JPS60252197A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPS60252197A
JPS60252197A JP10914484A JP10914484A JPS60252197A JP S60252197 A JPS60252197 A JP S60252197A JP 10914484 A JP10914484 A JP 10914484A JP 10914484 A JP10914484 A JP 10914484A JP S60252197 A JPS60252197 A JP S60252197A
Authority
JP
Japan
Prior art keywords
pump
stage
ejector
gas
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10914484A
Other languages
Japanese (ja)
Other versions
JP2617290B2 (en
Inventor
Yoshitsugu Tsutsumi
芳紹 堤
Minoru Taniyama
実 谷山
Makoto Terajima
寺島 信
Takashi Nagaoka
隆司 長岡
Koji Nakagawa
中川 幸二
Masahiro Mase
正弘 真瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10914484A priority Critical patent/JP2617290B2/en
Publication of JPS60252197A publication Critical patent/JPS60252197A/en
Application granted granted Critical
Publication of JP2617290B2 publication Critical patent/JP2617290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To reduce the power required for a vacuum pump by employing a volute compression pump achievable of the compression ratio with relatively small diameter as the pump stage at the atmospheric pressure side while arranging an ejector of low heat production at the pre-stage thereby reducing the number of stages of a centrifugal pump and suppressing heat production. CONSTITUTION:Upon starting of drive motor 10 to start respective pump thus to inject the driving gas through a nozzle 51 and to operate an ejector 50 having relatively high compression ratio and low heat production, the gas in a chamber to be evacuated will enter through a suction port 2 then compressed by means of a siegbahn pump 20 and fed to a centrifugal pump 30 where the number of stage is reduced through the ejector 50. The gas is further compressed and fed through an intermediate delivery port 4 to the negative pressure generating section 51 of the ejector 50 where the gas compressed through the prestage pump is sucked and fed to the final stage volute compression pump 40 having shorter dimater of rotor than the pre-stage pump. With such arrangement, the number of stage of the centrifugal compression pump 30 is reduced to suppress heat production in this pump stage resulting in reduction of power required for the vacuum pump.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、排気口を大気圧とする真空ポンプ、例えば
半導体製造装置、電子顕微鏡等における密閉室から空気
を排除し、清浄な真空を作シ出すのに好適な真空ポンプ
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] This invention is a vacuum pump whose exhaust port is at atmospheric pressure, for example, a system for creating a clean vacuum by excluding air from a closed chamber in semiconductor manufacturing equipment, electron microscopes, etc. This invention relates to a vacuum pump suitable for discharging air.

〔発明の背景〕[Background of the invention]

この種の真空ポンプの一例として、特開昭51−381
13号公報に開示されているものがある。
As an example of this type of vacuum pump, JP-A-51-381
There is one disclosed in Publication No. 13.

この真空ポンプは、初段に軸流ターボ分子ポンプ全配置
し、続いて付加分子ポンプ、遠心形圧縮ポンプそして渦
流形圧縮ボ/プを吸気口から排気口に至る間のハウジン
グ内に順次連設された構造になっている。
This vacuum pump has an axial flow turbo-molecular pump all arranged in the first stage, followed by an additional molecular pump, a centrifugal compression pump, and a vortex compression pump, which are successively installed in the housing from the intake port to the exhaust port. It has a similar structure.

上記真空ポンプは、大気圧に近い排気口側に配置された
渦流形圧縮ポンプ段において最つとも大きい円板摩擦損
失が生ずるが、渦流形圧縮ポンプの前段にある遠心形圧
縮ポンプでも同様に発生する。この損失は、前記両ポン
プの羽根車の半径の5乗に比例すると共に、気体の密度
に比例する。
In the vacuum pump mentioned above, the largest disk friction loss occurs in the vortex compression pump stage located on the exhaust port side near atmospheric pressure, but the same occurs in the centrifugal compression pump located before the vortex compression pump. do. This loss is proportional to the fifth power of the radius of the impellers of both pumps, and is also proportional to the density of the gas.

そこで、本出願人は、先に渦流形圧縮ポンプの羽根車の
直径を/」1さくし、該部分における円板摩擦損失の低
減を図った真空ポンプを提案した。
Therefore, the present applicant first proposed a vacuum pump in which the diameter of the impeller of a vortex-type compression pump was reduced by 1" in order to reduce the disc friction loss in this part.

(特願昭58−224157号)、この真空ポンプは渦
流形圧縮ポンプ段全外周面に多数の羽根を有する羽根車
と、この羽根車を包囲する固定円板とにより構成すると
共に、羽根車の直径を前段の遠心形圧縮ポンプの羽根車
の直径よりも小さくし、且つ羽根車と固定円板とにより
通風路を形成したものである。この真空ポンプにおいて
は、最終段ポンプで発生する円板摩擦損失全大巾に低減
することができるが、前記ポンプの前段にある遠心形圧
縮ポンプでの円板摩擦損失を低くすること、特に遠心形
圧縮ポンプの下流側に位置する羽根車における発熱を抑
えることができない。そのため、更にポンプの所要動力
を低減し、省エネ効果を高めるためには、遠心形圧縮ポ
ンプ段における円板摩擦損失を少なくする対策が望まれ
ていた。
(Japanese Patent Application No. 58-224157), this vacuum pump consists of an impeller having a large number of blades on the entire outer peripheral surface of the vortex type compression pump stage, and a fixed disk surrounding the impeller. The diameter is smaller than that of the impeller of the preceding centrifugal compression pump, and a ventilation path is formed by the impeller and the fixed disc. In this vacuum pump, the disc friction loss generated in the final stage pump can be reduced to a large extent, but it is necessary to reduce the disc friction loss in the centrifugal compression pump in the previous stage of the pump, especially the centrifugal It is not possible to suppress heat generation in the impeller located downstream of the compressor pump. Therefore, in order to further reduce the required power of the pump and increase the energy saving effect, measures have been desired to reduce the disk friction loss in the centrifugal compression pump stage.

〔発明の目的〕 この発明の目的は、吐出口圧力を大気圧付近とした真空
ポンプにおいて、ポンプ性能を損うことなく遠心形圧縮
ポンプ段の円板摩擦損失全低減することである。
[Object of the Invention] An object of the present invention is to completely reduce disk friction loss in a centrifugal compression pump stage without impairing pump performance in a vacuum pump whose discharge outlet pressure is near atmospheric pressure.

〔発明の概要〕[Summary of the invention]

本発明の真空ポンプは、吸込口と吐出口との間に中間吐
出口と中間吸込口を設け、この吸込口と中間吐出口との
間にジーグバーンポンプ及び遠心形圧縮ポンプ、中間吸
込口と排気口との間に前段ポンプのロータ直径より小さ
な直径のロータからなる渦流形圧縮ポンプを順次配置す
ると共に、中間吐出口と中間吸込口との間にエゼクタ全
般けて遠心形圧縮ポンプと渦流形圧縮ポンプと全接続し
たものである。
The vacuum pump of the present invention has an intermediate discharge port and an intermediate suction port between the suction port and the discharge port, and a Siegbahn pump, a centrifugal compression pump, and an intermediate suction port between the suction port and the intermediate discharge port. Centrifugal compression pumps and vortex-type compression pumps are sequentially arranged between the exhaust port and the ejector, each having a rotor with a diameter smaller than that of the preceding pump. It is fully connected to the compression pump.

上記構成によると、動力損失の大部分を占める大気圧側
のポンプ段全比較的小さな直径で圧縮比のとれる渦流形
圧縮ポンプとし、このポンプの前段に圧縮比が高くとれ
、しかも発熱量の小さなエゼクタ全配置することにより
、遠心形圧縮ポンプの段数を減らし、該ポンプ段におけ
る発熱を極力抑えることができ、真空ポンプの所要動力
の低減が図れる。
According to the above configuration, all the pump stages on the atmospheric pressure side, which account for most of the power loss, are vortex type compression pumps with a relatively small diameter and a good compression ratio. By arranging all the ejectors, the number of stages of the centrifugal compression pump can be reduced, heat generation in the pump stages can be suppressed as much as possible, and the power required for the vacuum pump can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、本体支持枠をなすケーシング1には、
排気すべき気体?吸込むための吸込口2と、前記気体を
放出するための排気口3が設けられ、この吸込口2と排
気口3との間に中間吐出口4および中間吸込口5が形成
されている。吸込口2とは相対向したケーシング外に駆
動用モータ10が取伺けられておジ、この駆動用モータ
10の回転軸1】は吸込口2に向けて延長されている。
In FIG. 1, the casing 1 forming the main body support frame includes:
Gas that should be exhausted? A suction port 2 for sucking in the gas and an exhaust port 3 for discharging the gas are provided, and an intermediate discharge port 4 and an intermediate suction port 5 are formed between the suction port 2 and the exhaust port 3. A drive motor 10 is mounted outside the casing opposite to the suction port 2, and the rotation shaft 1 of the drive motor 10 extends toward the suction port 2.

この回転軸に(づ゛、吸込口2に近い位置からジーグバ
ーンポンプ20、遠心形圧縮ポンプ30そして渦流形圧
縮ポンプ40の各ロータが順次取付けられている。一方
、ケーシング1には各ロータに相対してステークが固定
されている。即ち、吸込口2と中間社用〔]4との間に
おいて、回転軸1工には、吸込口2に隣接し2でジーグ
バ・−ンボンブロータ21と中間吐出口4に隣接して遠
心形FiE縮ポンプロータ31がナツト6によって固定
されており、才たケーシング1には、ら旋溝を有するジ
ーグバーンボンブステータ22と遠心形圧縮ポンプステ
ータ32が前記ポンプの各ロータと一定間隔装置いて固
定されている。このように吸込口2と中間吐出口4との
間のケーシング外内にはジーグバーンボンプ20および
遠心形圧縮ポンプ22が連設され、排気すべき気体全初
段のジーグバーンポンプ20から吸引し、続く遠心形圧
縮ポンプ30を経て中間吐出口4から吐き出すように構
成されている。そして、中間吸込口5と排気口3間には
、ロータ41を回転軸11に取着し、ステータ42を該
ロータ41に一定間隔を置いてハウジング1内に固定し
た渦流形圧縮ポンプ40が配置されている。一方、ケー
シング外には、前記中間吐出口4に吸込側および中間吸
込口5に吐出側が接続されたエゼクタ50が設けられて
いる。このエゼクタ50はノズx51が設けられた負圧
発生部52と、該負圧発生部の吐出口に連通したディフ
ューザ55とからなっている。高圧ガス供給源(図示せ
ず)から送られた高圧の駆動気体が供給口53を介して
ノズル51から負圧発生部52内に噴射され、その際発
生する負圧によって中間吐出口4を介して前段ポンプで
圧縮した気体を吸引し、駆動気体と共にディフューザ5
5に送る。ディフューザ55を用穴気体は中間吸込口5
を経て渦流形圧縮ポンプ40に送られる。
The rotors of a Siegbahn pump 20, a centrifugal compression pump 30, and a vortex compression pump 40 are sequentially attached to this rotating shaft (from a position close to the suction port 2). Stakes are fixed opposite to each other.In other words, between the suction port 2 and the intermediate valve rotor 21 and the intermediate discharge shaft 1, the rotary shaft 1 is adjacent to the suction port 2. Adjacent to the outlet 4, a centrifugal FiE compression pump rotor 31 is fixed by a nut 6, and a Siegbahn bomb stator 22 having a spiral groove and a centrifugal compression pump stator 32 are mounted on the rounded casing 1. A device is fixed at a fixed interval from each rotor.In this way, a Siegbahn pump 20 and a centrifugal compression pump 22 are connected to the outside and inside of the casing between the suction port 2 and the intermediate discharge port 4. The gas is sucked in from the Siegbahn pump 20 at the first stage, passes through the subsequent centrifugal compression pump 30, and is discharged from the intermediate discharge port 4.A rotor 41 is installed between the intermediate suction port 5 and the exhaust port 3. A vortex compression pump 40 is mounted on the rotating shaft 11 and fixed in the housing 1 with a stator 42 spaced apart from the rotor 41 at a constant distance. An ejector 50 is provided whose discharge side is connected to the suction side and the intermediate suction port 5.This ejector 50 includes a negative pressure generating section 52 provided with a nozzle x51, and a diffuser communicating with the discharge port of the negative pressure generating section. 55. High-pressure driving gas sent from a high-pressure gas supply source (not shown) is injected from the nozzle 51 into the negative pressure generating section 52 through the supply port 53, and the negative pressure generated at this time is The gas compressed by the pre-stage pump is sucked through the intermediate discharge port 4, and is sent to the diffuser 5 together with the driving gas.
Send to 5. The diffuser 55 is used for the hole gas at the intermediate suction port 5.
It is sent to the vortex compression pump 40 through the .

つぎに、上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

駆動回モータ1(l始動して各ポンプを起動し、駆動気
体全ノズル51から噴射してエゼクタ50を作動させる
と、被真空室内の気体は吸込口2よす入り、ジーグバー
ンポンプ20のら旋溝つきステータ22とロータ21と
の作用により圧縮され、次段の遠心形圧縮ポンプ30へ
と移送される。そこで、気体は遠心形圧縮ポンプのロー
タ31とステータ32とにより更に圧縮され、中間吐出
口4を経てエゼクタ50の負圧発生部51に送られる。
When the drive motor 1 (l) is started, each pump is started, and the drive gas is injected from all nozzles 51 to operate the ejector 50, the gas in the vacuum chamber enters the suction port 2 and flows through the Siegbahn pump 20. The gas is compressed by the action of the stator 22 with swirl grooves and the rotor 21, and is transferred to the next stage centrifugal compression pump 30.Then, the gas is further compressed by the rotor 31 and stator 32 of the centrifugal compression pump, and the gas is It is sent to the negative pressure generating section 51 of the ejector 50 via the discharge port 4.

ここではノズル51から噴射される駆動気体によって発
生する負圧によって前段ポンプで圧縮された気体全吸引
し、ディフューザ55を介して最終段の渦流形圧縮ポン
プ40へ送る。なお、エゼクタ50は圧縮比が比較的高
くすることができ、しかも回転部分がないので発熱量が
小さいという特性を有する。例えば、遠心形圧縮ポンプ
の各段における圧縮比は略1,5であるのに対し、エゼ
クタでは圧縮比が略5程度にすることができる。したが
って、遠心形圧縮ポンプの数段を前記エゼクタに置換可
能である。
Here, all of the gas compressed by the pre-stage pump is sucked by the negative pressure generated by the driving gas injected from the nozzle 51, and is sent to the final-stage vortex type compression pump 40 via the diffuser 55. Note that the ejector 50 has the characteristics that it can have a relatively high compression ratio, and that it generates a small amount of heat because it has no rotating parts. For example, while the compression ratio in each stage of a centrifugal compression pump is approximately 1.5, the compression ratio in the ejector can be approximately 5. Therefore, several stages of a centrifugal compression pump can be replaced by the ejector.

前記エゼクタ50から中間吸込口5を経て渦流形圧縮ポ
ンプに送られた気体は、はぼ大気圧に圧縮されて排気口
3から大気に放出される。
The gas sent from the ejector 50 to the vortex compression pump via the intermediate suction port 5 is compressed to approximately atmospheric pressure and is discharged to the atmosphere from the exhaust port 3.

このように、渦流形圧縮ポンプのロータ直径を前置のポ
ンプのロータ直径よりも/j%さくし、該部分における
円板摩擦による発熱を極力抑えると同時に、遠心形圧縮
ポンプ段における圧縮の一部全エゼクタに分担させるこ
とによジ、遠心形圧縮ポングの段数全滅らし、該ポンプ
における円板摩擦を少なくできる。
In this way, the rotor diameter of the vortex compression pump is made smaller by /j% than the rotor diameter of the preceding pump, and at the same time, heat generation due to disc friction in this area is suppressed as much as possible, and at the same time, part of the compression in the centrifugal compression pump stage is By having all the ejectors share the load, the number of stages in the centrifugal compression pump can be completely eliminated, and the disc friction in the pump can be reduced.

前記実施例では、エゼクタ50の駆動気体は外部よシ供
給しているが、第2図に示す如く、回転軸重1に別個の
渦流形ポンプロータ61’fil−取着し、このロータ
に一定間隔を置いて設けられたステータ62とによジ構
成される渦流形圧縮ポンプ60で作シ、これを供給管6
3を介してエゼクタ50の供給口53から供給するよう
にしても良い。
In the embodiment described above, the driving gas for the ejector 50 is supplied from the outside, but as shown in FIG. It is operated by a vortex compression pump 60 configured with a stator 62 provided at intervals, and connected to a supply pipe 6.
Alternatively, the liquid may be supplied from the supply port 53 of the ejector 50 via the ejector 3 .

64は吸入口、65は排気口。64 is an intake port, and 65 is an exhaust port.

〔発明の効果〕〔Effect of the invention〕

上述のとおり、本発明によれば、ポンプ性能を損うこと
なく、円板摩擦損失を低減することができ、特に所要動
力は先願のものと比較して更に低減することができる。
As described above, according to the present invention, disc friction loss can be reduced without impairing pump performance, and in particular, the required power can be further reduced compared to that of the prior application.

【図面の簡単な説明】 第1図は本発明の真空ポンプの一実施例を示す縦断面図
、第2図は他の実施例の縦断面図である。 20・・ジーグバーンポンプ、3o・・・遠心膨圧縮機
、40・・・渦流膨圧縮機、5o・・・エゼクタ。 代理人 鵜 沼 辰 之 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing one embodiment of the vacuum pump of the present invention, and FIG. 2 is a longitudinal sectional view of another embodiment. 20...Siegbahn pump, 3o...centrifugal expansion compressor, 40...vortex expansion compressor, 5o...ejector. Agent Tatsuyuki Unuma Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 吸込口と排気口が設けられたハウジング内に、
前記吸込口側からジーグバーンポンプ、遠心形圧縮ポン
プおよび渦流形圧縮ポンプを順次配置した真空ポンプに
おいて、前記ハウジングに中間吐出口と中間吸込口を設
け、この中間吐出口と中間吸込口にエゼクタを接続し、
このエゼクタ全弁して前記遠心形圧縮ポンプと渦流形圧
縮ポンプを接続すると共に、前記渦流形圧縮ポンプのロ
ータ直径k 7M1段のポンプのロータ直径より小さく
したことを特徴とする真空ポンプ。
(1) Inside the housing, which has an intake port and an exhaust port,
In the vacuum pump in which a Siegbahn pump, a centrifugal compression pump, and a vortex compression pump are sequentially arranged from the suction port side, the housing is provided with an intermediate discharge port and an intermediate suction port, and an ejector is provided at the intermediate discharge port and the intermediate suction port. connection,
A vacuum pump characterized in that the ejector is fully valved to connect the centrifugal compression pump and the whirlpool compression pump, and the rotor diameter k of the whirlpool compression pump is smaller than the rotor diameter of a 7M 1-stage pump.
(2) 前記ハウジング内にエゼクタの駆動気体を供給
するためのポンプを備えた特許請求の範囲第1項記載の
真空ポンプ。
(2) The vacuum pump according to claim 1, further comprising a pump for supplying driving gas for the ejector into the housing.
JP10914484A 1984-05-29 1984-05-29 Vacuum pump Expired - Lifetime JP2617290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10914484A JP2617290B2 (en) 1984-05-29 1984-05-29 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10914484A JP2617290B2 (en) 1984-05-29 1984-05-29 Vacuum pump

Publications (2)

Publication Number Publication Date
JPS60252197A true JPS60252197A (en) 1985-12-12
JP2617290B2 JP2617290B2 (en) 1997-06-04

Family

ID=14502717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10914484A Expired - Lifetime JP2617290B2 (en) 1984-05-29 1984-05-29 Vacuum pump

Country Status (1)

Country Link
JP (1) JP2617290B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393493U (en) * 1986-12-10 1988-06-16
JPS6393495U (en) * 1986-12-10 1988-06-16
JPS63147991A (en) * 1986-12-09 1988-06-20 Daikin Ind Ltd Combination vacuum pump
JPS63147989A (en) * 1986-12-09 1988-06-20 Daikin Ind Ltd Combination vacuum pump
JPH0471794U (en) * 1990-11-06 1992-06-25
JPH05141389A (en) * 1991-11-15 1993-06-08 Vacuum Prod Kk Vacuum pump
US5219269A (en) * 1988-07-13 1993-06-15 Osaka Vacuum, Ltd. Vacuum pump
JP2016114061A (en) * 2014-12-17 2016-06-23 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147991A (en) * 1986-12-09 1988-06-20 Daikin Ind Ltd Combination vacuum pump
JPS63147989A (en) * 1986-12-09 1988-06-20 Daikin Ind Ltd Combination vacuum pump
JPS6393493U (en) * 1986-12-10 1988-06-16
JPS6393495U (en) * 1986-12-10 1988-06-16
US5219269A (en) * 1988-07-13 1993-06-15 Osaka Vacuum, Ltd. Vacuum pump
JPH0471794U (en) * 1990-11-06 1992-06-25
JPH05141389A (en) * 1991-11-15 1993-06-08 Vacuum Prod Kk Vacuum pump
JP2016114061A (en) * 2014-12-17 2016-06-23 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump

Also Published As

Publication number Publication date
JP2617290B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US5238362A (en) Turbomolecular pump
JP3085531B2 (en) Motor cooling structure of turbo compressor
US4668160A (en) Vacuum pump
US5810557A (en) Fan wheel for an inline centrifugal fan
US7866937B2 (en) Method of pumping gaseous matter via a supersonic centrifugal pump
JP4584420B2 (en) Vacuum pump
JPS60252197A (en) Vacuum pump
US7086827B2 (en) Turbo molecular high-vacuum pump with a circular intake area
EP1234982B1 (en) Vacuum pump
US6524060B2 (en) Gas friction pump
JP2001090690A (en) Vacuum pump
KR100339550B1 (en) Diffuser for turbo compressor
JPH02136595A (en) Vacuum pump
US6672828B2 (en) Vacuum pump
USRE33129E (en) Vacuum pump
JPH02264196A (en) Turbine vacuum pump
KR100284431B1 (en) Noise reduction structure of turbo compressor
JPH0311193A (en) Vacuum pump
KR20000003085A (en) Gap leakage reduction structure of turbo compressor
JP3045418B2 (en) Turbo vacuum pump
KR100311387B1 (en) Diffuser for turbo compressor
KR100339545B1 (en) Turbo compressor
US20080240903A1 (en) Method of Pumping Gaseous Matter via a Supersonic Centrifugal Pump
KR20000065622A (en) Structure for preventing gas-counterflow of turbo compressor
JPS6321394A (en) Multistage type oil-free vacuum pump