JP4347204B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP4347204B2
JP4347204B2 JP2004350723A JP2004350723A JP4347204B2 JP 4347204 B2 JP4347204 B2 JP 4347204B2 JP 2004350723 A JP2004350723 A JP 2004350723A JP 2004350723 A JP2004350723 A JP 2004350723A JP 4347204 B2 JP4347204 B2 JP 4347204B2
Authority
JP
Japan
Prior art keywords
cement
acid
admixture
parts
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004350723A
Other languages
Japanese (ja)
Other versions
JP2006160537A (en
Inventor
隆行 樋口
圭介 中村
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004350723A priority Critical patent/JP4347204B2/en
Publication of JP2006160537A publication Critical patent/JP2006160537A/en
Application granted granted Critical
Publication of JP4347204B2 publication Critical patent/JP4347204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、セメント混和材及びセメント組成物に関する。   The present invention relates to a cement admixture and a cement composition.

コンクリートは安価に大きな構造物を構築できる優れた材料であるが、様々な要因によってひび割れるという課題があった。本発明でいうコンクリートとは、いわゆるコンクリート、及びセメントペースト、モルタルを含むものとする。ひび割れの原因の一つとして、水和発熱によるひび割れが挙げられる。セメントを水和させると水和熱が発生し、大量打設を行うとその熱がコンクリート内部に蓄積され、温度ひび割れが発生する。このため、最大寸法が80cm以上で、コンクリートと外気温の差が大きくなることが想定されるマスコンクリートの打設では、水和発熱量を抑制するための方法を選定する必要がある。水和発熱量の少ないビーライトの含有量を高めた低熱ポルトランドセメントを使用する方法は、硬化時の水和発熱量を低減できるばかりでなく、施工時の流動性の確保が容易であること等優れた性質を有している。しかしながら、生コン工場で保有しているセメントサイロは、普通ポルトランドセメント、高炉セメント、及び早強ポルトランドセメントに使用される頻度が高く、低熱ポルトランドセメント用のサイロを確保することが難しいケースが多い。このため、サイロの増設といった新たな設備投資の必要がない混和材タイプの水和熱抑制材が強く求められており、種々の材料が提案されている(非特許文献1)。   Concrete is an excellent material that can be used to build large structures at low cost, but has a problem of cracking due to various factors. The concrete referred to in the present invention includes so-called concrete, cement paste, and mortar. One cause of cracking is cracking due to hydration heat generation. When cement is hydrated, heat of hydration is generated, and when it is placed in large quantities, the heat is accumulated inside the concrete and temperature cracks occur. For this reason, in the placement of mass concrete where the maximum dimension is 80 cm or more and the difference between the concrete and the outside air temperature is assumed to be large, it is necessary to select a method for suppressing the hydration calorific value. The method of using low heat Portland cement with a high content of belite with a low hydration calorific value not only reduces the hydration calorific value at the time of curing, but also facilitates securing fluidity during construction, etc. It has excellent properties. However, cement silos possessed by ready-mix plants are frequently used for ordinary Portland cement, blast furnace cement, and early-strength Portland cement, and it is often difficult to secure silos for low heat Portland cement. For this reason, there is a strong demand for an admixture-type hydration heat suppression material that does not require new capital investment such as the addition of silos, and various materials have been proposed (Non-patent Document 1).

セメントの水和熱抑制剤としては、セメントの水和を抑制する有機酸が知られている(特許文献1、2)。有機酸を用いた場合には水和熱を抑制する効果は得られるが、初期強度発現性が低下したり、セメントの凝結が極度に遅延する場合があった。このような課題を解消するために、有機酸と、アルカリ金属炭酸塩、珪酸塩、アルミン酸塩、及び水酸化物といった急結性アルカリ金属無機塩とを主成分とする混和材が提案された(特許文献3)。   Organic acids that suppress cement hydration are known as cement hydration heat inhibitors (Patent Documents 1 and 2). When an organic acid is used, the effect of suppressing the heat of hydration can be obtained, but the initial strength development may be reduced, and the setting of the cement may be extremely delayed. In order to solve such problems, an admixture based on organic acids and rapid setting alkali metal inorganic salts such as alkali metal carbonates, silicates, aluminates, and hydroxides has been proposed. (Patent Document 3).

デキストリンがセメントの水和熱抑制剤として知られている(特許文献4、5)。また、水和熱を抑制する方法として、セメントに対して非晶質カルシウムアルミネートと石膏を添加してなる低発熱低乾燥収縮性セメント組成物や、粒度を調整した特殊セメント等が提案されている(特許文献6、7)。   Dextrin is known as a cement heat hydration inhibitor (Patent Documents 4 and 5). Moreover, as a method for suppressing heat of hydration, a low heat generation low drying shrinkage cement composition obtained by adding amorphous calcium aluminate and gypsum to cement, a special cement with adjusted particle size, and the like have been proposed. (Patent Documents 6 and 7).

また、カルシウムアルミネートの1種であるアルミナセメントと凝結遅延剤からなるアルミナセメント組成物が知られている(特許文献8、9)。これは従来のアルミナセメントに比べて体積安定性に優れ、流動性、強度発現性、耐食性、耐磨耗性が優れる特徴があるが、セメント混和材としては検討されていない。   Moreover, an alumina cement composition comprising alumina cement, which is a kind of calcium aluminate, and a setting retarder is known (Patent Documents 8 and 9). This is superior in volume stability compared to conventional alumina cement and is characterized by excellent fluidity, strength development, corrosion resistance, and abrasion resistance, but has not been studied as a cement admixture.

JASS5 コンクリート標準示方書JASS5 Concrete Standard Specification 特開昭50−80315号公報JP 50-80315 A 米国特許第3427175号公報U.S. Pat. No. 3,427,175 特公平07−12963号公報Japanese Patent Publication No. 07-12963 特公昭57−261号公報Japanese Patent Publication No.57-261 特開平01−242447号公報Japanese Patent Laid-Open No. 01-242447 特開昭57−160947号公報JP-A-57-160947 特開昭64−9836号公報JP-A 64-9836 特開2000−16843号公報JP 2000-16843 A 特許番号3278524号公報Japanese Patent No. 3278524

本発明は、凝結遅延を引き起こすことが少なくセメントの水和発熱を抑制してコンクリートのひび割れを抑制するセメント混和材を提供するものである。   The present invention provides a cement admixture that suppresses hydration heat of cement and suppresses cracking of concrete with little delay in setting.

本発明は、カルシウムアルミネートと凝結遅延剤を含有してなるセメント混和材及びそれを用いたセメント組成物とその製造方法である。
本発明における部や%は特に規定しない限り質量基準で示すものとする。
The present invention relates to a cement admixture containing calcium aluminate and a setting retarder, a cement composition using the same, and a method for producing the same.
Unless otherwise specified, parts and percentages in the present invention are shown on a mass basis.

本発明のセメント混和材を使用することによって、凝結遅延を引き起こすことが少なくセメントの水和発熱を抑制するという効果を奏する。   By using the cement admixture of the present invention, there is an effect of suppressing the hydration exotherm of cement with little occurrence of setting delay.

以下、本発明を詳細に説明する。
カルシウムアルミネートとは、CaOとAlを主成分とする化合物を総称するものであり、その具体例としては、例えば、CaO・2Al、CaO・Al、12CaO・7Al、11CaO・7Al・CaF、及び3CaO・3Al・CaF等と表される結晶性のカルシウムアルミネートや、CaOとAl成分を主成分とする非晶質の化合物が挙げられる。本発明では特に、CaO/Alモル比が0.3〜0.9であるカルシウムアルミネートを使用することが好ましい。
Hereinafter, the present invention will be described in detail.
Calcium aluminate is a generic term for compounds mainly composed of CaO and Al 2 O 3 , and specific examples thereof include, for example, CaO · 2Al 2 O 3 , CaO · Al 2 O 3 , 12CaO · 7Al. 2 O 3, 11CaO · 7Al 2 O 3 · CaF 2, and 3CaO · 3Al 2 O 3 · CaF 2 etc. the crystalline calcium aluminate and represented, non mainly containing CaO and Al 2 O 3 component A crystalline compound may be mentioned. In the present invention, it is particularly preferable to use calcium aluminate having a CaO / Al 2 O 3 molar ratio of 0.3 to 0.9.

カルシウムアルミネートを得る方法としては、CaO原料とAl原料等をロータリーキルンや電気炉等によって熱処理して得る方法が挙げられる。
カルシウムアルミネートを製造する際の熱処理温度は、1200〜2000℃が好ましく、1400〜1600℃の範囲がより好ましい。熱処理温度が低くなると所定の化合物が得られない場合があり、熱処理温度が高くなると不経済になる場合がある。
Examples of a method for obtaining calcium aluminate include a method in which a CaO raw material and an Al 2 O 3 raw material are heat-treated with a rotary kiln or an electric furnace.
1200-2000 degreeC is preferable and the heat processing temperature at the time of manufacturing a calcium aluminate has the more preferable range of 1400-1600 degreeC. When the heat treatment temperature is low, a predetermined compound may not be obtained, and when the heat treatment temperature is high, it may be uneconomical.

カルシウムアルミネートを製造する際のCaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、あるいは生石灰等の酸化カルシウムを挙げることができる。また、Al原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産業副産物等が挙げられる。この際、主成分であるCaO、AlのほかにSiO、Fe、MgO、TiO、P、NaO、KO、フッ素、塩素、重金属類等の不純物を含む場合があるが、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。 Examples of the CaO raw material for producing calcium aluminate include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quick lime. Examples of the Al 2 O 3 raw material include industrial by-products called bauxite and aluminum residual ash. At this time, in addition to CaO and Al 2 O 3 as main components, SiO 2 , Fe 2 O 3 , MgO, TiO 2 , P 2 O 5 , Na 2 O, K 2 O, fluorine, chlorine, heavy metals, etc. Although impurities may be included, there is no particular problem as long as the object of the present invention is not substantially impaired.

カルシウムアルミネートはCaO/Alモル比が0.3〜0.9であることが好ましく、0.4〜0.7であることがより好ましい。CaO/Alモル比が小さくなると凝結遅延が見られる場合があり、CaO/Alモル比が大きくなるとセメントに混和した場合の可使時間の確保が困難となったり、水和熱抑制効果が損なわれる場合がある。 The calcium aluminate preferably has a CaO / Al 2 O 3 molar ratio of 0.3 to 0.9, more preferably 0.4 to 0.7. When the CaO / Al 2 O 3 molar ratio is decreased, a setting delay may be observed, and when the CaO / Al 2 O 3 molar ratio is increased, it becomes difficult to ensure the pot life when mixed with cement or hydration. The heat suppression effect may be impaired.

カルシウムアルミネートのガラス化率は特に限定されるものではなく、結晶質でも非晶質でも本発明には使用可能である。これらのうち、CaO/Alモル比が0.3〜0.9の範囲の1種を選択しても良いし、2種以上を選択しても良いし、2種以上を混合して所定の範囲内に調整したものを用いても良い。 The vitrification rate of calcium aluminate is not particularly limited, and it can be used in the present invention whether crystalline or amorphous. Among these, the CaO / Al 2 O 3 molar ratio may be selected from one type in the range of 0.3 to 0.9, two or more types may be selected, or two or more types may be mixed. It is also possible to use one adjusted within a predetermined range.

カルシウムアルミネートの粉末度は、ブレーン比表面積で1500〜8000cm/gが好ましく3000〜6000cm/gがより好ましい。ブレーン比表面積値が小さい粗粒では充分な水和熱抑制効果が得られない場合があり、ブレーン比表面積値が大きい微粉末では充分な可使時間を確保できない場合がある。 The fineness of calcium aluminate is preferably 1500 to 8000 cm 2 / g, more preferably 3000 to 6000 cm 2 / g, in terms of Blaine specific surface area. In the case of coarse grains having a small Blaine specific surface area value, a sufficient effect of suppressing heat of hydration may not be obtained, and a fine powder having a large Blaine specific surface area value may not be able to ensure a sufficient pot life.

凝結遅延剤とはポルトランドセメントの水和を遅延させる成分の総称であり、無機系ではフッ化物、リン酸塩、ホウ酸塩、硫酸塩等があり、有機系ではオキシカルボン酸塩やケトカルボン酸塩等の有機酸、糖類、アルコール類等が知られている。本発明では、硫酸塩、有機酸、糖類を使用することが好ましい。   A setting retarder is a general term for ingredients that delay the hydration of Portland cement. Inorganic systems include fluoride, phosphate, borate, sulfate, etc., and organic systems include oxycarboxylates and ketocarboxylates. Organic acids such as saccharides, alcohols and the like are known. In the present invention, it is preferable to use sulfate, organic acid, or saccharide.

有機酸は特に限定されるものではなく、カルボン酸、オキシモノカルボン酸、オキシ多価カルボン酸、ポリカルボン酸、又はそれらの塩が挙げられる。具体的にカルボン酸としては、ギ酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、ヘプタン酸、ヘプトン酸、グルコン酸、グリコール酸、リンゴ酸、酒石酸、クエン酸、アクリル酸、無水マレイン酸等が挙げられる。また、これらの塩として、アルカリ金属塩、アルカリ土類金属塩、並びに、亜鉛、銅、アルミニウム、アンモニウム等の塩が挙げられる。本発明では、これらのうちの1種又は2種以上が使用可能である。有機酸の使用量は特に限定されるものではないが、通常、カルシウムアルミネートと有機酸を含有するセメント混和材100部中、1〜20部が好ましく、5〜10部がより好ましい。有機酸の使用量が少なくなると可使時間の確保が不充分となる場合があり、有機酸を多く配合すると凝結遅延を生じ強度発現性が損なわれる恐れがある。   The organic acid is not particularly limited, and examples thereof include carboxylic acid, oxymonocarboxylic acid, oxypolycarboxylic acid, polycarboxylic acid, and salts thereof. Specific examples of carboxylic acids include formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, heptanoic acid, heptonic acid, gluconic acid, glycolic acid, malic acid, tartaric acid, citric acid Acrylic acid, maleic anhydride and the like. Examples of these salts include alkali metal salts, alkaline earth metal salts, and salts of zinc, copper, aluminum, ammonium, and the like. In the present invention, one or more of these can be used. Although the usage-amount of an organic acid is not specifically limited, Usually, 1-20 parts are preferable in 100 parts of cement admixtures containing a calcium aluminate and an organic acid, and 5-10 parts are more preferable. When the amount of the organic acid used is small, it may be insufficient to ensure the pot life, and when a large amount of the organic acid is blended, there is a possibility that the setting of strength may be impaired due to a delay in setting.

デキストリンは、一般に化工澱粉とも呼ばれ、通常、澱粉を加水分解して得られる。中でも、酸を加えて分解して得られる酸焙焼デキストリンが最も一般的である。酸浸漬法で得られるもの、澱粉の酵素分解で得られるもの、無焙焼で得られるブリティッシュガム、あるいは澱粉に水を加えたものを加熱したり、アルカリや濃厚な塩類の溶液を加えてアルファー化したものを急速脱水乾燥して得られるアルファー化澱粉等のうちの1種又は2種以上を、本発明の目的を阻害しない範囲で使用することが可能である。特に、デキストリンの20℃における冷水可溶分が5〜90%のものが好ましく、10〜65%がより好ましい。デキストリンの20℃における冷水可溶分が小さくなると充分な水和熱抑制効果が得られない場合があり、デキストリンの20℃における冷水可溶分が大きくなると凝結遅延を引き起こす恐れがある。デキストリンの使用量は特に限定されるものではないが、通常、カルシウムアルミネートとデキストリンを含有するセメント混和材100部中、1〜20部が好ましく、5〜10部がより好ましい。デキストリンの使用量が少なくなると充分な水和熱抑制効果が得られない場合があり、デキストリンを多く配合すると凝結遅延を引き起こす恐れがある。   Dextrin is generally called modified starch and is usually obtained by hydrolyzing starch. Of these, acid roasted dextrin obtained by decomposition by adding an acid is most common. What is obtained by acid soaking, what is obtained by enzymatic digestion of starch, British gum obtained without roasting, or starch added with water, or by adding alkali or concentrated salt solution to alpha It is possible to use one type or two or more types of pregelatinized starch obtained by rapid dehydration and drying of the product as long as the object of the present invention is not impaired. Particularly, the dextrin having a cold water soluble content at 20 ° C. of 5 to 90% is preferable, and 10 to 65% is more preferable. When the cold water soluble content of dextrin at 20 ° C. becomes small, a sufficient hydration heat-inhibiting effect may not be obtained, and when the dextrin cold water soluble content at 20 ° C. becomes large, the setting delay may be caused. Although the usage-amount of dextrin is not specifically limited, Usually, 1-20 parts are preferable in 100 parts of cement admixtures containing calcium aluminate and dextrin, and 5-10 parts are more preferable. If the amount of dextrin used is small, a sufficient hydration heat suppression effect may not be obtained, and if a large amount of dextrin is blended, there is a risk of causing a setting delay.

硫酸塩としては、硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム、カリみょうばん、硫酸カルシウム等が挙げられる。硫酸カルシウムとしては、二水セッコウ、半水セッコウ、無水セッコウのいずれも使用可能であるが、可使時間の確保や強度発現性の観点から無水セッコウ、特にII型無水セッコウの使用がより好ましい。硫酸塩の使用量は特に限定されるものではないが、通常、カルシウムアルミネートと硫酸塩を含有するセメント混和材100部中、50部以内が好ましく、10〜40部がより好ましい。硫酸塩の使用量が少なくなると可使時間の確保が不充分となる場合があり、硫酸塩を多く配合すると長期的に膨張してひび割れを生じ強度が低下する恐れがある。   Examples of the sulfate include sodium sulfate, potassium sulfate, aluminum sulfate, potassium alum, and calcium sulfate. As calcium sulfate, any of dihydrate gypsum, half-water gypsum, and anhydrous gypsum can be used, but anhydrous gypsum, particularly II type anhydrous gypsum, is more preferable from the viewpoint of securing the pot life and strength development. Although the usage-amount of a sulfate is not specifically limited, Usually, 50 parts or less are preferable in 100 parts of cement admixtures containing a calcium aluminate and a sulfate, and 10-40 parts are more preferable. If the amount of sulfate used is small, it may be insufficient to ensure the pot life, and if a large amount of sulfate is added, it may swell for a long time to cause cracks and reduce strength.

セメントは、普通、早強、超早強、低熱、中庸熱の各種ポルトランドセメントや、これらポルトランドセメントに、高炉水砕スラグ、フライアッシュ、シリカ質物質を混合した各種混合セメント、高炉徐冷スラグや石灰石微粉末を混合したフィラーセメント、並びに都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)等のポルトランドセメントが挙げられ、これらのうちの1種又は2種以上が使用可能である。   Cement can be used for ordinary, early strength, ultra-early strength, low heat, moderate heat Portland cement, blast furnace granulated slag, fly ash, various mixed cements mixed with siliceous materials, blast furnace chilled slag, Examples include filler cement mixed with fine limestone powder and Portland cement such as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash, one or two of these The above can be used.

本発明で使用するセメント混和材の使用量は特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1〜20部が好ましく、3〜10部がより好ましい。セメント混和材の使用量が少なくなると充分な水和熱抑制効果が得られない場合があり、セメント混和材を多く使用すると強度発現性が低下する場合がある。   The amount of the cement admixture used in the present invention is not particularly limited, but is usually preferably 1 to 20 parts, more preferably 3 to 10 parts in 100 parts of a cement composition composed of cement and cement admixture. preferable. If the amount of cement admixture used is small, a sufficient hydration heat suppression effect may not be obtained, and if a large amount of cement admixture is used, strength development may be reduced.

本発明では、セメント混和材のほかに、砂や砂利等の骨材、減水剤、増粘剤、補強繊維、膨張材、防錆剤、防凍剤、粘土鉱物、ゼオライト、ハイドロタルサイト、ハイドロカルマイト等のイオン交換体、並びに高分子エマルジョン、粉末ポリマ−等の内の1種又は2種以上を本発明の目的を阻害しない範囲で併用することが可能である。
以下、実施例に基づき本発明をさらに詳細に説明する。
In the present invention, in addition to cement admixtures, aggregates such as sand and gravel, water reducing agents, thickeners, reinforcing fibers, expansion materials, rust inhibitors, antifreeze agents, clay minerals, zeolites, hydrotalcite, hydrokarma It is possible to use one or two or more of ion exchangers such as yttrium, polymer emulsion, powder polymer and the like within a range not impairing the object of the present invention.
Hereinafter, the present invention will be described in more detail based on examples.

石灰質原料とアルミナ質原料を混合し、電気炉を用いて1600℃で溶融した溶融物を圧縮空気で吹き飛ばして冷却し、表1に示すCaO/Alモル比のクリンカ−を合成した。これらクリンカ−を粉砕して、ブレーン比表面積値で4000±200cm/gに調整してサンプル(以下、CAと略記する)を得た。これらCA100部に対し、凝結遅延剤としてデキストリンを10部配合してセメント混和材を調製した。単位セメント量315kg/m、単位水量170kg/m、s/a=48%(骨材中の細骨材率)としたコンクリートを基本配合とし、セメントとセメント混和材の合計100部中、セメント混和材を5部配合してコンクリートを練り混ぜて、硬化時間、圧縮強度、簡易断熱温度上昇量を測定した。結果を表1に示す。 A calcined raw material and an alumina raw material were mixed, and a melt melted at 1600 ° C. using an electric furnace was blown off with compressed air and cooled to synthesize a clinker having a CaO / Al 2 O 3 molar ratio shown in Table 1. These clinker were pulverized and adjusted to a brain specific surface area value of 4000 ± 200 cm 2 / g to obtain a sample (hereinafter abbreviated as CA). A cement admixture was prepared by blending 10 parts of dextrin as a setting retarder with 100 parts of these CAs. Unit cement content 315 kg / m 3, unit water 170kg / m 3, s / a = 48% and the concrete (fine aggregate ratio in the aggregate) as a basic formulation, in total 100 parts of the cement and cement admixture, 5 parts of cement admixture was mixed and the concrete was kneaded, and the curing time, compressive strength, and simple heat insulation temperature rise were measured. The results are shown in Table 1.

<使用材料>
カルシア源:生石灰、市販品
アルミナ源:ボーキサイト、市販品
セメント:高炉セメントB種、市販品
細骨材:姫川産天然砂
粗骨材:姫川産砕石
水:水道水
凝結遅延剤:王子コーンスターチ社デキストリン
<Materials used>
Calcia Source: Quicklime, Commercial Alumina Source: Bauxite, Commercial Cement: Blast Furnace Cement Class B, Commercial Fine Aggregate: Himekawa Natural Sand Rough Aggregate: Himekawa Crushed Water: Tap Water Condensation Retardant: Oji Cornstarch Dextrin

<測定方法>
硬化時間:コンクリート温度が練り上がり温度から5℃上昇した時点。
圧縮強度:JIS R 5201に準拠。
温度上昇量:コンクリートを直径15cm、高さ30cm、厚さ5cmの円筒発泡スチロール容器に詰めて密閉した後、コンクリート中心部の温度を測定した。最高温度と練り上がり温度の差を温度上昇量と定義した。
<Measurement method>
Curing time: The time when the concrete temperature kneaded and rose 5 ° C from the temperature.
Compressive strength: Conforms to JIS R 5201.
Temperature rise: Concrete was packed in a cylindrical foamed polystyrene container having a diameter of 15 cm, a height of 30 cm, and a thickness of 5 cm and sealed, and then the temperature at the center of the concrete was measured. The difference between the maximum temperature and the kneading temperature was defined as the temperature rise.

Figure 0004347204
Figure 0004347204

表1に示すようにCaO/Alモル比が0.5〜0.7であるカルシウムアルミネートとデキストリンを併用することによって、混和材無添加よりもコンクリートの温度上昇量を抑制することができる。また、デキストリンだけを用いた場合はコンクリートの凝結が著しく遅延するのに対し、カルシウムアルミネートのCaO/Alモル比によって凝結時間がコントロールできることが分かる。なお、アルミナセメントのようにCaO/Alモル比が1に近いものは、凝結時間が短くなる現象が認められる。
As shown in Table 1, the combined use of calcium aluminate and dextrin having a CaO / Al 2 O 3 molar ratio of 0.5 to 0.7 suppresses the temperature rise of concrete as compared to the case where no admixture is added. Can do. In addition, when only dextrin is used, the setting of the concrete is significantly delayed, whereas the setting time can be controlled by the CaO / Al 2 O 3 molar ratio of calcium aluminate. In addition, when the CaO / Al 2 O 3 molar ratio is close to 1, such as alumina cement, a phenomenon in which the setting time is shortened is recognized.

使用するCAのCaO/Alモル比を0.5、ブレーン比表面積値で4000±200cm/gに固定し、使用する凝結遅延剤の種類と量を表2に示すように変化させたこと以外は実施例1と同様に行った。結果を表2に示す。 The CaO / Al 2 O 3 molar ratio of CA used is fixed to 0.5 and the Blaine specific surface area value is 4000 ± 200 cm 2 / g, and the type and amount of setting retarder used are changed as shown in Table 2. Except that, the same procedure as in Example 1 was performed. The results are shown in Table 2.

Figure 0004347204
Figure 0004347204

凝結遅延剤の種類を変化させる場合、その種類に応じて添加率を調整する必要はあるものの、最適なCaO/Alモル比のカルシウムアルミネートと組み合わせることによってコンクリートの温度上昇量を抑制し、かつ適度な凝結時間を確保することが可能となる。 When changing the type of setting retarder, it is necessary to adjust the addition rate according to the type, but the temperature rise of the concrete is suppressed by combining with calcium aluminate with the optimal CaO / Al 2 O 3 molar ratio. In addition, it is possible to ensure an appropriate setting time.

使用するCAのCaO/Alモル比を0.5、ブレーン比表面積値を4000±200cm/gとし、これら100部に対し凝結遅延剤としてデキストリンを10部配合したセメント混和材を調製した。セメントとセメント混和材の合計100部中のセメント混和材の配合量を表3に示すように変化させたこと以外は実施例1と同様に行った。結果を表3に示す。 Prepare a cement admixture in which CaO / Al 2 O 3 molar ratio of CA used is 0.5, Blaine specific surface area value is 4000 ± 200 cm 2 / g, and 10 parts of dextrin is blended as a setting retarder for these 100 parts. did. The same procedure as in Example 1 was performed except that the blending amount of the cement admixture in 100 parts of the cement and the cement admixture was changed as shown in Table 3. The results are shown in Table 3.

Figure 0004347204
Figure 0004347204

混和材の置換率を高めるとコンクリートの圧縮強度が低下する傾向にあるが、温度上昇量の抑制効果はより顕著になる。   Increasing the substitution rate of the admixture tends to decrease the compressive strength of the concrete, but the effect of suppressing the temperature rise becomes more remarkable.

使用するCAのブレーン比表面積値を表4に示すように変化させたこと以外は実施例3と同様に行った。結果を表4に示す。 The same procedure as in Example 3 was performed except that the Blaine specific surface area value of CA used was changed as shown in Table 4. The results are shown in Table 4.

Figure 0004347204
Figure 0004347204

カルシウムアルミネートの粉末度を高めることによって、凝結時間が短くなる傾向にあるが、コンクリートの温度上昇抑制効果が得られることが分かる。   It can be seen that by increasing the fineness of calcium aluminate, the setting time tends to be shortened, but the effect of suppressing the temperature rise of concrete can be obtained.

本発明のセメント混和材を使用することによって、コンクリートの凝結遅延を引き起こすことのなく効率的にセメントの水和発熱を抑制して、コンクリートのひび割れを抑制することが可能となる。主に大型のコンクリート構造物を構築する際に有効な技術である。
By using the cement admixture of the present invention, it is possible to efficiently suppress the hydration heat of the cement without causing a delay in setting of the concrete and to suppress cracking of the concrete. This technique is effective mainly when building large concrete structures.

Claims (3)

CaO/Alモル比が0.5〜0.7で、ブレーン比表面積が3000〜6000cm/gであるカルシウムアルミネートと、凝結遅延剤として有機酸又はデキストリンの何れか1種又は2種を含有してなるセメント混和材であって、セメント混和材100部中、凝結遅延剤が〜10部であるセメント混和材。 Calcium aluminate having a CaO / Al 2 O 3 molar ratio of 0.5 to 0.7 and a Blaine specific surface area of 3000 to 6000 cm 2 / g, and any one of an organic acid or a dextrin as a setting retarder, or A cement admixture comprising two kinds , wherein the setting retarder is 5 to 10 parts in 100 parts of the cement admixture. セメントと請求項1に記載のセメント混和材を含有してなるセメント組成物。 A cement composition comprising the cement and the cement admixture according to claim 1. セメント組成物100部中、セメント混和材が3〜5部である請求項2に記載のセメント組成物。
The cement composition according to claim 2, wherein the cement admixture is 3 to 5 parts in 100 parts of the cement composition.
JP2004350723A 2004-12-03 2004-12-03 Cement admixture and cement composition Expired - Fee Related JP4347204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350723A JP4347204B2 (en) 2004-12-03 2004-12-03 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350723A JP4347204B2 (en) 2004-12-03 2004-12-03 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2006160537A JP2006160537A (en) 2006-06-22
JP4347204B2 true JP4347204B2 (en) 2009-10-21

Family

ID=36662972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350723A Expired - Fee Related JP4347204B2 (en) 2004-12-03 2004-12-03 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4347204B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026928B2 (en) * 2007-11-06 2012-09-19 太平洋マテリアル株式会社 Quick set and spray material
JP5313624B2 (en) * 2008-10-23 2013-10-09 電気化学工業株式会社 Cement composition and cement concrete
JP5615661B2 (en) * 2010-10-18 2014-10-29 電気化学工業株式会社 Cement admixture and cement composition

Also Published As

Publication number Publication date
JP2006160537A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP6830149B2 (en) Hardener for ready-mixed concrete shipping type, ready-mixed concrete shipping type hard concrete material, ready-mixed concrete shipping type hard concrete composition and its preparation method
JP4290628B2 (en) Ultrafast cement composition, superhard mortar composition, and ultrafast grout mortar
JP4762953B2 (en) Low heat generation type high strength concrete and hardened concrete using the same
JP2001328856A (en) Nonshrinking mortar composition and quick-hardenable nonshrinking mortar composition
WO2022044890A1 (en) Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition
JP4209381B2 (en) Cement composition
JP3960955B2 (en) Cement composition
JP4347204B2 (en) Cement admixture and cement composition
JP2022164804A (en) Quick hardening material and cement composition
WO2023022172A1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP6985547B1 (en) Grout material, grout mortar composition and cured product
JP3549645B2 (en) Cement admixture and cement composition
JP2002234760A (en) Quick setting agent of cement, and cement composition
JP6881094B2 (en) Acid resistant admixture
JP4293324B2 (en) Cement admixture and cement composition
JPH09110490A (en) Cement admixture and cement composition
JPWO2020044708A1 (en) Curing agent for concrete composition and curing method for concrete composition
JP5308358B2 (en) Method for producing CaO-Al2O3-Fe2O3-based compound
JP2005082440A (en) Quick hardening cement admixture, cement composition, and mortar composition
JP3289854B2 (en) Cement admixture and cement composition
JP3367576B2 (en) Hydration heat generation time adjusting material for cement and cement composition
JP3494247B2 (en) Cement composition
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete
JP2004051424A (en) Cement admixture and cement composition
JPH06157099A (en) Cement composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees