JP4346874B2 - Porous conductive plate - Google Patents

Porous conductive plate Download PDF

Info

Publication number
JP4346874B2
JP4346874B2 JP2002231462A JP2002231462A JP4346874B2 JP 4346874 B2 JP4346874 B2 JP 4346874B2 JP 2002231462 A JP2002231462 A JP 2002231462A JP 2002231462 A JP2002231462 A JP 2002231462A JP 4346874 B2 JP4346874 B2 JP 4346874B2
Authority
JP
Japan
Prior art keywords
electrode assembly
membrane electrode
porous conductive
conductive plate
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002231462A
Other languages
Japanese (ja)
Other versions
JP2004071456A (en
Inventor
隆 大西
忠司 小笠原
雅通 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Osaka Titanium Technologies Co Ltd
Original Assignee
Honda Motor Co Ltd
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Osaka Titanium Technologies Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002231462A priority Critical patent/JP4346874B2/en
Publication of JP2004071456A publication Critical patent/JP2004071456A/en
Application granted granted Critical
Publication of JP4346874B2 publication Critical patent/JP4346874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型水電解槽における給電体又は固体高分子型燃料電池における集電体として使用される多孔質導電板に関し、特に、チタン焼結体からなる多孔質導電板に関する。
【0002】
【従来の技術】
高分子電解質膜を用いて水素及び酸素を製造する水電解セルは、いわゆるフィルタープレス型に構成されている。具体的に説明すると、高分子電解質膜の両面に触媒層を接合して構成された膜電極接合体の両面側に給電体を配置してユニットを構成し、このユニットを多数積層して、その両端側に電極を設けた構成が一般に採用されている。
【0003】
ここにおける給電体は、多孔質の導電板からなり、隣接する膜電極接合体に密に接して配置される。給電体として多孔質の導電板を使用するのは、電流を通す必要があること、水電解反応のために水を供給する必要があること、水電解反応で生じたガスを速やかに排出する必要があることなどによる。
【0004】
また、高分子電解質膜を用いた燃料電池の構造も水電解槽のそれと全く同じであり、膜電極接合体の両面側には多孔質の導電板が配置されている。燃料電池の場合は、水素を燃料として電力を得ることから、この多孔質導電板は集電体と呼ばれている。
【0005】
このような固体高分子型水電解槽における給電体又は固体高分子型燃料電池における集電体として使用される多孔質導電板に関しては、酸化性雰囲気で使用できる特性も必要なため、カーボンと共にチタン材が検討されており、チタン材のなかでも特にチタン粉末焼結体が、表面が平滑で、隣接する膜電極接合体を損傷させ難いことや、適正な空隙率を得やすいことなどから注目されている。
【0006】
そして、このようなチタン粉末焼結体からなる多孔質導電板の一つとして、スポンジチタンを水素化脱水素により脆化し粉砕して得られたHDH粉末を圧縮後に焼結(CIP)し、製造されたチタン粉末焼結体を更にスライス加工することにより、表面が平滑なチタン粉末焼結板を製造する技術が、特開2000−328279号公報に記載されている。
【0007】
【発明が解決しようとする課題】
特開2000−328279号公報に記載されているチタン粉末焼結体では、表面がスライス加工により平滑化されているために、膜電極接合体との接触面積比率を高めることが可能になり、加えて、その表面の凹凸などに起因する膜電極接合体の破損を軽減することも可能になる。
【0008】
しかしながら、スポンジチタンの破砕粒子或いはスポンジチタンの水素化脱水素による脆化破砕粒子を原料とするチタン粉末焼結体では、原料粒子が角張った不定形状であるため、表面が平坦化されていても、膜電極接合体と各チタン粒子の接触面形状が円形にならず、鋭角な角部をもつ不定形となる箇所が多く発生する。このため、依然として膜電極接合体を損傷させる危険性が高い。
【0009】
この問題点はCIPを無加圧焼結に変更しても解決されない。CIPを無加圧焼結に変更した場合は、焼結板の表面を研削しても膜電極接合体との接触性は十分に改善されない。
【0010】
これらに加え、従来のチタン粉末焼結体は、プレス成形性が悪く、割れやすいため、薄型で大面積のものを製造できないという制約もある。
【0011】
本発明の目的は、成形性に優れるのは勿論のこと、膜電極接合体との接触性に優れ、しかも膜電極接合体を損傷させる危険性が小さい多孔質導電板を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、球状ガスアトマイズチタン粉末に注目した。球状ガスアトマイズチタン粉末とは、ガスアトマイズ法により製造されたチタン又はチタン合金の粉末であり、個々の粒子は、チタン又はチタン合金の溶融飛沫が飛散中に凝固してできたものであるから、表面が滑らかな球形をしている。また、粒径は例えば平均で100μm以下と非常に微細にできる。
【0013】
ちなみに、スポンジチタンの破砕や水素化脱水素により製造されたチタン粉末の粒子形状は不定形である。また、球状チタン粒子は回転電極法によっても製造可能であるが、得られる平均粒度は一般に400μm以上である。
【0014】
本発明者らは、このような特徴を有する球状ガスアトマイズチタン粉末を用いて、固体高分子型水電解槽における給電体や固体高分子型燃料電池における集電体を想定した焼結板を試験的に製造し、その特性等を評価した。その結果、以下のことが明らかになった。
【0015】
球状ガスアトマイズチタン粉末は流動性に優れ、焼結容器内に投入すると、加圧なしでも十分な密度に充填される。そして、これを焼結すると、▲1▼薄型大面積の場合も十分な機械的強度が確保される。▲2▼給電体や集電体として好ましい空隙率が、格別の操作なしで簡単に得られる。▲3▼表面の平滑性が元々良好な上に、研削又は切削などによる平滑化加工を行うと、隣接する膜電極接合体との接触性が著しく向上する。▲4▼そして、この場合の膜電極接合体と各粒子の接触面形状がほぼ円形となり、鋭角な角部をもつ不定形が存在しなくなるため、従来のチタン粉末焼結体を用いた場合と比較して膜電極接合体の損傷を大幅に減らすことが可能になる。
【0016】
即ち、球状ガスアトマイズチタン粉末を用いた焼結体は、製造過程で加圧さえも行わず、また製造後に表面コートを行わずとも、表面の平滑化加工を行うだけで、固体高分子型水電解槽における給電体又は固体高分子型燃料電池における集電体として、性能及び経済性の両面から極めて優れた適性を示すものとなる。
【0017】
本発明の多孔質導電板は、かかる知見に基づいて開発されたもので、固体高分子型水電解槽における給電体又は固体高分子型燃料電池における集電体として使用される多孔質導電板であって、球状チタン粒子を原料とする空隙率が30〜50%の焼結体からなり、膜電極接合体に接触する面が平滑化されるように、その面の表層に位置する球状チタン粒子の表面側の一部分が、同一平面上に位置する平坦面とされたものである。
【0018】
前記平滑化は、研削加工又は切削加工により行い簡単である。膜電極接合体に接触する面における接触面積比率は50〜80%である。この面積比率が50%未満の場合は表面の平滑化によっても接触性の改善が図れない。80%を超える場合は純水などの流体の供給が不十分となり、反応性が阻害される。特に好ましい面積比率は60〜70%である。ちなみに、前記平滑化が行われない場合の面積比率は40%以下である。
【0019】
本発明の多孔質導電板においては、原料粒子に球状チタン粒子を使用すること、及び焼結板の表面を平滑化することが重要であるが、これらと共に焼結体の空隙率も重要である。すなわち、球状チタン粒子を使用した焼結体であれば何でもよいというわけではなく、空隙率が30〜50%のものが必要である。空隙率が30%未満では流体の流通が不十分となるため、膜電極接合体近傍で発生するガスが焼結体を通って反対側へ流通することが困難になり、その結果、膜電極接合体の冷却不良による寿命短縮等が問題になる。分級などにより粒径をある程度そろえた球状チタン粒子を無加圧で焼結したときの空隙率は30〜50%程度になる。バインダを多量に加えるなどすれば球状チタン粒子を使用しても空隙率が50%を超えるものを製造できるが、空隙率が50%を超えると表面を平滑化しても膜電極接合体との接触性が不足する。加えて、焼結体内に粒子が「粗」の部分が多数生じるため、電気伝導度や発生ガスの排出能力などに面内不均一が発生することも問題になる。
【0020】
球状チタン粒子としては、粒径が小さい球状ガスアトマイズチタン粉末が好ましいが、回転電極法による球状チタン粒子の使用も可能である。球状ガスアトマイズチタン粉末としては、例えば粒径範囲によって区分された次の3種類が市販されている。即ち、45μm以下の細粒、45〜150μmの粗粒、更に粗い150μm以上の3種類であり、平均粒径は細粒で約25μm、粗粒で約80μmである。
【0021】
本発明の多孔質導電板に使用される球状ガスアトマイズチタン粉末の粒径は、特に限定せず、上述の市販品レベルで何ら問題はないが、ガスアトマイズ法と言えども極端な細粒を歩留りよく工業的に生産することは困難である。また、粗粒の場合は、薄型の多孔質体を製造した場合に多孔質体の厚みに対するチタン粉末間の接触点数が少なくなるために強度不足が懸念される。よって、粒径は平均で10〜150μmが好ましい。
【0022】
多孔質導電板の空隙率は、焼結温度の調節、粒径の選択、加圧等により制御可能である。一般的な傾向として、焼結温度が高くなると、接触面積が増大することから、空隙率が低下する。同様に、粒径が小さくなった場合も、接触面積が増大することから、空隙率が低下する傾向となる。また、充填時や焼結時に加圧を行えば、空隙率は低下する。また、多孔質導電板の板厚に対して粒径が大きくなると、空隙率が増大する傾向となる。これらの組み合わせにより、空隙率は比較的広い範囲で任意に制御される。なお、空隙率の極端な低減や増大は、反応における水やガスの受給効率の悪化や多孔質導電板の強度不足の原因になる。
【0023】
多孔質導電板の寸法は、製造される給電体や集電体の寸法に応じて適宜選択される。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。図1〜図3は球状ガスアトマイズ粉末の充填形態を示す断面図である。
【0025】
まず、図1に示すように、所定粒径の球状ガスアトマイズチタン粉末1を高密度アルミナ製の焼結容器2に無加圧で充填する。焼結容器2の内形は、製造すべき多孔質導電板よりやや厚い薄板形状である。次いで、焼結容器2内に充填された球状ガスアトマイズチタン粉末1を無加圧で真空焼結する。
【0026】
焼結温度は、チタンの融点よりはるかに低い800〜1300℃が好ましい。焼結温度が800℃未満の場合は、十分な焼結が行われない。1300℃を超えると、無加圧の場合でも、焼結部分が個々の粒子同士の接触部にとどまらず、粒子同士が溶け合うため、適正な空隙率を確保できなくなるおそれがある。
【0027】
こうして製造された板状のチタン粉末焼結体の一方の表面(膜電極接合体に接触する面)を研削加工又は切削加工により平坦化する(図4参照)。他方の表面も合わせて平坦化すれば電解電圧が更に低下し、エネルギー効率が向上する。
【0028】
このような方法で300mm角×1mm厚の多孔質導電板を、本発明の実施例及び参考例として製造した。使用した球状ガスアトマイズチタン粉末は、前述した市販品であり、粗粒(粒径範囲45〜150μm,平均粒径80μm)と細粒(粒径範囲45μm以下,平均粒径25μm)の2種類である。真空焼結での真空度は7×10-3Paとした。また、焼結温度は粗粒に対しては約1100℃(参考例1)と約1300℃(実施例2)、細粒に対しては約800℃(実施例1)と約900℃(参考例2)の各2種類とした。即ち、粗粒及び細粒のそれぞれについて焼結温度を変化させることにより、空隙率を2段階に調節した。平坦化は、焼結体の両面に対して研削加工により実施した。
【0029】
比較例として、研削加工を省略した。また、空隙率を30%未満の16%とした。また、原料粒子として、球状ガスアトマイズチタン粉末の代わりに、スポンジチタンを水素化脱水素により脆化し粉砕して得られたHDH粉末を使用した。そのHDH粉末に対してCIPと無加圧焼結を実施した。
【0030】
製造された各種の多孔質導電板について、膜電極接合体に対する接触性を、接触面積比率により評価した。接触面積比率は、各焼結体の接触面積を感圧フィルム(商品名プレスケール 富士フィルム製)により測定し、これを焼結体の面積で除することにより求めた。このときの測定圧力は1.47MPaとした。
【0031】
また、損失電圧を次の方法により測定した。焼結体を2枚の銅板で挟み、1.47MPaの圧力で加圧した状態で、1A/cm2 の直流電流を2枚の銅板間に通じ、その際の2枚の銅板間の電圧を測定した。
【0032】
更に、膜電極接合体への機械的影響を、前記感圧フィルムにおけるピンホールの有無により評価した。前記感圧フィルムの厚さは0.1mm、加圧力は前記のとおり1.47MPaである。
【0033】
結果を表1に示す。
【0034】
【表1】

Figure 0004346874
【0035】
比較例4は、HDH粉末にCIPを実施して製造した従来の焼結体である。表面を研削したため、膜電極接合体との接触性は良好である。しかし、膜電極接合体と各粒子の接触面形状が、鋭角な角部をもつ不定形となるため、膜電極接合体を損傷させる危険性は高い。比較例5は、HDH粉末を無加圧焼結して得た焼結体である。依然として膜電極接合体を損傷させる危険性が高い上に、膜電極接合体との接触性が低下した。
【0036】
比較例1,2は、球状ガスアトマイズチタン粉末を使用するものの、表面の切削加工を行わなかった焼結体である。膜電極接合体を損傷させる危険性は低く、空隙率も適正なるものの、膜電極接合体との接触性は不良である。
【0037】
実施例1,2及び参考例1,2は、球状ガスアトマイズチタン粉末を使用した上で、表面の切削加工を行った焼結体である。参考例1で得た焼結体の断面形状を図4に研削加工前及び研削加工後について示す。参考例1,2は空隙率が本発明範囲(30〜50%)内の50%,30%であるのに対し、膜電極接合体との接触面積率は本発明範囲(50〜80%)に対して±1%の49%,81%である。実施例1,2及び参考例1,2では表面の研削加工により、表面近傍に位置する球状チタン粒子の表面側の一部分が、同一平面上に位置する平坦面となっており、表面が非常に平滑である。このため、膜電極接合体との接触性が良好である。加えて、膜電極接合体と各粒子の接触面形状がほぼ円形となり、鋭角な角部をもつ不定形が存在しなくなるため、膜電極接合体を損傷させる危険性が著しく低下する。更には空隙率も適正である。そして原料粒径が小さいほど、膜電極接合体との接触性は向上する。実施例1,2及び参考例1,2より、空隙率の本発明範囲(30〜50%)の適正なこと、接触面積率に関し、参考例1,2に挟まれた本発明範囲(50〜80%)の有効なことは明らかである。
【0038】
比較例3は、球状ガスアトマイズチタン粉末を使用した上で、表面の切削加工を行ったものの、焼結温度の高温化により空隙率が過度に低下した焼結体である。膜電極接合体を損傷させる危険性が低く、膜電極接合体との接触性も良好であるが、流体の流通が不十分となることによる膜電極接合体の冷却不良、これによる寿命短縮が問題になる。
【0039】
焼結体表面の平滑性を更に高める方法としては、例えば、球状ガスアトマイズチタン粉末を、振動を付与しながら必要寸法の焼結容器に充填する方法がある。この振動充填によると、図2に示すように、焼結容器2の底部上面に接する表面だけでなく、開口側の表面の平滑性が向上し、空隙率の更なる均一化も図られる。また、図3に示すように、焼結容器2を、内側の板状空間が縦向きとなるように構成するのも有効である。内側の板状空間が縦向きになると、充填された球状ガスアトマイズチタン粉末1が両側の側面から自重による板厚方向の荷重を受け、両表面の平滑性が向上する。いずれの方法でも、充填率が増大することによる空隙率の低減を伴い、両者を併用することも可能である。
【0040】
成形方法としては、自然充填・真空焼結の他、球状ガスアトマイズチタン粉末をバインダに混練したものを、ドクターブレード法、射出成形法、押し出し法等でグリーン体を成形し、その後、バインダを除去して焼結してもよい。焼結後の多孔質導電板を圧延したり、グリーン体を圧延して表面の更なる平滑化や空隙率の調整を行うことも可能である。また、球状ガスアトマイズチタン粉末の粒度分布を小さくすることも表面の平滑化に有効である。
【0041】
【発明の効果】
以上に説明したとおり、本発明の多孔質導電板は、球状チタン粉末の焼結体により構成されることにより、成形性に優れるので、薄型大面積の製品を簡単に製造できる。表面の平滑化により、膜電極接合体との接触性に著しく優れるものとりなり、膜電極接合体を損傷させる危険性も小さい。
【図面の簡単な説明】
【図1】球状ガスアトマイズ粉末の充填形態の1例を示す断面図である。
【図2】球状ガスアトマイズ粉末の充填形態の他の例を示す断面図である。
【図3】球状ガスアトマイズ粉末の充填形態の更に他の例を示す断面図である。
【図4】本発明の実施例で得た焼結体の粒子構造を、研削加工前及び研削加工後について示す断面図である。
【符号の説明】
1 球状ガスアトマイズチタン粉末
2 焼結容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous conductive plate used as a power feeder in a polymer electrolyte water electrolyzer or a current collector in a polymer electrolyte fuel cell, and more particularly to a porous conductive plate made of a titanium sintered body.
[0002]
[Prior art]
A water electrolysis cell for producing hydrogen and oxygen using a polymer electrolyte membrane is configured as a so-called filter press type. More specifically, a unit is constructed by arranging a power feeder on both sides of a membrane electrode assembly formed by joining a catalyst layer on both sides of a polymer electrolyte membrane, and a large number of these units are stacked. A configuration in which electrodes are provided on both end sides is generally employed.
[0003]
The power feeding body here is made of a porous conductive plate, and is arranged in close contact with the adjacent membrane electrode assembly. The use of a porous conductive plate as a power feeder requires the passage of electric current, the necessity of supplying water for the water electrolysis reaction, and the rapid discharge of gas generated by the water electrolysis reaction Because there is.
[0004]
Further, the structure of the fuel cell using the polymer electrolyte membrane is exactly the same as that of the water electrolysis tank, and a porous conductive plate is disposed on both sides of the membrane electrode assembly. In the case of a fuel cell, this porous conductive plate is called a current collector because electric power is obtained using hydrogen as fuel.
[0005]
Since the porous conductive plate used as a power feeder in such a polymer electrolyte water electrolyzer or a current collector in a polymer electrolyte fuel cell also requires characteristics that can be used in an oxidizing atmosphere, Materials have been studied, and among titanium materials, titanium powder sintered body is particularly noticeable because it has a smooth surface, it is difficult to damage the adjacent membrane electrode assembly, and it is easy to obtain an appropriate porosity. ing.
[0006]
As one of the porous conductive plates made of such a titanium powder sintered body, HDH powder obtained by embrittlement and pulverization of sponge titanium by hydrodehydrogenation is sintered after compression (CIP) to produce Japanese Patent Application Laid-Open No. 2000-328279 discloses a technique for manufacturing a titanium powder sintered plate having a smooth surface by further slicing the sintered titanium powder.
[0007]
[Problems to be solved by the invention]
In the titanium powder sintered body described in Japanese Patent Laid-Open No. 2000-328279, since the surface is smoothed by slicing, the contact area ratio with the membrane electrode assembly can be increased. Thus, it is also possible to reduce the damage to the membrane electrode assembly due to the unevenness of the surface.
[0008]
However, in the titanium powder sintered body made of titanium sponge crushed particles or embrittled crushed particles by hydrodehydrogenation of sponge titanium, the raw material particles are angular and indefinite, so even if the surface is flattened The contact surface shape of the membrane electrode assembly and each titanium particle is not circular, and there are many places where the shape is indefinite with sharp corners. For this reason, there is still a high risk of damaging the membrane electrode assembly.
[0009]
This problem cannot be solved even if CIP is changed to pressureless sintering. When CIP is changed to pressureless sintering, the contact with the membrane electrode assembly is not sufficiently improved even if the surface of the sintered plate is ground.
[0010]
In addition to these, the conventional titanium powder sintered body has a limitation that it cannot be manufactured in a thin and large area because it has poor press moldability and is easily cracked.
[0011]
An object of the present invention is to provide a porous conductive plate that is excellent in moldability, has excellent contact properties with a membrane electrode assembly, and has a low risk of damaging the membrane electrode assembly.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors paid attention to spherical gas atomized titanium powder. Spherical gas atomized titanium powder is a titanium or titanium alloy powder produced by the gas atomization method, and the individual particles are formed by solidification of titanium or titanium alloy molten droplets during scattering, so the surface is It has a smooth spherical shape. The particle size can be made very fine, for example, 100 μm or less on average.
[0013]
Incidentally, the particle shape of titanium powder produced by crushing titanium sponge or hydrodehydrogenation is indefinite. Spherical titanium particles can also be produced by the rotating electrode method, but the average particle size obtained is generally 400 μm or more.
[0014]
The inventors of the present invention used a spherical gas atomized titanium powder having such characteristics to test a sintered plate assuming a power feeder in a polymer electrolyte water electrolysis cell and a current collector in a polymer electrolyte fuel cell. Were manufactured and their characteristics were evaluated. As a result, the following became clear.
[0015]
Spherical gas atomized titanium powder is excellent in fluidity, and when charged into a sintering vessel, it is filled to a sufficient density without pressure. When sintered, {circle around (1)} sufficient mechanical strength is ensured even in the case of a thin and large area. {Circle around (2)} A preferable porosity as a power feeding body or a current collector can be easily obtained without any special operation. {Circle around (3)} The smoothness of the surface is originally good, and when the smoothing process is performed by grinding or cutting, the contact property with the adjacent membrane electrode assembly is remarkably improved. (4) Since the contact surface shape of the membrane electrode assembly and each particle in this case is almost circular and there is no indefinite shape having sharp corners, the conventional titanium powder sintered body is used. In comparison, damage to the membrane electrode assembly can be greatly reduced.
[0016]
That is, a sintered body using spherical gas atomized titanium powder is not subjected to pressurization in the manufacturing process, and it is not necessary to perform surface coating after manufacturing, but only by smoothing the surface, so that solid polymer water electrolysis can be performed. As a power feeder in a tank or a current collector in a polymer electrolyte fuel cell, it exhibits extremely excellent suitability in terms of both performance and economy.
[0017]
The porous conductive plate of the present invention was developed based on such knowledge, and is a porous conductive plate used as a power feeder in a polymer electrolyte water electrolyzer or a current collector in a polymer electrolyte fuel cell. The spherical titanium particles are composed of a sintered body having a porosity of 30 to 50% using spherical titanium particles as a raw material, and are located on the surface layer of the surface so that the surface in contact with the membrane electrode assembly is smoothed. A part of the surface side of each is a flat surface located on the same plane.
[0018]
The smoothing is easy done by grinding or cutting. The contact area ratio in the surface in contact with the membrane electrode assembly is 50 to 80%. When the area ratio is less than 50%, the contact cannot be improved even by smoothing the surface. If it exceeds 80%, the supply of fluid such as pure water is insufficient, and the reactivity is hindered. A particularly preferable area ratio is 60 to 70%. Incidentally, the area ratio when the smoothing is not performed is 40% or less.
[0019]
In the porous conductive plate of the present invention, it is important to use spherical titanium particles as raw material particles and to smooth the surface of the sintered plate, but the porosity of the sintered body is also important together with these. . In other words, any sintered body using spherical titanium particles is not necessary, and a sintered body having a porosity of 30 to 50% is required. If the porosity is less than 30%, the fluid flow becomes insufficient, so that it is difficult for the gas generated in the vicinity of the membrane electrode assembly to flow to the opposite side through the sintered body. Shortening the life due to poor cooling of the body is a problem. When spherical titanium particles having a uniform particle size by classification or the like are sintered without pressure, the porosity is about 30 to 50%. If a large amount of binder is added, even if spherical titanium particles are used, a product with a porosity exceeding 50% can be produced. However, if the porosity exceeds 50%, contact with the membrane electrode assembly is possible even if the surface is smoothed. Lack of sex. In addition, since a large number of “rough” portions of particles are generated in the sintered body, in-plane non-uniformity occurs in the electrical conductivity and the discharge ability of the generated gas.
[0020]
As the spherical titanium particles, spherical gas atomized titanium powder having a small particle diameter is preferable, but it is also possible to use spherical titanium particles by a rotating electrode method. As the spherical gas atomized titanium powder, for example, the following three types classified by the particle size range are commercially available. That is, there are three types of fine particles of 45 μm or less, coarse particles of 45 to 150 μm, and coarser of 150 μm or more, and the average particle size is about 25 μm for fine particles and about 80 μm for coarse particles.
[0021]
The particle size of the spherical gas atomized titanium powder used in the porous conductive plate of the present invention is not particularly limited, and there is no problem at the level of the above-mentioned commercial products, but even with the gas atomization method, it is possible to produce extremely fine particles with good yield. Production is difficult. In the case of coarse particles, when a thin porous body is produced, the number of contact points between titanium powders with respect to the thickness of the porous body is reduced, and there is a concern that the strength is insufficient. Accordingly, the average particle size is preferably 10 to 150 μm.
[0022]
The porosity of the porous conductive plate can be controlled by adjusting the sintering temperature, selecting the particle size, pressing, and the like. As a general tendency, as the sintering temperature increases, the contact area increases, so the porosity decreases. Similarly, when the particle size is reduced, the contact area increases, so that the porosity tends to decrease. Further, if pressure is applied during filling or sintering, the porosity decreases. Further, when the particle diameter is increased with respect to the thickness of the porous conductive plate, the porosity tends to increase. By these combinations, the porosity is arbitrarily controlled within a relatively wide range. Note that the extreme reduction or increase in the porosity causes deterioration of the water and gas receiving efficiency in the reaction and insufficient strength of the porous conductive plate.
[0023]
The dimensions of the porous conductive plate are appropriately selected according to the dimensions of the power feeder and current collector to be manufactured.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1-3 is sectional drawing which shows the filling form of spherical gas atomized powder.
[0025]
First, as shown in FIG. 1, a spherical gas atomized titanium powder 1 having a predetermined particle diameter is filled into a sintered container 2 made of high-density alumina without applying pressure. The inner shape of the sintering container 2 is a thin plate shape slightly thicker than the porous conductive plate to be manufactured. Next, the spherical gas atomized titanium powder 1 filled in the sintering container 2 is vacuum-sintered without pressure.
[0026]
The sintering temperature is preferably 800 to 1300 ° C., which is much lower than the melting point of titanium. When the sintering temperature is less than 800 ° C., sufficient sintering is not performed. If the temperature exceeds 1300 ° C., the sintered portion does not stay at the contact portion between the individual particles even when there is no pressure applied, and the particles are melted together, so there is a possibility that an appropriate porosity cannot be secured.
[0027]
One surface (surface contacting the membrane electrode assembly) of the plate-like titanium powder sintered body thus manufactured is flattened by grinding or cutting (see FIG. 4). If the other surface is also flattened, the electrolysis voltage is further lowered and energy efficiency is improved.
[0028]
In this way, 300 mm square × 1 mm thick porous conductive plates were produced as examples and reference examples of the present invention. The spherical gas atomized titanium powder used is the above-mentioned commercial product, and there are two types: coarse particles (particle size range 45 to 150 μm, average particle size 80 μm) and fine particles (particle size range 45 μm or less, average particle size 25 μm). . The degree of vacuum in vacuum sintering was 7 × 10 −3 Pa. The sintering temperature is about 1100 ° C. ( Reference Example 1 ) and about 1300 ° C. ( Example 2 ) for coarse particles, and about 800 ° C. ( Example 1 ) and about 900 ° C. ( reference ) for fine particles. The two types of Example 2 ) were used. That is, the porosity was adjusted in two stages by changing the sintering temperature for each of coarse grains and fine grains. The flattening was performed by grinding on both sides of the sintered body.
[0029]
As a comparative example, grinding was omitted. Moreover, the porosity was set to 16%, which is less than 30%. Further, HDH powder obtained by embrittlement and pulverization of sponge titanium by hydrodehydrogenation was used as raw material particles instead of spherical gas atomized titanium powder. The HDH powder was subjected to CIP and pressureless sintering.
[0030]
About the produced various porous conductive plates, the contact property with respect to a membrane electrode assembly was evaluated by the contact area ratio. The contact area ratio was determined by measuring the contact area of each sintered body with a pressure-sensitive film (trade name: Prescale Fuji Film) and dividing this by the area of the sintered body. The measurement pressure at this time was 1.47 MPa.
[0031]
Further, the loss voltage was measured by the following method. In a state where the sintered body is sandwiched between two copper plates and pressed at a pressure of 1.47 MPa, a direct current of 1 A / cm 2 is passed between the two copper plates, and the voltage between the two copper plates at that time is It was measured.
[0032]
Furthermore, the mechanical influence on the membrane electrode assembly was evaluated by the presence or absence of pinholes in the pressure sensitive film. The thickness of the pressure-sensitive film is 0.1 mm, and the applied pressure is 1.47 MPa as described above.
[0033]
The results are shown in Table 1.
[0034]
[Table 1]
Figure 0004346874
[0035]
Comparative Example 4 is a conventional sintered body produced by performing CIP on HDH powder. Since the surface is ground, the contact property with the membrane electrode assembly is good. However, since the shape of the contact surface between the membrane electrode assembly and each particle is indefinite with sharp corners, the risk of damaging the membrane electrode assembly is high. Comparative Example 5 is a sintered body obtained by pressureless sintering of HDH powder. The risk of damaging the membrane electrode assembly was still high, and the contact with the membrane electrode assembly was reduced.
[0036]
Comparative Examples 1 and 2 are sintered bodies in which spherical gas atomized titanium powder is used but the surface is not cut. Although the risk of damaging the membrane electrode assembly is low and the porosity is appropriate, the contact property with the membrane electrode assembly is poor.
[0037]
Examples 1 and 2 and Reference Examples 1 and 2 are sintered bodies obtained by cutting the surface after using spherical gas atomized titanium powder. FIG. 4 shows the cross-sectional shape of the sintered body obtained in Reference Example 1 before and after grinding. In Reference Examples 1 and 2, the porosity is 50% and 30% within the range of the present invention (30 to 50%), whereas the contact area ratio with the membrane electrode assembly is within the range of the present invention (50 to 80%). ± 1% 49% and 81%. In Examples 1 and 2 and Reference Examples 1 and 2, a part of the surface side of the spherical titanium particles located near the surface is a flat surface located on the same plane by the surface grinding, and the surface is very Smooth. For this reason, the contact property with the membrane electrode assembly is good. In addition, the contact surface shape between the membrane electrode assembly and each particle is almost circular, and there is no indefinite shape having sharp corners, so that the risk of damaging the membrane electrode assembly is significantly reduced. Furthermore, the porosity is also appropriate. And the contact property with a membrane electrode assembly improves, so that a raw material particle size is small. From Examples 1 and 2 and Reference Examples 1 and 2, the present invention range (50 to 50) sandwiched between Reference Examples 1 and 2 regarding the appropriateness of the present invention range of porosity (30 to 50%) and the contact area ratio 80%) is clear.
[0038]
Comparative Example 3 is a sintered body in which the porosity was excessively reduced by increasing the sintering temperature, although the surface gas was cut after using spherical gas atomized titanium powder. The risk of damaging the membrane electrode assembly is low, and the contact with the membrane electrode assembly is also good, but there is a problem of poor cooling of the membrane electrode assembly due to insufficient fluid flow and shortening the life due to this become.
[0039]
As a method for further improving the smoothness of the surface of the sintered body, for example, there is a method in which a spherical gas atomized titanium powder is filled in a sintered container having a required size while applying vibration. According to this vibration filling, as shown in FIG. 2, not only the surface in contact with the upper surface of the bottom of the sintering container 2 but also the smoothness of the surface on the opening side is improved, and the porosity is further uniformed. Further, as shown in FIG. 3, it is also effective to configure the sintering container 2 so that the inner plate-like space is oriented vertically. When the inner plate-shaped space is oriented vertically, the filled spherical gas atomized titanium powder 1 receives a load in the plate thickness direction due to its own weight from both side surfaces, and the smoothness of both surfaces is improved. In any method, the void ratio is reduced by increasing the filling rate, and both can be used in combination.
[0040]
As a molding method, in addition to natural filling and vacuum sintering, a spherical gas atomized titanium powder kneaded in a binder is used to form a green body by the doctor blade method, injection molding method, extrusion method, etc., and then the binder is removed. And may be sintered. The sintered porous conductive plate can be rolled, or the green body can be rolled to further smooth the surface and adjust the porosity. Further, reducing the particle size distribution of the spherical gas atomized titanium powder is also effective for smoothing the surface.
[0041]
【The invention's effect】
As described above, since the porous conductive plate of the present invention is composed of a sintered body of spherical titanium powder and has excellent moldability, a thin and large-area product can be easily produced. By smoothing the surface, the contact with the membrane electrode assembly is remarkably excellent, and the risk of damaging the membrane electrode assembly is small.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a filling form of spherical gas atomized powder.
FIG. 2 is a cross-sectional view showing another example of a filling form of spherical gas atomized powder.
FIG. 3 is a cross-sectional view showing still another example of a filling form of spherical gas atomized powder.
FIG. 4 is a cross-sectional view showing the particle structure of a sintered body obtained in an example of the present invention before and after grinding.
[Explanation of symbols]
1 Spherical gas atomized titanium powder 2 Sintered container

Claims (2)

固体高分子型水電解槽における給電体又は固体高分子型燃料電池における集電体として使用される多孔質導電板であって、球状チタン粒子を原料とする空隙率が30〜50%の焼結体からなり、膜電極接合体に接触する面が平滑化されるように、その面の表層に位置する球状チタン粒子の表面側の一部分が、研削又は切削により、同一平面上に位置する平坦面とされており、膜電極接合体に接触する面における接触面積比率が50〜80%であることを特徴とする多孔質導電板。A porous conductive plate used as a power supply in a polymer electrolyte water electrolyzer or a current collector in a polymer electrolyte fuel cell, and sintered with a spherical porosity of 30 to 50%. A flat surface in which a part of the surface side of the spherical titanium particles located on the surface layer of the surface is made on the same plane by grinding or cutting so that the surface contacting the membrane electrode assembly is smoothed. The porous conductive plate is characterized in that the contact area ratio on the surface in contact with the membrane electrode assembly is 50 to 80% . 膜電極接合体に接触する面における各粒子の接触面形状が円形状であることを特徴とする請求項1に記載の多孔質導電板。The porous conductive plate according to claim 1, wherein the contact surface shape of each particle on the surface in contact with the membrane electrode assembly is circular .
JP2002231462A 2002-08-08 2002-08-08 Porous conductive plate Expired - Lifetime JP4346874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231462A JP4346874B2 (en) 2002-08-08 2002-08-08 Porous conductive plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231462A JP4346874B2 (en) 2002-08-08 2002-08-08 Porous conductive plate

Publications (2)

Publication Number Publication Date
JP2004071456A JP2004071456A (en) 2004-03-04
JP4346874B2 true JP4346874B2 (en) 2009-10-21

Family

ID=32017225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231462A Expired - Lifetime JP4346874B2 (en) 2002-08-08 2002-08-08 Porous conductive plate

Country Status (1)

Country Link
JP (1) JP4346874B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611688B2 (en) * 2004-08-30 2011-01-12 本田技研工業株式会社 Hydrogen production equipment
JP2006216281A (en) * 2005-02-01 2006-08-17 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP4165655B2 (en) 2005-02-25 2008-10-15 本田技研工業株式会社 Electrolytic device, electrochemical reaction membrane device, and porous conductor
JP2006328527A (en) 2005-04-26 2006-12-07 Honda Motor Co Ltd Apparatus for producing hydrogen
JP5061454B2 (en) 2005-11-24 2012-10-31 トヨタ自動車株式会社 Fuel cell
JP2009252399A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Metallic porous separator for fuel, cell and manufacturing method therefor
WO2010053153A1 (en) * 2008-11-10 2010-05-14 山陽特殊製鋼株式会社 Fuel cell separator and fuel cell using same
JP5573110B2 (en) * 2009-11-06 2014-08-20 三菱マテリアル株式会社 Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member
JP5431182B2 (en) * 2010-01-21 2014-03-05 山陽特殊製鋼株式会社 Method for producing sheet-like porous metal member and member thereof
JP5090505B2 (en) * 2010-08-10 2012-12-05 本田技研工業株式会社 Hydrogen production equipment
JP2012052202A (en) * 2010-09-02 2012-03-15 Tokyo Metropolitan Univ Member for electrolysis cell and hydrogen production device using the same
JP6300315B2 (en) * 2014-03-31 2018-03-28 住友電気工業株式会社 Fuel cell current collector and fuel cell
JP6786426B2 (en) * 2016-03-23 2020-11-18 Eneos株式会社 Electrochemical reduction device and method for producing a hydrogenated product of an aromatic hydrocarbon compound
KR102079134B1 (en) * 2017-02-13 2020-02-19 주식회사 엘지화학 Apparatus for examining quality of porous body and method for quality examination of porous body
EP3453785A1 (en) * 2017-09-07 2019-03-13 Kabushiki Kaisha Toshiba Membrane electrode assembly, electrochemical cell, and electrochemical device
JP6958483B2 (en) * 2018-05-28 2021-11-02 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell
KR102625438B1 (en) * 2018-07-27 2024-01-15 횔러 엘렉트로리제르 게엠베하 Method for manufacturing porous transport layer for electrochemical cell
JP2020026561A (en) * 2018-08-14 2020-02-20 東邦チタニウム株式会社 Method for manufacturing porous titanium sintered plate
CN111621806A (en) * 2020-04-28 2020-09-04 北京科技大学 Special-shaped current collector, PEM water electrolysis hydrogen production device and water electrolysis hydrogen production method

Also Published As

Publication number Publication date
JP2004071456A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4346874B2 (en) Porous conductive plate
EP1683594B1 (en) Use of titanium powder sintered compact
US6103373A (en) Carbon fiber material and electrode materials and method of manufacture therefor
KR102625438B1 (en) Method for manufacturing porous transport layer for electrochemical cell
WO2017086250A1 (en) Electrode material for fuel cell, and method for manufacturing same
US20120301663A1 (en) Carbon nanotube composite and method for making the same
JP5465883B2 (en) Porous material
CN1242613A (en) Betteries
EP1622215A1 (en) Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
EP3718968B1 (en) Method of manufacturing composite anode material
TWI480384B (en) A positive temperature coefficient material composition for making a positive temperature coefficient circuit protection device includes a positive temperature coefficient polymer unit and a conductive filler
JP5833786B1 (en) ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
US9806327B2 (en) Method for the production of a porous element, and cell of a rechargeable oxide battery
JP4890724B2 (en) Composite conductive material formed by thermal compression and fuel cell electrode using such material
JP3819341B2 (en) Porous conductive plate
JP4658035B2 (en) Method for producing an aggregate of metal powder and article incorporating the aggregate
JP3430166B2 (en) Porous conductive plate
EP1447828A1 (en) POLARIZING ELECTRODE AND ITS MANUFACTURING METHOD, AND ELECTRIC DOUBLE−LAYER CAPACITOR
Kim et al. Effect of Cu powder as an additive material on the inner pressure of a sealed-type Ni–MH rechargeable battery using a Zr-based alloy as an anode
JP5424637B2 (en) Manufacturing method of fuel cell separator
KR102229845B1 (en) Powder-metallurgy molded part as an interconnector or end plate for an electrochemical cell
US3471287A (en) Process of making multiporous fuel cell electrodes
JPH06283162A (en) Metal hydride electrode, battery and production
JP3065616B1 (en) Electrolyte plate for molten carbonate fuel cell
JP3530302B2 (en) Method for producing hydrogen storage alloy electrode

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4346874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term