JP4352604B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4352604B2
JP4352604B2 JP2000299563A JP2000299563A JP4352604B2 JP 4352604 B2 JP4352604 B2 JP 4352604B2 JP 2000299563 A JP2000299563 A JP 2000299563A JP 2000299563 A JP2000299563 A JP 2000299563A JP 4352604 B2 JP4352604 B2 JP 4352604B2
Authority
JP
Japan
Prior art keywords
liquid pump
refrigerant
air conditioner
condenser
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000299563A
Other languages
Japanese (ja)
Other versions
JP2002106986A (en
Inventor
信 斉藤
多佳志 岡崎
寿彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000299563A priority Critical patent/JP4352604B2/en
Publication of JP2002106986A publication Critical patent/JP2002106986A/en
Application granted granted Critical
Publication of JP4352604B2 publication Critical patent/JP4352604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒循環経路として、圧縮機による強制循環サイクル液ポンプによる循環サイクルの双方を備え、状況に応じてそれぞれを切換えて運転する空気調和装置に関するものである。
【0002】
【従来の技術】
図8に、冷媒搬送手段として圧縮機と液ポンプ双方を有する空気調和装置が、年間冷房用途に適用された例を示す。
これは、通常の冷房運転を行なう際には圧縮機運転を行ない、冬季や夜間など外気が室内より低温となる場合に液ポンプ運転を行なうものである。
以下、この空気調和装置の動作を図によって説明する。
【0003】
図8において、1は室外ユニット、2は室内ユニットである。
圧縮機運転時には、圧縮機3から吐出された高温高圧のガス冷媒が凝縮器4に入り、外気と熱交換して液冷媒となる。その後、液ポンプ容器21を通過して絞り装置7で減圧されて乾き度の低い二相冷媒となって蒸発器8に入る。蒸発器8で室内空気と熱交換してガス冷媒となり、開放された開閉弁9を通ってアキュムレータ23に入り、再び圧縮機3に戻る。
【0004】
液ポンプ運転時には、液ポンプ22から吐出された液冷媒は絞り装置7を通って蒸発器8に入る。液冷媒は蒸発器8で室内高温空気と熱交換してガス冷媒となり、順方向に接続された逆止弁11を通って凝縮器4へと流入する。液ポンプ運転時は開閉弁9は閉止されており、これによりアキュムレータ23、圧縮機3は液ポンプサイクルから切り離される。凝縮器4へ流入したガス冷媒は外気と熱交換して液化し再び液ポンプ22に戻る。
【0005】
液ポンプ運転時は、冷媒を昇圧する際に体積変化を伴わないため、ガス圧縮に比べて冷媒搬送動力を大きく低減でき、省エネルギーな冷房運転が可能である。また、延長配管(液管)および蒸発器入口冷媒状態が液単相となるため、圧縮機運転時よりも必要冷媒量を多く必要とする。そのため圧縮機運転時に余剰となる冷媒はアキュムレータに貯留される。
【0006】
次に、この空気調和装置の動作切換について説明する。
液ポンプ運転時の冷房能力は、外気温度と室内温度との温度差に依存する。そのため、外気が十分低く液ポンプ運転で室内冷房負荷を処理できる場合には液ポンプ運転のみで冷房を行なうが、前記温度差が小さくなってくると、液ポンプ運転だけでは室内冷房負荷を処理できなくなり、圧縮機運転と液ポンプ運転を交互に行なう。また、外気温度が所定値以上になると液ポンプ運転は行なわれず、圧縮機運転のみで冷房を行なう。
【0007】
【発明が解決しようとする課題】
従来の圧縮機サイクルと液ポンプサイクル双方を有する空気調和装置は以上のように構成されているので、圧縮機運転と液ポンプ運転の交互運転が行なわれる条件下において圧縮機運転から液ポンプ運転に切換える場合、液ポンプを起動して圧縮機とアキュムレータをサイクルから切り離す前に、アキュムレータに貯留されている余剰冷媒を液ポンプサイクル内に回収する必要があり、絞り装置7を閉止した状態で数分間圧縮機を運転してアキュムレータ内の冷媒を凝縮器に回収する冷媒回収運転が切換の度に行なわれている。
【0008】
そのため、液ポンプ運転が行われる温度範囲の中で外気温度が比較的高く液ポンプ運転時の冷房能力が小さい場合や、室温変動許容幅を小さく設定した場合などで圧縮機運転と液ポンプ運転の切換え周期が短くなると、この冷媒回収運転によるロスがトータルでみた冷房運転効率を低下させてしまうという問題点があった。
また、冷媒液ポンプとして図8で示したような浸漬型液ポンプを適用した場合には、アキュムレータの他に液ポンプを内蔵する容器が必要となるため、室外ユニットが大型になってしまうという問題点があった。
本発明は、圧縮機と液ポンプ双方の冷媒搬送手段を備えた空気調和装置において、圧縮機運転から重力または液ポンプ運転に切換える際に、冷媒回収運転をする必要の無い空気調和装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
【0010】
この発明に係る空気調和装置は、圧縮機、凝縮器、絞り装置、蒸発器が順次接続されてなる圧縮機サイクルと、液ポンプ、前記絞り装置、前記蒸発器、前記凝縮器を接続してなる液ポンプサイクルとにて動作する空気調和装置において、前記凝縮器出口と前記絞り装置の間に冷媒貯留容器を備え、前記圧縮機サイクル時と前記液ポンプサイクル時のそれぞれにおける必要冷媒量の差により生じる余剰冷媒を、前記貯留容器に貯留し、前記絞り装置の絞り開度を制御する絞り装置開度制御手段、及び前記絞り装置の絞り開度が絞られた場合に前記液ポンプの回転数を下げる液ポンプ回転数制御手段を備え、前記絞り装置開度制御手段、前記液ポンプ回転数制御装置の双方で前記液ポンプサイクルの冷媒流量を調整するものである。
【0011】
また、前記冷媒貯留容器が、浸漬型液ポンプを内蔵していてもよい。
【0012】
また、前記凝縮器出口と前記絞り装置の間に液ポンプを備えていてもよい。
【0013】
また、液ポンプサイクルの必要冷媒量より多く冷媒が封入されていてもよい。
【0014】
また、前記浸漬型ポンプは、下から渦流型ポンプ部、直流モーター部、電極部が直列に組み合わされて構成されていてもよい。
【0015】
さらに、前記浸漬型ポンプを駆動するモーター部のブラシと整流子が黒鉛系カーボン材料であってもよい。
【0016】
また、前記絞り装置開度制御手段は、前記蒸発器出口の過熱度が所定値になるように冷媒流量を制御するものである。
【0017】
また、液ポンプサイクル時に外気温度が所定値以下となった場合に、前記凝縮器への送風量を低減させる凝縮器熱交換量制御手段を備えたものである。
【0018】

【発明の実施の形態】
発明の実施の形態1.
図1に、この発明の実施の形態1における空気調和装置のブロック図を示す。
通信基地局の機械室や電算室など、年間を通じて冷房が必要な空間の空調を行なう空気調和装置を示したものであり、1は室外ユニット、2は室内ユニット、3は圧縮機、4は凝縮器、5は冷媒貯溜容器、6は液ポンプ、7は絞り装置、8は蒸発器、9は開閉弁、10、11は逆止弁、12は液ポンプ回転数制御手段、13は凝縮器用送風機の送風量調整装置、14は外気温度検出装置、15は絞り装置開度制御手段である。
【0019】
次に、動作について説明する。
圧縮機運転時には開閉弁9が開放され、また、圧縮機3の吐出圧力によって逆止弁10は開放、逆止弁11は閉止される。これにより、圧縮機3、凝縮器4、冷媒貯溜容器5、絞り装置7、蒸発器8という循環路が形成される。
この循環路において、圧縮機3から吐出された高温高圧のガス冷媒は凝縮器4で外気と熱交換して高圧の液冷媒となる。この液冷媒は冷媒貯溜容器5を経由して絞り装置7で減圧され、乾き度の低い低圧の二相冷媒となって蒸発器8へ流入する。蒸発器8で室内空気と熱交換してガス冷媒となり、再び圧縮機3へ戻る。
【0020】
液ポンプ運転時には、開閉弁9は閉止される。また、逆止弁11は液ポンプ6の吐出圧力によって開放され、圧縮機3をバイパスする。これにより、液ポンプ6、絞り装置7、蒸発器8、凝縮器4、冷媒貯溜容器5という循環路が形成される。図1に示した液ポンプ6は浸漬型であり、冷媒貯溜容器5に内蔵された形で配設されている。
この循環路において、液ポンプ6から吐出された低温の液冷媒は絞り装置7を通過して蒸発器8へ流入し、高温の室内空気と熱交換してガス冷媒となる。このガス冷媒は凝縮器4へ流入し、低温の外気と熱交換して再び液冷媒となり、冷媒貯溜容器5に貯留され、液ポンプ6に戻る。
【0021】
次に、図2を参照して運転モード切換制御について説明する。
図2には、外気温度の変化に応じた圧縮機運転時の冷房能力、液ポンプ運転時の冷房能力および室内冷房負荷が表されている。T1は室内冷房負荷と液ポンプ運転時の冷房能力が一致する外気温度であり、T2は液ポンプ運転時の冷房能力が所定値以下となる外気温度である。
【0022】
運転モードは、図3に示すフローチャートにより選択される。ステップS301にて、外気温度検出装置14で外気温度を測定する。ステップS302にて測定された外気温度がT1より低い場合は、室内冷房負荷よりも液ポンプ運転時の冷房能力が上回るのでステップS311へ進み、液ポンプによる運転を行なう。
【0023】
ステップS302にて測定された外気温度がT1より高い場合は、ステップS303に進み、測定された外気温度がT2より低い場合つまり外気温度がT1とT2の間である場合、ステップS312に進み、圧縮機運転と液ポンプ運転の交互運転を行なう。
【0024】
測定された外気温度がT2より高い場合は、液ポンプ冷房能力がほとんどなくなるのでステップS313に進み圧縮機運転を行なう。
【0025】
前述しているように、液ポンプ運転時の方が圧縮機運転時よりも必要冷媒量が多いが、この実施の形態1における空気調和装置には液ポンプ運転時の必要冷媒量よりもさらに多くの冷媒を封入している。このようにすることで液ポンプ運転時にも冷媒貯溜容器5には冷媒液面が存在するようにし、液ポンプ吸入を常に液単相となるようにする。よって、外気温度変動などにより過渡的に蒸発器出口冷媒が過熱せず、延長配管(ガス管)に液冷媒が流入した場合でも、冷媒貯溜容器5内の液冷媒がバッファとなり、液切れによる吐出量低下あるいは吐出不能状態となる危険性を回避することができる。
【0026】
また、液ポンプ運転に切換える際に開閉弁9を閉止して圧縮機をサイクルから切り離しても、余剰冷媒は冷媒貯溜容器5に貯留されているため液ポンプサイクルから切り離されることがないので、冷媒回収運転なしに液ポンプ運転への切換が可能である。
さらに、余剰冷媒貯留機能を冷媒貯溜容器5に持たせることからアキュムレータが不要となり、室外ユニットのコンパクト化が図れる。
【0027】
次に、図4に、冷媒貯溜容器5内に配設された浸漬型液ポンプ6の構造の一例を示す。図において、冷媒貯溜容器5への冷媒配管はその出入口とも冷媒貯溜容器上面壁5aを貫通し、冷媒貯溜容器5内上方において下向きに開口しており、冷媒配管の入口側は上面壁5aの周縁寄りを、冷媒配管の出口側は上面壁5aの中央寄りをそれぞれ貫通している。液ポンプ6は、下から渦流式ポンプ部6a、直流モーター部6b、電極部6cの順に縦方向の直列接続によって構成され省スペース構造となっている。また、ポンプ部6aで昇圧された冷媒が直流モーター部6b、電極部6cを通過して上部出口6dへ抜ける構造となっており、上部出口6dは冷媒配管の出口側に接続されている。このような構造でポンプ入口が冷媒貯溜容器5の下方に位置するので、冷媒貯溜容器5内の貯留冷媒液面の上下変動に影響されることがない。
【0028】
また、このポンプ6の電極部6cを構成するブラシ16と整流子17は双方とも黒鉛系カーボン材料からなっている。このように構成することで電極部の磨耗が低減され、磨耗粉による不具合を回避でき、液ポンプの長寿命化が図れる。
【0029】
次に、この実施の形態1における空気調和装置の制御動作について図5、図6を用いて説明する。図5は、液ポンプ運転時のモリエル線図上の運転状態を示す。
絞り装置7の開度制御により、圧縮機運転時、液ポンプ運転時ともに蒸発器8出口の冷媒過熱度が所定値になるように冷媒流量を調整している。このとき、図2に示したように液ポンプ運転時の冷房能力は外気温度の変化に伴って大きく変化するが、モリエル線図上で冷媒が液からガスに相変化するエンタルピ差Δiの変化量は小さい。よって、冷房能力の変化に伴って冷媒流量が大きく変動することとなる。
【0030】
図6に液ポンプのPQ特性を示す。液ポンプの回転数が固定されている場合、冷媒流量を絞り開度のみで調整すると、冷媒温度が室内温度に近い場合などの低流量時に過大な揚程となってしまい、液ポンプの消費電力が大きくなってしまうとともに信頼性を低下させることとなる。
【0031】
そこで、上記絞り装置開度制御手段15に加えて液ポンプ回転数制御手段12で絞り開度を開ける方向に冷媒流量を調整する。すなわち、絞り開度が絞られている場合には回転数を下げて冷媒流量を減少させる。また、絞り開度を全開としても蒸発器出口の冷媒過熱度が所定値を上回る場合には回転数を上げて冷媒流量を増加させるように制御を行なう。このような制御をすることで、液ポンプの揚程を増大させることがなく、液ポンプ消費電力を低減し、併せて信頼性を向上させることができる。
【0032】
また、外気温度がT1を大きく下回るような場合には、液ポンプ運転時においても冷房能力が過大となるため、所定の液冷媒温度になるように凝縮器熱交換量制御手段によって調整する。すなわち外気温度検出装置14が、外気温度がT1以下になったことを検出し、液ポンプ運転になった段階で、送風量調整装置13により凝縮器4の送風機の風量が低くなるように調整する。このようにすることで、液ポンプ運転時の冷房能力が調整され、液ポンプ運転のみで冷房負荷を賄う際の消費電力を低減し、併せて室温制御性を向上させることができる。
【0033】
発明の実施の形態2.
図7は、この発明の実施の形態2による空気調和装置の一例のブロック図を示す。図において、配管と両端との間に自動閉止弁18、19を持つ液ポンプ6からなる液ポンプユニット20が絞り装置7に並列に、かつ着脱可能に配設されている。このように配置することで、液ポンプユニット20の交換等メンテナンスを容易に行なうことができる。この場合運転動作は実施の形態1と同様だが、制御は液ポンプ回転数固定で絞り装置部分をバイパス路として使用し、絞り装置開度制御手段のみで流量制御を行ってもよい。
また、図においては絞り装置7と並列に設置している例を示しているが、絞り装置7と冷媒貯溜容器5との間に設置してもよい。こちらの場合は、運転動作、制御ともに実施の形態1と同様に行なうことができる。
さらに、自動閉止弁18、19は、手動開閉のバルブであっても同様の機能を果たすことができる。
【0034】
【発明の効果】
以上述べたように、本発明に係る空気調和装置は、圧縮機、凝縮器、絞り装置、蒸発器が順次接続されてなる圧縮機サイクルと、液ポンプ、絞り装置、蒸発器、凝縮器を接続してなる液ポンプサイクルとにて動作する空気調和装置において、凝縮器出口と前記絞り装置の間に冷媒貯溜容器を備え、圧縮機サイクル時と液ポンプサイクル時のそれぞれにおける必要冷媒量の差により生じる余剰冷媒を、冷媒貯溜容器に貯溜し、絞り装置の絞り開度を制御する絞り装置開度制御手段、及び絞り装置の絞り開度が絞られた場合に液ポンプの回転数を下げる液ポンプ回転数制御手段を備え、絞り装置開度制御手段、液ポンプ回転数制御装置の双方で液ポンプサイクルの冷媒流量を調整するので、液ポンプの不要な回転数の増大を抑制でき、消費電力を低減することができる
【0035】
また、液ポンプは、冷媒貯溜容器に内蔵された浸漬型液ポンプであるため、アキュムレータが不要となり室外ユニットのコンパクト化が可能である。
【0036】
さらに、液ポンプサイクルの必要冷媒量より多く冷媒を封入しているので、外気温度変動などにより過渡的に蒸発器出口冷媒が過熱せず、延長配管に液冷媒が流入した場合でも冷媒貯溜容器内の液冷媒がバッファとなり液切れによる吐出量低下あるいは吐出不能状態となる危険性を回避することができる。
【0037】
また、冷媒貯溜容器内に配設された浸漬型液ポンプは、下から渦流型ポンプ部、直流モーター部、電極部が直列に組み合わされて構成され、ポンプ入口が冷媒貯溜容器の下方になるので、冷媒貯溜容器内の貯溜冷媒液面の上下変動に影響されることがない。
【0038】
また浸漬型液ポンプを駆動する直流モータのブラシと整流子を黒鉛系カーボン材料としたので、整流子摩耗量を大幅に低減でき、長寿命化できるとともに摩耗粉による不具合を回避できるので信頼性が向上する。
【0039】
また、絞り装置開度制御手段は、蒸発器出口の過熱度が所定値になるように冷媒流量を制御するため、必要な過熱度に合わせて液ポンプを制御でき、不用意に液ポンプ揚程を増大させることなく、信頼性を向上できる。
【0040】
また、液ポンプサイクル時に外気温度が所定値以下となった場合に、凝縮器への送風量を低減させる凝縮器熱交換量制御手段を備えたため、液ポンプのみで運転される外気温度領域において室温制御性を向上するとともに消費電力を低減できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による空気調和装置のブロック図。
【図2】 本発明の実施の形態1による空気調和装置の外気温度に対する冷房能力を表す図。
【図3】 本発明の実施の形態1による空気調和装置の運転モード切換を説明するフローチャート。
【図4】 本発明の実施の形態1による液ポンプの構造図。
【図5】 本発明の実施の形態1による空気調和装置の運転状態を表すモリエル線図。
【図6】 本発明の実施の形態1による液ポンプのPQ特性図。
【図7】 本発明の実施の形態2による空気調和装置のブロック図。
【図8】 従来の空気調和装置のブロック図。
【符号の説明】
1 室外ユニット、 2 室内ユニット、 3 圧縮機、
4 凝縮器、 5 冷媒貯溜容器、 6 液ポンプ、
7 絞り装置、 8 蒸発器、 9 開閉弁、
10、11 逆止弁、 12 液ポンプ回転数制御手段、
13 送風量調整装置、 14 外気温度検出装置、
15 絞り装置開度制御手段、
16 ブラシ、 17 整流子、 18、19 自動閉止弁、
20 液ポンプユニット
21 液ポンプ容器、 22 液ポンプ、 23 アキュムレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that includes both a forced circulation cycle by a compressor and a circulation cycle by a liquid pump as a refrigerant circulation path, and operates by switching each of them according to the situation.
[0002]
[Prior art]
FIG. 8 shows an example in which an air conditioner having both a compressor and a liquid pump as refrigerant conveying means is applied for annual cooling.
In this case, the compressor operation is performed during normal cooling operation, and the liquid pump operation is performed when the outside air is cooler than the room, such as in winter or at night.
Hereinafter, the operation of the air conditioner will be described with reference to the drawings.
[0003]
In FIG. 8, 1 is an outdoor unit and 2 is an indoor unit.
During the compressor operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 enters the condenser 4 and exchanges heat with the outside air to become a liquid refrigerant. After that, the liquid passes through the liquid pump container 21 and is decompressed by the expansion device 7 to enter the evaporator 8 as a two-phase refrigerant having a low dryness. The evaporator 8 exchanges heat with room air to form a gas refrigerant, enters the accumulator 23 through the opened on-off valve 9, and returns to the compressor 3 again.
[0004]
During the liquid pump operation, the liquid refrigerant discharged from the liquid pump 22 enters the evaporator 8 through the expansion device 7. The liquid refrigerant exchanges heat with indoor hot air in the evaporator 8 to become a gas refrigerant, and flows into the condenser 4 through the check valve 11 connected in the forward direction. During operation of the liquid pump, the on-off valve 9 is closed, whereby the accumulator 23 and the compressor 3 are disconnected from the liquid pump cycle. The gas refrigerant flowing into the condenser 4 is liquefied by exchanging heat with the outside air and returns to the liquid pump 22 again.
[0005]
During the liquid pump operation, there is no volume change when the pressure of the refrigerant is increased, so that the refrigerant conveyance power can be greatly reduced compared to gas compression, and energy-saving cooling operation is possible. Further, since the refrigerant state of the extension pipe (liquid pipe) and the evaporator is a liquid single phase, a larger amount of refrigerant is required than when the compressor is operated. Therefore, surplus refrigerant during compressor operation is stored in the accumulator.
[0006]
Next, operation switching of the air conditioner will be described.
The cooling capacity during operation of the liquid pump depends on the temperature difference between the outside air temperature and the room temperature. Therefore, when the outside air is sufficiently low and the indoor cooling load can be processed by the liquid pump operation, the cooling is performed only by the liquid pump operation. However, when the temperature difference becomes small, the indoor cooling load can be processed only by the liquid pump operation. The compressor operation and the liquid pump operation are performed alternately. Further, when the outside air temperature exceeds a predetermined value, the liquid pump operation is not performed, and the cooling is performed only by the compressor operation.
[0007]
[Problems to be solved by the invention]
Since the conventional air conditioner having both the compressor cycle and the liquid pump cycle is configured as described above, the compressor operation is changed to the liquid pump operation under the condition where the compressor operation and the liquid pump operation are performed alternately. When switching, before starting the liquid pump and separating the compressor and accumulator from the cycle, it is necessary to recover the excess refrigerant stored in the accumulator in the liquid pump cycle, and the expansion device 7 is closed for several minutes. A refrigerant recovery operation in which the compressor is operated and the refrigerant in the accumulator is recovered in the condenser is performed every time switching is performed.
[0008]
Therefore, the compressor operation and the liquid pump operation are performed when the outside air temperature is relatively high in the temperature range in which the liquid pump operation is performed and the cooling capacity during the liquid pump operation is small or when the room temperature fluctuation tolerance is set small. When the switching cycle is shortened, there is a problem that the cooling operation efficiency is reduced by the total loss due to the refrigerant recovery operation.
In addition, when the immersion liquid pump as shown in FIG. 8 is applied as the refrigerant liquid pump, a container containing the liquid pump is required in addition to the accumulator, so that the outdoor unit becomes large. There was a point.
The present invention provides an air conditioner that does not need to perform a refrigerant recovery operation when switching from compressor operation to gravity or liquid pump operation in an air conditioner that includes refrigerant conveying means for both a compressor and a liquid pump. The purpose is that.
[0009]
[Means for Solving the Problems]
[0010]
The air conditioner according to the present invention is formed by connecting a compressor cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected to a liquid pump, the throttle device, the evaporator, and the condenser. In an air conditioner that operates in a liquid pump cycle, a refrigerant storage container is provided between the condenser outlet and the expansion device, and due to a difference in required refrigerant amount at each of the compressor cycle and the liquid pump cycle. The generated surplus refrigerant is stored in the storage container, and the throttle device opening control means for controlling the throttle opening of the throttle device, and the rotation speed of the liquid pump when the throttle opening of the throttle device is throttled. A liquid pump rotational speed control means for lowering is provided, and the refrigerant flow rate of the liquid pump cycle is adjusted by both the throttle device opening degree control means and the liquid pump rotational speed control apparatus .
[0011]
Moreover, the said refrigerant | coolant storage container may incorporate the immersion type liquid pump.
[0012]
Further, a liquid pump may be provided between the condenser outlet and the expansion device.
[0013]
Moreover, the refrigerant | coolant may be enclosed more than the required refrigerant | coolant amount of a liquid pump cycle.
[0014]
Moreover, the said immersion pump may be comprised from the bottom combining the eddy current type pump part, the direct-current motor part, and the electrode part in series.
[0015]
Further, the brush and commutator of the motor unit that drives the immersion pump may be a graphite-based carbon material.
[0016]
The expansion device opening degree control means controls the refrigerant flow rate so that the degree of superheat at the evaporator outlet becomes a predetermined value.
[0017]
Further, the apparatus includes a condenser heat exchange amount control means for reducing the amount of air blown to the condenser when the outside air temperature becomes a predetermined value or less during the liquid pump cycle.
[0018]

DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
FIG. 1 shows a block diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
This shows an air conditioner that air-conditions space that requires cooling throughout the year, such as machine rooms and computer rooms of communication base stations. 1 is an outdoor unit, 2 is an indoor unit, 3 is a compressor, 4 is a condensing unit , 5 is a refrigerant storage container, 6 is a liquid pump, 7 is a throttling device, 8 is an evaporator, 9 is an on-off valve, 10 and 11 are check valves, 12 is a liquid pump rotation speed control means, and 13 is a condenser blower , The reference numeral 14 is an outside air temperature detecting device, and 15 is a throttle device opening control means.
[0019]
Next, the operation will be described.
During the operation of the compressor, the on-off valve 9 is opened, and the check valve 10 is opened and the check valve 11 is closed by the discharge pressure of the compressor 3. Thereby, the circulation path of the compressor 3, the condenser 4, the refrigerant | coolant storage container 5, the expansion apparatus 7, and the evaporator 8 is formed.
In this circulation path, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 exchanges heat with the outside air in the condenser 4 to become high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the expansion device 7 via the refrigerant storage container 5 and flows into the evaporator 8 as a low-pressure two-phase refrigerant having a low dryness. The evaporator 8 exchanges heat with room air to form a gas refrigerant and returns to the compressor 3 again.
[0020]
During the operation of the liquid pump, the on-off valve 9 is closed. The check valve 11 is opened by the discharge pressure of the liquid pump 6 and bypasses the compressor 3. Thereby, the circulation path of the liquid pump 6, the expansion device 7, the evaporator 8, the condenser 4, and the refrigerant storage container 5 is formed. The liquid pump 6 shown in FIG. 1 is an immersion type, and is arranged in a form built in the refrigerant reservoir 5.
In this circulation path, the low-temperature liquid refrigerant discharged from the liquid pump 6 passes through the expansion device 7 and flows into the evaporator 8, and exchanges heat with the high-temperature indoor air to become a gas refrigerant. This gas refrigerant flows into the condenser 4, exchanges heat with the low-temperature outside air, becomes liquid refrigerant again, is stored in the refrigerant storage container 5, and returns to the liquid pump 6.
[0021]
Next, the operation mode switching control will be described with reference to FIG.
FIG. 2 shows the cooling capacity during compressor operation, the cooling capacity during operation of the liquid pump, and the indoor cooling load according to changes in the outside air temperature. T 1 is an outside air temperature at which the indoor cooling load and the cooling capacity during operation of the liquid pump coincide with each other, and T 2 is an outside air temperature at which the cooling capacity during operation of the liquid pump becomes a predetermined value or less.
[0022]
The operation mode is selected according to the flowchart shown in FIG. In step S301, the outside air temperature is measured by the outside air temperature detection device 14. When the outside air temperature measured in step S302 is lower than T 1, since the above is cooling capacity during the liquid pump operation than the room cooling load proceeds to step S311, performs the operation by the liquid pump.
[0023]
When the outside air temperature measured in step S302 is higher than T 1, the process proceeds to step S303, if if the measured outside air temperature is lower than T 2 that is the outside air temperature is between T 1 and T 2, step S312 Then, the compressor operation and the liquid pump operation are alternately performed.
[0024]
If the measured outside air temperature is higher than T 2 , the liquid pump cooling capacity is almost lost, so the process proceeds to step S313 and the compressor is operated.
[0025]
As described above, the amount of refrigerant required during operation of the liquid pump is larger than that required during operation of the compressor. However, the air conditioner according to the first embodiment has a larger amount of refrigerant than that required during operation of the liquid pump. The refrigerant is sealed. In this way, the refrigerant reservoir 5 is made to have a refrigerant liquid level even during operation of the liquid pump, and the liquid pump suction is always in the liquid single phase. Therefore, even when the refrigerant at the outlet of the evaporator does not transiently overheat due to fluctuations in the outside air temperature and the liquid refrigerant flows into the extension pipe (gas pipe), the liquid refrigerant in the refrigerant reservoir 5 serves as a buffer and is discharged due to running out of liquid. It is possible to avoid the risk of a decrease in volume or a state in which ejection is impossible.
[0026]
Further, even when the on-off valve 9 is closed and the compressor is disconnected from the cycle when switching to the liquid pump operation, the excess refrigerant is stored in the refrigerant storage container 5 and thus is not separated from the liquid pump cycle. Switching to liquid pump operation is possible without recovery operation.
Furthermore, since the refrigerant storage container 5 is provided with an excess refrigerant storage function, an accumulator is not required, and the outdoor unit can be made compact.
[0027]
Next, FIG. 4 shows an example of the structure of the immersion liquid pump 6 disposed in the refrigerant reservoir 5. In the figure, the refrigerant pipe to the refrigerant storage container 5 also passes through the refrigerant storage container upper surface wall 5a at the entrance and exit, and opens downward in the refrigerant storage container 5. The inlet side of the refrigerant pipe is the peripheral edge of the upper wall 5a. The outlet side of the refrigerant pipe passes through the center of the top wall 5a. The liquid pump 6 is constituted by a series connection in the vertical direction in the order of the vortex pump section 6a, the DC motor section 6b, and the electrode section 6c from the bottom, and has a space saving structure. Further, the refrigerant whose pressure has been increased by the pump unit 6a passes through the DC motor unit 6b and the electrode unit 6c and escapes to the upper outlet 6d, and the upper outlet 6d is connected to the outlet side of the refrigerant pipe. With such a structure, the pump inlet is located below the refrigerant storage container 5, so that it is not affected by the vertical fluctuation of the stored refrigerant liquid level in the refrigerant storage container 5.
[0028]
Both the brush 16 and the commutator 17 constituting the electrode portion 6c of the pump 6 are made of a graphite-based carbon material. By comprising in this way, the abrasion of an electrode part is reduced, the malfunction by abrasion powder can be avoided, and lifetime improvement of a liquid pump can be achieved.
[0029]
Next, the control operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIGS. FIG. 5 shows the operating state on the Mollier diagram during operation of the liquid pump.
By controlling the opening degree of the expansion device 7, the refrigerant flow rate is adjusted so that the refrigerant superheat degree at the outlet of the evaporator 8 becomes a predetermined value during both the compressor operation and the liquid pump operation. At this time, as shown in FIG. 2, the cooling capacity during the liquid pump operation changes greatly with the change in the outside air temperature, but the amount of change in the enthalpy difference Δi in which the refrigerant changes phase from liquid to gas on the Mollier diagram. Is small. Therefore, the refrigerant flow rate greatly fluctuates with a change in cooling capacity.
[0030]
FIG. 6 shows the PQ characteristics of the liquid pump. If the number of revolutions of the liquid pump is fixed, adjusting the refrigerant flow rate only by the throttle opening will result in an excessive head at low flow rates, such as when the refrigerant temperature is close to the room temperature, and the power consumption of the liquid pump will be reduced. As the size increases, the reliability decreases.
[0031]
Therefore, the flow rate of the refrigerant is adjusted in the direction of opening the throttle opening by the liquid pump rotation speed control means 12 in addition to the throttle device opening control means 15. That is, when the throttle opening is reduced, the rotational speed is lowered to reduce the refrigerant flow rate. Even when the throttle opening is fully opened, if the refrigerant superheat degree at the outlet of the evaporator exceeds a predetermined value, control is performed to increase the refrigerant flow rate by increasing the rotational speed. By performing such control, it is possible to reduce the liquid pump power consumption and improve the reliability without increasing the head of the liquid pump.
[0032]
When the outside air temperature is much lower than T 1 , the cooling capacity becomes excessive even during the liquid pump operation, and therefore the condenser heat exchange amount control means adjusts so that the temperature becomes a predetermined liquid refrigerant temperature. That is, the outside air temperature detection device 14 detects that the outside air temperature has become T 1 or less, and adjusts the air flow rate of the blower of the condenser 4 by the air flow rate adjustment device 13 when the liquid pump operation is started. To do. By doing in this way, the cooling capability at the time of liquid pump operation is adjusted, the power consumption at the time of covering a cooling load only by liquid pump operation can be reduced, and room temperature controllability can also be improved.
[0033]
Embodiment 2 of the Invention
FIG. 7 shows a block diagram of an example of an air-conditioning apparatus according to Embodiment 2 of the present invention. In the figure, a liquid pump unit 20 including a liquid pump 6 having automatic shut-off valves 18 and 19 between a pipe and both ends is disposed in parallel with the expansion device 7 and is detachable. By arranging in this way, maintenance such as replacement of the liquid pump unit 20 can be easily performed. In this case, the operation is the same as in the first embodiment, but the control may be performed by fixing the number of rotations of the liquid pump, using the throttle device portion as a bypass, and controlling the flow rate only by the throttle device opening control means.
Moreover, although the example installed in parallel with the expansion device 7 is shown in the figure, it may be installed between the expansion device 7 and the refrigerant reservoir 5. In this case, both driving operation and control can be performed in the same manner as in the first embodiment.
Further, the automatic closing valves 18 and 19 can perform the same function even if they are manually opened and closed valves.
[0034]
【The invention's effect】
As described above, the air conditioner according to the present invention connects a compressor cycle in which a compressor, a condenser, a throttling device, and an evaporator are sequentially connected to a liquid pump, a throttling device, an evaporator, and a condenser. In the air conditioner that operates in the liquid pump cycle, a refrigerant storage container is provided between the outlet of the condenser and the expansion device, and due to the difference in the amount of refrigerant required during the compressor cycle and during the liquid pump cycle. The generated excess refrigerant is stored in a refrigerant storage container, and a throttle device opening control means for controlling the throttle opening of the throttle device, and a liquid pump that lowers the rotation speed of the liquid pump when the throttle opening of the throttle device is throttled It is equipped with a rotation speed control means, and the refrigerant flow rate of the liquid pump cycle is adjusted by both the throttle device opening degree control means and the liquid pump rotation speed control apparatus, so that an increase in unnecessary rotation speed of the liquid pump can be suppressed and power consumption can be reduced. It can be reduced.
[0035]
The liquid pump are the submerged pump embedded in the coolant reservoir container, the accumulator is capable of compact outdoor unit becomes unnecessary.
[0036]
Furthermore, since the refrigerant is sealed in more than the required amount of liquid pump cycle, the refrigerant at the outlet of the evaporator will not transiently overheat due to fluctuations in the outside air temperature, etc., and even if liquid refrigerant flows into the extension pipe, The risk that the liquid refrigerant becomes a buffer and the discharge amount is reduced or the discharge becomes impossible due to running out of liquid can be avoided.
[0037]
In addition, the immersion type liquid pump disposed in the refrigerant storage container is configured by combining the vortex pump part, the DC motor part, and the electrode part in series from the bottom, and the pump inlet is below the refrigerant storage container. The vertical movement of the stored refrigerant liquid level in the refrigerant storage container is not affected.
[0038]
In addition , since the brush and commutator of the DC motor that drives the immersion liquid pump are made of graphite-based carbon materials, the amount of commutator wear can be greatly reduced, the service life can be extended, and problems due to wear powder can be avoided. Will improve.
[0039]
Further, the expansion device opening control means controls the flow rate of the refrigerant so that the superheat degree at the outlet of the evaporator becomes a predetermined value, so that the liquid pump can be controlled according to the required superheat degree, and the liquid pump head is inadvertently adjusted. Reliability can be improved without increasing.
[0040]
Also, since the condenser heat exchange amount control means for reducing the amount of air blown to the condenser when the outside air temperature becomes a predetermined value or less during the liquid pump cycle , the room temperature is set in the outside air temperature region operated only by the liquid pump. Controllability can be improved and power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of an air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing the cooling capacity with respect to the outside air temperature of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a flowchart for explaining operation mode switching of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 4 is a structural diagram of a liquid pump according to the first embodiment of the present invention.
FIG. 5 is a Mollier diagram showing the operating state of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 6 is a PQ characteristic diagram of the liquid pump according to the first embodiment of the present invention.
FIG. 7 is a block diagram of an air conditioner according to Embodiment 2 of the present invention.
FIG. 8 is a block diagram of a conventional air conditioner.
[Explanation of symbols]
1 outdoor unit, 2 indoor unit, 3 compressor,
4 condenser, 5 refrigerant storage container, 6 liquid pump,
7 throttle device, 8 evaporator, 9 on-off valve,
10, 11 Check valve, 12 Liquid pump rotation speed control means,
13 air flow adjustment device, 14 outside air temperature detection device,
15 throttle device opening control means,
16 brushes, 17 commutators, 18, 19 automatic shut-off valves,
20 liquid pump unit 21 liquid pump container, 22 liquid pump, 23 accumulator

Claims (8)

圧縮機、凝縮器、絞り装置、蒸発器が順次接続されてなる圧縮機サイクルと、液ポンプ、前記絞り装置、前記蒸発器、前記凝縮器を接続してなる液ポンプサイクルとにて動作する空気調和装置において、
前記凝縮器出口と前記絞り装置の間に冷媒貯留容器を備え、前記圧縮機サイクル時と前記液ポンプサイクル時のそれぞれにおける必要冷媒量の差により生じる余剰冷媒を、前記貯留容器に貯留し、
前記絞り装置の絞り開度を制御する絞り装置開度制御手段、及び前記絞り装置の絞り開度が絞られた場合に前記液ポンプの回転数を下げる液ポンプ回転数制御手段を備え、前記絞り装置開度制御手段、前記液ポンプ回転数制御装置の双方で前記液ポンプサイクルの冷媒流量を調整することを特徴とする空気調和装置。
Air operating in a compressor cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a liquid pump cycle in which the liquid pump, the throttle device, the evaporator, and the condenser are connected In the harmony device,
A refrigerant storage container is provided between the condenser outlet and the throttling device, and excess refrigerant generated due to a difference in required refrigerant amount in each of the compressor cycle and the liquid pump cycle is stored in the storage container ,
A throttle device opening control means for controlling a throttle opening of the throttle device; and a liquid pump rotational speed control means for reducing the rotational speed of the liquid pump when the throttle opening of the throttle device is throttled. An air conditioner characterized in that the refrigerant flow rate of the liquid pump cycle is adjusted by both the device opening degree control means and the liquid pump rotation speed control device.
前記液ポンプは、前記冷媒貯留容器に内蔵された浸漬型液ポンプであることを特徴とする請求項1記載の空気調和装置。 The liquid pump, an air conditioner according to claim 1, characterized in that the submerged pump incorporated in the refrigerant storage container. 前記凝縮器出口と前記絞り装置の間に前記液ポンプを備えていることを特徴とする請求項1記載の空気調和装置。The air conditioner according to claim 1, wherein the liquid pump is provided between the condenser outlet and the throttle device. 液ポンプサイクルの必要冷媒量より多く冷媒が封入されていることを特徴とする請求項1〜3のいずれかに記載の空気調和装置。  The air conditioner according to any one of claims 1 to 3, wherein a larger amount of refrigerant is enclosed than a necessary amount of refrigerant for the liquid pump cycle. 前記浸漬型液ポンプは、下から渦流型ポンプ部、直流モーター部、電極部が直列に組み合わされて構成されていることを特徴とする請求項2記載の空気調和装置。  3. The air conditioner according to claim 2, wherein the submerged liquid pump is configured by combining a vortex pump unit, a direct current motor unit, and an electrode unit in series from below. 前記浸漬型ポンプを駆動するモーター部のブラシと整流子が黒鉛系カーボン材料であることを特徴とする請求項5記載の空気調和装置。  6. The air conditioner according to claim 5, wherein the brush and the commutator of the motor unit that drives the submersible pump are made of a graphite-based carbon material. 前記絞り装置開度制御手段は、前記蒸発器出口の過熱度が所定値になるように冷媒流量を制御することを特徴とする請求項1に記載の空気調和装置。The air conditioner according to claim 1, wherein the throttle device opening control means controls the flow rate of the refrigerant so that the degree of superheat at the outlet of the evaporator becomes a predetermined value. 液ポンプサイクル時に外気温度が所定値以下となった場合に、前記凝縮器への送風量を低減させる凝縮器熱交換量制御手段を備えたこと特徴とする請求項1に記載の空気調和装置 2. The air conditioner according to claim 1 , further comprising a condenser heat exchange amount control unit configured to reduce an amount of air blown to the condenser when an outside air temperature becomes a predetermined value or less during a liquid pump cycle .
JP2000299563A 2000-09-29 2000-09-29 Air conditioner Expired - Fee Related JP4352604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299563A JP4352604B2 (en) 2000-09-29 2000-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299563A JP4352604B2 (en) 2000-09-29 2000-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002106986A JP2002106986A (en) 2002-04-10
JP4352604B2 true JP4352604B2 (en) 2009-10-28

Family

ID=18781349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299563A Expired - Fee Related JP4352604B2 (en) 2000-09-29 2000-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP4352604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868264A (en) * 2012-12-07 2014-06-18 力博特公司 Receiver tank purge in vapor compression cooling system with pumped refrigerant economization

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200593B2 (en) 2008-03-13 2013-06-05 アイシン精機株式会社 Air conditioner
DE102008035216A1 (en) * 2008-04-19 2009-10-22 Daimler Ag Cooling arrangement and method for cooling a temperature-sensitive aggregate of a motor vehicle
JP5180130B2 (en) * 2009-03-27 2013-04-10 三機工業株式会社 Steam compression refrigerator system
JP4832544B2 (en) * 2009-04-08 2011-12-07 三菱電機株式会社 Refrigeration cycle equipment
JP5250519B2 (en) * 2009-09-18 2013-07-31 東芝キヤリア株式会社 Cooling system
JP5639984B2 (en) * 2011-10-27 2014-12-10 日立アプライアンス株式会社 Air conditioner
JP5627559B2 (en) * 2011-11-29 2014-11-19 日立アプライアンス株式会社 Air conditioner
JP5927670B2 (en) * 2012-09-28 2016-06-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
KR102435203B1 (en) * 2015-10-20 2022-08-24 삼성전자주식회사 Air conditioner and control method thereof
JP2017116154A (en) * 2015-12-22 2017-06-29 ダイキン工業株式会社 Air conditioning device
JP6707152B2 (en) * 2017-02-03 2020-06-10 三菱電機株式会社 Air conditioner
US11384965B2 (en) 2017-04-04 2022-07-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
MX2019015339A (en) * 2017-06-21 2020-02-19 Honeywell Int Inc Refrigeration systems and methods.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130127Y2 (en) * 1979-11-09 1986-09-04
JPH04121561A (en) * 1990-09-11 1992-04-22 Matsushita Electric Ind Co Ltd Refrigerant-pumping apparatus
JPH0612127U (en) * 1992-03-30 1994-02-15 カルソニック株式会社 Automotive air conditioner capacitors
JPH06147558A (en) * 1992-11-17 1994-05-27 Matsushita Electric Ind Co Ltd Radiation air conditioning device
JPH0651756U (en) * 1992-12-16 1994-07-15 株式会社東洋製作所 Cooling system
JP3360092B2 (en) * 1995-05-01 2002-12-24 株式会社南信精機製作所 Carbon commutator
JPH102625A (en) * 1996-06-14 1998-01-06 Mitsubishi Heavy Ind Ltd Refrigerator
JP4132114B2 (en) * 1996-11-29 2008-08-13 株式会社デンソー Commutator and fuel pump using the same
JP3125778B2 (en) * 1998-02-23 2001-01-22 三菱電機株式会社 Air conditioner
JPH11351685A (en) * 1998-06-12 1999-12-24 Hitachi Plant Eng & Constr Co Ltd Cooling system
JP2000193327A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Air conditioner equipment and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868264A (en) * 2012-12-07 2014-06-18 力博特公司 Receiver tank purge in vapor compression cooling system with pumped refrigerant economization
CN103868264B (en) * 2012-12-07 2018-11-02 力博特公司 Recipient/surge tank emptying in vapor compression refrigeration systems with pump refrigerant energy-saving appliance

Also Published As

Publication number Publication date
JP2002106986A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4352604B2 (en) Air conditioner
KR100511698B1 (en) Scroll compressor and air conditioner
JP5965895B2 (en) Refrigeration cycle equipment
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
KR20110110812A (en) Scroll compressors with different volume indexes and systems and methods for same
CN101720413A (en) Refrigeration cycle device
JP6083173B2 (en) AIR CONDITIONER AND COMPRESSOR USED FOR THE SAME
KR102198326B1 (en) Air conditioner
WO2007123085A1 (en) Refrigeration device
KR20130028474A (en) An air conditioner and a control method for the same
CN101545689B (en) Air conditioning apparatus
WO2004088212A1 (en) Air conditioner
JP2016176672A (en) Air conditioner
US7343756B2 (en) Air conditioning system
JP3823706B2 (en) Air conditioner
JP2004116805A (en) Control method of multi-chamber type air conditioner
KR100788459B1 (en) Heat pump air-conditioner having function for controlling flux of refrigerant
JP4084915B2 (en) Refrigeration system
KR20080089962A (en) Airconditioner
CN110494702B (en) Refrigeration cycle device
JP6634590B2 (en) Air conditioner
US20080190126A1 (en) Capacity Control For Refrigerant System With Multiple Compressors
JP2008232564A (en) Refrigerating device and control method for refrigerating device
JP2008020181A (en) Air-conditioning system, and control method therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees