JP4348877B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP4348877B2
JP4348877B2 JP2001159097A JP2001159097A JP4348877B2 JP 4348877 B2 JP4348877 B2 JP 4348877B2 JP 2001159097 A JP2001159097 A JP 2001159097A JP 2001159097 A JP2001159097 A JP 2001159097A JP 4348877 B2 JP4348877 B2 JP 4348877B2
Authority
JP
Japan
Prior art keywords
insulating member
gas
plasma processing
processing method
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001159097A
Other languages
Japanese (ja)
Other versions
JP2002346493A (en
Inventor
康志 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2001159097A priority Critical patent/JP4348877B2/en
Publication of JP2002346493A publication Critical patent/JP2002346493A/en
Application granted granted Critical
Publication of JP4348877B2 publication Critical patent/JP4348877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Cleaning In General (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、箱や袋や管(パイプ)など形状を有する部材の内面の表面処理を行うためのプラズマ処理方法であって、特に、ガラスや合成樹脂で形成される瓶(ボトル)やトレー等の食品容器や医療部材の内面及び該部材の中に封入された他の部材の表面を表面処理又は殺菌処理するために好適に用いることができるプラズマ処理方法に関するものである。
【0002】
【従来の技術】
従来より、箱や管など形状を有する部材の内面を活性化したガス(プラズマ)で表面処理すること、例えば、部材の内面に付着した有機物等の汚染物を除去することなど行われている。このような表面処理の一例として、特開昭57−12032号公報には、活性化したガスを瓶等の部材の開口から部材の内部に吹き込むようにすることが開示されている。
【0003】
また、特開平4−334543号公報には、絶縁体管の外周に複数個のリング状電極を設け、絶縁体管の内側に希ガス等を流通させながら電極間に電圧を印加することによって、絶縁体管の内側にグロー放電プラズマを発生させ、このプラズマで絶縁体管の内面を表面処理することが開示されている。
【0004】
【発明が解決しようとする課題】
上記特開昭57−12032号公報に記載の方法では、内部に小さな空間を有する部材にあってはその内面全体をほぼ均一(均質)に表面処理することができる。しかし、内部に大きな空間を有する部材の内面を表面処理しようとした場合には、開口部近傍の内面にしか十分な表面処理ができないものであった。この原因は、活性化したガスが開口部から部材の内部に吹き込まれてから部材の内部全体に広がるまでに時間を要し、その間に活性化したガスが失活して活性を失い、開口部から離れた箇所の内面に達しても十分な表面処理を行うことができないためである考えられる。従って、部材の内面全体に均一な表面処理を行うことができないという問題があった。
【0005】
また、上記特開平4−334543号公報に記載の方法では、電極を設けた部分にしかプラズマが生成されないので、表面処理される部分(エリア)が電極を設けた部分に限定されてしまい、絶縁体管の内面全体に均一な表面処理を行うことができないという問題があった。
【0006】
本発明は上記の点に鑑みてなされたものであり、部材の内面全体に均一な表面処理を施すことができるプラズマ処理方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の請求項1に係るプラズマ処理方法は、ガスバリア性を有する絶縁性部材1の内部に、多孔体にしみこませた揮発性物質7を配置し、この絶縁性部材1の内部をガス2で充満した後、絶縁性部材1を密閉し、大気圧近傍の圧力下において、この絶縁性部材1に電磁波4を照射することにより絶縁性部材1の内部に充満したガス2を活性化することを特徴とするものである。
【0008】
また、本発明の請求項2に係るプラズマ処理方法は、請求項1の構成に加えて、絶縁性部材1の内面を殺菌することを特徴とするものである。
【0009】
また、本発明の請求項3に係るプラズマ処理方法は、請求項1又は2の構成に加えて、絶縁性部材1の内部に他の部材3を配置することを特徴とするものである。
【0010】
また、本発明の請求項4に係るプラズマ処理方法は、請求項1乃至3のいずれかの構成に加えて、絶縁性部材1が合成樹脂で形成されていることを特徴とするものである。
【0011】
また、本発明の請求項5に係るプラズマ処理方法は、請求項1乃至4のいずれかの構成に加えて、絶縁性部材1がペットボトル6であることを特徴とするものである。
【0013】
また、本発明の請求項に係るプラズマ処理方法は、請求項1乃至5のいずれかの構成に加えて、揮発性物質が過酸化水素であることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0015】
本発明のプラズマ処理方法で表面処理される絶縁性部材1としては、ガスの通過がほとんどないガスバリア性を有し、且つ電気的な絶縁性を有する材料で形成されたものであれば何でも良く、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート、塩化ビニル樹脂、フッ素樹脂、シリコーン樹脂等の合成樹脂やガラスなど材料を例示することができる。また、絶縁性部材1は箱状、袋状、管状(筒状)、瓶状などの内部に空間を有している形状に形成したものであれば何でも良い。
【0016】
ガス2としては、希ガス、窒素ガス、空気などをそれぞれ単独で用いたりあるいは併用したりすることができる。また、希ガス、窒素ガス、空気の少なくとも一つを主体とし、これに必要に応じて一つあるいは複数種の反応性を有する反応性ガスを添加した混合ガスを用いても良く、反応性ガスを含有するガス2を用いることによって、例えば、絶縁性部材1の内面に存在する有機物のクリーニングや金属酸化物の還元効果を実現することができる。希ガスとしては、ヘリウム、アルゴン、ネオン、クリプトンなどを使用することができるが、放電の安定性や経済性を考慮すると、アルゴンやヘリウムを用いるのが好ましい。また、反応性ガスの種類は処理の内容によって任意に選択することができ、例えば、酸素、空気、CO2、N2Oなどの酸化性ガス、CF4などのフッ素系ガス、水素、アンモニアなどの還元性ガスを用いることができる。反応性ガスの添加量は主体の全量に対して10体積%以下、好ましくは0.1〜5体積%の範囲である。反応性ガスの添加量が0.1体積%未満であれば、目的とするプラズマ処理の効果が低くなる恐れがあり、反応性ガスの添加量が10体積%を超えると、グロー状の放電が不安定になる恐れがある。
【0017】
また、該絶縁性部材1の内部に揮発性物質を配置することもできる。これは例えば、布状物質(例えば、脱脂綿など)やシリカゲル、ゼオライトモレキュラーシーブのような多孔体に揮発性物質をしみこませ、これを該絶縁性部材1の内部に配置する。そして、この揮発性物質に電磁波を照射すると、一部揮発した物質が放電により活性な状態になり、処理効果が大きくなるものである。揮発性物質としては特に限定しないが、過酸化水素水は殺菌に効果がある。また、エタノールやアセトンなどの有機物質を用いることによっても表面処理効果が向上する。
【0018】
そして、上記のような絶縁性部材1の内面をプラズマ処理にて表面処理するにあたっては次にようにして行う。まず、絶縁性部材1の内部にガス2を注入して充満させる。この時、絶縁性部材1が開口部を有するものであれば、その開口部からガス2を注入すればよいが、絶縁性部材1に開口部が無い場合はガス注入用の孔あけをあけて、ここからガス2を絶縁性部材1の内部に注入する。また、絶縁性部材1の内部に充満させるガスは未活性であっても良いし、活性化されているものであっても良い。
【0019】
次に、絶縁性部材1の上記の開口部を閉塞して絶縁性部材1の内部を密閉することにより、ガス2が漏れないように絶縁性部材1の内部にガス2を封入する。この時、合成樹脂製の袋のように絶縁性部材1が保形性の小さいものである場合はその開口部をゴムバンド等の締結具12で縛って閉塞することができ、また、絶縁性部材1がある程度保形性を有するものであればその開口部に合成樹脂等の絶縁性材料を詰めて閉塞することができる。さらに、絶縁性部材1が箱状(容器)に形成されている場合はその開口部に蓋等を取着して閉塞することができる。
【0020】
この後、大気圧近傍の圧力下(93.3〜106.7kPa(700〜800Torr))において、ガス2を充満させて封入した絶縁性部材1に電磁波4を照射する。電磁波4としては例えば10MHz〜3GHzの周波数を有する高周波やマイクロ波を用いることができるが、これに限定されるものではなく、電磁波4の周波数などの照射条件はガスの組成等に応じて絶縁性部材1の内部に放電を発生させることができるように設定すればよい。図1に本発明で使用するプラズマ処理装置の一例を示す。このプラズマ処理装置は、電気的にシールドされた処理容器10の内部に電磁波発生器11を備えて形成されるものである。そして、処理容器10内にガス2を充満させた絶縁性部材1を入れた後、矢印で示すように、電磁波発生器11から絶縁性部材1に電磁波4を照射し、このエネルギーで絶縁性部材1の内部でグロー状の放電を発生させてガス2を活性化させる。これにより、絶縁性部材1の内部で活性化したガス2、すなわち、ラジカルやイオン等を含むプラズマが絶縁性部材1の内面と接触することになり、絶縁性部材1の内面をプラズマ処理により表面処理(クリーニングや殺菌処理)することができるものである。尚、このように絶縁性部材1の内面を表面処理する時に、処理容器10の内部に活性化したガスを充満させることにより、絶縁性部材1の外面を内面と同時に表面処理してもよい。また、絶縁性部材1の内面を表面処理する時に、処理容器10の内部に未活性のガスを充満させ、この未活性のガスを電磁波発生器11から発生させた電磁波により活性化し、活性化したガスにより絶縁性部材1の外面を内面と同時に表面処理してもよい。
【0021】
上記のように本発明では、活性化したガスを絶縁性部材1の開口部から吹き込んで絶縁性部材1の内面を表面処理するのではなく、絶縁性部材1にガスを充満させて封入した後、電磁波を照射することにより絶縁性部材1の内部で活性化したガスを生成し、この活性化したガスで絶縁性部材1の内面を表面処理するので、絶縁性部材1の内部が大きな空間であっても、活性化したガス2を絶縁性部材1の内部の全体に亘って発生させて、絶縁性部材1の内面全体に活性化したガス2を到達させて接触させることができ、均一(均質)な表面処理を行うことができるものである。また、絶縁性部材1が蛇腹状などの歪な形状に形成されていて絶縁性部材1の内面が凹凸面で構成されている場合、開口部から活性化したガスを吹き込む方法では凹面の部分に活性化したガスが到達しにくくて十分な表面処理を行うことができないが、本発明では絶縁性部材1にガスを充満させて封入することにより凹面の部分にまでガスを到達させた後、電磁波を照射することにより絶縁性部材1の内部で活性化したガスを生成しているので、凹面の部分にも活性化したガス2を十分に接触させることができ、絶縁性部材1の内面全体を均一に表面処理することができるものである。また、上記特開平4−334543号公報に記載の方法では、ガスを絶縁体管の内側で流通させているために、ガスの流れにより放電が不安定になることがあるが、本発明では絶縁性部材1の内部でガス2の流れがほとんど無いので、絶縁性部材1の内部で発生するグロー状の放電が不安定になることがなく、均一で安定した表面処理を継続的に行うことができるものである。
【0022】
図2に他の実施の形態を示す。このプラズマ処理方法は絶縁性部材1が飲料水等を入れるためのペットボトル(ポリエチレンテレフタレート製の食品容器)6であって、その内面を殺菌処理する方法を示すものである。この場合、上記と同様にしてペットボトル6の内部にガス2を注入して充満させるが、これよりも前に予めペットボトル6の内部に過酸化水素などの揮発性物質7を適量(少量)入れておくようにする。揮発性物質7としては上記と同様のものを使用することができ、例えば、ゼオライト系モレキュラーシーブ等の多孔体に34%過酸化水素水を充填したものを絶縁性部材1の内部に配置するようにする。そして、ペットボトル6の開口部をキャップ13で蓋した後、上記と同様にして電磁波4を照射してプラズマ処理を行うものであるが、これと同時に揮発性物質7が揮発して絶縁性部材1の内面に殺菌などの作用を及ぼすものであり、この揮発性物質7の作用によっても絶縁性部材1の内面に表面処理を施すことができるものである。
【0023】
この実施の形態では、絶縁性部材1の内面を活性化したガス2で表面処理すると同時に、揮発性物質7により絶縁性部材1の内面を表面処理することができ、表面処理を短時間でより効果的に行うことができるものである。また、殺菌とは別に、ペットボトル6の内面に例えばダイヤモンド状炭素やアルミナ、シリカ、チタニアなどの無機質薄膜または金属薄膜を形成する前に、上記のような表面処理を行うことにより、薄膜との密着力を高める効果もある。その場合、揮発性物質7は必ずしも必要ではないが、エタノールやアセトンなどを揮発性物質7として用いることもできる。上記のような薄膜は、絶縁性部材1のガスバリア性の付与及び向上に効果がある。尚、従来から紫外線照射による殺菌が行われているが、この場合は、絶縁性部材1が透明である必要がある。しかし、本発明では不透明の絶縁性部材1であってもその内面を表面処理することができるものである。
【0024】
図3には他の実施の形態を示す。このプラズマ処理方法は、箱形に形成される絶縁性部材1の内部に他の部材3を配置した状態で、上記と同様のプラズマ処理を行う例を示すものである。その他の構成は上記実施の形態と同様である。絶縁性部材1の内部に配置する他の部材3としては、外面に表面処理を施したいものであれば任意のものを用いることができ、例えば、半導体チップなどを実装するためのリードフレームや回路基板などを挙げることができる。尚、上記のリードフレームや回路基板は半導体チップを実装した後、ワイヤボンディングや樹脂封止されるものであるが、この時にリードフレームや回路基板の回路のワイヤボンディング性や封止樹脂との密着性を向上させるために、有機物の除去などの表面処理(クリーニング)が必要である。
【0025】
この実施の形態では、内面に表面処理が必要な絶縁性部材1と外面に表面処理が必要な他の部材3とを同時にプラズマ処理することができ、二つの部材に対して表面処理を短時間でより効果的に行うことができるものである。
【0026】
【発明の効果】
上記のように本発明の請求項1の発明は、ガスバリア性を有する絶縁性部材の内部に、多孔体にしみこませた揮発性物質を配置し、この絶縁性部材の内部をガスで充満した後、絶縁性部材を密閉し、大気圧近傍の圧力下において、この絶縁性部材に電磁波を照射することにより絶縁性部材の内部に充満したガスを活性化するので、活性化したガスを絶縁性部材の内部の全体に亘って発生させて、絶縁性部材の内面全体に活性化したガスを到達させて接触させることができ、絶縁性部材の内部が大きな空間であっても、絶縁性部材の内面全体に均一な表面処理を行うことができるものである。また、多孔体にしみこませた揮発性物質を絶縁性部材の内部に配置するので、活性化したガスによる絶縁性部材の内面の表面処理と同時に、揮発した揮発性物質によっても絶縁性部材の内面の表面処理を行うことができ、表面処理を短時間でより効果的に行うことができるものである。
【0027】
また、本発明の請求項2の発明は、絶縁性部材の内部を殺菌するので、絶縁性部材の内面全体を均一に殺菌することができるものである。
【0028】
また、本発明の請求項3の発明は、絶縁性部材の内部に他の部材を配置するので、内面に表面処理が必要な絶縁性部材と外面に表面処理が必要な他の部材とを同時にプラズマ処理することができ、二つの部材に対して表面処理を短時間でより効果的に行うことができるものである。
【0029】
また、本発明の請求項6の発明は、絶縁性部材の内部に揮発性物質を配置するので、活性化したガスによる絶縁性部材の内面の表面処理と同時に、揮発した揮発性物質によっても絶縁性部材の内面の表面処理を行うことができ、表面処理を短時間でより効果的に行うことができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す断面図である。
【図2】同上の他の実施の形態を示す断面図である。
【図3】同上の他の実施の形態を示す断面図である。
【符号の説明】
1 絶縁性部材
2 ガス
3 他の部材
4 電磁波
6 ペットボトル
7 揮発性物質
[0001]
BACKGROUND OF THE INVENTION
The present invention is a plasma processing method for performing a surface treatment on the inner surface of a member having a shape such as a box, bag, tube (pipe), and in particular, a bottle (bottle), a tray, etc. formed of glass or synthetic resin The present invention relates to a plasma processing method that can be suitably used to surface-treat or sterilize the inner surfaces of food containers and medical members and the surfaces of other members sealed in the members.
[0002]
[Prior art]
Conventionally, the inner surface of a member having a shape, such as a box or a tube, is surface-treated with an activated gas (plasma), for example, removing contaminants such as organic substances attached to the inner surface of the member. As an example of such a surface treatment, Japanese Patent Application Laid-Open No. 57-12032 discloses that activated gas is blown from the opening of a member such as a bottle into the member.
[0003]
In JP-A-4-334543, a plurality of ring-shaped electrodes are provided on the outer periphery of an insulator tube, and a voltage is applied between the electrodes while flowing a rare gas or the like inside the insulator tube. It is disclosed that glow discharge plasma is generated inside an insulator tube, and the inner surface of the insulator tube is surface-treated with this plasma.
[0004]
[Problems to be solved by the invention]
In the method described in JP-A-57-12032, the entire inner surface of a member having a small space can be almost uniformly (homogeneously) treated. However, when trying to surface-treat the inner surface of a member having a large space inside, sufficient surface treatment can be performed only on the inner surface near the opening. This is because it takes time for activated gas to be blown into the inside of the member from the opening until it spreads throughout the inside of the member. During this time, the activated gas is deactivated and loses its activity. This is considered to be because sufficient surface treatment cannot be performed even when the inner surface at a location away from the surface is reached. Therefore, there has been a problem that uniform surface treatment cannot be performed on the entire inner surface of the member.
[0005]
Further, in the method described in Japanese Patent Laid-Open No. 4-334543, plasma is generated only in the portion where the electrode is provided. Therefore, the surface-treated portion (area) is limited to the portion where the electrode is provided, and the insulation is performed. There was a problem that uniform surface treatment could not be performed on the entire inner surface of the body tube.
[0006]
The present invention has been made in view of the above points, and an object of the present invention is to provide a plasma processing method capable of performing uniform surface treatment on the entire inner surface of a member.
[0007]
[Means for Solving the Problems]
In the plasma processing method according to claim 1 of the present invention, a volatile material 7 soaked in a porous material is disposed inside an insulating member 1 having gas barrier properties, and the inside of the insulating member 1 is gas 2. After the filling, the insulating member 1 is sealed, and the gas 2 filled inside the insulating member 1 is activated by irradiating the insulating member 1 with the electromagnetic wave 4 under a pressure near atmospheric pressure. It is a feature.
[0008]
The plasma processing method according to claim 2 of the present invention is characterized in that, in addition to the configuration of claim 1, the inner surface of the insulating member 1 is sterilized.
[0009]
The plasma processing method according to claim 3 of the present invention is characterized in that, in addition to the configuration of claim 1 or 2, another member 3 is arranged inside the insulating member 1.
[0010]
According to a fourth aspect of the present invention, in addition to any one of the first to third aspects, the insulating member 1 is made of a synthetic resin.
[0011]
The plasma processing method according to claim 5 of the present invention is characterized in that, in addition to the structure of any one of claims 1 to 4, the insulating member 1 is a plastic bottle 6.
[0013]
According to a sixth aspect of the present invention, in addition to any one of the first to fifth aspects, the volatile substance is hydrogen peroxide.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0015]
As the insulating member 1 to be surface-treated by the plasma processing method of the present invention, any member may be used as long as it has a gas barrier property with almost no gas passage and is formed of a material having an electrical insulating property. Examples thereof include synthetic resins such as polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, vinyl chloride resin, fluororesin, and silicone resin, and materials such as glass. The insulating member 1 may be anything as long as it is formed in a shape having a space inside a box shape, a bag shape, a tubular shape (tubular shape), a bottle shape, or the like.
[0016]
As the gas 2, a rare gas, nitrogen gas, air, or the like can be used alone or in combination. Moreover, a mixed gas in which at least one of a rare gas, a nitrogen gas, and air is used as a main component, and one or more kinds of reactive gases added thereto as necessary, may be used. By using the gas 2 containing, for example, it is possible to realize the cleaning effect of the organic substance existing on the inner surface of the insulating member 1 and the reduction effect of the metal oxide. As the rare gas, helium, argon, neon, krypton, or the like can be used, but it is preferable to use argon or helium in consideration of discharge stability and economy. The type of the reactive gas can be arbitrarily selected depending on the content of the treatment. For example, oxygen, air, oxidizing gas such as CO 2 and N 2 O, fluorine-based gas such as CF 4 , hydrogen, ammonia and the like The reducing gas can be used. The addition amount of the reactive gas is 10% by volume or less, preferably in the range of 0.1 to 5% by volume based on the total amount of the main component. If the amount of the reactive gas added is less than 0.1% by volume, the effect of the intended plasma treatment may be reduced. If the amount of the reactive gas added exceeds 10% by volume, a glow-like discharge will occur. May become unstable.
[0017]
Further, a volatile substance can be disposed inside the insulating member 1. For example, a volatile substance is soaked into a porous material such as a cloth-like substance (for example, absorbent cotton), silica gel, or zeolite molecular sieve, and this is disposed inside the insulating member 1. When this volatile substance is irradiated with electromagnetic waves, the partly volatilized substance is activated by the discharge, and the treatment effect is increased. Although it does not specifically limit as a volatile substance, Hydrogen peroxide water is effective in disinfection. In addition, the surface treatment effect can be improved by using an organic substance such as ethanol or acetone.
[0018]
The surface treatment of the inner surface of the insulating member 1 as described above is performed as follows. First, the gas 2 is injected into the insulating member 1 to be filled. At this time, if the insulating member 1 has an opening, the gas 2 may be injected from the opening, but if the insulating member 1 has no opening, a hole for gas injection is made. From here, the gas 2 is injected into the insulating member 1. In addition, the gas filled in the insulating member 1 may be inactive or activated.
[0019]
Next, by closing the opening of the insulating member 1 and sealing the inside of the insulating member 1, the gas 2 is sealed inside the insulating member 1 so that the gas 2 does not leak. At this time, when the insulating member 1 has a small shape retaining property, such as a bag made of synthetic resin, the opening can be closed with a fastener 12 such as a rubber band to close the opening. If the member 1 has a certain degree of shape retention, the opening can be filled with an insulating material such as a synthetic resin and closed. Furthermore, when the insulating member 1 is formed in a box shape (container), it can be closed by attaching a lid or the like to the opening.
[0020]
Then, the electromagnetic wave 4 is irradiated to the insulating member 1 filled with the gas 2 and sealed under a pressure in the vicinity of atmospheric pressure (93.3 to 106.7 kPa (700 to 800 Torr)). As the electromagnetic wave 4, for example, a high frequency or microwave having a frequency of 10 MHz to 3 GHz can be used. However, the electromagnetic wave 4 is not limited to this, and irradiation conditions such as the frequency of the electromagnetic wave 4 are insulative according to the composition of the gas. What is necessary is just to set so that discharge can be generated inside the member 1. FIG. 1 shows an example of a plasma processing apparatus used in the present invention. This plasma processing apparatus is formed with an electromagnetic wave generator 11 inside an electrically shielded processing container 10. And after putting the insulating member 1 filled with the gas 2 in the processing container 10, as shown by the arrow, the electromagnetic wave 4 is irradiated to the insulating member 1 from the electromagnetic wave generator 11, and the insulating member is used with this energy. A glow-like discharge is generated inside 1 to activate the gas 2. Thereby, the gas 2 activated inside the insulating member 1, that is, plasma containing radicals, ions, etc. comes into contact with the inner surface of the insulating member 1, and the inner surface of the insulating member 1 is surface-treated by plasma treatment. It can be processed (cleaning or sterilizing). In addition, when surface-treating the inner surface of the insulating member 1 in this manner, the outer surface of the insulating member 1 may be surface-treated simultaneously with the inner surface by filling the inside of the processing container 10 with the activated gas. Further, when the inner surface of the insulating member 1 is surface-treated, the inside of the processing container 10 is filled with an inactive gas, and this inactive gas is activated and activated by the electromagnetic wave generated from the electromagnetic wave generator 11. You may surface-treat the outer surface of the insulating member 1 with gas simultaneously with an inner surface.
[0021]
As described above, in the present invention, after the activated gas is blown from the opening of the insulating member 1 to surface-treat the inner surface of the insulating member 1, the insulating member 1 is filled with gas and sealed. Since the activated gas is generated inside the insulating member 1 by irradiating the electromagnetic wave, and the inner surface of the insulating member 1 is surface-treated with the activated gas, the inside of the insulating member 1 is a large space. Even if it exists, the activated gas 2 can be generated over the whole inside of the insulating member 1, and the activated gas 2 can reach and contact the entire inner surface of the insulating member 1. Homogeneous surface treatment can be performed. In addition, when the insulating member 1 is formed in a distorted shape such as a bellows and the inner surface of the insulating member 1 is formed of a concavo-convex surface, the method of blowing the activated gas from the opening portion may be applied to the concave portion. The activated gas is difficult to reach and sufficient surface treatment cannot be performed. However, in the present invention, the insulating member 1 is filled with gas and sealed so that the gas reaches the concave portion, and then the electromagnetic wave. Since the activated gas is generated inside the insulating member 1 by irradiation, the activated gas 2 can be sufficiently brought into contact with the concave portion, and the entire inner surface of the insulating member 1 can be contacted. A surface treatment can be performed uniformly. In the method described in JP-A-4-334543, since the gas is circulated inside the insulator tube, the discharge may become unstable due to the gas flow. Since there is almost no flow of the gas 2 inside the insulating member 1, the glow-like discharge generated inside the insulating member 1 does not become unstable, and a uniform and stable surface treatment can be continuously performed. It can be done.
[0022]
FIG. 2 shows another embodiment. This plasma processing method is a PET bottle (a food container made of polyethylene terephthalate) 6 for the insulating member 1 to contain drinking water or the like, and shows a method of sterilizing the inner surface thereof. In this case, the gas 2 is injected and filled in the inside of the PET bottle 6 in the same manner as described above, but before this, an appropriate amount (small amount) of a volatile substance 7 such as hydrogen peroxide is put in the PET bottle 6 in advance. Keep it in place. As the volatile substance 7, the same one as described above can be used. For example, a porous body such as zeolite molecular sieve filled with 34% hydrogen peroxide solution is disposed inside the insulating member 1. To. Then, after the opening of the plastic bottle 6 is covered with the cap 13, the plasma treatment is performed by irradiating the electromagnetic wave 4 in the same manner as described above. At the same time, the volatile substance 7 volatilizes and the insulating member is evaporated. The inner surface of the insulating member 1 is sterilized and the like, and the surface of the insulating member 1 can be surface treated by the action of the volatile substance 7.
[0023]
In this embodiment, the inner surface of the insulating member 1 can be surface-treated with the activated gas 2 and at the same time, the inner surface of the insulating member 1 can be surface-treated with the volatile substance 7 so that the surface treatment can be performed in a short time. It can be done effectively. In addition to sterilization, the surface treatment as described above is performed before forming an inorganic thin film or metal thin film such as diamond-like carbon, alumina, silica, titania or the like on the inner surface of the PET bottle 6. There is also an effect of increasing the adhesion. In that case, the volatile substance 7 is not necessarily required, but ethanol, acetone, or the like can be used as the volatile substance 7. Such a thin film is effective in imparting and improving the gas barrier property of the insulating member 1. In addition, although sterilization by ultraviolet irradiation has been performed conventionally, in this case, the insulating member 1 needs to be transparent. However, in the present invention, even the opaque insulating member 1 can be surface-treated.
[0024]
FIG. 3 shows another embodiment. This plasma processing method shows an example in which the same plasma processing as described above is performed in a state where another member 3 is disposed inside an insulating member 1 formed in a box shape. Other configurations are the same as those in the above embodiment. As the other member 3 arranged inside the insulating member 1, any member can be used as long as the outer surface is subjected to surface treatment. For example, a lead frame or a circuit for mounting a semiconductor chip or the like can be used. A substrate etc. can be mentioned. The above lead frame and circuit board are mounted with a semiconductor chip and then wire bonded or resin-sealed. At this time, the lead frame or circuit board is bonded to the wire bonding property or the sealing resin. In order to improve the property, surface treatment (cleaning) such as removal of organic substances is necessary.
[0025]
In this embodiment, the insulating member 1 that requires surface treatment on the inner surface and the other member 3 that requires surface treatment on the outer surface can be subjected to plasma treatment at the same time, and surface treatment can be performed for two members in a short time. This can be done more effectively.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, the volatile substance soaked in the porous body is disposed inside the insulating member having gas barrier properties, and the inside of the insulating member is filled with gas. Since the insulating member is sealed and the gas filled in the insulating member is activated by irradiating the insulating member with electromagnetic waves under a pressure near atmospheric pressure, the activated gas is activated. The activated gas can reach the entire inner surface of the insulating member and come into contact with the entire inner surface of the insulating member, and the inner surface of the insulating member can be contacted even if the interior of the insulating member is a large space. A uniform surface treatment can be performed on the entire surface. In addition, since the volatile substance soaked in the porous body is arranged inside the insulating member, the inner surface of the insulating member is also treated by the volatilized volatile substance simultaneously with the surface treatment of the inner surface of the insulating member by the activated gas. The surface treatment can be performed more effectively in a short time.
[0027]
In the invention of claim 2 of the present invention, since the inside of the insulating member is sterilized, the entire inner surface of the insulating member can be sterilized uniformly.
[0028]
In the invention of claim 3 of the present invention, since another member is arranged inside the insulating member, the insulating member that requires surface treatment on the inner surface and the other member that requires surface treatment on the outer surface are simultaneously provided. Plasma treatment can be performed, and surface treatment can be more effectively performed for two members in a short time.
[0029]
Further, according to the sixth aspect of the present invention, since the volatile substance is arranged inside the insulating member, the surface treatment of the inner surface of the insulating member by the activated gas is performed simultaneously with the volatilized volatile substance. The surface treatment of the inner surface of the adhesive member can be performed, and the surface treatment can be more effectively performed in a short time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of the above.
FIG. 3 is a cross-sectional view showing another embodiment of the above.
[Explanation of symbols]
1 Insulating member 2 Gas 3 Other member 4 Electromagnetic wave 6 PET bottle 7 Volatile substance

Claims (6)

ガスバリア性を有する絶縁性部材の内部に、多孔体にしみこませた揮発性物質を配置し、この絶縁性部材の内部をガスで充満した後、絶縁性部材を密閉し、大気圧近傍の圧力下において、この絶縁性部材に電磁波を照射することにより絶縁性部材の内部に充満したガスを活性化することを特徴とするプラズマ処理方法。 A volatile substance soaked in a porous material is placed inside an insulating member having gas barrier properties, and after filling the inside of the insulating member with gas, the insulating member is sealed and subjected to a pressure near atmospheric pressure. And activating the gas filled in the insulating member by irradiating the insulating member with electromagnetic waves. 絶縁性部材の内面を殺菌することを特徴とする請求項1に記載のプラズマ処理方法。  The plasma processing method according to claim 1, wherein an inner surface of the insulating member is sterilized. 絶縁性部材の内部に他の部材を配置することを特徴とする請求項1又2に記載のプラズマ処理方法。  3. The plasma processing method according to claim 1, wherein another member is disposed inside the insulating member. 絶縁性部材が合成樹脂で形成されていることを特徴とする請求項1乃至3のいずれかに記載のプラズマ処理方法。  The plasma processing method according to claim 1, wherein the insulating member is made of a synthetic resin. 絶縁性部材がペットボトルであることを特徴とする請求項1乃至4のいずれかに記載のプラズマ処理方法。  The plasma processing method according to claim 1, wherein the insulating member is a PET bottle. 揮発性物質が過酸化水素であることを特徴とする請求項1乃至5のいずれかに記載のプラズマ処理方法。 6. The plasma processing method according to claim 1 , wherein the volatile substance is hydrogen peroxide .
JP2001159097A 2001-05-28 2001-05-28 Plasma processing method Expired - Fee Related JP4348877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159097A JP4348877B2 (en) 2001-05-28 2001-05-28 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159097A JP4348877B2 (en) 2001-05-28 2001-05-28 Plasma processing method

Publications (2)

Publication Number Publication Date
JP2002346493A JP2002346493A (en) 2002-12-03
JP4348877B2 true JP4348877B2 (en) 2009-10-21

Family

ID=19002738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159097A Expired - Fee Related JP4348877B2 (en) 2001-05-28 2001-05-28 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4348877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177234A1 (en) * 2008-10-17 2010-04-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method and an apparatus for cleaning and/or sterilization of an object provided in an enclosure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643876A (en) * 1985-06-21 1987-02-17 Surgikos, Inc. Hydrogen peroxide plasma sterilization system
JP3242977B2 (en) * 1992-03-25 2001-12-25 イーシー化学株式会社 Plasma treatment method for inner surface of container and apparatus using the same
JPH05326416A (en) * 1992-05-15 1993-12-10 Fuji Electric Co Ltd Method for cleaning vapor growth apparatus with plasma
JP3393444B2 (en) * 1993-04-05 2003-04-07 株式会社ダイオー Atmospheric pressure glow discharge plasma treatment method
EP0693975B2 (en) * 1994-02-16 2003-07-30 The Coca-Cola Company Hollow containers with inert or impermeable inner surface through plasma-assisted surface reaction or on-surface polymerization
DE19916478A1 (en) * 1999-04-13 2000-10-19 Ruediger Haaga Gmbh Procedure for evacuation of a container in which a plasma discharge it to be set up in a plasma reactor for sterilization of components has a multi-stage pumping process with vacuum pumps efficient over different pressures
DE19937008A1 (en) * 1999-08-05 2001-02-15 Bosch Gmbh Robert Method and device for the sterile packaging of substances in plastic containers

Also Published As

Publication number Publication date
JP2002346493A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP5926775B2 (en) Plasma generator, sterilizer equipped with plasma generator and use of plasma generator
US4321232A (en) Package and sterilizing process for same
KR100483471B1 (en) Container with material coating having barrier effect and method and apparatus for making same
JP4716457B2 (en) Microwave plasma sterilization apparatus and sterilization method using the same
EP2683416B1 (en) Generation of microbiocide inside a package utilizing a controlled gas composition
WO2005073091A2 (en) Package of sensitive articles
IE59218B1 (en) Hydrogen peroxide plasma sterilization system
JP5455030B2 (en) Plasma processing method and apparatus in packaging container
WO2011116984A2 (en) Method and device for reducing the number of germs in a closed volume
JP4348877B2 (en) Plasma processing method
KR20040015027A (en) Sterilizer comprising application of microwave
WO2001087359A1 (en) Method for manufacturing sealing tool sterilized with gaseous hydrogen peroxide
KR102087619B1 (en) A packaging container for localized plasma discharge in the packaging container and a discharge sterilizer using the same
JP2004209188A (en) Method for sterilizing object packaged in sealed container
CN115428882A (en) Liquid bottled food sterilization device and method based on pulse discharge plasma
JPH07184618A (en) Sterilization of vessel with plasma and aseptic filling method
RU2026084C1 (en) Domestic ultraviolet sterilizer
KR101753792B1 (en) Package Film and Vacuum Resin Package Bag
KR102233228B1 (en) A Packing container using capsule for plasma discharge sterilization and a discharge sterilizer including the same
JP2003285844A (en) Plastic container
KR102569320B1 (en) A Method of Surface Treatment for Packaged Implant through Plasma and Surface Treatment System for Packaged Implant
KR100511031B1 (en) Method and Device of Surface Modification for the Inner Wall of Polymer Container
JPH11187872A (en) Sterilization by pulse high-voltage corona discharge
CN113813413A (en) Method for sterilizing and disinfecting plastic bottle after manufacturing and molding
JP2006239230A (en) Sterilizing apparatus and method using barrier discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees