JP2006216281A - Fuel cell and manufacturing method of the same - Google Patents

Fuel cell and manufacturing method of the same Download PDF

Info

Publication number
JP2006216281A
JP2006216281A JP2005025630A JP2005025630A JP2006216281A JP 2006216281 A JP2006216281 A JP 2006216281A JP 2005025630 A JP2005025630 A JP 2005025630A JP 2005025630 A JP2005025630 A JP 2005025630A JP 2006216281 A JP2006216281 A JP 2006216281A
Authority
JP
Japan
Prior art keywords
fuel cell
joined body
cylindrical
electrolyte membrane
conductive beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025630A
Other languages
Japanese (ja)
Inventor
Yuichiro Hama
雄一郎 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005025630A priority Critical patent/JP2006216281A/en
Priority to PCT/JP2006/302097 priority patent/WO2006082986A1/en
Publication of JP2006216281A publication Critical patent/JP2006216281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder-shaped fuel cell restraining damage of an electrode in a cylinder, capable of easily forming a current collector, and to provide a manufacturing method of the same. <P>SOLUTION: The cylinder-shaped fuel cell is composed of a cylinder-shaped electrolyte film; a cylinder-shaped junction having a fuel electrode arranged on one face out of an inner face and an outer face of the electrolyte film, and an air electrode arranged on the other face out of the inner face and the outer face of the electrolyte film; a housing part housing the cylinder-shaped junction; and the current collector formed by filling conductive beads inside and outside of the cylinder-shaped junction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池、特に筒状の燃料電池及びその製造方法に関する。   The present invention relates to a fuel cell, particularly a cylindrical fuel cell and a method for manufacturing the same.

環境問題や資源問題への対策の一つとして、酸素や空気等の酸化性ガスと、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等とを原料として電気化学反応により化学エネルギーを電気エネルギーに変換して発電する燃料電池が注目されている。燃料電池は、電解質膜の一方の面に燃料極(アノード触媒層)と、もう一方の面に空気極(カソード触媒層)とを電解質膜を挟んで対向するように設け、電解質膜を挟持した各触媒層の外側に拡散層をさらに設け、これらを原料供給用の通路を設けたセパレータで挟んで電池が構成され、各触媒層に水素、酸素等の原料を供給して発電する。   As one of the countermeasures for environmental problems and resource problems, an electrochemical reaction using an oxidizing gas such as oxygen or air and a reducing gas such as hydrogen or methane (fuel gas) or a liquid fuel such as methanol as raw materials Fuel cells that generate electricity by converting chemical energy into electrical energy have attracted attention. In a fuel cell, a fuel electrode (anode catalyst layer) is provided on one surface of an electrolyte membrane, and an air electrode (cathode catalyst layer) is provided on the other surface so as to face each other with the electrolyte membrane interposed therebetween, and the electrolyte membrane is sandwiched between them. A diffusion layer is further provided on the outside of each catalyst layer, and these are sandwiched between separators provided with raw material supply passages. A battery is configured, and power is generated by supplying raw materials such as hydrogen and oxygen to each catalyst layer.

燃料電池の発電時には、燃料極に供給する原料を水素ガス、空気極に供給する原料を空気とした場合、燃料極において、水素ガスから水素イオンと電子とが発生する。電子は外部端子から外部回路を通じて空気極に到達する。空気極において、供給される空気中の酸素と、電解質膜を通過した水素イオンと、外部回路を通じて空気極に到達した電子により、水が生成する。このように燃料極及び空気極において化学反応が起こり、電荷が発生して電池として機能することになる。この燃料電池は、発電に使用される原料のガスや液体燃料が豊富に存在すること、また、その発電原理より排出される物質が水であること等より、クリーンなエネルギー源として様々な検討がされている。   At the time of power generation of the fuel cell, when hydrogen gas is used as the raw material supplied to the fuel electrode and air is used as the raw material supplied to the air electrode, hydrogen ions and electrons are generated from the hydrogen gas at the fuel electrode. The electrons reach the air electrode from the external terminal through the external circuit. In the air electrode, water is generated by oxygen in the supplied air, hydrogen ions that have passed through the electrolyte membrane, and electrons that have reached the air electrode through an external circuit. Thus, a chemical reaction occurs in the fuel electrode and the air electrode, and electric charges are generated to function as a battery. This fuel cell has been studied in various ways as a clean energy source due to the abundance of raw material gas and liquid fuel used for power generation and the fact that the substance discharged from the power generation principle is water. Has been.

このような燃料電池として、チューブ状(円筒型)の燃料電池が知られている。チューブ状の燃料電池は、平面型の燃料電池に比べて小型化が容易であるという特徴を有する。例えば、特許文献1には、チューブ状の高分子電解質膜の内外面の一方の面に燃料極を、もう一方の面に空気極を設け、燃料極、空気極の一方あるいは両方に触媒を担持した炭素繊維を配置したチューブ状の燃料電池が、記載されている。   As such a fuel cell, a tubular (cylindrical) fuel cell is known. A tubular fuel cell has a feature that it can be easily downsized as compared with a planar fuel cell. For example, in Patent Document 1, a fuel electrode is provided on one of the inner and outer surfaces of a tubular polymer electrolyte membrane, an air electrode is provided on the other surface, and a catalyst is supported on one or both of the fuel electrode and the air electrode. A tubular fuel cell having a carbon fiber disposed thereon is described.

また、特許文献2には、チューブ状の高分子電解質膜の内外面の一方の面に燃料極を、もう一方の面に空気極を設け、チューブの内側に燃料改質機能を持つ導電性フェルトの第1層を内張りし、第1層の内側に拡張力によって第1層をチューブの内周面に密着するように押し付けるコイル状弾性支持材を挿入し、コイル状弾性支持材の内側に燃料改質機能を持つ導電性フェルトの第2層を内張りし、第2層の内側に燃料供給用導電性チューブを挿入してなるチューブ状の燃料電池が記載されている。特許文献2においては、集電体の役割を果たす拡散層として導電性フェルト及びコイル状弾性支持材を使用することにより、電極を損傷することなく、電極に密着させて内側に拡散層を詰め込むことができるとしている。   Patent Document 2 discloses a conductive felt having a fuel electrode on one side of the inner and outer surfaces of a tube-shaped polymer electrolyte membrane and an air electrode on the other surface and having a fuel reforming function inside the tube. A coiled elastic support member is inserted into the first layer to press the first layer in close contact with the inner peripheral surface of the tube by expansion force, and the fuel is inserted into the coiled elastic support member. There is described a tubular fuel cell in which a second layer of conductive felt having a reforming function is lined and a fuel supply conductive tube is inserted inside the second layer. In Patent Document 2, by using a conductive felt and a coiled elastic support material as a diffusion layer that plays the role of a current collector, the diffusion layer is packed inside by being in close contact with the electrode without damaging the electrode. I can do it.

一方、特許文献3,4には、固体高分子型燃料電池における集電体として、球状チタン粉末を焼結し、表面を平滑化した多孔質導電板を使用することが記載されている。これにより、隣接する電極の損傷を抑制できるとしている。   On the other hand, Patent Documents 3 and 4 describe the use of a porous conductive plate obtained by sintering spherical titanium powder and smoothing the surface as a current collector in a polymer electrolyte fuel cell. As a result, damage to adjacent electrodes can be suppressed.

特開2003−297372号公報JP 2003-297372 A 特開平11−111313号公報JP-A-11-111313 特開2004−68112号公報JP 2004-68112 A 特開2004−71456号公報JP 2004-71456 A

しかしながら、特許文献1に記載されたチューブ状燃料電池では、集電体として炭素繊維をチューブ中に挿入する必要があり、チューブ内部の電極を傷つけてしまう。   However, in the tubular fuel cell described in Patent Document 1, it is necessary to insert carbon fibers into the tube as a current collector, which damages the electrode inside the tube.

また、特許文献2に記載されたチューブ状の燃料電池では、コイル状弾性支持材を使用しているとはいえ、集電体である導電性フェルトを電極が損傷しない程度の力でソフトに詰め込むことが必要であり、電極を損傷してしまう可能性がある。また、1層目の導電性フェルトを詰め込んだ後、コイル状弾性支持材を挿入して2層目の導電性フェルトを詰め込む必要があり、工程が複雑となる。   Moreover, in the tubular fuel cell described in Patent Document 2, although the coiled elastic support material is used, the conductive felt as the current collector is softly packed with a force that does not damage the electrode. That can damage the electrode. In addition, after packing the first layer of conductive felt, it is necessary to insert a coiled elastic support material to pack the second layer of conductive felt, which complicates the process.

さらに、特許文献3,4に記載されている多孔質導電板は、フレキシビリティ性に欠け、チューブ状の燃料電池の内部に挿入して集電体として使用することは困難である。   Furthermore, the porous conductive plates described in Patent Documents 3 and 4 lack flexibility, and are difficult to use as a current collector by being inserted into a tubular fuel cell.

本発明は、筒状の電解質膜と、電解質膜の内外面の一方の面に設けられた燃料極と、電解質膜の内外面のもう一方の面に燃料極と対向するように設けられた空気極と、を有する筒状の接合体を有する筒状の燃料電池において、筒内部の電極の損傷を抑制して、集電体を容易に形成することができる筒燃料電池及びその製造方法である。   The present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode. A cylindrical fuel cell having a cylindrical joined body having an electrode, and a cylindrical fuel cell capable of easily forming a current collector while suppressing damage to electrodes inside the cylinder, and a method for manufacturing the same .

本発明は、筒状の燃料電池であって、筒状の電解質膜と、前記電解質膜の内外面の一方の面に設けられた燃料極と、前記電解質膜の内外面のもう一方の面に設けられた空気極と、を有する筒状の接合体と、前記筒状の接合体を収納する収納部と、前記筒状の接合体の内側及び外側に導電性ビーズが充填されて形成された集電体と、を有する。   The present invention is a cylindrical fuel cell, in which a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and the other surface of the inner and outer surfaces of the electrolyte membrane are provided. A cylindrical joined body having an air electrode provided; a storage portion that houses the tubular joined body; and an inner and outer side of the tubular joined body filled with conductive beads. And a current collector.

また、前記燃料電池において、前記導電性ビーズは、前記筒状の接合体の長軸方向に沿って平均粒径が段階的に変わることが好ましい。   In the fuel cell, it is preferable that the conductive beads have an average particle size that changes stepwise along the long axis direction of the cylindrical joined body.

また、本発明は、筒状の燃料電池の製造方法であって、筒状の電解質膜と、前記電解質膜の内外面の一方の面に設けられた燃料極と、前記電解質膜の内外面のもう一方の面に前記燃料極と対向するように設けられた空気極と、を有する接合体の内側及び外側に導電性ビーズを充填して集電体を形成する。   The present invention also provides a method for manufacturing a cylindrical fuel cell, comprising a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an inner and outer surface of the electrolyte membrane. A current collector is formed by filling conductive beads on the inside and outside of a joined body having an air electrode provided on the other surface so as to face the fuel electrode.

また、前記燃料電池の製造方法において、前記導電性ビーズに振動を加えながら充填することが好ましい。   In the fuel cell manufacturing method, the conductive beads are preferably filled while being vibrated.

また、前記燃料電池の製造方法において、前記導電性ビーズを充填した後に導電性ビーズを押圧することが好ましい。   In the fuel cell manufacturing method, it is preferable to press the conductive beads after filling the conductive beads.

また、前記燃料電池の製造方法において、前記導電性ビーズを、前記筒状の接合体の長軸方向に沿って平均粒径が段階的に変わるように充填することが好ましい。   In the fuel cell manufacturing method, it is preferable that the conductive beads are filled such that the average particle diameter changes stepwise along the long axis direction of the cylindrical joined body.

本発明は、筒状の電解質膜と、電解質膜の内外面の一方の面に設けられた燃料極と、電解質膜の内外面のもう一方の面に燃料極と対向するように設けられた空気極と、を有する筒状の接合体を有する筒状の燃料電池において、筒状の接合体の内側及び外側に導電性ビーズを充填することにより、筒内部の電極の損傷を抑制して、集電体を容易に形成することができる燃料電池及び燃料電池の製造方法である。   The present invention relates to a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode. In a cylindrical fuel cell having a cylindrical assembly having electrodes, filling the inner and outer sides of the cylindrical assembly with conductive beads suppresses damage to the electrodes inside the cylinder and collects them. A fuel cell capable of easily forming an electric body and a method for manufacturing the fuel cell.

以下、本発明の実施形態に係る燃料電池について説明する。   Hereinafter, a fuel cell according to an embodiment of the present invention will be described.

本発明の実施形態に係る燃料電池は、筒状の電解質膜と、電解質膜の内外面の一方の面に設けられた燃料極と、電解質膜の内外面のもう一方の面に設けられた空気極と、を有する筒状の接合体と、筒状の接合体を収納する収納部と、筒状の接合体の内側及び外側に導電性ビーズが充填されて形成された集電体と、を有する。   A fuel cell according to an embodiment of the present invention includes a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and air provided on the other surface of the inner and outer surfaces of the electrolyte membrane. A cylindrical joined body having a pole, a storage portion for housing the tubular joined body, and a current collector formed by filling conductive beads on the inside and outside of the tubular joined body, Have.

本発明の実施形態に係る燃料電池1の一例の概略を図1に示し、その構成について説明する。燃料電池1は、電解質膜10、燃料極(アノード触媒層)12、空気極(カソード触媒層)14、集電体16a,16b、収納部18により構成される。   An outline of an example of a fuel cell 1 according to an embodiment of the present invention is shown in FIG. The fuel cell 1 includes an electrolyte membrane 10, a fuel electrode (anode catalyst layer) 12, an air electrode (cathode catalyst layer) 14, current collectors 16 a and 16 b, and a storage unit 18.

燃料電池1において、円筒状の電解質膜10の内面に燃料極12が設けられ、電解質膜10の外面に空気極14が設けられ、円筒状の接合体(MEA:Membrane Electrode Assembly)20が形成されている。円筒状の接合体20は、収納部18に収納され、接合体20の内側及び外側の空間に導電性ビーズが充填されて集電体16a及び16bが形成されている。なお、接合体20において、円筒状の電解質膜10の外面に燃料極12が設けられ、電解質膜10の内面に空気極14が設けられてもよいが、通常は円筒状の電解質膜10の外面に空気極14が設けられ、電解質膜10の内面に燃料極12が設けられる。   In the fuel cell 1, the fuel electrode 12 is provided on the inner surface of the cylindrical electrolyte membrane 10, the air electrode 14 is provided on the outer surface of the electrolyte membrane 10, and a cylindrical joined body (MEA: Membrane Electrode Assembly) 20 is formed. ing. The cylindrical joined body 20 is housed in the housing portion 18, and current collectors 16 a and 16 b are formed by filling inner and outer spaces of the joined body 20 with conductive beads. In the joined body 20, the fuel electrode 12 may be provided on the outer surface of the cylindrical electrolyte membrane 10, and the air electrode 14 may be provided on the inner surface of the electrolyte membrane 10, but usually the outer surface of the cylindrical electrolyte membrane 10. An air electrode 14 is provided, and a fuel electrode 12 is provided on the inner surface of the electrolyte membrane 10.

このような燃料電池1において、接合体20の内側に形成された集電体16aと接合体20の外側に形成された集電体16bとを外部回路に電気的に接続し、接合体20の内側及び外側に原料を供給して運転すれば、電池として機能させることができる。   In such a fuel cell 1, the current collector 16a formed on the inner side of the joined body 20 and the current collector 16b formed on the outer side of the joined body 20 are electrically connected to an external circuit. If a raw material is supplied and operated inside and outside, it can function as a battery.

電解質膜10としては、プロトン(H)や酸素イオン(O2−)等のイオン伝導性の高い材料であれば特に制限はなく、例えば、固体高分子電解質膜、安定化ジルコニア膜等が挙げられるが、好ましくはパーフルオロスルホン酸系等の固体高分子電解質膜が用いられる。具体的には、ジャパンゴアテックス(株)のゴアセレクト(Goreselect、登録商標)、デュポン社(Du Pont社)のナフィオン(Nafion、登録商標)、旭化成(株)のアシプレックス(Aciplex、登録商標)、旭硝子(株)のフレミオン(Flemion、登録商標)等のパーフルオロスルホン酸系固体高分子電解質膜を使用することができる。電解質膜10の膜厚は例えば、10μm〜200μm、好ましくは30μm〜50μmの範囲である。 The electrolyte membrane 10 is not particularly limited as long as it is a material having high ion conductivity such as proton (H + ) or oxygen ion (O 2− ), and examples thereof include a solid polymer electrolyte membrane and a stabilized zirconia membrane. However, a solid polymer electrolyte membrane such as perfluorosulfonic acid is preferably used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Corporation, Nafion (registered trademark) of Du Pont (Du Pont), Aciplex (registered trademark) of Asahi Kasei Co., Ltd. Perfluorosulfonic acid solid polymer electrolyte membranes such as Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used. The film thickness of the electrolyte membrane 10 is, for example, in the range of 10 μm to 200 μm, preferably 30 μm to 50 μm.

燃料極12は、例えば、白金(Pt)等をルテニウム(Ru)等の他の金属と共に担持したカーボン等の触媒をナフィオン(登録商標)等の固体高分子電解質等の樹脂に分散させて成膜されたものである。燃料極12の膜厚は例えば、1μm〜100μm、好ましくは1μm〜20μmの範囲である。   The fuel electrode 12 is formed, for example, by dispersing a catalyst such as carbon carrying platinum (Pt) or the like together with another metal such as ruthenium (Ru) in a resin such as a solid polymer electrolyte such as Nafion (registered trademark). It has been done. The film thickness of the fuel electrode 12 is, for example, in the range of 1 μm to 100 μm, preferably 1 μm to 20 μm.

空気極14としては、例えば、白金(Pt)等を担持したカーボン等の触媒をナフィオン(登録商標)等の固体高分子電解質等の樹脂に分散させて成膜されたものである。空気極14の膜厚は例えば、1μm〜100μm、好ましくは1μm〜20μmの範囲である。   The air electrode 14 is formed, for example, by dispersing a catalyst such as carbon carrying platinum (Pt) or the like in a resin such as a solid polymer electrolyte such as Nafion (registered trademark). The film thickness of the air electrode 14 is, for example, in the range of 1 μm to 100 μm, preferably 1 μm to 20 μm.

電解質膜10、燃料極12、空気極14を備える接合体20は、筒状であればよく、例えば、円筒状;三角筒、四角筒、五角筒、六角筒等の多角筒状;楕円筒状等いずれの形状であってもよいが、通常は円筒状である。なお、ここで本明細書において、「筒状」とは、中空体の他にも中実体を含む。   The joined body 20 including the electrolyte membrane 10, the fuel electrode 12, and the air electrode 14 may be cylindrical, for example, cylindrical; polygonal cylinder such as a triangular cylinder, a quadrangular cylinder, a pentagonal cylinder, and a hexagonal cylinder; However, it is usually cylindrical. Here, in this specification, “cylindrical” includes a solid body in addition to a hollow body.

図1における燃料電池1のA−A’断面の拡大図を図2に示す。図2のように、集電体16は導電性ビーズ22を含んで構成されている。導電性ビーズ22としては、金または白金等の金属で表面をコーティングしたカーボンまたはチタン等の金属被覆粒子や、金、白金等の金属粒子等が挙げられる。   FIG. 2 shows an enlarged view of the A-A ′ cross section of the fuel cell 1 in FIG. 1. As shown in FIG. 2, the current collector 16 includes a conductive bead 22. Examples of the conductive beads 22 include metal-coated particles such as carbon or titanium whose surfaces are coated with a metal such as gold or platinum, and metal particles such as gold or platinum.

導電性ビーズ22の形状は、特に制限はないが、均一に充填するためには、球形または楕円形であることが好ましく、最密に充填するために球形であることがより好ましい。   The shape of the conductive beads 22 is not particularly limited, but is preferably spherical or elliptical for uniform filling, and more preferably spherical for closest packing.

導電性ビーズ22の平均粒径は、10μm〜500μmの範囲であることが好ましく、50μm〜200μmの範囲であることがより好ましい。10μmより小さい粒径であると充填密度が高くなり、原料の供給効率が低減する場合がある。また500μmより大きい粒径であると充填密度が低くなり、接合体20との接触面積が低下し、集電効率が低下する場合がある。   The average particle diameter of the conductive beads 22 is preferably in the range of 10 μm to 500 μm, and more preferably in the range of 50 μm to 200 μm. When the particle diameter is smaller than 10 μm, the packing density increases, and the raw material supply efficiency may be reduced. Further, when the particle diameter is larger than 500 μm, the packing density is lowered, the contact area with the joined body 20 is lowered, and the current collection efficiency may be lowered.

ここで、「平均粒径」は、まず顕微鏡画像上の100個の粒径を測定し、その平均値とする。また、楕円形粒子の場合には、導電性ビーズ22の平均粒径は、粒子を顕微鏡で観察した場合の顕微鏡画像上の粒子の長径(粒子の輪郭線上の任意の2点間の最大値)のことをいう。   Here, the “average particle size” is obtained by first measuring 100 particle sizes on a microscope image and setting the average value. In the case of an elliptical particle, the average particle diameter of the conductive beads 22 is the long diameter of the particle on the microscope image when the particle is observed with a microscope (maximum value between any two points on the particle outline). I mean.

また、「球状」とは、以下の方法により求められる円形度SFによって表される。円形度は、粒子を顕微鏡で観察した場合の粒子の投影面積と同一の円相当径から求めた円の周囲長Lを、粒子の投影像の周囲長Dで割った値(SF=L/D)として定義され、真球の場合にはSF=1となり、楕円形になると1より小さい値となる。本実施形態における導電性ビーズ22は、円形度Fの平均が0.9〜1.0の範囲の「球状」のものであることが好ましい。この円形度Fは、顕微鏡画像に基づき画像解析等により求めることができる。   The “spherical” is represented by a circularity SF obtained by the following method. The circularity is a value obtained by dividing the circumference L of a circle obtained from the same circle equivalent diameter as the projected area of the particle when the particle is observed with a microscope by the circumference D of the projected image of the particle (SF = L / D ), SF = 1 for a true sphere, and less than 1 for an ellipse. The conductive beads 22 in this embodiment are preferably “spherical” having an average circularity F in the range of 0.9 to 1.0. The circularity F can be obtained by image analysis or the like based on a microscope image.

集電体は、接合体における発電時に電子を通すための電子伝導性とともに、原料ガス等の原料の供給路としてガス拡散性等の拡散性が必要とされる。本実施形態に係る集電体16は、導電性ビーズ22が接合体20に接触するように充填されているために、電子伝導性を有し、導電性ビーズ22を充填して押圧された後の空隙部により拡散性を併せ持つ。   The current collector is required to have diffusivity such as gas diffusivity as a supply path for a raw material gas or the like as well as electron conductivity for passing electrons during power generation in the joined body. Since the current collector 16 according to this embodiment is filled so that the conductive beads 22 are in contact with the joined body 20, the current collector 16 has electron conductivity, and is filled with the conductive beads 22 and pressed. It also has diffusivity due to the voids.

図1の収納部18は、接合体20全体を収納することができる有底の形状のものであれば特に制限はなく、例えば、有底の円筒状;三角筒、四角筒、五角筒、六角筒等の多角筒状;楕円筒状等いずれの形状であってもよいが、通常は円筒状である。収納部18の材質としては、ポリエーテルイミド等の樹脂、チタン等の金属等が挙げられ、例えば、金属メッシュ(材質:チタン)を用いることができる。   The storage unit 18 in FIG. 1 is not particularly limited as long as it has a bottomed shape capable of storing the entire joined body 20; for example, a bottomed cylindrical shape; a triangular tube, a square tube, a pentagonal tube, a hexagon The shape may be any shape such as a polygonal cylindrical shape such as a cylinder; an elliptical cylindrical shape, but is usually a cylindrical shape. Examples of the material of the storage unit 18 include resins such as polyetherimide, metals such as titanium, and the like. For example, a metal mesh (material: titanium) can be used.

次に、本実施形態に係る燃料電池の製造方法について、図3を参照しながら説明する。   Next, a method for manufacturing the fuel cell according to the present embodiment will be described with reference to FIG.

まず、テフロン(登録商標)等の離型性のよい樹脂の棒、テフロン(登録商標)等の離型性のよい樹脂でコーティングした金属の棒等の円柱状等の支持体24上に、例えば、スプレー法、浸漬法等の塗布方法により、燃料極の膜を形成する。スプレー法では、ナフィオン(登録商標)等の固体高分子電解質等の樹脂をメタノール、エタノール、イソプロパノール等のアルコール系溶媒等に溶解させた溶液に燃料極用の触媒粉末を分散させたペースト26を、支持体24上に噴霧して所望の厚さの膜を形成した後、乾燥させる。また、浸漬法では、ナフィオン(登録商標)等の固体高分子電解質等の樹脂をメタノール、エタノール、イソプロパノール等のアルコール系溶媒等に溶解させた溶液に燃料極12用の触媒粉末を分散させたペースト26中に、支持体24を浸漬し引き上げて(図3(a))所望の厚さの膜を形成した後、乾燥させる。   First, on a columnar support 24 such as a Teflon (registered trademark) -like resin rod, a metal rod coated with a good-release resin such as Teflon (registered trademark), for example, The fuel electrode film is formed by a coating method such as spraying or dipping. In the spray method, a paste 26 in which a fuel electrode catalyst powder is dispersed in a solution obtained by dissolving a resin such as a solid polymer electrolyte such as Nafion (registered trademark) in an alcohol solvent such as methanol, ethanol, or isopropanol, After spraying on the support 24 to form a film having a desired thickness, it is dried. In the dipping method, a paste in which catalyst powder for the fuel electrode 12 is dispersed in a solution obtained by dissolving a resin such as a solid polymer electrolyte such as Nafion (registered trademark) in an alcohol solvent such as methanol, ethanol, or isopropanol. 26, the support 24 is dipped and pulled up (FIG. 3A) to form a film having a desired thickness and then dried.

なお、支持体24の形状は、製造する筒状の接合体20の形状に応じて選択すればよい。また、乾燥温度は使用する溶媒の沸点等に応じて、触媒、電解質膜等の変質等がないような温度とすればよく、例えば、上記メタノール、エタノール、イソプロパノール等を使用した場合、80〜100℃とする。   In addition, what is necessary is just to select the shape of the support body 24 according to the shape of the cylindrical joined body 20 to manufacture. Further, the drying temperature may be a temperature that does not cause alteration of the catalyst, the electrolyte membrane, etc. according to the boiling point of the solvent to be used. For example, when methanol, ethanol, isopropanol, etc. are used, 80-100 ℃.

次に、同じようにして、燃料極の膜が形成された支持体24上に、固体高分子電解質等を上記溶媒に溶解させたペースト26を使用して、電解質膜を形成する。さらに次に、同じようにして、燃料極及び電解質膜の膜が形成された支持体24上に、ナフィオン(登録商標)等の固体高分子電解質等の樹脂を上記アルコール系溶媒等に溶解させた溶液に空気極用の触媒粉末を分散させたペースト26を使用して、空気極の膜を形成し、接合体20とする。   Next, in the same manner, an electrolyte membrane is formed on the support 24 on which the fuel electrode membrane is formed, using a paste 26 in which a solid polymer electrolyte or the like is dissolved in the solvent. Further, in the same manner, a resin such as a solid polymer electrolyte such as Nafion (registered trademark) was dissolved in the alcohol solvent or the like on the support 24 on which the fuel electrode and the electrolyte membrane were formed. Using the paste 26 in which the catalyst powder for the air electrode is dispersed in the solution, an air electrode film is formed to obtain the joined body 20.

このように形成した接合体20は、支持体24から取り出され(図3(b))、電解質膜の内面に燃料極、外面に空気極が形成された、円筒状の接合体20が得られる。   The joined body 20 thus formed is taken out from the support 24 (FIG. 3B), and a cylindrical joined body 20 is obtained in which the fuel electrode is formed on the inner surface of the electrolyte membrane and the air electrode is formed on the outer surface. .

次に、このように得られた円筒状の接合体20を、金属メッシュ等の有底円筒状の収納部18に中心軸を合わせて収納する。その後、導電性ビーズ22を、接合体20の内側と、接合体20の外側と収納部18の内側との間と、に充填する(図3(c))。なお、このとき、接合体20の内側と、接合体20の外側と収納部18の内側との間と、に同時に充填してもよいし、別々に充填してもよい。導電性ビーズ22は、接合体20の表面の所定の部分に接触するように、所定量充填される。   Next, the thus obtained cylindrical joined body 20 is accommodated in a bottomed cylindrical accommodating portion 18 such as a metal mesh with the central axis aligned. Thereafter, the conductive beads 22 are filled into the inside of the joined body 20 and between the outside of the joined body 20 and the inside of the storage portion 18 (FIG. 3C). At this time, the inside of the joined body 20 and the space between the outside of the joined body 20 and the inside of the storage portion 18 may be filled simultaneously, or may be filled separately. The conductive beads 22 are filled with a predetermined amount so as to contact a predetermined portion of the surface of the bonded body 20.

また、導電性ビーズ22を充填するときに、導電性ビーズ22を最密に充填するために、収納部18を振動させて導電性ビーズ22に振動を加えながら充填することが好ましい。また、収納部18の振動は、収納部18及び接合体20の中心軸方向に対して水平方向に振動するように行われることが好ましい。   Further, when the conductive beads 22 are filled, it is preferable to fill the conductive beads 22 while vibrating the storage portion 18 so as to fill the conductive beads 22 in a close-packed manner. The vibration of the storage unit 18 is preferably performed so as to vibrate in the horizontal direction with respect to the central axis direction of the storage unit 18 and the joined body 20.

導電性ビーズ22を所定の量充填した後、最後に、収納部18の外側からステンレスワイヤ等を用いて導電性ビーズ22を押圧する(図3(d))。押圧することにより、接合体20の内部及び外部で導電性ビーズ22が移動しないようにし、さらに接合体20と導電性ビーズ22の接触抵抗を下げることができる。また、導電性ビーズ22の充填、押圧後に焼結を行い焼結体とすることなく、集電体として十分機能させることができる。焼結する必要がないので、接合体20の焼結による劣化等を考慮する必要がない。   After filling the conductive beads 22 with a predetermined amount, finally, the conductive beads 22 are pressed from the outside of the storage portion 18 using a stainless steel wire or the like (FIG. 3D). By pressing, the conductive beads 22 can be prevented from moving inside and outside the bonded body 20, and the contact resistance between the bonded body 20 and the conductive beads 22 can be lowered. In addition, the conductive beads 22 can function sufficiently as a current collector without being sintered after being filled and pressed to form a sintered body. Since it is not necessary to sinter, there is no need to consider deterioration due to sintering of the joined body 20.

導電性ビーズ22を押圧するときの圧力は、触媒層(燃料極12及び空気極14)が損傷しない程度、あるいは導電性ビーズ22が破砕しない程度の圧力であれば特に制限はないが、例えば、ステンレスワイヤを使用して押圧する場合、10kgf/cm〜50kgf/cmの圧力であることが好ましい。 The pressure when pressing the conductive beads 22 is not particularly limited as long as the pressure is such that the catalyst layer (fuel electrode 12 and air electrode 14) is not damaged or the conductive beads 22 are not crushed. If you pressed using stainless steel wire, preferably a pressure of 10kgf / cm 2 ~50kgf / cm 2 .

このようにして製造した、図1に示す燃料電池1において、接合体20の内側に形成された集電体16aと接合体20の外側に形成された集電体16bとを外部回路に電気的に接続し、接合体20の内側及び外側に原料ガスを供給して運転すれば、電池として機能させることができる。   In the fuel cell 1 shown in FIG. 1 manufactured as described above, the current collector 16a formed inside the joined body 20 and the current collector 16b formed outside the joined body 20 are electrically connected to an external circuit. The battery can be made to function as a battery if it is operated by supplying the raw material gas to the inside and outside of the joined body 20.

燃料極12側に供給する原料としては、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等が挙げられる。空気極14側に供給する原料としては、酸素や空気等の酸化性ガス等が挙げられる。   Examples of the raw material supplied to the fuel electrode 12 include reducing gas (fuel gas) such as hydrogen and methane, or liquid fuel such as methanol. Examples of the raw material supplied to the air electrode 14 include oxidizing gases such as oxygen and air.

燃料電池1において、例えば、燃料極12に供給する原料を水素ガス、空気極14に供給する原料を空気として運転した場合、燃料極12において、
2H → 4H+4e
で示される反応式を経て、水素ガス(H)から水素イオン(H)と電子(e)とが発生する。電子(e)は集電体16aから外部回路を通り、集電体16bから空気極14に到達する。空気極14において、供給される空気中の酸素(O)と、電解質膜10を通過した水素イオン(H)と、外部回路を通じて空気極14に到達した電子(e)により、
4H+O+4e → 2H
で示される反応式を経て、水が生成する。このように燃料極12及び空気極14において化学反応が起こり、電荷が発生して電池として機能することになる。そして、一連の反応において排出される成分は水であるので、クリーンな電池が構成されることになる。
In the fuel cell 1, for example, when the raw material supplied to the fuel electrode 12 is operated as hydrogen gas and the raw material supplied to the air electrode 14 is operated as air,
2H 2 → 4H + + 4e
Through the reaction formula shown below, hydrogen ions (H + ) and electrons (e ) are generated from hydrogen gas (H 2 ). The electrons (e ) pass through the external circuit from the current collector 16a and reach the air electrode 14 from the current collector 16b. In the air electrode 14, oxygen (O 2 ) in the supplied air, hydrogen ions (H + ) that have passed through the electrolyte membrane 10, and electrons (e ) that have reached the air electrode 14 through an external circuit,
4H + + O 2 + 4e → 2H 2 O
Water is produced through the reaction formula shown below. In this way, a chemical reaction occurs in the fuel electrode 12 and the air electrode 14, and charges are generated to function as a battery. And since the component discharged | emitted in a series of reaction is water, a clean battery is comprised.

燃料電池1の集電体16を通して原料を供給するときに、特に原料がガスの場合、集電体16の原料供給口と、集電体16の原料出口とのガス圧力の差(圧損)が小さいときは、原料供給口から原料出口へのガスの流れ方向に沿って供給される原料ガスの濃度差ができてしまう場合があるが、その場合は、図4に示すように、筒状の接合体20の長軸方向に沿って、すなわち原料ガスの流れ方向に沿って、導電性ビーズ22の平均粒径が段階的に変わるように充填することが好ましい。例えば、集電体16の原料供給口に近い部分の空隙を大きくし、集電体16の原料出口に近い部分の空隙を小さくし、圧損を大きくすることにより、効率よく原料ガスを触媒層(燃料極12及び空気極14)に分配することができる。   When the raw material is supplied through the current collector 16 of the fuel cell 1, especially when the raw material is a gas, there is a difference in gas pressure (pressure loss) between the raw material supply port of the current collector 16 and the raw material outlet of the current collector 16. When it is small, there may be a difference in concentration of the raw material gas supplied along the flow direction of the gas from the raw material supply port to the raw material outlet. In this case, as shown in FIG. It is preferable to fill the conductive beads 22 so that the average particle diameter thereof changes stepwise along the long axis direction of the joined body 20, that is, along the flow direction of the source gas. For example, by increasing the gap in the portion near the raw material supply port of the current collector 16, reducing the gap in the portion near the raw material outlet of the current collector 16, and increasing the pressure loss, the source gas is efficiently transferred to the catalyst layer ( It can be distributed to the fuel electrode 12 and the air electrode 14).

この場合、集電体16内部の原料ガスの圧力の状態に応じて、導電性ビーズ22の平均粒径を筒状の接合体20の長軸方向に沿って段階的に変わるように充填すればよく、2段階に変えてもよいし、3段階以上に変えてもよい。   In this case, according to the state of the pressure of the raw material gas inside the current collector 16, if the average particle diameter of the conductive beads 22 is filled so as to change stepwise along the long axis direction of the cylindrical joined body 20. Well, it may be changed to two stages, or may be changed to three or more stages.

例えば、集電体16の原料供給口に近い部分の空隙を大きくし、集電体16の原料出口に近い部分の空隙を小さくし、圧損を大きくするように、導電性ビーズ22の平均粒径を3段階に変える場合、上記方法により、まず平均粒径が1番小さい導電性ビーズ22を所定量充填し、次に2番目の平均粒径の導電性ビーズ22を所定量充填し、次に平均粒径が1番大きい導電性ビーズ22を所定量充填し、最後に収納部18の外側から導電性ビーズ22を押圧する。   For example, the average particle diameter of the conductive beads 22 is set so that the gap in the portion near the raw material supply port of the current collector 16 is enlarged, the gap in the portion near the raw material outlet of the current collector 16 is reduced, and the pressure loss is increased. Is changed to three stages, the above method is used to first fill a predetermined amount of conductive beads 22 having the smallest average particle diameter, and then fill a predetermined amount of conductive beads 22 having the second average particle diameter. A predetermined amount of conductive beads 22 having the largest average particle diameter are filled, and finally, the conductive beads 22 are pressed from the outside of the storage unit 18.

以上のように、本実施形態に係る燃料電池及び燃料電池の製造方法によって、筒状の接合体20の内側及び外側に導電性ビーズ22を充填することにより、筒内部の電極の損傷を抑制して、集電体を容易に形成することができる。また、従来、集電体である多孔質金属棒、金属ワイヤ等に直接、触媒層、電解質膜を上記ペースト等を使用して浸漬法、スプレー法等により形成する方法もあるが、多孔質金属棒、金属ワイヤ等の空孔内へペーストが滲み込み、均一な接合体を形成することが困難であった。しかし、本実施形態に係る燃料電池及び燃料電池の製造方法によって均一な接合体20を形成した後に、導電性ビーズ22を充填することにより、そのような問題を起こすことなく、集電体16を容易に形成することができる。   As described above, with the fuel cell and the fuel cell manufacturing method according to the present embodiment, the conductive beads 22 are filled inside and outside the cylindrical joined body 20 to suppress damage to the electrodes inside the cylinder. Thus, the current collector can be easily formed. In addition, conventionally, there is a method in which a catalyst layer and an electrolyte membrane are directly formed on a porous metal rod or metal wire as a current collector by the above-described paste or the like by a dipping method, a spray method, or the like. It was difficult to form a uniform joined body because the paste soaked into the holes of the rod, metal wire or the like. However, after forming the uniform joined body 20 by the fuel cell and the manufacturing method of the fuel cell according to the present embodiment, the current collector 16 is filled with the conductive beads 22 without causing such a problem. It can be formed easily.

また、従来のような多孔質金属、金属メッシュ、金属繊維布、導電性フェルトを集電体16として使用した場合は、原料ガスの流れ方向に対して空隙率がほぼ一定であるために、上記圧力の状態を制御することは困難であったが、上記のように、充填する導電性ビーズ22の粒径を段階的に変えて集電体16を構成すれば、集電体16の空隙率を任意に変えることができるため、容易に上記圧力の状態、すなわち原料の拡散性を制御することができ、効率よく原料ガスを触媒層に分配することができる。   Further, when a conventional porous metal, metal mesh, metal fiber cloth, or conductive felt is used as the current collector 16, the porosity is substantially constant with respect to the flow direction of the source gas. Although it was difficult to control the state of the pressure, as described above, if the current collector 16 is configured by changing the particle diameter of the conductive beads 22 to be filled in stages, the porosity of the current collector 16 is increased. Therefore, the state of the pressure, that is, the diffusibility of the raw material can be easily controlled, and the raw material gas can be efficiently distributed to the catalyst layer.

本実施形態に係る燃料電池は、1つの筒状の燃料電池(単セル)を複数個集合させて、直列に接続することにより、必要とする電流、電圧を得ることができる。また、1つの筒状の燃料電池(単セル)を複数個集合させて、並列に接続してもよい。   The fuel cell according to the present embodiment can obtain necessary current and voltage by collecting a plurality of cylindrical fuel cells (single cells) and connecting them in series. A plurality of cylindrical fuel cells (single cells) may be assembled and connected in parallel.

本実施形態に係る燃料電池は、構造がシンプルで小型化、軽量化が可能なため、携帯電話、携帯用パソコン等のモバイル機器用小型電源;自動車用電源等として用いることができる。   Since the fuel cell according to the present embodiment has a simple structure and can be reduced in size and weight, it can be used as a small power source for mobile devices such as a mobile phone and a portable personal computer;

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
<接合体の作製>
支持体として、円柱状のテフロン(登録商標)製の棒(直径1mm、長さ200mm)を使用して、浸漬法により燃料極、電解質膜、空気極の順番で成膜した。成膜には、燃料極用として、樹脂(ナフィオン、登録商標)の2−プロパノール溶液に、触媒として白金(Pt)をルテニウム(Ru)と共に担持したカーボンを分散させたペースト、電解質膜用として、パーフルオロスルホン酸系の固体高分子電解質(ナフィオン、登録商標)を2−プロパノールに溶解させたペースト、空気極用として、樹脂(ナフィオン、登録商標)の2−プロパノール溶液に、触媒として白金(Pt)を担持したカーボンを分散させたペーストをそれぞれ使用した。それぞれの成膜後には、オーブン中80℃で60分乾燥させた。形成した膜の膜厚は、燃料極10μm、電解質膜40μm、空気極10μmであった。このように形成した接合体は、テフロン棒から取り出され、電解質膜の内面に燃料極、外面に空気極が形成された円筒状の接合体が得られた。
Example 1
<Preparation of joined body>
A cylindrical Teflon (registered trademark) rod (diameter: 1 mm, length: 200 mm) was used as a support, and a fuel electrode, an electrolyte membrane, and an air electrode were formed in this order by an immersion method. For film formation, as a fuel electrode, a paste in which carbon carrying platinum (Pt) together with ruthenium (Ru) as a catalyst in a 2-propanol solution of resin (Nafion, registered trademark), as an electrolyte membrane, Perfluorosulfonic acid-based solid polymer electrolyte (Nafion (registered trademark)) in 2-propanol paste, for air electrode, resin (Nafion (registered trademark)) in 2-propanol solution, platinum (Pt ) Was used to disperse the paste. After each film formation, it was dried in an oven at 80 ° C. for 60 minutes. The thickness of the formed film was 10 μm for the fuel electrode, 40 μm for the electrolyte film, and 10 μm for the air electrode. The joined body thus formed was taken out from the Teflon rod, and a cylindrical joined body was obtained in which the fuel electrode was formed on the inner surface of the electrolyte membrane and the air electrode was formed on the outer surface.

<導電性ビーズの充填>
次に、このように得られた円筒状の接合体を、有底円筒状の金属メッシュ(材質ステンレス、直径2mm、高さ200mm、メッシュ径25μm)に中心軸を合わせて収納した。その後、球状の導電性ビーズ(材質チタン、平均粒径30μm、円形度0.99)を、接合体の内側と、接合体の外側と金属メッシュの内側との間と、に接合体の内面及び外面がほぼ埋まるようにそれぞれ充填した。
<Filling with conductive beads>
Next, the cylindrical joined body thus obtained was stored in a bottomed cylindrical metal mesh (material stainless steel, diameter 2 mm, height 200 mm, mesh diameter 25 μm) with the central axis aligned. Thereafter, spherical conductive beads (material titanium, average particle size 30 μm, circularity 0.99) are placed on the inside of the joined body and between the outside of the joined body and the inside of the metal mesh, Each was filled so that the outer surface was almost filled.

導電性ビーズを所定の量充填した後、最後に、金属メッシュの外側からステンレスワイヤを用いて導電性ビーズを押圧(圧力30kgf/cm)して、燃料電池セルを得た。燃料極及び空気極には損傷は見られなかった。接合体の内側に水素ガス、接合体の外側に空気を供給したが、集電体の原料供給口と、集電体の原料出口とのガス圧力の差(圧損)は10kPaであった。 After filling a predetermined amount of conductive beads, finally, the conductive beads were pressed from the outside of the metal mesh using a stainless steel wire (pressure 30 kgf / cm 2 ) to obtain a fuel cell. No damage was observed on the fuel electrode and the air electrode. Hydrogen gas was supplied to the inside of the joined body and air was supplied to the outside of the joined body, but the difference (pressure loss) in gas pressure between the current supply port of the current collector and the material outlet of the current collector was 10 kPa.

(実施例2)
<導電性ビーズの充填>
実施例1で得た接合体を、有底円筒状の金属メッシュ(材質ステンレス、直径2mm、高さ200mm、メッシュ径25μm)に中心軸を合わせて収納した。その後、球状の導電性ビーズ(材質チタン、平均粒径30μm、円形度0.99)を、接合体の内側と、接合体の外側と金属メッシュの内側との間と、に金属メッシュの底面から50mmまでが埋まるようにそれぞれ充填した。次に、球状の導電性ビーズ(材質チタン、平均粒径100μm、円形度0.99)を、接合体の内側と、接合体の外側と金属メッシュの内側との間と、に金属メッシュの底面から150mmまでが埋まるようにそれぞれ充填した。最後に、球状の導電性ビーズ(材質チタン、平均粒径150μm、円形度0.99)を、接合体の内側と、接合体の外側と金属メッシュの内側との間と、に金属メッシュの底面から200mmまでが埋まるようにそれぞれ充填した。
(Example 2)
<Filling with conductive beads>
The joined body obtained in Example 1 was stored with a bottomed cylindrical metal mesh (material stainless steel, diameter 2 mm, height 200 mm, mesh diameter 25 μm) with the center axis aligned. Thereafter, spherical conductive beads (material titanium, average particle size 30 μm, circularity 0.99) are applied from the bottom surface of the metal mesh to the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. Each was filled up to 50 mm. Next, spherical conductive beads (material titanium, average particle size 100 μm, circularity 0.99) are placed on the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. To 150 mm, each was filled. Finally, spherical conductive beads (material titanium, average particle size 150 μm, circularity 0.99) are placed on the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. To 200 mm so as to be filled.

導電性ビーズを所定の量充填した後、最後に、金属メッシュの外側からステンレスワイヤを用いて導電性ビーズを押圧(圧力30kgf/cm)して、導電性ビーズの平均粒径を3段階で変えた燃料電池セルを得た。燃料極及び空気極には損傷は見られなかった。接合体の内側に水素ガス、接合体の外側に空気を供給したが、集電体の原料供給口と、集電体の原料出口とのガス圧力の差(圧損)は20kPaであり、実施例1より大きくなっていた。 After filling a predetermined amount of conductive beads, finally, the conductive beads are pressed from the outside of the metal mesh using a stainless steel wire (pressure 30 kgf / cm 2 ), and the average particle diameter of the conductive beads is determined in three stages. An altered fuel cell was obtained. No damage was observed on the fuel electrode and the air electrode. Although hydrogen gas was supplied to the inside of the joined body and air was supplied to the outside of the joined body, the difference in gas pressure (pressure loss) between the material supply port of the current collector and the material outlet of the current collector was 20 kPa. It was bigger than 1.

(比較例1)
<導電性ビーズの充填>
実施例1で得た接合体に、集電体として多孔質金属のワイヤ(材質:ステンレス)を、接合体の内側と、接合体の外側と金属メッシュの内側との間と、に挿入した。燃料極及び空気極に損傷が見られた。
(Comparative Example 1)
<Filling with conductive beads>
A porous metal wire (material: stainless steel) as a current collector was inserted into the joined body obtained in Example 1 between the inside of the joined body and between the outside of the joined body and the inside of the metal mesh. Damage was seen in the fuel electrode and air electrode.

本発明の実施形態に係る燃料電池の構成の一例を示す図である。It is a figure which shows an example of a structure of the fuel cell which concerns on embodiment of this invention. 本発明の実施形態に係る燃料電池の一例の軸方向の断面を示す図である。It is a figure which shows the cross section of the axial direction of an example of the fuel cell which concerns on embodiment of this invention. 本発明の実施形態に係る燃料電池の製造方法を示す図である。It is a figure which shows the manufacturing method of the fuel cell which concerns on embodiment of this invention. 本発明の実施形態に係る燃料電池の他の例の軸方向の断面を示す図である。It is a figure which shows the cross section of the axial direction of the other example of the fuel cell which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 燃料電池、10 電解質膜、12 燃料極(アノード触媒層)、14 空気極(カソード触媒層)、16 集電体、18 収納部、20 接合体、22 導電性ビーズ、24 支持体、26 ペースト。   DESCRIPTION OF SYMBOLS 1 Fuel cell, 10 Electrolyte membrane, 12 Fuel electrode (anode catalyst layer), 14 Air electrode (cathode catalyst layer), 16 Current collector, 18 Storage part, 20 Joined body, 22 Conductive bead, 24 Support body, 26 Paste .

Claims (6)

筒状の燃料電池であって、
筒状の電解質膜と、前記電解質膜の内外面の一方の面に設けられた燃料極と、前記電解質膜の内外面のもう一方の面に設けられた空気極と、を有する筒状の接合体と、
前記筒状の接合体を収納する収納部と、
前記筒状の接合体の内側及び外側に導電性ビーズが充填されて形成された集電体と、
を有することを特徴とする燃料電池。
A cylindrical fuel cell,
A cylindrical joint having a cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air electrode provided on the other surface of the inner and outer surfaces of the electrolyte membrane Body,
A storage section for storing the tubular joined body;
A current collector formed by filling conductive beads on the inside and outside of the cylindrical joined body;
A fuel cell comprising:
請求項1に記載の燃料電池であって、
前記導電性ビーズは、前記筒状の接合体の長軸方向に沿って平均粒径が段階的に変わることを特徴とする燃料電池。
The fuel cell according to claim 1,
The fuel cell according to claim 1, wherein the conductive beads have an average particle size that changes stepwise along a major axis direction of the cylindrical joined body.
筒状の燃料電池の製造方法であって、
筒状の電解質膜と、前記電解質膜の内外面の一方の面に設けられた燃料極と、前記電解質膜の内外面のもう一方の面に前記燃料極と対向するように設けられた空気極と、を有する接合体の内側及び外側に導電性ビーズを充填して集電体を形成することを特徴とする燃料電池の製造方法。
A method of manufacturing a tubular fuel cell,
A cylindrical electrolyte membrane, a fuel electrode provided on one of the inner and outer surfaces of the electrolyte membrane, and an air electrode provided on the other surface of the inner and outer surfaces of the electrolyte membrane so as to face the fuel electrode And forming a current collector by filling the inside and outside of the joined body with conductive beads.
請求項3に記載の燃料電池の製造方法であって、
前記導電性ビーズに振動を加えながら充填することを特徴とする燃料電池の製造方法。
A method for producing a fuel cell according to claim 3,
A method of manufacturing a fuel cell, wherein the conductive beads are filled while applying vibration.
請求項3または4に記載の燃料電池の製造方法であって、
前記導電性ビーズを充填した後に導電性ビーズを押圧することを特徴とする燃料電池の製造方法。
A method for producing a fuel cell according to claim 3 or 4,
A method of manufacturing a fuel cell, comprising pressing the conductive beads after filling the conductive beads.
請求項3〜5のいずれか1項に記載の燃料電池の製造方法であって、
前記導電性ビーズを、前記筒状の接合体の長軸方向に沿って平均粒径が段階的に変わるように充填することを特徴とする燃料電池の製造方法。
It is a manufacturing method of the fuel cell given in any 1 paragraph of Claims 3-5,
A method of manufacturing a fuel cell, wherein the conductive beads are filled so that an average particle diameter changes stepwise along a major axis direction of the cylindrical joined body.
JP2005025630A 2005-02-01 2005-02-01 Fuel cell and manufacturing method of the same Pending JP2006216281A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005025630A JP2006216281A (en) 2005-02-01 2005-02-01 Fuel cell and manufacturing method of the same
PCT/JP2006/302097 WO2006082986A1 (en) 2005-02-01 2006-02-01 Fuel cell and method of producing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025630A JP2006216281A (en) 2005-02-01 2005-02-01 Fuel cell and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2006216281A true JP2006216281A (en) 2006-08-17

Family

ID=36777360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025630A Pending JP2006216281A (en) 2005-02-01 2005-02-01 Fuel cell and manufacturing method of the same

Country Status (2)

Country Link
JP (1) JP2006216281A (en)
WO (1) WO2006082986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920594A1 (en) * 2007-09-03 2009-03-06 Commissariat Energie Atomique COAXIAL FUEL CELL MODULE OR ELECTROLYSER WITH BALL INTERCONNECTORS
JP2014528142A (en) * 2011-09-01 2014-10-23 ワット フュール セル コーポレーション Method for forming tubular ceramic structure having non-circular cross section

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192301B2 (en) * 2008-06-30 2013-05-08 株式会社日立製作所 Solid oxide fuel cell and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816477B2 (en) * 1989-05-31 1998-10-27 株式会社フジクラ Solid electrolyte fuel cell
JPH10223239A (en) * 1997-02-05 1998-08-21 Osaka Gas Co Ltd Cylindrical solid oxide electrolyte fuel cell
JP3340362B2 (en) * 1997-10-01 2002-11-05 関西電力株式会社 Cylindrical solid oxide fuel cell
JP2000182652A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell assemby and solid electrolyte fuel cell module
ITMI991090A1 (en) * 1999-05-18 2000-11-18 De Nora Spa HUMIDIFYING DEVICE FOR POLYMER MEMBRANE FUEL CELLS
JP3793801B2 (en) * 2001-03-02 2006-07-05 独立行政法人産業技術総合研究所 Small fuel cell
JP4346874B2 (en) * 2002-08-08 2009-10-21 株式会社大阪チタニウムテクノロジーズ Porous conductive plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920594A1 (en) * 2007-09-03 2009-03-06 Commissariat Energie Atomique COAXIAL FUEL CELL MODULE OR ELECTROLYSER WITH BALL INTERCONNECTORS
WO2009030648A1 (en) * 2007-09-03 2009-03-12 Commissariat A L'energie Atomique Coaxial module for fuel cell or electrolyser with ball interconnectors
JP2014528142A (en) * 2011-09-01 2014-10-23 ワット フュール セル コーポレーション Method for forming tubular ceramic structure having non-circular cross section

Also Published As

Publication number Publication date
WO2006082986A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4094265B2 (en) Fuel cell power generator and device using the same
Vincent et al. Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives
TW200541146A (en) An air electrode constituted by multilayer sintered structure and manufacturing method thereof
JP4419550B2 (en) Proton-conducting electrolyte membrane manufacturing method, proton-conducting electrolyte membrane, and fuel cell using proton-conducting electrolyte membrane
JP2009059524A (en) Fuel cell, gas diffusion layer for the same, method of manufacturing the same
WO2006083037A1 (en) Membrane electrode assembly for hollow fuel cell and hollow fuel cell
JP2006216280A (en) Manufacturing method of fuel cell and manufacturing equipment of the same
CN1969420A (en) Fuel cell
JP2009054570A (en) Power source provided with capacitor
JP2004134132A (en) Fuel regenerable fuel battery, method for generating electric power, and method for regenerating fuel
JP2006216281A (en) Fuel cell and manufacturing method of the same
US20020076586A1 (en) Fuel cell and fuel cell system
JP2006216407A (en) Cell module assembly and fuel cell
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP2009520881A (en) Ozone generating electrolysis cell
JP2007207679A (en) Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell
JP2006332018A (en) Fuel cell system and electric apparatus
JP2008235026A (en) Fuel distribution adjustment method, fuel distribution adjustment film, manufacturing method of fuel distribution adjustment film, fuel cell, and manufacturing method of fuel cell
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JP5089160B2 (en) Fuel cell
AU2019323842A1 (en) Tubular PEM fuel cell and cell stack thereof
JP2005149796A (en) Solid polymer electrolyte film, and solid polymer fuel cell
JP4687406B2 (en) Fuel cell
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP2004356031A (en) Fuel cell and small-sized electrical apparatus