JP4351402B2 - Rail thermit welding method - Google Patents

Rail thermit welding method Download PDF

Info

Publication number
JP4351402B2
JP4351402B2 JP2001065300A JP2001065300A JP4351402B2 JP 4351402 B2 JP4351402 B2 JP 4351402B2 JP 2001065300 A JP2001065300 A JP 2001065300A JP 2001065300 A JP2001065300 A JP 2001065300A JP 4351402 B2 JP4351402 B2 JP 4351402B2
Authority
JP
Japan
Prior art keywords
rail
cooling
welding
temperature
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001065300A
Other languages
Japanese (ja)
Other versions
JP2002263866A (en
Inventor
康人 深田
隆一 山本
理三郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2001065300A priority Critical patent/JP4351402B2/en
Publication of JP2002263866A publication Critical patent/JP2002263866A/en
Application granted granted Critical
Publication of JP4351402B2 publication Critical patent/JP4351402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道用レールのロングレール化に使用される溶接方法のうち、テルミット溶接方法に係り、特に、施工時間の短縮及び溶接部の強度向上を図るものに関する。
【0002】
【従来の技術】
近年、軌道保守コストの低減や騒音振動の低減のために溶接によって継目を連続化するロングレール化が普及しつつある。鉄道用レールのロングレール化は、軌道の最弱点箇所である継目をなくし、騒音、振動及びメンテナンスコスト低減、さらには乗り心地を向上させる等の多くの利点がある。このロングレールは一般に25m乃至50mのレールを溶接して製造される。
その溶接方法として、フラッシュ溶接、ガス圧接、エンクローズアーク溶接、及びテルミット溶接が日本では採用されている。その中でもテルミット溶接は、使用器具が軽量で、大きな電源や加圧装置が不要であり、機動性に優れ、さらには溶接時間が比較的短い等の理由により、レールの現地溶接法として広く利用されており、全レール溶接のうちの約4割を占めるに至っている。
テルミット溶接法は酸化鉄等の酸化金属とアルミニウム等の酸化傾向の強い金属との化学反応を利用した溶接法である。一般に、レールのテルミット溶接では、2本のレール端部を間隔を設けて対向設置し、耐火物鋳型によって前記レール端部間の隙間とその周囲を取り囲みキャビティを形成する。さらに、そのキャビティの上方に反応るつぼを設置して、るつぼ内の酸化鉄とアルミニウムとの化学反応によって生成した溶融鉄を、るつぼ底部の流出孔を開口させて前記キャビティに注入し、前記レールを溶接する。
また、テルミット溶接では、アーク溶接におけるアークのような集中熱源がない。このため、テルミット溶接ではレール鋼の溶融がアーク溶接に比較すると不完全になりやすく、粗大な溶け込み不良を生じることがある。これを避けるために、高温の予熱が行われるが、母材溶融が特に不利になりやすいレール外表面近傍に対しては、十分な熱量が加わるように、比較的大きい余盛を形成させる。溶接後、レール溶接部頭部の余盛はレール形状に沿って除去され、レール溶接部腹部及び底部の余盛は溶接部の強度向上のためそのまま残される。そしてレール溶接部が常温まで冷却された後、レール溶接部の超音波探傷検査及び浸透探傷検査が実施される。
【0003】
【発明が解決しようとする課題】
上述のようにテルミット溶接は、使用器具が軽量で、大きな電源や加圧装置が不要であり、機動性に優れ、さらには溶接時間が比較的短い等の理由により、汎用されている。
しかしその一方で、テルミット溶接部の投入熱量は、比較的大きく、溶鋼を鋳型の中に注入してから常温、すなわち超音波探傷検査が実施できるようになる温度まで冷却するまでには、現在約1時間を要しているという時間的負担がある。テルミット溶接は現場で溶接作業を行うことが主体で、限られた列車間合いで作業を終了する必要があることから、溶接準備から溶接終了まで、さらにはグラインダー仕上げ及び超音波探傷検査に至るトータル時間の一層の短縮が強く要望される。
そこで、少しでも冷却時間を短縮するために水冷を実施している。しかし、時間の短縮のみを優先し、変態温度以上の高温から水冷した場合、溶接部に硬くて脆い組織であるマルテンサイト組織が生成され、列車通過時に発生する応力により溶接部が損傷するおそれがある。したがって、変態温度以上の高温から不用意に溶接部に対し水冷することができない。そのため、通常、レールの温度が300℃以下になった時点で水冷を実施している。ここで、300℃以下とするのは、レールの表面温度と中心部温度とでは中心部温度の方が高いが、表面温度が300℃以下であれば、レール溶接部全体が十分に変態温度以下であることが確実だからである。
以上のように溶接部の強度を維持するため、さらなる冷却時間の短縮を図り難いという問題がある。
【0004】
一方、テルミット溶接の溶接金属は鋳造組織であるため、レール溶接部底部などに比較的大きい余盛を有すること等から、実用上は十分な強度を有しているものの、他の溶接による接合部と比べ強度的にやや劣っており、世界の鉄道の代表と位置付けられる日本の新幹線軌道には、現在テルミット溶接の使用例は少なく、そのロングレール化は主に前掲した他の3種類の溶接方法により行われている。
【0005】
本発明は以上の従来技術における問題に鑑みてなされたものであって、レールのテルミット溶接方法において、テルミット溶接部の強度を維持しつつ冷却時間の短縮化を図り施工性を向上させることを課題とする。
また本発明は、レールのテルミット溶接方法において、テルミット溶接部の特性・性能の向上、特に、疲労強度の向上を図ることを課題とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために請求項1記載の発明は、レールをテルミット溶接するに際し、レール溶接部頭部の余盛を除去し、レール溶接部頭部を、レール溶接部底部の温度降下速度及び自然放冷より速く、マルテンサイト組織が生成される温度降下速度より遅い冷却速度で空冷して溶接熱を除熱することを特徴とする。
【0007】
一般に溶接を行うと、溶接部にはその冷却過程で熱応力による変形が生じる。その際に、外部拘束や、自拘束により変形が制限されると、応力に見合う変形ができず、発生した応力の一部が残留応力として部材内に残存する。残留応力は断面内で均衡しており、断面内の積分値は零になる。したがって、局部的に引張の領域があれば必ず他の領域が圧縮となる。引張残留応力の存在する部位に外部から繰り返し応力が負荷されると、外部荷重による応力に残留応力が加算され、疲労強度が低下することがある。レールの場合、列車の通過によりレール底部に引張応力が加わるため、レール底部には圧縮残留応力を残存させた方が強度上有利といえる。
そこで、請求項1記載の発明によれば、レール溶接部頭部を、レール溶接部底部の温度降下速度及び自然放冷より速い冷却速度で空冷するので、レール溶接部頭部はレール溶接部底部に比べ速く冷却され、レール溶接部底部の残留応力をより圧縮側とすることができ、その結果、溶接部の強度を向上させることができる。
レール溶接部底部は自然放冷によればよい。すなわち、レール溶接部頭部のみを自然放冷より速い冷却速度で空冷すればよい。レール溶接部底部をも自然放冷より速い冷却速度で空冷する場合には、レール溶接部底部に加える風圧より、レール溶接部頭部に加える風圧を高くして、レール溶接部頭部を、レール溶接部底部の温度降下速度より速い冷却速度で空冷する。
【0008】
また、請求項1記載の発明によれば、レール溶接部頭部を自然放冷より速い冷却速度で空冷するので、水冷を開始できる温度まで自然放冷とする場合に比較して、冷却時間を短縮することができる。
さらに、請求項1記載の発明によれば、レール溶接部頭部を自然放冷より速い冷却速度で空冷して溶接熱を除熱する、すなわち、溶接熱と自然放冷より速い冷却速度の空冷とを利用して冷却速度を制御し熱処理を完了するため、再加熱し二次冷却するという熱処理工程を行わずに済み、全体として施工時間の短縮の効果を得ることができる。
【0009】
冷却後に、レール溶接部頭部の余盛を除去する場合は、硬化した大量の余盛部を仕上げ時にグラインダーで除去しなければならず、作業時間の延長につながる。しかし請求項1記載の発明によれば、溶接後、自然放冷より速い冷却速度の空冷開始前に、レール溶接部頭部の余盛を押抜き剪断除去するので、短時間でレール溶接部頭部の余盛を除去することができ、全体として施工時間の短縮の効果を得ることができる。
【0010】
また請求項2記載の発明は、請求項1記載のレールのテルミット溶接方法において、
残留する溶接熱によりレール溶接部頭部の中心部がオーステナイト変態温度以上の温度を有する時点から、レール溶接部頭部表面の温度が少なくとも400℃になるまで、前記空冷を行うことを特徴とする。
【0011】
溶接部の温度を短時間で常温にするために、強制冷却を行うことは特別なことではない。しかし、本技術分野においては、レールにマルテンサイト組織を生成させることが不可の条件であり、したがって、マルテンサイト組織を生成しないように冷却速度をコントロールしながら、冷却時間の短縮化を図る必要がある。
以上の観点から請求項1及び請求項2記載の発明は自然放冷より速く、マルテンサイト組織が生成される温度降下速度より遅い冷却速度の空冷を採用した。
また請求項2記載の発明によれば、残留する溶接熱によりレール溶接部頭部の中心部がオーステナイト変態温度以上の温度を有する時点から、レール溶接部頭部の自然放冷より速い冷却速度の空冷を開始するので、レール溶接部頭部とレール溶接部底部とでオーステナイト組織からパーライト組織への変態時期が異なり(但し、変態開始温度はほぼ同等)、レール溶接部頭部はレール溶接部底部より早く、かつ、自然放冷より早く変態を開始することになる。このことによりレール溶接部底部の残留応力をより圧縮側とすることができ、溶接部の強度を向上させることができる。
さらに請求項2記載の発明によれば、少なくとも400℃まで自然放冷より速い冷却速度で空冷する、すなわち400℃以下まで自然放冷より速い冷却速度で空冷することにより、変態が十分に終了するとともに、400℃以下の温度であれば水冷を用いることができるため、冷却時間短縮の効果が十分に得られるからである。
【0012】
自然放冷より速い冷却速度の空冷の手段としては、例えば頭部熱処理レールのガス圧接の後熱処理時に用いられている冷却装置により、必要でかつコントロールされた風圧を容易に得ることができる。
なお、実施に際しては、レール溶接部頭部の表面温度を測定し、600℃以上であることを確認すれば、レール溶接部頭部の中心部がオーステナイト変態温度以上であることを確認することがきる。
【0013】
【発明の実施の形態】
以下に本発明の一実施の形態のレールのテルミット溶接方法につき図1を参照して説明する。図1は本発明のレールのテルミット溶接方法を説明するためのレール溶接部断面図である。以下は本発明の一実施形態であって本発明を限定するものではない。
【0014】
まず、2本のレール端部(図示せず)を間隔を設けて対向設置し、耐火物鋳型(図示せず)によって前記レール端部間の隙間とその周囲を取り囲みキャビティ(図示せず)を形成する。そのキャビティの上方に反応るつぼ(図示せず)を設置して、前記るつぼ内の酸化鉄並びに若干の成分調整済剤とアルミニウムとの化学反応によって生成した溶融鉄を、前記るつぼ底部の流出孔を開口させて前記キャビティに注入し、前記レールを溶接する。
溶接後、型開きし、レール溶接部頭部1の余盛4を除去する。図1に示すように、レール溶接部はレール溶接部頭部1と、レール溶接部腹部2と、レール溶接部底部3とから構成される。図1(a)に示すレール溶接部頭部1の余盛4を押し抜き剪断等により除去し、図1(b)に示すような断面を得る。すなわち、レール溶接部腹部2及びレール溶接部底部3の余盛6は除去せずそのまま残す。
【0015】
次ぎに、図1(b)に示すレール溶接部頭部1の表面温度を測定し、その温度が600℃以上であることを確認する。これは、レール溶接部頭部1の中心部5がオーステナイト変態温度以上であることを確認するためである。表面温度が600℃以上である時点から、レール溶接部頭部1の自然放冷より速い冷却速度の空冷を開始する。レール溶接部頭部1の自然放冷より速い冷却速度の空冷は、例えば頭部熱処理レールのガス圧接の後熱処理に用いられている冷却装置により行う。但し、これに限定されない。冷却装置の風圧は、0.25kPa以上4.90kPa以下の値に設定する。4.90kPaを越える圧力ではマルテンサイト組織生成の危険性があるからである。レール溶接部腹部2及びレール溶接部底部3は自然放冷より速い冷却速度の空冷その他の強制冷却は行わず、自然放冷状態に保つ。このようにして、レール溶接部頭部1の表面温度が400℃以下、例えば350℃程度になるまで自然放冷より速い冷却速度で空冷する。これにより、レール溶接部頭部1はレール溶接部底部3より早く変態を開始することになり、レール溶接部底部3に比較的大きな圧縮残留応力が残存する。
350℃程度から常温程度までは、レール溶接部全体を水冷する。水冷後、レール溶接部をグラインダーで表面仕上げする。さらにその後、超音波探傷検査及び浸透探傷検査を実施する。
以上の工程により本発明のレールのテルミット溶接方法の施工が完了する。
なお以上の実施の形態では、冷却後に仕上げ作業を行ったが、自然放冷より速い冷却速度の空冷開始時にレール溶接部頭部1の中心部5の温度がオーステナイト変態温度以上であることが確保される限り、レール溶接部頭部1の余盛の押抜き除去後、自然放冷より速い冷却速度の空冷開始前に、仕上げ作業を行っても良い。
【0016】
【実施例】
次ぎに、本発明の実施例につき説明する。本実施例では、JIS60kg普通レールをテルミット溶接で接合し、種々の風圧条件で自然放冷より速い冷却速度の空冷を行った。施工後、レール溶接部の疲労試験と、レール溶接部底部3の残留応力測定を行った。実施条件及び疲労試験の結果を表1に示す。
【0017】
【表1】

Figure 0004351402
【0018】
表1に示すように、発明実施例として上記実施の形態に従い、レール溶接部頭部1の自然放冷より速い冷却速度の空冷時の風圧を2.21kPa(試験片No.1,No.2,No.3),0.25kPa(試験片No.4,No.5),4.41kPa(試験片No.6)とする3つの条件で実施した。比較例として、レール溶接部全体を自然放冷する場合(試験片No.7,No.8),レール溶接部頭部の自然放冷より速い冷却速度の空冷時の風圧を0.18kPa(試験片No.9),6.86kPa(試験片No.10)とする場合、レール溶接部全体を2.21kPaの風圧で空冷する場合(試験片No.11)、レール溶接部底部3のみを2.21kPaの風圧で空冷する場合(試験片No.12)を実施した。表1において冷却時間比は、溶接後自然放冷した場合(試験片No.7,No.8)のレール溶接部頭部表面温度が100℃になるまでの時間に対する比率である。強制空冷は350℃までとし、すべての試験において350℃以下の冷却は水冷とした。
本疲労試験は1mスパン中央集中荷重で、レール溶接部底部3に引張応力が作用するようにした3点支持片振り曲げ疲労試験である。最小応力を30N/mm2とし、最大応力を表1に示すような応力範囲(全振幅応力)で変化させ、繰返し数2×106回を限度として試験を実施した。
【0019】
表1に示すように本発明実施例(試験片No.1からNo.6)によると、自然放冷した溶接部に対し、冷却時間は約73%から88%となり、時間の短縮が図られている。それとともに、270N/mm2の応力範囲の試験では、何れの実施例も未破断であった。風圧を2.21kPaとした発明実施例(試験片No.3)では、290N/mm2の応力範囲でも未破断であった。
フラッシュ溶接部・ガス圧接部の疲労強度は320N/mm2、健全なエンクローズアーク溶接部は280N/mm2であるとされている。本試験は、本発明の適用によりテルミット溶接部は健全なエンクローズアーク溶接部の疲労強度とほぼ同等となることを示した。以上の本発明のレールのテルミット溶接方法によって、溶接部の特性、特に疲労強度が格段に改善され、エンクローズアーク溶接部の疲労強度とほぼ同等になることがわかった。
【0020】
一方、溶接後自然放冷した溶接部は230N/mm2では未破断であったが(試験片No.7)、250N/mm2では0.53×106回で破断した(試験片No.8)。冷却速度(風圧)が上記実施の形態の下限値0.25kPaを下回る比較例(試験片No.9)では、250N/mm2で破断し、上記実施の形態の上限値4.90kPaを超える比較例(試験片No.10)では、マルテンサイト組織の生成が認められ、疲労試験でも早期に破断した。溶接部全体を自然放冷より速い冷却速度で空冷した比較例(試験片No.11)及び底部のみを自然放冷より速い冷却速度で空冷した比較例(試験片No.12)の場合にも、疲労試験で低応力範囲の値で早期に破断した。
なお、本発明実施例(試験片No.1からNo.6)の頭部を強制冷却した溶接部に対し硬さ分布の測定を行ったところ、異常な硬さは測定されなかった。
【0021】
次ぎに、レール底部溶接余盛の止端部にひずみゲージを貼付して残留応力を測定した。その測定位置と測定結果を図2に示す。図2(a)は、従来の自然放冷によるレール底部溶接余盛中央の止端部の残留応力分布と、風圧2.21kPaの空冷をレール溶接部頭部1に施した本発明実施例のレール底部溶接余盛中央の止端部の残留応力分布とを対比して示したグラフである。図2(b)は、1から9の各測定位置を示す模式図である。 図2(a)のグラフからわかるように、本発明実施例によれば従来の自然放冷による比較例に対して、レール溶接部底部3の残留応力がより圧縮側に偏在することが確認された。
【0022】
【発明の効果】
請求項1記載の発明によれば、レール溶接部底部の残留応力をより圧縮側とすることができ、その結果、溶接部の強度を向上させることができる。
また請求項1記載の発明によれば、自然放冷より速い冷却速度の空冷により冷却時間を短縮し、工程数の増加及び余盛除去時間の長期化等を抑え、全体として施工時間を短縮することができる。
【0023】
請求項2記載の発明によれば、残留する溶接熱によりレール溶接部頭部の中心部がオーステナイト変態温度以上の温度を有する時点から、レール溶接部頭部の自然放冷より速い冷却速度の空冷を開始するので、レール溶接部頭部とレール溶接部底部とでオーステナイト組織からパーライト組織への変態時期が異なり(但し、変態開始温度はほぼ同等)、レール溶接部頭部はレール溶接部底部より早く、かつ、自然放冷より早く変態を開始することになる。このことによりレール溶接部底部の残留応力をより圧縮側とすることができ、溶接部の強度を向上させることができる。
さらに請求項2記載の発明によれば、少なくとも400℃まで自然放冷より速い冷却速度の空冷する、すなわち400℃以下まで自然放冷より速い冷却速度で空冷することにより、変態が十分に終了するとともに、400℃以下の温度であれば水冷を用いることができるため、冷却時間短縮の効果が十分に得られるからである。
【図面の簡単な説明】
【図1】 本発明のレールのテルミット溶接方法を説明するためのレール溶接部断面図である。
【図2】 (a)は、従来例の残留応力分布と、本発明実施例の残留応力分布とを対比して示したグラフである。(b)は、1から9の各測定位置を示す模式図である。
【符号の説明】
1…レール溶接部頭部
2…レール溶接部腹部
3…レール溶接部底部
4…レール溶接部頭部の余盛
5…レール溶接部頭部1の中心部
6…レール溶接部腹部2及びレール溶接部底部3の余盛[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermite welding method among welding methods used for making rails for rails into a long rail, and more particularly to a method for shortening the construction time and improving the strength of the welded portion.
[0002]
[Prior art]
In recent years, in order to reduce track maintenance costs and noise and vibration, the use of long rails with continuous seams by welding is becoming widespread. The use of long rails for railroads has many advantages such as eliminating the joints that are the weakest points of the track, reducing noise, vibration and maintenance costs, and improving riding comfort. This long rail is generally manufactured by welding a rail of 25 m to 50 m.
As the welding method, flash welding, gas pressure welding, enclosing arc welding, and thermite welding are adopted in Japan. Among them, thermite welding is widely used as an on-site welding method for rails because it uses lightweight tools, does not require a large power supply or pressure device, has excellent mobility, and has a relatively short welding time. It accounts for about 40% of all rail welding.
The thermite welding method is a welding method using a chemical reaction between a metal oxide such as iron oxide and a metal having a strong oxidation tendency such as aluminum. In general, in thermite welding of a rail, two rail end portions are placed facing each other with a space therebetween, and a cavity is formed by surrounding a gap between the rail end portions and its periphery with a refractory mold. Furthermore, a reaction crucible is installed above the cavity, and molten iron generated by a chemical reaction between iron oxide and aluminum in the crucible is injected into the cavity with an outflow hole at the bottom of the crucible, and the rail is inserted. Weld.
In thermite welding, there is no concentrated heat source like the arc in arc welding. For this reason, in thermite welding, the melting of the rail steel tends to be incomplete compared with the arc welding, and a coarse penetration failure may occur. In order to avoid this, preheating at a high temperature is performed, but a relatively large surplus is formed so that a sufficient amount of heat is applied to the vicinity of the rail outer surface where melting of the base metal is likely to be particularly disadvantageous. After welding, the extra portion of the rail welded portion head is removed along the rail shape, and the extra portion of the rail welded portion abdomen and bottom portion is left as it is to improve the strength of the welded portion. And after a rail welded part is cooled to normal temperature, the ultrasonic flaw detection inspection and the penetration flaw inspection of a rail welded part are implemented.
[0003]
[Problems to be solved by the invention]
As described above, thermite welding is widely used because it uses a light tool, does not require a large power source or a pressurizing device, is excellent in mobility, and has a relatively short welding time.
On the other hand, however, the amount of heat input to the thermite weld is relatively large, and from the time the molten steel is poured into the mold to the room temperature, that is, the temperature at which ultrasonic inspection can be carried out, it is currently about There is a time burden of taking one hour. Thermite welding is mainly performed on-site, and it is necessary to finish the work in a limited amount of time, so the total time from welding preparation to the end of welding, as well as grinder finishing and ultrasonic inspection. There is a strong demand for further shortening.
Therefore, water cooling is performed to shorten the cooling time as much as possible. However, if priority is given to shortening the time and water cooling is performed from a high temperature above the transformation temperature, a martensitic structure, which is a hard and brittle structure, is generated in the weld, and the weld may be damaged by the stress generated when passing through the train. is there. Therefore, it is impossible to inadvertently water-cool the welded portion from a high temperature above the transformation temperature. Therefore, water cooling is usually performed when the temperature of the rail becomes 300 ° C. or lower. Here, the temperature of 300 ° C. or lower is higher at the center temperature than the rail surface temperature and the center temperature, but if the surface temperature is 300 ° C. or lower, the entire rail weld is sufficiently below the transformation temperature. It is because it is certain.
As described above, since the strength of the welded portion is maintained, there is a problem that it is difficult to further reduce the cooling time.
[0004]
On the other hand, since the weld metal of thermite welding is a cast structure, it has a relatively large surging at the bottom of the rail welded part, etc., so that it has practically sufficient strength, but the joint part by other welding The Shinkansen track in Japan, which is slightly inferior in strength and positioned as a representative of the world's railways, currently has few use cases of thermite welding, and its long rail is mainly used for the other three types of welding methods listed above. It is done by.
[0005]
The present invention has been made in view of the above problems in the prior art, and in the rail thermite welding method, it is an object to improve the workability by shortening the cooling time while maintaining the strength of the thermite weld. And
Another object of the present invention is to improve the characteristics and performance of the thermite welded portion, in particular, to improve the fatigue strength, in the rail thermite welding method.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to removing the extra welding at the head of the rail welded portion when the rail is welded to thermite, rather fast than natural cooling, wherein the dividing heat weld to air at a temperature lowering speed slower than the cooling rate martensite structure is generated.
[0007]
In general, when welding is performed, the welded part is deformed by thermal stress during the cooling process. At that time, if the deformation is restricted by external restraint or self restraint, the deformation corresponding to the stress cannot be made, and a part of the generated stress remains in the member as a residual stress. The residual stress is balanced in the cross section, and the integral value in the cross section becomes zero. Therefore, if there is a local tension region, the other region is necessarily compressed. When a stress is repeatedly applied from the outside to a portion where the tensile residual stress exists, the residual stress may be added to the stress due to the external load, and the fatigue strength may be reduced. In the case of rails, tensile stress is applied to the bottom of the rail as the train passes. Therefore, it can be said that it is advantageous in terms of strength to leave the compressive residual stress at the bottom of the rail.
Therefore, according to the first aspect of the present invention, the rail welded portion head is air-cooled at a cooling rate faster than the temperature drop rate and the natural cooling at the bottom of the rail welded portion. As a result, the residual stress at the bottom of the rail welded portion can be further compressed, and as a result, the strength of the welded portion can be improved.
The bottom of the rail welded portion may be naturally cooled. That is, it is only necessary to air- cool only the rail weld head at a cooling rate faster than natural cooling . When the bottom of the rail weld is also air-cooled at a higher cooling rate than natural cooling , the wind pressure applied to the rail weld head is higher than the wind pressure applied to the rail weld bottom. Air-cool at a cooling rate faster than the temperature drop rate at the bottom of the weld.
[0008]
In addition, according to the first aspect of the present invention, since the rail weld head is air-cooled at a cooling rate faster than that of natural cooling , the cooling time is reduced as compared with the case of natural cooling to a temperature at which water cooling can be started. It can be shortened.
Furthermore, according to the first aspect of the invention, the rail weld head is cooled by air at a cooling rate faster than that of natural cooling to remove the heat of welding, that is, air cooling at a cooling rate faster than the welding heat and natural cooling. Thus, the cooling rate is controlled and the heat treatment is completed, so that it is not necessary to perform the heat treatment step of reheating and secondary cooling, and the effect of shortening the construction time as a whole can be obtained.
[0009]
When removing the extra portion of the head portion of the rail welded portion after cooling, a large amount of the hardened extra portion must be removed with a grinder at the time of finishing, leading to an extension of the working time. However, according to the first aspect of the invention, the rail welded portion head is removed by punching and shearing after the welding, before the start of air cooling at a cooling rate faster than that of natural cooling. As a whole, the effect of shortening the construction time can be obtained.
[0010]
The invention according to claim 2 is the rail thermite welding method according to claim 1,
From when the central portion of the rail weld head by welding heat remaining has a temperature above the austenite transformation temperature, the temperature of the rail weld head surface and characterized in that until at least 400 ° C., performs pre SL air To do.
[0011]
In order to bring the temperature of the welded portion to room temperature in a short time, it is not special to perform forced cooling. However, in this technical field, it is a condition that the martensite structure cannot be generated in the rail. Therefore, it is necessary to shorten the cooling time while controlling the cooling speed so as not to generate the martensite structure. is there.
More from the viewpoint of claim 1 and claim 2, wherein the invention employs the fast rather, air slower cooling rate than the temperature lowering speed of martensitic structure is produced from natural cooling.
According to the second aspect of the present invention, since the center portion of the rail welded portion head has a temperature equal to or higher than the austenite transformation temperature due to the residual welding heat, the cooling rate of the rail welded portion head is higher than that of natural cooling. Since air cooling starts, the transformation time from the austenite structure to the pearlite structure differs between the rail weld head and the rail weld bottom (however, the transformation start temperature is almost the same), and the rail weld head is the bottom of the rail weld. The transformation will begin sooner and sooner than natural cooling. As a result, the residual stress at the bottom of the rail welded portion can be further compressed, and the strength of the welded portion can be improved.
Furthermore, according to the invention described in claim 2, the transformation is sufficiently completed by air-cooling at a cooling rate faster than natural cooling to at least 400 ° C., that is, air cooling at a cooling rate faster than natural cooling to 400 ° C. or less. At the same time, water cooling can be used at a temperature of 400 ° C. or lower, so that the effect of shortening the cooling time can be sufficiently obtained.
[0012]
As a means of air cooling at a cooling rate faster than natural cooling , a necessary and controlled wind pressure can be easily obtained by a cooling device used at the time of heat treatment after gas pressure welding of the head heat treatment rail, for example.
In the implementation, if the surface temperature of the rail weld head is measured and confirmed to be 600 ° C. or higher, it can be confirmed that the center of the rail weld head is equal to or higher than the austenite transformation temperature. wear.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A rail thermite welding method according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a cross-sectional view of a rail weld for explaining the rail thermite welding method of the present invention. The following is one embodiment of the present invention and does not limit the present invention.
[0014]
First, two rail end portions (not shown) are placed facing each other with a space therebetween, and a refractory mold (not shown) surrounds the gap between the rail end portions and the periphery thereof to form a cavity (not shown). Form. A reaction crucible (not shown) is installed above the cavity, and the iron oxide in the crucible and the molten iron produced by the chemical reaction between some component-adjusted agents and aluminum are passed through the outflow holes at the bottom of the crucible. Open and inject into the cavity and weld the rail.
After welding, the mold is opened, and the surplus 4 of the rail weld head 1 is removed. As shown in FIG. 1, the rail welded portion includes a rail welded portion head 1, a rail welded portion abdominal portion 2, and a rail welded portion bottom portion 3. The extra portion 4 of the rail welded portion head 1 shown in FIG. 1A is removed by punching shearing or the like to obtain a cross section as shown in FIG. That is, the surplus portions 6 of the rail welded portion abdomen 2 and the rail welded portion bottom portion 3 are not removed and are left as they are.
[0015]
Next, the surface temperature of the rail welded head 1 shown in FIG. 1B is measured, and it is confirmed that the temperature is 600 ° C. or higher. This is to confirm that the central portion 5 of the rail welded portion head 1 is not lower than the austenite transformation temperature. From the time when the surface temperature is 600 ° C. or higher, air cooling at a cooling rate faster than the natural cooling of the rail weld head 1 is started. Air cooling at a faster cooling rate than the natural cooling of the rail welded portion head 1 is performed by, for example, a cooling device used for heat treatment after gas pressure welding of the head heat treatment rail. However, it is not limited to this. The wind pressure of the cooling device is set to a value of 0.25 kPa to 4.90 kPa. This is because if the pressure exceeds 4.90 kPa, there is a risk of martensite structure formation. The rail welded portion abdomen 2 and the rail welded portion bottom 3 are kept in a naturally cooled state without performing air cooling or other forced cooling at a cooling rate faster than that of natural cooling. In this way, air cooling is performed at a cooling rate faster than natural cooling until the surface temperature of the rail weld head 1 becomes 400 ° C. or lower, for example, about 350 ° C. As a result, the rail weld head 1 starts transformation earlier than the rail weld bottom 3 and a relatively large compressive residual stress remains in the rail weld bottom 3.
From about 350 ° C. to room temperature, the entire rail weld is water cooled. After water cooling, the rail weld is finished with a grinder. Thereafter, an ultrasonic inspection and a penetrant inspection are performed.
The above-described steps complete the construction of the rail thermite welding method of the present invention.
In the above embodiment, finishing work is performed after cooling, but it is ensured that the temperature of the central portion 5 of the rail weld head 1 is equal to or higher than the austenite transformation temperature at the start of air cooling at a cooling rate faster than natural cooling. As long as it is done, the finishing work may be performed after the blanking of the rail welded portion head 1 is removed and before the start of air cooling at a cooling rate faster than natural cooling.
[0016]
【Example】
Next, examples of the present invention will be described. In this example, JIS 60 kg ordinary rails were joined by thermite welding, and air cooling at a cooling rate faster than natural cooling was performed under various wind pressure conditions. After the construction, a fatigue test of the rail welded part and a residual stress measurement of the rail welded part bottom 3 were performed. Table 1 shows the implementation conditions and the results of the fatigue test.
[0017]
[Table 1]
Figure 0004351402
[0018]
As shown in Table 1, according to the above embodiment as an example of the invention, the wind pressure at the time of air cooling at a cooling rate faster than the natural cooling of the rail weld head 1 is 2.21 kPa (test pieces No. 1 and No. 2). No. 3), 0.25 kPa (test piece No. 4, No. 5), and 4.41 kPa (test piece No. 6). As a comparative example, when the entire rail weld is naturally cooled (test pieces No. 7 and No. 8), the wind pressure during air cooling at a cooling rate faster than the natural cooling of the head of the rail weld is 0.18 kPa (test In the case of piece No. 9), 6.86 kPa (test piece No. 10), when the whole rail welded part is air-cooled with a wind pressure of 2.21 kPa (test piece No. 11), only the rail welded part bottom 3 is 2 The case of air cooling with a wind pressure of 21 kPa (test piece No. 12) was carried out. In Table 1, the cooling time ratio is a ratio to the time until the rail weld head surface temperature reaches 100 ° C. in the case of natural cooling after welding (test pieces No. 7 and No. 8). Forced air cooling was set to 350 ° C., and cooling below 350 ° C. was water cooling in all tests.
This fatigue test is a three-point support single swing bending fatigue test in which a tensile stress acts on the bottom 3 of the rail welded portion with a center concentrated load of 1 m span. The test was performed with the minimum stress being 30 N / mm 2 and the maximum stress being varied within the stress range (total amplitude stress) as shown in Table 1, with a limit of 2 × 10 6 repetitions.
[0019]
As shown in Table 1, according to the examples of the present invention (test pieces No. 1 to No. 6), the cooling time is about 73% to 88% with respect to the naturally cooled welded portion, and the time can be shortened. ing. At the same time, in the test in the stress range of 270 N / mm 2 , all the examples were unbroken. In the inventive example (test piece No. 3) in which the wind pressure was 2.21 kPa, it was not broken even in the stress range of 290 N / mm 2 .
Fatigue strength of the flash butt welding unit, Gas Pressure unit 320N / mm 2, healthy enclosed arc welding unit is to be 280N / mm 2. This test shows that the application of the present invention results in a thermite weld that is approximately equivalent to the fatigue strength of a sound enclosure arc weld. It has been found that by the above-described rail thermite welding method of the present invention, the characteristics of the welded portion, particularly the fatigue strength, is remarkably improved, and is almost equal to the fatigue strength of the enclosed arc welded portion.
[0020]
On the other hand, the welded part that was naturally allowed to cool after welding was unbroken at 230 N / mm 2 (test piece No. 7), but at 250 N / mm 2 it was broken at 0.53 × 10 6 times (test piece No. 7). 8). In the comparative example (test piece No. 9) in which the cooling rate (wind pressure) is lower than the lower limit value of 0.25 kPa of the above embodiment, the comparison breaks at 250 N / mm 2 and exceeds the upper limit value of 4.90 kPa of the above embodiment. In the example (test piece No. 10), formation of a martensite structure was observed, and the fatigue test also broke early. Also in the case of the comparative example (test piece No. 11) in which the entire welded part was air-cooled at a cooling rate faster than natural cooling and the comparative example (test piece No. 12) in which only the bottom was air-cooled at a cooling rate faster than natural cooling. In the fatigue test, it broke early at a value in the low stress range.
In addition, when hardness distribution was measured with respect to the welded part in which the head of the embodiment of the present invention (test pieces No. 1 to No. 6) was forcibly cooled, no abnormal hardness was measured.
[0021]
Next, the residual stress was measured by attaching a strain gauge to the toe of the rail bottom weld surplus. The measurement position and measurement result are shown in FIG. FIG. 2 (a) shows an example of the present invention in which the residual stress distribution at the center of the bottom of the rail bottom weld surplus by natural cooling and the air cooling at a wind pressure of 2.21 kPa are applied to the rail weld head 1. It is the graph which contrasted and showed the residual stress distribution of the toe part of a rail bottom part welding surplus center. FIG. 2B is a schematic diagram showing the measurement positions 1 to 9. As can be seen from the graph of FIG. 2A, according to the embodiment of the present invention, it was confirmed that the residual stress of the rail welded portion bottom portion 3 is more unevenly distributed on the compression side than the conventional comparative example by natural cooling. It was.
[0022]
【The invention's effect】
According to the first aspect of the present invention, the residual stress at the bottom of the rail welded portion can be further compressed, and as a result, the strength of the welded portion can be improved.
In addition, according to the invention described in claim 1, the cooling time is shortened by air cooling at a cooling rate faster than that of natural cooling , the increase in the number of processes and the extension of the surplus removal time are suppressed, and the construction time is shortened as a whole. be able to.
[0023]
According to the second aspect of the present invention, air cooling at a cooling rate faster than the natural cooling of the rail weld head is performed from the time when the center of the rail weld head has a temperature equal to or higher than the austenite transformation temperature due to residual welding heat. Therefore, the transformation time from the austenite structure to the pearlite structure is different between the rail weld head and the bottom of the rail weld (however, the transformation start temperature is almost the same), and the rail weld head is closer to the rail weld bottom. The transformation will start sooner and sooner than natural cooling. As a result, the residual stress at the bottom of the rail welded portion can be further compressed, and the strength of the welded portion can be improved.
Further, according to the invention described in claim 2, the transformation is sufficiently completed by air cooling at a cooling rate faster than natural cooling to at least 400 ° C., that is, by air cooling at a cooling rate faster than natural cooling to 400 ° C. or less. At the same time, water cooling can be used at a temperature of 400 ° C. or lower, so that the effect of shortening the cooling time can be sufficiently obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rail weld for explaining the rail thermite welding method of the present invention.
FIG. 2A is a graph showing a comparison between a residual stress distribution of a conventional example and a residual stress distribution of an example of the present invention. (B) is a schematic diagram which shows each measurement position of 1-9.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rail welding part head 2 ... Rail welding part abdominal part 3 ... Rail welding part bottom part 4 ... Rail welding part head extra 5 ... Central part 6 of rail welding part head 1 ... Rail welding part abdominal part 2 and rail welding Extra portion of bottom 3

Claims (2)

レールをテルミット溶接するに際し、レール溶接部頭部の余盛を除去し、レール溶接部頭部を、レール溶接部底部の温度降下速度及び自然放冷より速く、マルテンサイト組織が生成される温度降下速度より遅い冷却速度で空冷して溶接熱を除熱することを特徴とするレールのテルミット溶接方法。Upon the rails thermite welding, to remove excess weld the rail weld head rail weld head rather fast the temperature lowering speed and natural cooling of the rail weld bottom temperature martensite structure is generated A method for thermite welding of rails, wherein the welding heat is removed by air cooling at a cooling rate slower than the descending rate . 請求項1記載のレールのテルミット溶接方法において、
残留する溶接熱によりレール溶接部頭部の中心部がオーステナイト変態温度以上の温度を有する時点から、レール溶接部頭部表面の温度が少なくとも400℃になるまで、前記空冷を行うことを特徴とするレールのテルミット溶接方法。
In the method for thermite welding of a rail according to claim 1,
The air cooling is performed until the temperature of the surface of the rail welded portion head reaches at least 400 ° C. from the time when the center portion of the rail welded portion has a temperature equal to or higher than the austenite transformation temperature due to residual welding heat. Rail thermite welding method.
JP2001065300A 2001-03-08 2001-03-08 Rail thermit welding method Expired - Lifetime JP4351402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065300A JP4351402B2 (en) 2001-03-08 2001-03-08 Rail thermit welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065300A JP4351402B2 (en) 2001-03-08 2001-03-08 Rail thermit welding method

Publications (2)

Publication Number Publication Date
JP2002263866A JP2002263866A (en) 2002-09-17
JP4351402B2 true JP4351402B2 (en) 2009-10-28

Family

ID=18923977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065300A Expired - Lifetime JP4351402B2 (en) 2001-03-08 2001-03-08 Rail thermit welding method

Country Status (1)

Country Link
JP (1) JP4351402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203538A (en) * 2012-11-30 2013-07-17 中国十九冶集团有限公司南京分公司 Thermit welding method for mobile mechanical orbit of coke oven

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365377B (en) * 2009-03-30 2014-03-05 新日铁住金株式会社 Method of cooling welded rail section, device for cooling welded rail section, and welded rail joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203538A (en) * 2012-11-30 2013-07-17 中国十九冶集团有限公司南京分公司 Thermit welding method for mobile mechanical orbit of coke oven
CN103203538B (en) * 2012-11-30 2015-12-23 中国十九冶集团有限公司南京分公司 A kind of thermite welding method being applied to the rail of pusher machine/charging car/coke guide/coke-quenching vehicle track

Also Published As

Publication number Publication date
JP2002263866A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP4819183B2 (en) Rail welded portion cooling method, rail welded portion cooling device, and rail welded joint
TWI316550B (en) Method of improving quality and reliability of welded rail joint properties by ultrasonic impact treatment
JP5549782B2 (en) Reheating method for rail welds
JP2010188382A (en) Method of cooling weld zone of rail
JP4351402B2 (en) Rail thermit welding method
JP5532528B2 (en) Rail thermit welding method
JP2007175707A (en) Method of improving fatigue strength in rail weld zone
JP2008266675A (en) Method for producing rail having excellent breaking resistance
JP4394860B2 (en) Welding method using ultra low temperature transformation melt, high fatigue strength joint and ultra low temperature transformation melt
JPH11279696A (en) Axle for railway car and its production
JP5176310B2 (en) Rail thermite welding method and long rail
JP3924235B2 (en) High fatigue strength fillet welding method for thin steel sheet
JP4754175B2 (en) Fillet welded joint of thin steel plate using transformation expansion of weld metal
JP2005118871A (en) Method for treating thermit weld zone of rail
JPH1158042A (en) Thermit welding method for bainting steel rail
JP4416614B2 (en) Welding repair method for gear box for railway vehicles
JP4267334B2 (en) Heat treatment method for high carbon steel pearlite rail
JP2004136311A (en) Welded joint having high fatigue strength, and method for improving fatigue strength of welded joint
JP4173999B2 (en) Fillet welding method and fillet welded joint of steel plate with excellent fatigue strength of welded part
JP4234892B2 (en) Manufacturing method of bainitic rail with excellent brittle crack growth and fatigue properties
JP2011020162A (en) Punching shear device and method for forming welded joint using the same
JP4304892B2 (en) Welded joint
KR100225258B1 (en) Connecting method of the reinforcement bar
JPH09137227A (en) Production of high wear resistant pearlite rail
JP2004136312A (en) Thin steel sheet fillet welded joint having high fatigue strength, and method for improving its fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140731

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term