので、同一部分には同一符号を付与して、その詳細な説明を省略する。
【0045】
図9(a)、図9(b)において、酸素富化膜ユニット26と吸引手段30の吸気口31との間を繋ぐ配管と、吸引手段30の排気口34に接続された連通管35との間には管路切換え部99を設けてあり、通常運転時には酸素富化膜ユニット26→吸引手段30の吸気口31→吸引手段30の排気口34→連通管35という順に空気が流れる(矢印S・T・U・V)。この状態で運転が停止すると酸素富化膜ユニット26と吸引手段30との間、さらに吸引手段30の内部に高濃度酸素や湿気が滞留し、吸引手段の酸化、錆化による老朽化が生じる可能性がある。そこで運転停止時に管路切換え部99を切換えることで、連通管35→吸引手段30の吸気口31→吸引手段30の排気口34→、酸素富化膜ユニット26と空気を流し(矢印V・T・U・S)、高濃度酸素や湿気を排出することができ、吸引手段の酸化、錆化による老朽化を防ぐことができる。
【0046】
【発明の効果】
以上のように、請求項1から10に記載の本発明によれば、圧力と風量の能力に対して吸引手段を小型化でき、この小型の吸引手段を用いることで酸素富化装置も小型化できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施例における酸素富化装置の全体構成図
【図2】同、酸素富化装置の吸引手段の構成を表す断面図
【図3】本発明の第2の実施例における酸素富化装置の吸引手段の構成を表す断面図
【図4】本発明の第3の実施例における酸素富化装置の吸引手段の構成を表す断面図
【図5】本発明の第4の実施例における酸素富化装置の吸引手段の構成を表す断面図
【図6】本発明の第5の実施例における酸素富化装置の吸引手段の構成を表す一部欠載断面図
【図7】本発明の第6の実施例における酸素富化装置の吸引手段の構成を表す断面図
【図8】本発明の第7の実施例における酸素富化装置の吸引手段の構成を表す断面図
【図9】(a)本発明の第8の実施例における酸素富化装置の吸引手段運転時の状態を示す構成図
(b)同、酸素富化装置の吸引手段運転停止時の状態を示す構成図
【図10】従来の酸素富化装置の全体構成図
【符号の説明】
21 本体
26 酸素富化膜ユニット
30 送風機(吸引手段)
81 超音波振動子
91 ピストン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen enricher that concentrates oxygen in the air, and more particularly to a membrane-type oxygen enricher that selectively permeates oxygen.
[0002]
[Prior art]
Conventionally, this type of oxygen enrichment apparatus uses a rotary suction pump such as a roots type as a suction means (see, for example, Patent Document 1).
[0003]
FIG. 10 shows a conventional oxygen enrichment apparatus described in Patent Document 1. In FIG. 10, 1 is a blower for suction, 2 is an oxygen-enriched membrane unit, 3 is a suction pump (suction means), 4 is a rotor, 5 is a casing, and a is a flow of air.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-191018
[Problems to be solved by the invention]
However, in the conventional configuration, since a rotary type vacuum pump is used, the vacuum pump as a suction means has a long life and is relatively easy to maintain, but on the other hand, it has an outside size with respect to pressure and air volume capability. Is loud and driving noise is loud. Further, in order to reduce the driving sound by applying a soundproofing structure such as a soundproof wall or a sound absorbing material, the outer size is further increased. Furthermore, a cooling structure is necessary so that the rotors and casings do not come into contact with each other due to thermal expansion of the rotor, and the outer dimensions may be increased. In addition, the rotor requires high dimensional accuracy, and it is difficult to manufacture a small rotor. Due to these factors, it has been difficult to reduce the size of the suction pump, that is, it has been difficult to reduce the size of the oxygen enrichment device incorporating the suction pump.
[0006]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a small oxygen-enriching device by using a blower as the suction means, thereby reducing the size of the suction means.
[0007]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, an oxygen enrichment apparatus according to the present invention includes an oxygen enrichment membrane unit having a faster oxygen permeation rate than nitrogen in the air, and a downstream side of the oxygen enrichment membrane unit. A suction means for applying a suction pressure to the oxygen-enriched membrane unit; a communication pipe connected to an exhaust port of the suction means; and an exhaust of the main body for discharging oxygen-enriched air that has passed through the communication pipe to the outside of the main body The main body comprises a port, a pipe connecting the oxygen enrichment unit and the intake port of the suction means, and a pipe switching unit provided to connect the communication pipe , The pipe switching unit flows air in the order of the oxygen-enriched membrane unit, the suction port of the suction unit, the exhaust port of the suction unit, and the communication pipe during normal operation, and the communication pipe and the suction unit when operation is stopped. Suction port, exhaust port of the suction means, In order that Mototomi film unit is characterized in that the flow of air. This ensures that can reduce the size of the suction means against the pressure and air volume capacity, oxygen enrichment device by using the suction means of the small also those which can be miniaturized. In addition, when the operation is stopped, the high-concentration oxygen and high-humidity air remaining between the oxygen-enriched membrane unit and the suction means and inside the suction means are exhausted, and the suction means has deteriorated due to oxidation and rusting. Can be prevented.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 is provided with an oxygen-enriched membrane unit that has a higher oxygen permeation rate than nitrogen in the air, and a downstream side of the oxygen-enriched membrane unit, and is sucked into the oxygen-enriched membrane unit. A suction means for applying pressure, a communication pipe connected to an exhaust port of the suction means, an exhaust port of the main body for discharging oxygen-enriched air that has passed through the communication pipe to the outside of the main body, the oxygen enrichment unit, and the A pipe connecting between the suction port of the suction means and a pipe switching unit provided so as to connect between the communication pipe and the pipe are provided in the main body, and the pipe switching unit is provided during normal operation. Air is flowed in the order of the oxygen-enriched membrane unit, the suction port of the suction unit, the exhaust port of the suction unit, and the communication pipe. When the operation is stopped, the communication pipe, the suction port of the suction unit, and the exhaust port of the suction unit And the oxygen-enriched membrane unit Flowing a is obtained by the oxygen-enriched apparatus according to claim. As a result, the suction means can be reduced in size with respect to the ability of pressure and air volume, and the oxygen enrichment apparatus can also be reduced in size by using this small suction means. In addition, when the operation is stopped, the high-concentration oxygen and high-humidity air remaining between the oxygen-enriched membrane unit and the suction means and inside the suction means are exhausted, and the suction means has deteriorated due to oxidation and rusting. Can be prevented.
[0009]
The invention described in claim 2 is particularly an oxygen-enriched membrane having a high pressure loss and a high oxygen-enriching capability because the suction means according to claim 1 is a centrifugal blower , so that the suction pressure can be easily increased. The unit can be used and high concentration oxygen can be discharged.
[0010]
In the invention described in claim 3, in particular, since the suction means described in claim 1 is an axial-flow blower , a large amount of oxygen having a slightly higher concentration than that in the air can be discharged.
[0011]
The invention described in claim 4 particularly has a configuration in which the suction means described in claim 1 is a molecular pump. As a result, the suction means can be reduced in size and weight with respect to the ability of pressure and air volume, that is, a small and light oxygen enrichment apparatus can be realized.
[0012]
The invention described in claim 5 is particularly configured such that the suction means described in claim 1 is a turbo-type dry vacuum pump. As a result, the suction means can be reduced in size and weight with respect to the ability of pressure and air volume, that is, a small and light oxygen enrichment apparatus can be realized.
[0013]
The invention described in claim 6 has a configuration in which the suction means described in claim 1 is a scroll-type dry vacuum pump. As a result, the suction means can be reduced in size and weight with respect to the ability of pressure and air volume, that is, a small and light oxygen enrichment apparatus can be realized.
[0014]
The invention described in claim 7 is particularly configured such that the suction means according to claim 1 is a helical groove type dry vacuum pump. As a result, the suction means can be reduced in size and weight with respect to the ability of pressure and air volume, that is, a small and light oxygen enrichment apparatus can be realized.
[0016]
According to an eighth aspect of the present invention, in particular, the suction means according to the first aspect is a piston-type dry vacuum pump, the piston of the dry vacuum pump is integrated with a linear motor, and the piston is reciprocated to perform a suction pressure. It is set as the structure which generate | occur | produces. This can sound operation in small size and small I吸 pull stage, it is not necessary to add the soundproofing structure, is intended to reduce the size of the oxygen enrichment device.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is an overall configuration diagram of an oxygen enrichment apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the configuration of suction means of the oxygen enrichment apparatus.
[0020]
In FIGS. 1 and 2, reference numeral 21 denotes a main body (hereinafter simply referred to as a main body) of the oxygen enrichment apparatus, and 22 an intake port provided on the upper side of the side surface of the main body 21, and an intake filter 23 is provided in the intake port 22. Further, an axial-flow intake blower 24 communicates with the inside of the main body 21. Reference numeral 25 denotes an exhaust guide provided on the exhaust port side of the intake blower 24, and an oxygen-enriched membrane unit 26 is provided on the downstream side of the air guide. The oxygen-enriched membrane unit 26 is composed of a plurality of oxygen-enriched membranes, and has a plurality of intake slits 27 for flowing air to each oxygen-enriched membrane and an exhaust slit 28 for exhausting nitrogen-enriched air. An oxygen exhaust port 29 for discharging the enriched air is provided.
[0021]
A centrifugal blower 30 is a suction means, and a trumpet-shaped guide tube 32 is provided between the intake port 31 and the oxygen exhaust port 29 of the blower 30. The blower 30 is located below the oxygen-enriched membrane unit 26, with the intake port 31 facing upward, and below it is provided with a damper 33 such as urethane that serves both as vibration and sound insulation. An exhaust port 34 is provided on the side of the blower 30, and a communication pipe 35 is further connected to the moisture condensing unit 36, an impurity removing unit 37 that physically or electrically removes impurities other than air, and an electromagnetic valve. And an exhaust port 39 for exhausting oxygen-enriched air is provided on the side opposite to the intake port 22.
[0022]
Reference numeral 40 denotes a guide pipe through which air slightly enriched in nitrogen is exhausted. The guide pipe 40 contains a part of or all of the blower 30 and the control circuit 41, and the exhaust pipe 42 is connected to the exhaust pipe 42. Connected. At this time, only the radiating fins connected to the control circuit 41 may protrude into the guide tube 40. Reference numeral 43 denotes an exhaust port, in which an exhaust blower 42 is housed, and an exhaust filter 44 is provided at the outermost part. 45 is a downward deflecting guide provided on the exhaust port, are provided one on top of the exhaust port 43, may be provided plurality in the exhaust port 43.
[0023]
In addition, the intake filter and the exhaust filter may be arranged in multiple layers in order to capture various substances such as coarse dust, fine dust, and odor. Further, the intake blower and the exhaust blower may be of a centrifugal type.
[0024]
In addition to the inverter circuit of the blower 30, the control circuit 41 controls the operation of the intake blower, the exhaust blower, and the exhaust control valve 38.
[0025]
Here, details of the blower 30 as suction means will be described. The blower 30 is a centrifugal type, and an impeller 53 is fixed to a rotating shaft 52 in the motor 51. On the outer periphery of the impeller 53, there is a stationary blade 54 fixed to the motor 51, and a rectifying unit 55 is provided below the stationary blade 54 and on the side of the motor 51. An exhaust port 34 is disposed on the side surface 55. The bearing 56 uses a seal-type bearing, but an air bearing or a magnetic bearing is desirable.
[0026]
The blower indicates a pressure of 0.1 MPa or less, and in this embodiment, a blower having a pressure of 0.05 MPa or less is used.
[0027]
Hereinafter, the operation of this embodiment will be described. In response to an instruction from the control circuit 41, the intake blower 24 and the exhaust blower 42 start operation. As a result, air is sucked from the air inlet 22. At this time, dust is removed by the intake filter 23. The air that has passed through the intake blower 24 flows into the intake slit 27 of the oxygen enrichment unit 26 while being spread uniformly by the blower guide 25 (arrow A). Further, the air that has passed through the oxygen enrichment unit 26 passes through the guide tube 40 from the exhaust slit 28, is drawn into the exhaust fan 42, dust is removed again by the exhaust filter 44, and the air is discharged from the exhaust port 43 to the outside of the main body 21. Discharged. At this time, since the deflection guide 45 faces downward, the exhaust also flows downward (arrow B).
[0028]
In this state, the blower 30 as the suction means is operated. That is, the rotating shaft 52 of the motor 51 rotates according to an instruction from the control circuit 41 including the inverter circuit, and at the same time, the impeller 53 fixed to the rotating shaft 52 also rotates to generate a suction force on the intake port 31 side of the blower 30. To do. Since the intake port 31 of the blower 30 is connected to the oxygen exhaust port 29 of the oxygen enrichment unit 26 by the guide tube 32, oxygen-enriched air having a concentration higher than that under atmospheric pressure continues from the oxygen exhaust port 29 to the blower 30. (Arrow E). The oxygen-enriched air that has passed through the impeller 53 passes through the stationary blade 54, is uniformly rectified by the rectifying unit 55, and is discharged from the exhaust port 34 to the outside of the blower 30 (arrows C and F). Thereafter, the water passing through the connecting pipe 35 is removed by the water aggregating part 36 from the atmospheric pressure, and the impurities generated in the blower and the pipe are also removed by the impurity removing part 37. Finally, the oxygen-enriched air that has passed through the exhaust adjustment valve 38 is discharged from the exhaust port 39 to the outside of the main body (arrow D).
[0029]
At this time, air that is slightly enriched in nitrogen passes through the guide tube 40, and cools the control circuit 41 and the blower 30, particularly the motor 51.
[0030]
By using the oxygen enrichment apparatus of this embodiment in this way, the centrifugal type (turbo type) dry vacuum pump is generally one-fifth in volume and mass compared to the rotary type, particularly the tool type. Since it is 1/8, a centrifugal blower that continuously discharges oxygen concentration at atmospheric pressure or higher can be expected to be smaller and lighter. As a result, the suction means can be reduced in size, that is, a small oxygen enrichment device can be realized.
[0031]
(Example 2)
FIG. 3 is a cross-sectional view showing the configuration of the suction means of the oxygen enrichment apparatus according to the second embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0032]
In FIG. 3, the suction means of the present embodiment is an axial flow type blower, and a set of impellers 53 and stationary blades 54 are connected in multiple stages, and oxygen-enriched air sucked from the oxygen exhaust port 29 is impeller. 53, the stationary blade 54, and the rectifying unit 55 can be continuously exhausted (air arrows E and G). As a result, the suction means can be reduced in size, that is, a small oxygen enrichment device can be realized.
[0033]
(Example 3)
FIG. 4 is a cross-sectional view showing the configuration of the suction means of the oxygen enrichment apparatus according to the third embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0034]
In FIG. 4, the suction means of the present embodiment is a turbo molecular pump, and a set of impellers 53 and stationary blades 54 is connected in multiple stages, and the oxygen-enriched air sucked from the oxygen exhaust port 29 is impeller 53, Air that exceeds the oxygen concentration at atmospheric pressure can be continuously discharged through the stationary blade 54 and the rectifying unit 55 (arrows E and H). As a result, the suction means can be reduced in size and weight, that is, an oxygen enrichment apparatus that is small and lightweight can be realized.
[0035]
A similar effect can be obtained even with a molecular pump in which the impeller 53 that can be easily manufactured has a flat plate shape.
[0036]
(Example 4)
FIG. 5 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus in the fourth embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0037]
In FIG. 5, the suction means of this embodiment is a school-type dry vacuum pump, which is composed of a revolving scroll 61, a fixed school 62, and a discharge valve 63. The revolving scroll 61 rotates eccentrically and generates a suction force. (Arrow E · I). Low operating noise and no need for large vibration and soundproofing configurations. As a result, the suction means can be reduced in size and weight, that is, an oxygen enrichment apparatus that is small and lightweight can be realized.
[0038]
(Example 5)
FIG. 6 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus in the fifth embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0039]
In FIG. 6, the suction means of the present embodiment is a helical groove type dry vacuum pump, and a motor 51 is built in a rotor 71 having a groove. The oxygen-enriched air sucked from the oxygen exhaust port 29 passes through the rotor 71 and the rectifying unit 55 and can continuously discharge air having an oxygen concentration higher than the atmospheric pressure (arrows E and J). As a result, the suction means can be reduced in size, that is, a small oxygen enrichment device can be realized.
[0040]
(Example 6)
FIG. 7 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus in the sixth embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0041]
In FIG. 7, the suction means of the present embodiment includes first and second decompression chambers 82 and 83 separated by an ultrasonic vibrator 81 and two switching valves 84. In conjunction with the operation, the switching valve 84 switches the flow path to generate a suction force (when using the first decompression chamber: arrows E, K, M, O, when using the second decompression chamber: arrow E L, N, O). There is no driving sound, and there is no need to provide a vibration and sound insulation structure. As a result, the suction means can be reduced in size and weight, that is, an oxygen enrichment apparatus that is small and lightweight can be realized.
[0042]
(Example 7)
FIG. 8 is a cross-sectional view showing the configuration of the suction means of the oxygen enrichment apparatus according to the seventh embodiment of the present invention. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0043]
In FIG. 8, the suction means of this embodiment is a piston-type dry vacuum pump, in which N and S pole magnets 92 are alternately embedded in the inner wall of a vertically movable piston 91, and an electromagnet 94 is provided in a casing 93. It is arranged as a linear motor (arrows E, P, Q, R). Furthermore, the driving noise is extremely low, and it is not necessary to provide a large vibration and soundproofing structure. As a result, the suction means can be reduced in size and weight, that is, an oxygen enrichment apparatus that is small and lightweight can be realized.
[0044]
(Example 8)
FIG. 9A is a block diagram showing the state of the oxygen enrichment apparatus according to the eighth embodiment of the present invention when the suction means is operating, and FIG. 9B shows the state when the suction means is stopped. It is a block diagram. Since the configuration other than the suction unit 30 is the same as that of the first embodiment, the same reference numerals are given to the same portions, and detailed description thereof is omitted.
[0045]
9 (a) and 9 (b), a pipe connecting the oxygen-enriched membrane unit 26 and the suction port 31 of the suction means 30, and a communication pipe 35 connected to the exhaust port 34 of the suction means 30; In the normal operation, air flows in the order of the oxygen-enriched membrane unit 26 → the intake port 31 of the suction unit 30 → the exhaust port 34 of the suction unit 30 → the communication pipe 35 (arrows). S, T, U, V). If the operation is stopped in this state, high-concentration oxygen or moisture may remain between the oxygen-enriched membrane unit 26 and the suction unit 30 and further inside the suction unit 30, which may cause aging due to oxidation or rusting of the suction unit. There is sex. Therefore, by switching the pipe switching unit 99 when the operation is stopped, the communication pipe 35 → the intake port 31 of the suction unit 30 → the exhaust port 34 of the suction unit 30 → flows the oxygen-enriched membrane unit 26 and the air (arrows V · T).・ U · S), high-concentration oxygen and moisture can be discharged, and it is possible to prevent aging due to oxidation and rusting of the suction means.
[0046]
【The invention's effect】
As described above, according to the present invention described in claims 1 to 10, the suction means can be reduced in size with respect to the ability of pressure and air volume, and the oxygen enrichment apparatus can also be reduced in size by using this small suction means. It can be done.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an oxygen enrichment apparatus according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a configuration of suction means of the oxygen enrichment apparatus. FIG. 4 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus in the embodiment. FIG. 4 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus in the third embodiment of the present invention. FIG. 6 is a partially cutaway sectional view showing the structure of the suction means of the oxygen enrichment apparatus according to the fifth embodiment of the present invention. 7 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus according to the sixth embodiment of the present invention. FIG. 8 is a sectional view showing the structure of the suction means of the oxygen enrichment apparatus according to the seventh embodiment of the present invention. FIG. 9A is a configuration diagram showing a state during operation of a suction means of an oxygen enrichment apparatus according to an eighth embodiment of the present invention ( ) Same, EXPLANATION OF REFERENCE NUMERALS overall configuration diagram of an oxygen-enriched diagram showing the suction means operating at the time of stopping state of the apparatus [10] Conventional oxygen enrichment device
21 Main body 26 Oxygen-enriched membrane unit 30 Blower (suction means)
81 Ultrasonic vibrator 91 Piston

Claims (8)

空気中の窒素に比べて酸素の透過速度が早い酸素富化膜ユニットと、前記酸素富化膜ユニットの下流側に配され、前記酸素富化膜ユニットに吸引圧力を与える吸引手段と、前記吸引手段の排気口に接続された連通管と、前記連通管を通過した酸素富化空気を本体外部へ排出する本体の排気口と、前記酸素富化ユニットと前記吸引手段の吸気口との間を繋ぐ配管と、前記連通管との間を連結するように設けられた管路切換え部とを前記本体内に備え、前記管路切換え部は、通常運転時には前記酸素富化膜ユニット、前記吸引手段の吸気口、前記吸引手段の排気口、前記連通管という順に空気を流し、運転停止時には前記連通管、前記吸引手段の吸引口、前記吸引手段の排気口、前記酸素富化膜ユニットという順に空気を流すことを特徴とする酸素富化装置。An oxygen-enriched membrane unit that has a faster oxygen permeation rate than nitrogen in the air; a suction means that is disposed downstream of the oxygen-enriched membrane unit and applies suction pressure to the oxygen-enriched membrane unit; and the suction a communicating pipe connected to the exhaust port means, and an exhaust port of the main body for discharging oxygen enriched air passing through the communicating pipe to the outside of the main body, between the inlet of said suction means and said oxygen-enriched units The main body includes a connecting pipe and a pipe switching unit provided so as to connect between the communication pipe, and the pipe switching unit includes the oxygen-enriched membrane unit and the suction unit during normal operation. inlet, outlet of the sucking unit, flowing air in order that the communicating pipe, the communicating pipe during shutdown, the suction port of the suction means, the outlet of said suction means, in order that the oxygen enrichment membrane unit Acid characterized by flowing air Enrichment equipment. 吸引手段が遠心式の送風機である請求項1記載の酸素富化装置。The oxygen enrichment apparatus according to claim 1 , wherein the suction means is a centrifugal blower . 吸引手段が軸流式の送風機である請求項1記載の酸素富化装置。 2. The oxygen enrichment apparatus according to claim 1 , wherein the suction means is an axial flow blower . 引手段が分子ポンプである請求項1記載の酸素富化装置。Oxygen enrichment apparatus according to claim 1, wherein the intake pull stage is molecular pump. 引手段がターボ形のドライ真空ポンプである請求項1記載の酸素富化装置。Oxygen enrichment apparatus according to claim 1, wherein the intake pull stage is a dry vacuum pump turbo-type. 引手段がスクロール形のドライ真空ポンプである請求項1記載の酸素富化装置。Oxygen enrichment apparatus according to claim 1, wherein the intake pull stage is a dry vacuum pump of the scroll type. 引手段がヘリカル溝形のドライ真空ポンプである請求項1記載の酸素富化装置。Oxygen enrichment apparatus according to claim 1, wherein the intake pull stage is a dry vacuum pump of the helical groove type. 引手段がピストン形のドライ真空ポンプであり、前記ドライ真空ポンプのピストンをリニアモータと一体化し、前記ピストンを往復運動させて吸引圧力を発生させる請求項1記載の酸素富化装置。 Intake pull stage is a dry vacuum pump of the piston type, the piston of the dry vacuum pump is integrated with the linear motor, oxygen enrichment apparatus according to claim 1, wherein for generating a suction pressure the piston is reciprocated.
JP2003099985A 2003-04-03 2003-04-03 Oxygen enrichment equipment Expired - Fee Related JP4352743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099985A JP4352743B2 (en) 2003-04-03 2003-04-03 Oxygen enrichment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099985A JP4352743B2 (en) 2003-04-03 2003-04-03 Oxygen enrichment equipment

Publications (2)

Publication Number Publication Date
JP2004305827A JP2004305827A (en) 2004-11-04
JP4352743B2 true JP4352743B2 (en) 2009-10-28

Family

ID=33464244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099985A Expired - Fee Related JP4352743B2 (en) 2003-04-03 2003-04-03 Oxygen enrichment equipment

Country Status (1)

Country Link
JP (1) JP4352743B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104530B2 (en) * 2008-05-08 2012-12-19 日立工機株式会社 Centrifuge
CN106348250B (en) * 2016-08-27 2018-04-17 成都联帮医疗科技股份有限公司 A kind of double acting lobe pump oxygen air compressor machine and air compress denitrogen method
CN108217602B (en) * 2018-03-14 2024-04-16 湖南朴谷医疗器械有限责任公司 Low-noise oxygenerator
JP7247824B2 (en) * 2019-09-10 2023-03-29 株式会社島津製作所 Exhaust system and vacuum pump

Also Published As

Publication number Publication date
JP2004305827A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5637919B2 (en) Compound vacuum pump
US3973865A (en) Side-channel ring compressor
JP5250027B2 (en) Mass spectrometer placement
JP2011226368A (en) Exhaust unit and dry vacuum pump device
JP4352743B2 (en) Oxygen enrichment equipment
KR100901386B1 (en) Turbo blower
JPS62113887A (en) Vacuum pump
JPH0783189A (en) Turbo vacuum pump
JP4805151B2 (en) Differential pump system
EP0863313A1 (en) Two stage scroll compressor
JP2000283085A (en) Vacuum pump with inverted motor
JP2002310092A (en) Vacuum pump
US6220824B1 (en) Self-propelled vacuum pump
EP1213482A1 (en) Vacuum pump
JPH04136497A (en) Turbo vacuum pump
JP2001090690A (en) Vacuum pump
JPS60247075A (en) Vacuum pump
JPS60252197A (en) Vacuum pump
JP2757922B2 (en) Centrifugal compressor
US20080253903A1 (en) Vacuum pumps with auxiliary pumping stages
WO1996001373A1 (en) Molecular pump with multiple air suction grooves
JP3045418B2 (en) Turbo vacuum pump
KR100273375B1 (en) Flow resistance reduction structure for turbo compressor
JPH02136595A (en) Vacuum pump
JP2003139079A (en) Root type blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees