JP4345439B2 - Control device for internal combustion engine and control method for internal combustion engine - Google Patents

Control device for internal combustion engine and control method for internal combustion engine Download PDF

Info

Publication number
JP4345439B2
JP4345439B2 JP2003371715A JP2003371715A JP4345439B2 JP 4345439 B2 JP4345439 B2 JP 4345439B2 JP 2003371715 A JP2003371715 A JP 2003371715A JP 2003371715 A JP2003371715 A JP 2003371715A JP 4345439 B2 JP4345439 B2 JP 4345439B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
injection valve
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003371715A
Other languages
Japanese (ja)
Other versions
JP2005133663A (en
Inventor
真一郎 能川
雅春 市瀬
利美 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003371715A priority Critical patent/JP4345439B2/en
Publication of JP2005133663A publication Critical patent/JP2005133663A/en
Application granted granted Critical
Publication of JP4345439B2 publication Critical patent/JP4345439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、ポート噴射弁と筒内噴射弁とを備える内燃機関の制御に関するものであり、さらに詳しくは、均質燃焼領域においてトルクを向上させることのできる内燃機関の制御装置及び内燃機関の制御方法に関する。   The present invention relates to control of an internal combustion engine including a port injection valve and an in-cylinder injection valve. More specifically, the present invention relates to a control device for an internal combustion engine and a control method for the internal combustion engine capable of improving torque in a homogeneous combustion region. About.

気筒内に直接燃料を噴射して点火する、いわゆる直噴の内燃機関は、圧縮行程中に直接燃料を噴射して、点火プラグ付近に燃料噴霧をとどめて着火しやすい混合気を形成し、その周りの空気層と分離、すなわち成層化する。この状態で点火プラグ付近の混合気に点火して燃焼させ、いわゆる成層燃焼の下で運転することで、超希薄燃焼運転を実現できる。これにより、内燃機関の燃費を向上させるとともに、CO2の排出量を低減させることができる。 A so-called direct injection internal combustion engine that injects fuel directly into a cylinder and ignites it directly injects fuel during the compression stroke to form a mixture that is easily ignited by stopping the fuel spray near the spark plug. Separate from the surrounding air layer, that is, stratify. In this state, an ultra lean combustion operation can be realized by igniting and burning the air-fuel mixture in the vicinity of the spark plug and operating under so-called stratified combustion. As a result, the fuel consumption of the internal combustion engine can be improved and the amount of CO 2 emission can be reduced.

また、直噴の内燃機関は、吸入行程中に気筒内へ直接燃料を噴射して気筒内へ燃料を拡散させ、均質の混合気を形成して燃焼させる、いわゆる均質燃焼の下で運転することができる。均質燃焼領域では、吸入行程中に気筒内へ直接噴射した燃料の気化熱によって吸入空気をより冷却できるので、充填効率を高めることができる。これにより、直噴の内燃機関の均質燃焼領域における運転では高出力を得ることもできる。このような利点から、近年、直噴の火花点火式内燃機関が注目されており、実用化されている。   A direct-injection internal combustion engine is operated under a so-called homogeneous combustion in which fuel is directly injected into the cylinder during the intake stroke to diffuse the fuel into the cylinder to form and burn a homogeneous mixture. Can do. In the homogeneous combustion region, the intake air can be further cooled by the heat of vaporization of the fuel directly injected into the cylinder during the intake stroke, so that the charging efficiency can be increased. Thereby, a high output can be obtained in the operation in the homogeneous combustion region of the direct injection internal combustion engine. Due to such advantages, in recent years, direct-injection spark ignition internal combustion engines have attracted attention and have been put into practical use.

直噴の内燃機関が均質燃焼で運転される場合には、特に高出力、あるいは高負荷時において供給される燃料の量が多くなるので、燃料の気化が間に合わず、均質燃焼の不良を招き、トルクを低下させる場合がある。かかる問題点を解決するため、特許文献1には、気筒内へ直接燃料を噴射する主燃料噴射弁と、吸気ポートへ燃料を噴射する副燃料噴射弁とを備え、それぞれの燃料噴射量の分担率を、エンジンの運転状態に基づいて可変に設定するエンジンの燃料噴射制御技術が開示されている。   When a direct-injection internal combustion engine is operated with homogeneous combustion, the amount of fuel to be supplied is particularly large at high output or high load, so fuel vaporization is not in time, resulting in poor homogeneous combustion, Torque may be reduced. In order to solve such a problem, Patent Document 1 includes a main fuel injection valve that directly injects fuel into a cylinder, and a sub fuel injection valve that injects fuel into an intake port. An engine fuel injection control technique for variably setting the rate based on the operating state of the engine is disclosed.

特開2001−20837号公報JP 2001-20837 A

ところで、上記特許文献1には、主燃料噴射弁の燃料噴射量と副燃料噴射弁の燃料噴射量との分担率は開示されている。しかし、単に前記分担率を可変とするだけでは、均質燃焼を良好に維持することはできず、内燃機関のトルクを向上させるには改善の余地がある。そこで、この発明は、上記に鑑みてなされたものであって、均質燃焼領域で筒内噴射とポート噴射とを併用する場合における内燃機関のトルクを向上させることができる内燃機関の制御装置及び内燃機関の制御方法を提供することを目的とする。   By the way, the above-mentioned patent document 1 discloses the sharing ratio between the fuel injection amount of the main fuel injection valve and the fuel injection amount of the sub fuel injection valve. However, it is not possible to maintain good homogeneous combustion simply by making the share ratio variable, and there is room for improvement in order to improve the torque of the internal combustion engine. Therefore, the present invention has been made in view of the above, and a control device for an internal combustion engine and an internal combustion engine capable of improving the torque of the internal combustion engine when in-cylinder injection and port injection are used in combination in a homogeneous combustion region. It aims at providing the control method of an engine.

本発明者らは、上述の目的を達成するために鋭意研究した結果、筒内噴射による燃料噴射時期に着目し、内燃機関の機関回転数と筒内噴射時期とは、均質燃焼領域における内燃機関のトルクに影響を与えることを見出し、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors paid attention to the fuel injection timing by in-cylinder injection, and the engine speed and in-cylinder injection timing of the internal combustion engine are the internal combustion engine in the homogeneous combustion region. The present invention has been completed.

本発明に係る内燃機関の制御装置は、ポート噴射弁と筒内噴射弁とを備える内燃機関を制御するものであり、前記内燃機関が均質燃焼領域で運転されるか否かを判定する燃焼判定部と、前記内燃機関が均質燃焼領域で運転される場合であり、かつ前記内燃機関の機関回転数が所定の回転数範囲である場合には、前記ポート噴射弁と前記筒内噴射弁との両方
から燃料を噴射させる噴射条件であると判定する噴射判定部と、前記噴射条件と判定された場合、前記所定の回転数範囲における機関回転数が低回転の範囲では筒内噴射弁による燃料噴射時期を吸気下死点側とし、前記所定の範囲における機関回転数が高回転の範囲では筒内噴射弁による燃料噴射時期を吸気上死点側として、前記筒内噴射弁から燃料を噴射させる筒内噴射時期決定部と、を含んで構成されることを特徴とする。
A control device for an internal combustion engine according to the present invention controls an internal combustion engine including a port injection valve and a cylinder injection valve, and determines whether or not the internal combustion engine is operated in a homogeneous combustion region. And when the internal combustion engine is operated in a homogeneous combustion region and the engine rotational speed of the internal combustion engine is within a predetermined rotational speed range, the port injection valve and the in-cylinder injection valve An injection determination unit that determines that the fuel injection condition is to inject fuel from both, and fuel injection by an in-cylinder injection valve when the engine speed in the predetermined rotation speed range is low when the injection condition is determined A cylinder that injects fuel from the in-cylinder injection valve with the timing set to the intake bottom dead center side and the fuel injection timing by the in-cylinder injection valve to the intake top dead center side in the range where the engine speed in the predetermined range is high. An internal injection timing determination unit; It comprise characterized in that it is configured.

この内燃機関の制御装置は、均質燃焼領域でポート噴射弁と筒内噴射弁との両方を用いて燃料を噴射する場合、機関回転数の低い範囲では筒内噴射弁の燃料噴射時期を吸気下死点側とし、機関回転数の高い範囲では吸気上死点側となるように制御する。これにより、機関回転数の低い範囲では空気冷却の利用により、機関回転数の高い範囲では燃料と空気との混合促進により、トルクの向上を図ることができる。その結果、均質燃焼領域で筒内噴射とポート噴射とを併用する場合における内燃機関のトルクを向上させることができる。   When the fuel injection is performed using both the port injection valve and the in-cylinder injection valve in the homogeneous combustion region, the control device for the internal combustion engine lowers the fuel injection timing of the in-cylinder injection valve in the range where the engine speed is low. The dead center side is controlled so that it is on the intake top dead center side in the high engine speed range. Thereby, torque can be improved by using air cooling in a range where the engine speed is low and by promoting mixing of fuel and air in a range where the engine speed is high. As a result, it is possible to improve the torque of the internal combustion engine when in-cylinder injection and port injection are used together in the homogeneous combustion region.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、吸気上死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークが、吸気下死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークを上回る機関回転数以上の機関回転数である場合に、前記ポート噴射弁と前記筒内噴射弁との両方から燃料を噴射させる噴射条件であると判定することを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that in the internal combustion engine control apparatus, a torque peak of the internal combustion engine due to fuel injection of the in-cylinder injection valve on the intake top dead center side is an intake bottom dead center. Fuel is injected from both the port injection valve and the in-cylinder injection valve when the engine speed exceeds the torque peak of the internal combustion engine due to fuel injection of the in-cylinder injection valve on the side. It is determined that the injection condition is satisfied.

この内燃機関の制御装置は、吸気上死点側の筒内噴射を続けた場合におけるトルクピークが吸気下死点側の筒内噴射を続けた場合におけるトルクピーク以上になる機関回転数で、筒内噴射に加えてポート噴射を追加するように制御する。これにより、筒内噴射による空気冷却効果とポート噴射による燃料と空気との混合促進効果とを両立させて、均質燃焼領域でのトルクを向上させることができる。   This internal combustion engine control apparatus is configured to provide a cylinder speed at which the torque peak when the in-cylinder injection on the intake top dead center side continues is higher than the torque peak when the in-cylinder injection on the intake bottom dead center side continues. Control to add port injection in addition to internal injection. Thereby, the air cooling effect by in-cylinder injection and the mixing promotion effect of the fuel and air by port injection can be made compatible, and the torque in a homogeneous combustion area | region can be improved.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、
前記筒内噴射時期決定部は、前記所定の回転数範囲において、機関回転数が大きくなるにしたがって、前記筒内噴射弁による燃料噴射時期を前記内燃機関の吸気上死点側に進角させることを特徴とする。
Further, an internal combustion engine control apparatus according to the present invention is the internal combustion engine control apparatus,
The in-cylinder injection timing determination unit advances the fuel injection timing by the in-cylinder injection valve to the intake top dead center side of the internal combustion engine as the engine speed increases in the predetermined rotation speed range. It is characterized by.

このように、機関回転数の上昇にともない、筒内噴射弁の燃料噴射時期を吸気上死点側へ移行させるように制御することにより、機関回転数が高い範囲においても燃料と空気との混合をより促進させることができる。これにより、均質燃焼領域で筒内噴射とポート噴射とを併用する場合における内燃機関のトルクを向上させることができる。   Thus, by controlling the fuel injection timing of the in-cylinder injection valve to shift to the intake top dead center side as the engine speed increases, the fuel and air can be mixed even in the high engine speed range. Can be further promoted. As a result, the torque of the internal combustion engine can be improved when in-cylinder injection and port injection are used in the homogeneous combustion region.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記筒内噴射時期決定部は、前記所定の回転数範囲において、前記低回転の範囲と前記高回転の範囲との中間の回転数範囲の場合には、前記内燃機関の吸気上死点側と吸気下死点側とで前記筒内噴射弁に燃料を噴射させることを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that in the internal combustion engine control apparatus, the in-cylinder injection timing determination unit includes the low rotation range and the high rotation range in the predetermined rotation speed range. In the case of an intermediate rotational speed range, fuel is injected into the in-cylinder injection valve on the intake top dead center side and the intake bottom dead center side of the internal combustion engine.

このように制御することにより、筒内噴射とポート噴射とを併用する機関回転数の範囲内における中回転の範囲で、内燃機関のトルクを向上させることができるとともに、筒内噴射弁の燃料噴射時期を切り替える際に発生するトルク変動を滑らかにすることができる。   By controlling in this way, it is possible to improve the torque of the internal combustion engine within the range of the intermediate rotation speed within the range of the engine speed that uses both the in-cylinder injection and the port injection, and the fuel injection of the in-cylinder injection valve. Torque fluctuations that occur when the timing is switched can be smoothed.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記内燃機関の吸気上死点側と吸気下死点側とでの前記筒内噴射弁による燃料噴射割合を、前記筒内噴射弁による燃料噴射割合を、機関回転数に応じて変化させる噴射割合決定部をさらに有することを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that, in the internal combustion engine control apparatus, the fuel injection ratio by the in-cylinder injection valve at the intake top dead center side and the intake bottom dead center side of the internal combustion engine. Is further provided with an injection ratio determining unit that changes the fuel injection ratio of the in-cylinder injection valve in accordance with the engine speed.

このように制御することにより、機関回転数の上昇とともに吸気下死点側における筒内噴射弁の燃料噴射量を減少させ、吸気上死点側における筒内噴射弁の燃料噴射量を増加させて気筒内へ燃料を噴射させることができる。その結果、筒内噴射時期の切り替えに起因する内燃機関のトルク変動をより滑らかにできる。また、吸気上死点側と吸気下死点側とで筒内噴射する場合における機関回転数の範囲において、空気冷却と燃料と空気との混合との最適なバランスを維持しながら気筒内へ燃料を噴射することができるので、トルクの向上を図ることができる。   By controlling in this way, as the engine speed increases, the fuel injection amount of the in-cylinder injection valve on the intake bottom dead center side is decreased, and the fuel injection amount of the in-cylinder injection valve on the intake top dead center side is increased. Fuel can be injected into the cylinder. As a result, the torque fluctuation of the internal combustion engine due to the switching of the in-cylinder injection timing can be made smoother. In addition, within the range of engine speed when in-cylinder injection is performed on the intake top dead center side and the intake bottom dead center side, fuel is supplied into the cylinder while maintaining an optimal balance between air cooling and fuel / air mixing. Can be injected, so that torque can be improved.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記噴射割合決定部は、さらに前記ポート噴射弁と前記筒内噴射弁との噴射割合を、前記機関回転数又は前記内燃機関の負荷に応じて変化させることを特徴とする。   In the internal combustion engine control apparatus according to the present invention, in the internal combustion engine control apparatus, the injection ratio determination unit further determines an injection ratio between the port injection valve and the in-cylinder injection valve. The number is changed according to the number or the load of the internal combustion engine.

このような構成により、機関回転数が大きくなる、あるいは内燃機関の負荷が増加するにしたがって、ポート噴射弁による燃料噴射割合を増加させるように制御することができる。これにより、機関回転数増加等とともに、ポート噴射弁による燃料と空気との混合をより促進することができるので、筒内噴射とポート噴射とを併用する場合において、内燃機関のトルクを大きくすることができる。   With such a configuration, it is possible to control to increase the fuel injection ratio by the port injection valve as the engine speed increases or the load on the internal combustion engine increases. As a result, the engine speed can be increased and the mixing of fuel and air by the port injection valve can be further promoted. Therefore, when the in-cylinder injection and the port injection are used in combination, the torque of the internal combustion engine is increased. Can do.

また、次の本発明に係る内燃機関の制御方法は、ポート噴射弁と筒内噴射弁とを備える内燃機関を制御するにあたり、前記内燃機関が均質燃焼領域で運転されるか否かを判定する手順と、前記内燃機関が均質燃焼領域で運転され、かつ前記内燃機関の機関回転数が所定の回転数範囲である場合には、前記ポート噴射弁と前記筒内噴射弁との両方から燃料を噴射させる噴射条件であると判定する手順と、前記所定の回転数範囲における機関回転数が低回転の範囲では筒内噴射弁による燃料噴射時期を吸気下死点側に決定し、前記所定の範囲における機関回転数が高回転の範囲では筒内噴射弁による燃料噴射時期を吸気上死点側に決定する手順と、を含むことを特徴とする。   Further, the following control method for an internal combustion engine according to the present invention determines whether or not the internal combustion engine is operated in a homogeneous combustion region when controlling the internal combustion engine including the port injection valve and the in-cylinder injection valve. And when the internal combustion engine is operated in a homogeneous combustion region and the engine speed of the internal combustion engine is within a predetermined speed range, fuel is supplied from both the port injection valve and the in-cylinder injection valve. The procedure for determining that the injection condition is to be injected, and the fuel injection timing by the in-cylinder injection valve is determined to be the intake bottom dead center side in the range where the engine speed in the predetermined speed range is low, and the predetermined range And a procedure for determining the fuel injection timing by the in-cylinder injection valve to the intake top dead center side in a range where the engine speed is high.

この内燃機関の制御方法は、均質燃焼領域でポート噴射弁と筒内噴射弁との両方を用いて燃料を噴射する場合、機関回転数の低い範囲では筒内噴射弁の燃料噴射時期を吸気下死点側とし、機関回転数の高い範囲では吸気上死点側とする。これにより、機関回転数の低い範囲では空気冷却の利用により、機関回転数の高い範囲では燃料と空気との混合促進により、トルクの向上を図ることができる。その結果、均質燃焼領域で筒内噴射とポート噴射とを併用する場合における内燃機関のトルクを向上させることができる。   In this internal combustion engine control method, when fuel is injected using both the port injection valve and the in-cylinder injection valve in the homogeneous combustion region, the fuel injection timing of the in-cylinder injection valve is reduced to the intake air in the range where the engine speed is low. The dead center side, and the intake top dead center side in the high engine speed range. Thereby, torque can be improved by using air cooling in a range where the engine speed is low and by promoting mixing of fuel and air in a range where the engine speed is high. As a result, it is possible to improve the torque of the internal combustion engine when in-cylinder injection and port injection are used together in the homogeneous combustion region.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御方法において、前記所定の回転数範囲において、前記低回転の範囲と前記高回転の範囲との中間の回転数範囲である場合には、前記内燃機関の吸気上死点側と吸気下死点側とで前記筒内噴射弁に燃料を噴射させることを特徴とする。   In the internal combustion engine control method according to the present invention, in the internal combustion engine control method, in the predetermined rotational speed range, an intermediate rotational speed range between the low rotational speed range and the high rotational speed range. In some cases, fuel is injected into the in-cylinder injection valve at an intake top dead center side and an intake bottom dead center side of the internal combustion engine.

このような構成により、筒内噴射とポート噴射とを併用する機関回転数の範囲内における中回転の範囲で、内燃機関のトルクを向上させることができるとともに、筒内噴射弁の燃料噴射時期を切り替える際に発生するトルク変動を滑らかにすることができる。   With such a configuration, it is possible to improve the torque of the internal combustion engine within the range of the intermediate rotation speed within the range of the engine speed that uses both the in-cylinder injection and the port injection, and the fuel injection timing of the in-cylinder injection valve. Torque fluctuations that occur when switching can be smoothed.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御方法において、
さらに前記ポート噴射弁と前記筒内噴射弁との噴射割合を、前記機関回転数又は前記内燃機関の負荷に応じて変化させることを特徴とする。
Further, the control device for an internal combustion engine according to the present invention described below is the control method for an internal combustion engine,
Further, the injection ratio between the port injection valve and the in-cylinder injection valve is changed according to the engine speed or the load of the internal combustion engine.

このようにすれば、機関回転数が大きくなる、あるいは内燃機関の負荷増加とともに、ポート噴射弁による燃料噴射割合を増加させることができる。これにより、機関回転数の
増加等とともに、燃料と空気との混合をより促進することができるので、筒内噴射とポート噴射とを併用する場合において、内燃機関のトルクを大きくすることができる。
In this way, it is possible to increase the fuel injection ratio by the port injection valve as the engine speed increases or the load on the internal combustion engine increases. As a result, the mixing of the fuel and the air can be further promoted along with the increase in the engine speed, etc., so that the torque of the internal combustion engine can be increased when the in-cylinder injection and the port injection are used together.

この発明に係る内燃機関の制御装置及び内燃機関の制御方法によれば、均質燃焼領域で筒内噴射とポート噴射とを併用する場合における内燃機関のトルクを向上させることができる。   According to the internal combustion engine control apparatus and internal combustion engine control method according to the present invention, it is possible to improve the torque of the internal combustion engine when in-cylinder injection and port injection are used together in a homogeneous combustion region.

以下、本発明の実施するための最良の形態について、図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施例の構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、本発明はレシプロ式の内燃機関に対して好適に適用でき、特に乗用車やバス、あるいはトラック等の車両に搭載される内燃機関に対して好ましい。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements of the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same. The present invention can be preferably applied to a reciprocating internal combustion engine, and is particularly preferable for an internal combustion engine mounted on a vehicle such as a passenger car, a bus, or a truck.

本発明に係る内燃機関の制御装置は、筒内に燃料を噴射する燃料噴射弁と吸気ポートに燃料を噴射する燃料噴射弁とをそれぞれ備える内燃機関の制御に用いられるものである。そして、この実施例の本発明に係る内燃機関の制御装置及び制御方法は、次の点に特徴がある。すなわち、均質燃焼領域で運転する場合において、ポート噴射弁と筒内噴射弁との両方から燃料を噴射させるか否かを機関回転数に応じて判定する。そして、ポート噴射弁と筒内噴射弁との両方から燃料を噴射させる機関回転数の範囲においては、機関回転数が低回転のときには筒内噴射の時期を吸気下死点側とし、機関回転数が高回転のときには筒内噴射の時期を吸気上死点側とする。   The control apparatus for an internal combustion engine according to the present invention is used to control an internal combustion engine that includes a fuel injection valve that injects fuel into a cylinder and a fuel injection valve that injects fuel into an intake port. The control device and control method for an internal combustion engine according to the present invention of this embodiment are characterized by the following points. That is, when operating in the homogeneous combustion region, it is determined according to the engine speed whether or not fuel is injected from both the port injection valve and the in-cylinder injection valve. In the range of the engine speed at which fuel is injected from both the port injection valve and the in-cylinder injection valve, when the engine speed is low, the in-cylinder injection timing is set to the intake bottom dead center side, and the engine speed When the engine speed is high, the in-cylinder injection timing is set to the intake top dead center side.

図1は、本発明の実施例に係る内燃機関の制御装置により内燃機関を制御する場合の一例を示す概念図である。内燃機関の制御装置10の制御対象である内燃機関1は、ガソリンを燃料としたレシプロ式の内燃機関であり、吸気通路4内に燃料Fを噴射するポート噴射弁2と、気筒1s内に燃料Fを噴射する筒内噴射弁3とを備える。そして、ポート噴射弁2と筒内噴射弁3とによって、内燃機関1へ燃料Fを供給する。   FIG. 1 is a conceptual diagram showing an example in which an internal combustion engine is controlled by a control device for an internal combustion engine according to an embodiment of the present invention. An internal combustion engine 1 that is a control target of the control device 10 of the internal combustion engine is a reciprocating internal combustion engine using gasoline as fuel, a port injection valve 2 for injecting fuel F into an intake passage 4, and a fuel in a cylinder 1s. And an in-cylinder injection valve 3 for injecting F. Then, the fuel F is supplied to the internal combustion engine 1 by the port injection valve 2 and the in-cylinder injection valve 3.

吸気通路4から気筒1s内に導入される空気は、ポート噴射弁2又は筒内噴射弁3から噴射される燃料Fと混合気を形成し、この混合気が点火プラグ7で着火されて燃焼する。混合気の燃焼圧力はピストン5に伝えられ、ピストン5を往復運動させる。ピストン5の往復運動はクランク軸6で回転運動に変換されて、内燃機関1の出力として取り出される。クランク軸6にはクランク角センサ41が取り付けられており、クランク角センサ41の出力をECU(Engine Control Unit)30が取得して、ポート噴射弁2や筒内噴射弁3が燃料Fを噴射する時期を制御するために使用する。   The air introduced into the cylinder 1s from the intake passage 4 forms an air-fuel mixture with the fuel F injected from the port injection valve 2 or the in-cylinder injection valve 3, and this air-fuel mixture is ignited by the spark plug 7 and burns. . The combustion pressure of the air-fuel mixture is transmitted to the piston 5 and causes the piston 5 to reciprocate. The reciprocating motion of the piston 5 is converted into rotational motion by the crankshaft 6 and is taken out as the output of the internal combustion engine 1. A crank angle sensor 41 is attached to the crankshaft 6. An ECU (Engine Control Unit) 30 acquires the output of the crank angle sensor 41, and the port injection valve 2 and the in-cylinder injection valve 3 inject fuel F. Used to control timing.

ECU30は、クランク角センサ41、アクセルセンサ42、エアフローセンサ43、その他の各種センサ類からの出力を取得して、内燃機関1の運転を制御する。また、この実施例において、本発明に係る内燃機関の制御装置10はECU30に接続されており、本発明に係る内燃機関の制御方法を実現するにあたって、ECU30が備える内燃機関1の制御機能を利用できるように構成されている。   The ECU 30 acquires the outputs from the crank angle sensor 41, the accelerator sensor 42, the air flow sensor 43, and other various sensors, and controls the operation of the internal combustion engine 1. In this embodiment, the control device 10 for an internal combustion engine according to the present invention is connected to the ECU 30, and the control function of the internal combustion engine 1 provided in the ECU 30 is used in realizing the control method for the internal combustion engine according to the present invention. It is configured to be able to.

筒内噴射弁3は、内燃機関1の気筒1s内へ直接燃料Fを噴射することができる。すなわち、内燃機関1は、いわゆる直噴の内燃機関であり、成層燃焼領域及び均質燃焼領域の両方で運転することができる。ここで、均質燃焼領域において内燃機関1の性能を向上させるためには、空気と燃料との混合を均質にすること、及びより多くの空気(酸素)を気筒1s内へ導入することが必要となる。   The in-cylinder injection valve 3 can directly inject the fuel F into the cylinder 1 s of the internal combustion engine 1. That is, the internal combustion engine 1 is a so-called direct injection internal combustion engine, and can be operated in both the stratified combustion region and the homogeneous combustion region. Here, in order to improve the performance of the internal combustion engine 1 in the homogeneous combustion region, it is necessary to make the mixing of air and fuel homogeneous and to introduce more air (oxygen) into the cylinder 1s. Become.

筒内噴射弁3により直接気筒1s内へ燃料を噴射すると、燃料と空気との混合は劣るが、気筒1s内の空気を効率的に冷却でき、内燃機関1の吸入空気量を増加させて体積効率を向上させることができる。このため、燃料と空気との混合時間に余裕のある低回転領域においては、均質混合と空気冷却との効果により筒内噴射の性能が優れる。一方、燃料と空気とが混合する時間に余裕のない高回転領域において、筒内噴射弁3により直接気筒1s内へ燃料Fを噴射した場合は、燃料と空気との混合が不十分になりやすい。その結果、内燃機関1のトルクが低下する。   When fuel is directly injected into the cylinder 1 s by the in-cylinder injection valve 3, the mixing of the fuel and air is inferior, but the air in the cylinder 1 s can be efficiently cooled, and the intake air amount of the internal combustion engine 1 is increased to increase the volume. Efficiency can be improved. For this reason, in the low-rotation region where the mixing time of fuel and air has a margin, the performance of in-cylinder injection is excellent due to the effects of homogeneous mixing and air cooling. On the other hand, when the fuel F is directly injected into the cylinder 1s by the in-cylinder injection valve 3 in a high rotation region where there is no time for mixing the fuel and air, the mixing of the fuel and air tends to be insufficient. . As a result, the torque of the internal combustion engine 1 is reduced.

図2は、気筒内に直接燃料を噴射する場合における燃料噴射時期とトルクとの関係を示す説明図である。気筒1s内への燃料噴射時期は、点火上死点を0度(CA)としたときのピストン位置で表し、ピストン位置はクランク角CAで表される。ここで、(CA)は、クランク角で表示していることを意味する(以下同様)。また、気筒1s内への燃料噴射時期は、BTDC(Before Top Death Center:上死点前)で表す。なお、このBTDCでいう「上死点」は、点火上死点である。図3−1は、吸気上死点近傍において気筒内へ燃料を噴射した状態を示す説明図である。また、図3−2は、吸気下死点近傍において気筒内へ燃料を噴射した状態を示す説明図である。   FIG. 2 is an explanatory diagram showing the relationship between fuel injection timing and torque when fuel is directly injected into a cylinder. The fuel injection timing into the cylinder 1s is represented by a piston position when the ignition top dead center is 0 degree (CA), and the piston position is represented by a crank angle CA. Here, (CA) means displaying with a crank angle (the same applies hereinafter). The fuel injection timing into the cylinder 1s is represented by BTDC (Before Top Death Center). The “top dead center” in BTDC is an ignition top dead center. FIG. 3A is an explanatory diagram illustrating a state in which fuel is injected into the cylinder in the vicinity of the intake top dead center. FIG. 3-2 is an explanatory view showing a state in which fuel is injected into the cylinder in the vicinity of the intake bottom dead center.

図2では、吸気上死点近傍(BTDC300度(CA)付近)と吸気下死点近傍(BTDC200度(CA)付近)とにおいて、内燃機関1の気筒1s内へ燃料を噴射した場合のトルク値を、機関回転数NEをパラメータとして表している。吸気上死点近傍においては、機関回転数NEの上昇とともに、内燃機関1の発生するトルクは大きくなる。これは、機関回転数NEが大きい場合、図3−1に示すように、吸気上死点近傍から燃料Fの噴射を開始することにより燃料と空気とを十分に混合できるので、内燃機関1のトルクを大きくできるからである。すなわち、筒内噴射をする場合、機関回転数NEが大きい領域においては、内燃機関1のトルク向上に対して燃料と空気との混合が支配的になる。したがって、筒内噴射する場合において、機関回転数NEが大きいときに内燃機関1のトルクを向上させるためには、吸気上死点近傍で気筒1s内へ燃料を噴射することが効果的である。   In FIG. 2, torque values when fuel is injected into the cylinder 1 s of the internal combustion engine 1 near the intake top dead center (near BTDC 300 degrees (CA)) and near the bottom intake dead center (near BTDC 200 degrees (CA)). Is expressed using the engine speed NE as a parameter. In the vicinity of the intake top dead center, the torque generated by the internal combustion engine 1 increases as the engine speed NE increases. This is because when the engine speed NE is large, as shown in FIG. 3A, fuel and air can be sufficiently mixed by starting injection of the fuel F from the vicinity of the intake top dead center. This is because the torque can be increased. That is, in the case of in-cylinder injection, in the region where the engine speed NE is large, the mixture of fuel and air becomes dominant with respect to the improvement in the torque of the internal combustion engine 1. Therefore, in the case of in-cylinder injection, in order to improve the torque of the internal combustion engine 1 when the engine speed NE is large, it is effective to inject fuel into the cylinder 1s in the vicinity of the intake top dead center.

一方、吸気下死点近傍においては、機関回転数NEが低くなるとともに、内燃機関1の発生するトルクは大きくなる。これは、機関回転数NEが低い場合には燃料と空気との混合に十分な時間を確保できることに起因する。すなわち、図3−2に示すように、吸気下死点近傍で燃料を噴射することにより気筒1s内の空気を冷却して、より多くの空気を気筒1s内へ導入できる。この空気冷却の効果によって、内燃機関1の発生するトルクを大きくできるからである。すなわち、筒内噴射をする場合、機関回転数NEが小さい領域においては、トルクの向上に対して空気冷却が支配的になる。したがって、筒内噴射をする場合において、機関回転数NEが小さいときにトルクを向上させるためには、吸気下死点近傍で気筒1s内へ燃料Fを噴射することが効果的である。   On the other hand, in the vicinity of the intake bottom dead center, the engine speed NE decreases and the torque generated by the internal combustion engine 1 increases. This is because when the engine speed NE is low, a sufficient time can be secured for mixing the fuel and air. That is, as shown in FIG. 3-2, the air in the cylinder 1s can be cooled by injecting fuel in the vicinity of the intake bottom dead center, and more air can be introduced into the cylinder 1s. This is because the torque generated by the internal combustion engine 1 can be increased by the effect of this air cooling. That is, in the case of in-cylinder injection, air cooling is dominant for torque improvement in a region where the engine speed NE is small. Therefore, in the case of in-cylinder injection, in order to improve the torque when the engine speed NE is small, it is effective to inject the fuel F into the cylinder 1s in the vicinity of the intake bottom dead center.

図2に示すように、筒内噴射をした場合において、機関回転数NEが大きくなったときには、空気冷却を促進するよりも燃料と空気との混合を促進した方が、トルクの向上に効果的であることがわかる。すなわち、かかる場合には吸気上死点近傍で筒内噴射する方が、トルクの向上には効果的である。ここで、ポート噴射弁2により吸気通路4へ燃料を噴射するポート噴射は、空気と燃料Fとの混合が良好なので、燃料と空気との混合時間に余裕のない高回転領域における性能が優れる。したがって、燃料と空気との混合がトルク向上に対して支配的になる領域へ移行するにしたがって、徐々にポート噴射を付加することにより、筒内噴射による冷却効果と燃料と、空気との混合促進効果とを効果的に両立させることができる。これにより内燃機関1のトルクを向上させることができる。   As shown in FIG. 2, in the case of in-cylinder injection, when the engine speed NE increases, it is more effective for improving the torque to promote the mixing of fuel and air than to promote air cooling. It can be seen that it is. That is, in such a case, in-cylinder injection near the intake top dead center is effective in improving torque. Here, the port injection in which the fuel is injected into the intake passage 4 by the port injection valve 2 is excellent in the performance in the high rotation region where the mixing time of the fuel and the air has no margin because the mixing of the air and the fuel F is good. Therefore, as the mixture of fuel and air shifts to a region where the increase in torque is dominant, the port injection is gradually added, so that the cooling effect by in-cylinder injection and the mixing of fuel and air are promoted. It is possible to effectively balance the effect. Thereby, the torque of the internal combustion engine 1 can be improved.

ここで、燃料と空気との混合が支配的になる領域は、吸気上死点近傍(BTDC300度(CA)前後)において筒内噴射弁3での燃料噴射を続けた場合のトルクピークが、吸気下死点近傍(BTDC200度(CA)前後)において筒内噴射弁3での燃料噴射を続けた場合のトルクピークを上回る機関回転数NE1以上の範囲をいう。図2においては、NEbとNEcとの中間程度の機関回転数が、概ねこの機関回転数NE1に該当する。本発明では、機関回転数NEが前記機関回転数NE1以上になったらポート噴射を追加するとともに、機関回転数NEが大きくなるにしたがってポート噴射の割合を増加させる。これによって、筒内噴射による冷却効果と燃料と、空気との混合促進効果とを効果的に両立させて、トルクを向上させることができる。次に、機関回転数NEと燃料噴射に使用する噴射弁との関係について説明する。   Here, the region where the mixture of fuel and air is dominant is that the torque peak when the fuel injection from the in-cylinder injection valve 3 is continued in the vicinity of the intake top dead center (around BTDC 300 degrees (CA)). It means the range of engine speed NE1 or more that exceeds the torque peak when fuel injection by the in-cylinder injection valve 3 is continued near the bottom dead center (around BTDC 200 degrees (CA)). In FIG. 2, the engine speed approximately in the middle between NEb and NEc generally corresponds to this engine speed NE1. In the present invention, when the engine speed NE becomes equal to or higher than the engine speed NE1, port injection is added and the ratio of port injection is increased as the engine speed NE increases. As a result, the cooling effect by in-cylinder injection and the effect of promoting the mixing of fuel and air can be effectively made compatible to improve the torque. Next, the relationship between the engine speed NE and the injection valve used for fuel injection will be described.

図4は、燃料噴射に使用する噴射弁と機関回転数との関係を示す説明図である。上述したように、空気冷却が支配的な機関回転数の範囲では、筒内噴射弁3のみを使用して気筒1s内へ直接燃料を噴射する。すなわち、図4に示すように、吸気上死点近傍における筒内噴射弁3での燃料噴射によるトルクピークが、吸気下死点近傍における筒内噴射弁3での燃料噴射によるトルクピークを上回る機関回転数NE1までは、筒内噴射弁3のみを使用する。   FIG. 4 is an explanatory diagram showing the relationship between the injection valve used for fuel injection and the engine speed. As described above, in the range of the engine speed where air cooling is dominant, fuel is directly injected into the cylinder 1s using only the in-cylinder injection valve 3. That is, as shown in FIG. 4, an engine in which the torque peak due to fuel injection at the in-cylinder injection valve 3 near the intake top dead center exceeds the torque peak due to fuel injection at the in-cylinder injection valve 3 near the intake bottom dead center. Until the rotational speed NE1, only the in-cylinder injection valve 3 is used.

内燃機関1の機関回転数NEが前記機関回転数NE1以上になったら、筒内噴射弁3とポート噴射弁2との両方を用いて、内燃機関1へ燃料Fを供給する。このときには、図4に示すように、機関回転数NEの上昇とともにポート噴射弁2によるポート噴射の割合を増加させるとともに、筒内噴射弁3による筒内噴射の割合を減少させる。機関回転数NEがさらに大きくなってNE2に達すると、トルク向上のためには燃料と空気との混合促進の影響が極めて大きくなるので、ポート噴射弁2のみで内燃機関1に燃料を供給する。   When the engine speed NE of the internal combustion engine 1 becomes equal to or higher than the engine speed NE1, the fuel F is supplied to the internal combustion engine 1 using both the in-cylinder injection valve 3 and the port injection valve 2. At this time, as shown in FIG. 4, the ratio of port injection by the port injection valve 2 is increased as the engine speed NE increases, and the ratio of in-cylinder injection by the in-cylinder injection valve 3 is decreased. When the engine speed NE is further increased and reaches NE2, the influence of the promotion of mixing of fuel and air becomes extremely large in order to improve the torque. Therefore, the fuel is supplied to the internal combustion engine 1 only by the port injection valve 2.

図5−1は、筒内噴射弁及びポート噴射弁の両方を使用する領域における筒内噴射弁の噴射時期を示す説明図である。均質燃焼領域であって、筒内噴射弁3及びポート噴射弁2を使用する領域、すなわち機関回転数NEがNE1からNE2の範囲では、トルク向上に対して支配的な要因に応じて、筒内噴射弁3の噴射時期を変更する。空気冷却が支配的な領域、すなわち筒内噴射弁3及びポート噴射弁2を使用する領域であって機関回転数NEが低回転の範囲(NE1≦NE≦NE3、NE3は第3機関回転数)では、筒内噴射弁3の燃料噴射時期を吸気下死点側とする。これにより、空気冷却の効果を発揮させることができるので、機関回転数NEがNE1≦NE≦NE3の範囲において内燃機関1が発生するトルクの向上を図ることができる。   5-1 is explanatory drawing which shows the injection timing of the cylinder injection valve in the area | region which uses both a cylinder injection valve and a port injection valve. In the homogeneous combustion region where the in-cylinder injection valve 3 and the port injection valve 2 are used, that is, in the range where the engine speed NE is from NE1 to NE2, the in-cylinder The injection timing of the injection valve 3 is changed. A region where air cooling is dominant, that is, a region where the in-cylinder injection valve 3 and the port injection valve 2 are used, and a range where the engine speed NE is low (NE1 ≦ NE ≦ NE3, NE3 is the third engine speed). Now, let the fuel injection timing of the in-cylinder injection valve 3 be the intake bottom dead center side. As a result, the effect of air cooling can be exhibited, so that the torque generated by the internal combustion engine 1 can be improved when the engine speed NE is in the range of NE1 ≦ NE ≦ NE3.

燃料と空気との混合が支配的な領域、すなわち筒内噴射弁3及びポート噴射弁2を使用する領域であって機関回転数NEが高回転の範囲(NE4≦NE≦NE2:NE4は第4機関回転数)では、筒内噴射弁3の燃料噴射時期は吸気上死点側とする。従来、このように、燃料と空気との混合が支配的な領域では、ポート噴射のみによって内燃機関1へ燃料を供給していたが、本発明においてはポート噴射に加え、吸気上死点側で筒内噴射弁3から気筒1s内へ燃料を噴射させる。これにより、燃料と空気との混合の効果に加え、筒内噴射による空気冷却の効果も発揮させることができるので、機関回転数NEがNE4≦NE≦NE2の範囲において内燃機関1が発生するトルクの向上を図ることができる。ここで、前記機関回転数NE1、NE2、NE3及びNE4は、筒内噴射弁3が形成する燃料噴霧の形状や、筒内噴射弁3の仕様に応じて決まる値である。NE1、NE2、NE3及びNE4は、実験や数値シミュレーション等によって予め求めることができる。   The region where the mixing of fuel and air is dominant, that is, the region where the in-cylinder injection valve 3 and the port injection valve 2 are used and the engine speed NE is high (NE4 ≦ NE ≦ NE2: NE4 is the fourth In the engine speed), the fuel injection timing of the in-cylinder injection valve 3 is set to the intake top dead center side. Conventionally, in such a region where the mixture of fuel and air is dominant, the fuel is supplied to the internal combustion engine 1 only by the port injection. In the present invention, in addition to the port injection, the intake top dead center side is provided. Fuel is injected from the in-cylinder injection valve 3 into the cylinder 1s. As a result, in addition to the effect of mixing fuel and air, the effect of air cooling by in-cylinder injection can also be exhibited, so that the torque generated by the internal combustion engine 1 when the engine speed NE is in the range of NE4 ≦ NE ≦ NE2. Can be improved. Here, the engine speeds NE1, NE2, NE3 and NE4 are values determined according to the shape of the fuel spray formed by the in-cylinder injection valve 3 and the specifications of the in-cylinder injection valve 3. NE1, NE2, NE3, and NE4 can be obtained in advance by experiment, numerical simulation, or the like.

空気冷却の効果と、燃料と空気との混合の効果とがほぼ等しい領域、すなわち機関回転数NEがNE3<NE<NE4の範囲では、筒内噴射弁3の燃料噴射時期は次のように設定する。すなわち、図5−1に示すように、吸気下死点側と吸気上死点側との2回に分け
て、筒内噴射弁3から気筒1s内へ燃料を噴射する。これにより、前記機関回転数の範囲における内燃機関1のトルクを向上させることができるとともに、筒内噴射弁3の燃料噴射時期を切り替える際に発生するトルク変動を滑らかにすることができる。
In a region where the effect of air cooling and the effect of mixing of fuel and air are substantially equal, that is, in the range where engine speed NE is NE3 <NE <NE4, the fuel injection timing of in-cylinder injection valve 3 is set as follows: To do. That is, as shown in FIG. 5A, fuel is injected from the in-cylinder injection valve 3 into the cylinder 1s in two steps, that is, the intake bottom dead center side and the intake top dead center side. As a result, the torque of the internal combustion engine 1 within the range of the engine speed can be improved, and torque fluctuations that occur when the fuel injection timing of the in-cylinder injection valve 3 is switched can be smoothed.

図5−2は、吸気上死点側と吸気下死点側とについて説明する概念図である。吸気上死点側であるか吸気下死点側であるかは、点火上死点を0度(CA)とした場合、BTDC270度(CA)を基準として判断する。すなわち、図5−2に示すように、BTDC270度(CA)よりも吸気上死点(BTDC360度(CA))に近い方が吸気上死点側であり、BTDC270度(CA)よりも吸気下死点(BTDC180度(CA))に近い方が吸気下死点側となる。なお、BTDC270度(CA)は吸気下死点側に含むものとする。また、クランク軸6(図1参照)は、図5−2の矢印R方向に回転する。   FIG. 5B is a conceptual diagram illustrating the intake top dead center side and the intake bottom dead center side. Whether it is the intake top dead center side or the intake bottom dead center side is determined based on BTDC 270 degrees (CA) when the ignition top dead center is 0 degrees (CA). That is, as shown in FIG. 5-2, the intake top dead center side is closer to the intake top dead center (BTDC 360 degrees (CA)) than BTDC 270 degrees (CA), and is lower than the BTDC 270 degrees (CA). The one near the dead point (BTDC 180 degrees (CA)) is the intake bottom dead center side. In addition, BTDC270 degree | times (CA) shall be included in the intake bottom dead center side. Further, the crankshaft 6 (see FIG. 1) rotates in the direction of arrow R in FIG.

図6は、本発明の実施例に係る内燃機関の制御装置の構成を示す説明図である。図6を用いて、本発明の実施例に係る内燃機関の制御装置10の構成を説明する。内燃機関の制御装置10は、処理部10pと、記憶部10mとを含んで構成される。処理部10pは、さらに燃焼判定部21と、噴射判定部22と、筒内噴射時期決定部23と、噴射割合決定部24とを含んで構成される。ここで、燃焼判定部21と、噴射判定部22と、筒内噴射時期決定部23と、噴射割合決定部24とが、本発明に係る内燃機関の制御方法を実行する部分となる。   FIG. 6 is an explanatory diagram showing the configuration of the control device for the internal combustion engine according to the embodiment of the present invention. The configuration of the control device 10 for an internal combustion engine according to the embodiment of the present invention will be described with reference to FIG. The control device 10 for an internal combustion engine includes a processing unit 10p and a storage unit 10m. The processing unit 10p further includes a combustion determination unit 21, an injection determination unit 22, an in-cylinder injection timing determination unit 23, and an injection ratio determination unit 24. Here, the combustion determination unit 21, the injection determination unit 22, the in-cylinder injection timing determination unit 23, and the injection ratio determination unit 24 are portions that execute the control method for the internal combustion engine according to the present invention.

記憶部10mと、燃焼判定部21と、噴射判定部22と、筒内噴射時期決定部23と、噴射割合決定部24とは、内燃機関の制御装置10の入出力ポート(I/O)29を介して接続されている。これにより、記憶部10mと、燃焼判定部21と、噴射判定部22と、筒内噴射時期決定部23と、噴射割合決定部24とは、それぞれ双方向でデータをやり取りできるように構成される。なお、装置構成上の必要に応じて片方向でデータを送受信するようにしてもよい。   The storage unit 10m, the combustion determination unit 21, the injection determination unit 22, the in-cylinder injection timing determination unit 23, and the injection ratio determination unit 24 are an input / output port (I / O) 29 of the control device 10 for the internal combustion engine. Connected through. Thereby, the memory | storage part 10m, the combustion determination part 21, the injection determination part 22, the in-cylinder injection timing determination part 23, and the injection ratio determination part 24 are comprised so that each can exchange data bidirectionally. . Note that data may be transmitted and received in one direction as required in the device configuration.

内燃機関の制御装置10とECU30とは、内燃機関の制御装置10の入出力ポート(I/P)29を介して接続されており、両者間で相互にデータをやり取りすることができる。これにより、内燃機関の制御装置10はECU30が有する内燃機関制御データを取得したり、ECUを介して内燃機関1の各種センサからの情報を取得したり、あるいは内燃機関の制御装置10の制御をECU30のエンジン制御ルーチンに割り込ませたりすることができる。また、本発明に係る内燃機関の制御装置10は、ECU30に組み込んでもよく、ECU30の機能の一部を利用することで、本発明に係る内燃機関の制御装置10の機能を実現してもよい。   The control device 10 of the internal combustion engine and the ECU 30 are connected via an input / output port (I / P) 29 of the control device 10 of the internal combustion engine and can exchange data with each other. Thereby, the control device 10 of the internal combustion engine acquires the internal combustion engine control data that the ECU 30 has, acquires information from various sensors of the internal combustion engine 1 via the ECU, or controls the control device 10 of the internal combustion engine. The engine control routine of the ECU 30 can be interrupted. Further, the control device 10 for the internal combustion engine according to the present invention may be incorporated in the ECU 30, and the function of the control device 10 for the internal combustion engine according to the present invention may be realized by using a part of the function of the ECU 30. .

記憶部10mには、本発明に係る内燃機関の制御方法の処理手順を含むコンピュータプログラムや、燃料噴射時期、筒内と吸気ポートとの燃料噴射割合その他のデータマップ等が格納されている。ここで、記憶部10mは、RAM(Random Access Memory)のような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。また、処理部10pは、メモリ及びCPUにより構成することができる。   The storage unit 10m stores a computer program including a processing procedure of the control method for the internal combustion engine according to the present invention, a fuel injection timing, a fuel injection ratio between the cylinder and the intake port, and other data maps. Here, the storage unit 10m can be configured by a volatile memory such as a RAM (Random Access Memory), a nonvolatile memory such as a flash memory, or a combination thereof. The processing unit 10p can be configured by a memory and a CPU.

上記コンピュータプログラムは、処理部10pやECU30へすでに記録されているコンピュータプログラムとの組み合わせによって、本発明に係る内燃機関の制御方法の処理手順を実現できるものであってもよい。この処理部10pは、前記コンピュータプログラムの代わりに専用のハードウェアを用いて、燃焼判定部21、噴射判定部22、筒内噴射時期決定部23及び噴射割合決定部24の機能を実現するものであってもよい。次に、この内燃機関の制御装置10を用いて、本発明の実施例に係る内燃機関の制御方法を実現する手順を説明する。なお、この説明にあたっては、適宜図1、6を参照されたい。   The computer program may be capable of realizing the processing procedure of the control method for an internal combustion engine according to the present invention by a combination with a computer program already recorded in the processing unit 10p or the ECU 30. The processing unit 10p implements the functions of the combustion determination unit 21, the injection determination unit 22, the in-cylinder injection timing determination unit 23, and the injection ratio determination unit 24 using dedicated hardware instead of the computer program. There may be. Next, a procedure for realizing the control method of the internal combustion engine according to the embodiment of the present invention by using the control device 10 for the internal combustion engine will be described. In this description, please refer to FIGS.

図7は、本発明の実施例に係る内燃機関の制御方法の制御手順を示すフローチャートである。本発明の実施例に係る内燃機関の制御方法を実現するにあたり、まず、ECU30が、内燃機関1の空気流量や負荷、あるいは機関回転数NE等から、その運転条件において内燃機関1が必要とする全燃料噴射量TAUを算出する(ステップS101)。次に、内燃機関の制御装置10の燃焼判定部21が、均質燃焼領域であるか否かを判定する(ステップS102)。均質燃焼領域であるか否かは、内燃機関1のアクセル開度や吸気通路4の吸気圧力等から判定する。均質燃焼領域は一般に高負荷運転領域であり、いわゆるWOT(Wide Open Throttle)の領域である。したがって、高負荷領域(WOT領域)であれば均質燃焼領域と判断することができる。例えば、アクセル開度がおよそ8割以上の場合に、均質燃焼領域(高負荷運転領域)と判定される。   FIG. 7 is a flowchart showing a control procedure of the control method of the internal combustion engine according to the embodiment of the present invention. In realizing the control method of the internal combustion engine according to the embodiment of the present invention, first, the ECU 30 requires the internal combustion engine 1 under the operating conditions from the air flow rate and load of the internal combustion engine 1 or the engine speed NE. A total fuel injection amount TAU is calculated (step S101). Next, the combustion determination unit 21 of the control device 10 for the internal combustion engine determines whether or not it is a homogeneous combustion region (step S102). Whether or not it is a homogeneous combustion region is determined from the accelerator opening of the internal combustion engine 1, the intake pressure of the intake passage 4, and the like. The homogeneous combustion region is generally a high-load operation region, which is a so-called WOT (Wide Open Throttle) region. Therefore, it can be determined as a homogeneous combustion region in a high load region (WOT region). For example, when the accelerator opening is approximately 80% or more, it is determined as the homogeneous combustion region (high load operation region).

均質燃焼領域であると燃焼判定部21が判定した場合(ステップS102;Yes)、噴射判定部22はポート噴射弁2と筒内噴射弁3との両方から燃料Fを噴射させるか否かを判定する。この判定において、噴射判定部22は内燃機関1の機関回転数NEを取得し、機関回転数NEがNE1以上で(ステップS103;Yes)、かつNE2以下の場合(ステップS104;Yes)に、ポート噴射弁2と筒内噴射弁3との両方から燃料Fを噴射させると判定する。なお、前記機関回転数NE1は、内燃機関1において、吸気上死点側の筒内噴射を続けた場合におけるトルクピークが、吸気下死点側の筒内噴射を続けた場合におけるトルクピーク以上になる機関回転数である。   When the combustion determination part 21 determines that it is a homogeneous combustion region (step S102; Yes), the injection determination part 22 determines whether or not the fuel F is injected from both the port injection valve 2 and the in-cylinder injection valve 3. To do. In this determination, the injection determination unit 22 acquires the engine speed NE of the internal combustion engine 1, and when the engine speed NE is equal to or higher than NE1 (step S103; Yes) and is equal to or lower than NE2 (step S104; Yes), the port. It is determined that the fuel F is injected from both the injection valve 2 and the in-cylinder injection valve 3. The engine speed NE1 is greater than the torque peak when the in-cylinder injection on the intake top dead center side is continued in the internal combustion engine 1 when the in-cylinder injection on the intake bottom dead center side is continued. Is the engine speed.

機関回転数NEがNE1よりも小さい場合(ステップS103;No)、噴射判定部22は筒内噴射弁3のみで燃料を噴射させると判定し(ステップS109)、また、機関回転数NEがNE2よりも大きい場合(ステップS104;No)、噴射判定部22はポート噴射弁2のみで燃料を噴射させると判定する(ステップS110)。均質燃焼領域ではないと燃焼判定部21が判定した場合は(ステップS102;No)、筒内噴射弁3のみの噴射により、成層燃焼領域で内燃機関1を運転する(ステップS108)。ここで、NE1は、筒内噴射のみの燃料噴射から、筒内及びポート噴射による燃料噴射に切り替える第1機関回転数となり、NE2は、筒内及びポート噴射による燃料噴射からポート噴射のみによる燃料噴射に切り替える第2機関回転数となる。   If the engine speed NE is smaller than NE1 (step S103; No), the injection determination unit 22 determines that fuel is injected only by the in-cylinder injection valve 3 (step S109), and the engine speed NE is greater than NE2. Is larger (step S104; No), the injection determination unit 22 determines that fuel is injected only by the port injection valve 2 (step S110). When the combustion determination unit 21 determines that it is not the homogeneous combustion region (step S102; No), the internal combustion engine 1 is operated in the stratified combustion region by injection only from the in-cylinder injection valve 3 (step S108). Here, NE1 is the first engine speed for switching from fuel injection by in-cylinder injection only to fuel injection by in-cylinder and port injection, and NE2 is fuel injection by in-cylinder and port injection only by port injection. To the second engine speed.

第1機関回転数NE1は2000rpm(Revolution Per Minute)前後であり、第2機関回転数NE2は5000rpm前後である。これらの値は、筒内噴射弁3の噴霧形態によって変化させてもよい。例えば、筒内噴射弁3の噴霧形態が機関出力を重視した形態に設計されている場合、NE2はより大きくなり、筒内噴射弁3の噴霧形態が吸気効率を重視した形態に設計されている場合、NE2はより小さくなる。   The first engine speed NE1 is around 2000 rpm (Revolution Per Minute), and the second engine speed NE2 is around 5000 rpm. These values may be changed depending on the spray form of the in-cylinder injection valve 3. For example, when the spray form of the in-cylinder injection valve 3 is designed in a form that emphasizes engine output, NE2 becomes larger, and the spray form of the in-cylinder injection valve 3 is designed in a form that places importance on intake efficiency. In this case, NE2 becomes smaller.

ポート噴射弁2と筒内噴射弁3との両方から燃料Fを噴射させる場合には(ステップS103;Yes、ステップS104;Yes)、筒内噴射時期決定部23が筒内噴射弁3の燃料噴射時期を決定する(ステップS105)。次に、この筒内噴射弁3の燃料噴射時期について説明する。図8は、本発明の実施例に係る内燃機関の制御方法における筒内噴射弁による噴射時期を決定する手順を示すフローチャートである。図9−1、図9−2は、筒内噴射弁の燃料噴射時期マップを示す説明図である。内燃機関の制御装置10の筒内噴射時期決定部23は、まず、機関回転数NEがNE3以下であるか否かを判定する(ステップS201)。   When fuel F is injected from both the port injection valve 2 and the in-cylinder injection valve 3 (step S103; Yes, step S104; Yes), the in-cylinder injection timing determination unit 23 performs the fuel injection of the in-cylinder injection valve 3. The time is determined (step S105). Next, the fuel injection timing of the in-cylinder injection valve 3 will be described. FIG. 8 is a flowchart showing a procedure for determining the injection timing by the in-cylinder injection valve in the control method of the internal combustion engine according to the embodiment of the present invention. FIGS. 9A and 9B are explanatory diagrams illustrating a fuel injection timing map of the in-cylinder injection valve. The in-cylinder injection timing determination unit 23 of the control device 10 for the internal combustion engine first determines whether or not the engine speed NE is equal to or less than NE3 (step S201).

NEがNE3以下である場合(ステップS201;Yes)、筒内噴射時期決定部23は、記憶部10mに格納されている低回転側噴射時期マップ50(図9−1)に機関回転数NEを与えて、機関回転数NEに応じた筒内噴射弁3の燃料噴射時期(以下筒内噴射時期という)Θdiを決定する(ステップS205)。なお、ステップS205においては
、筒内噴射弁3が吸気下死点側で燃料を噴射するように筒内噴射時期Θdiが決定される。
If NE is equal to or less than NE3 (step S201; Yes), the in-cylinder injection timing determination unit 23 sets the engine speed NE to the low rotation side injection timing map 50 (FIG. 9-1) stored in the storage unit 10m. Then, the fuel injection timing (hereinafter referred to as in-cylinder injection timing) Θdi of the in-cylinder injection valve 3 corresponding to the engine speed NE is determined (step S205). In step S205, the in-cylinder injection timing Θdi is determined so that the in-cylinder injection valve 3 injects fuel on the intake bottom dead center side.

NE>NE3である場合(ステップS201;No)、内燃機関の制御装置10の筒内噴射時期決定部23は、機関回転数NEがNE4以上であるか否かを判定する(ステップS202)。機関回転数NEがNE4以上である場合(ステップS202;Yes)、筒内噴射時期決定部23は、記憶部10mに格納されている高回転側噴射時期マップ51(図9−2)に機関回転数NEを与えて、機関回転数NEに応じた筒内噴射時期Θdiを決定する(ステップ206)。なお、ステップS206においては、筒内噴射弁3が吸気上死点側で燃料を噴射するように筒内噴射時期Θdiが決定される。   If NE> NE3 (step S201; No), the in-cylinder injection timing determination unit 23 of the control device 10 for the internal combustion engine determines whether the engine speed NE is equal to or greater than NE4 (step S202). If the engine speed NE is greater than or equal to NE4 (step S202; Yes), the in-cylinder injection timing determination unit 23 displays the engine rotation in the high rotation side injection timing map 51 (FIG. 9-2) stored in the storage unit 10m. A number NE is given, and the in-cylinder injection timing Θdi corresponding to the engine speed NE is determined (step 206). In step S206, the in-cylinder injection timing Θdi is determined so that the in-cylinder injection valve 3 injects fuel on the intake top dead center side.

低回転側噴射時期マップ50及び高回転側噴射時期マップ51は、例えば図9−1及び図9−2に示すように設定される。NE1≦NE≦NE3である場合、低回転側噴射時期マップ50に示すように、筒内噴射時期Θdiは、BTDC180度(CA)以上270度(CA)以下の範囲で、機関回転数NEの増加とともに吸気上死点側へ移行するように設定することが好ましい。NE4≦NE≦NE2である場合、高回転側噴射時期マップ51に示すように、筒内噴射時期Θdiは、BTDC290度(CA)以上360度(CA)以下の範囲で、機関回転数NEの増加とともに吸気上死点側へ移行するように設定することが好ましい。これは次の理由による。機関回転数NEが高くなるほど、燃料の気化に十分な時間が確保できなくなる。このため、機関回転数NEの上昇とともに筒内噴射時期Θdiを吸気上死点側へ移行させることで、燃料Fと空気とを十分に混合し、内燃機関1のトルクを向上させることができるからである。なお、吸気下死点側の筒内噴射時期ΘdiはBTDC180度(CA)以上270度(CA)以下の範囲内で、吸気上死点側の筒内噴射時期ΘdiはBTDC290度(CA)以上360度(CA)以下の範囲内で、機関回転数NEによらず、前記各々の範囲内でそれぞれ一つの値に決定してもよい。   The low rotation side injection timing map 50 and the high rotation side injection timing map 51 are set as shown in FIGS. 9-1 and 9-2, for example. When NE1 ≦ NE ≦ NE3, as shown in the low-rotation side injection timing map 50, the in-cylinder injection timing Θdi is in the range of BTDC 180 degrees (CA) to 270 degrees (CA), and the engine speed NE increases. At the same time, it is preferable to set so as to shift to the intake top dead center side. When NE4 ≦ NE ≦ NE2, the in-cylinder injection timing Θdi increases in the engine speed NE within a range of BTDC 290 degrees (CA) to 360 degrees (CA) as shown in the high-rotation side injection timing map 51. At the same time, it is preferable to set so as to shift to the intake top dead center side. This is due to the following reason. As the engine speed NE increases, a sufficient time for fuel vaporization cannot be ensured. Therefore, by shifting the in-cylinder injection timing Θdi to the intake top dead center side as the engine speed NE rises, the fuel F and air can be sufficiently mixed and the torque of the internal combustion engine 1 can be improved. It is. The in-cylinder injection timing Θdi on the intake bottom dead center side is in the range of BTDC 180 degrees (CA) to 270 degrees (CA), and the in-cylinder injection timing Θdi on the intake top dead center side is BTDC 290 degrees (CA) to 360 degrees. Within a range of degrees (CA) or less, one value may be determined within each of the above ranges regardless of the engine speed NE.

低回転側噴射時期マップ50及び高回転側噴射時期マップ51では、機関回転数NEの増加とともに筒内噴射時期Θdiを吸気上死点側へ移行させるように制御できればよい。したがって、低回転側噴射時期マップ50及び高回転側噴射時期マップ51の実線で示すように、筒内噴射時期Θdiと機関回転数NEとの関係を線形としてもよいし、同マップの一点鎖線や二点鎖線で示すように非線形としてもよい。なお、低回転側噴射時期マップ50及び高回転側噴射時期マップ51は、実験や数値シミュレーションにより作成することができる。   The low rotation side injection timing map 50 and the high rotation side injection timing map 51 may be controlled so that the in-cylinder injection timing Θdi shifts to the intake top dead center side as the engine speed NE increases. Therefore, as shown by the solid lines of the low rotation side injection timing map 50 and the high rotation side injection timing map 51, the relationship between the in-cylinder injection timing Θdi and the engine speed NE may be linear, It may be non-linear as indicated by a two-dot chain line. The low rotation side injection timing map 50 and the high rotation side injection timing map 51 can be created by experiments or numerical simulations.

機関回転数NEがNE3<NE<NE4の関係を満たすとき(ステップS201;No:ステップS202;No)、筒内噴射時期決定部23は、吸気上死点側と吸気下死点側との二回に分けて気筒1s内に燃料を噴射するように、筒内噴射時期Θdiを決定する(ステップS203)。具体的には、吸気下死点側の筒内噴射時期Θdiは、BTDC270度(CA)、吸気上死点側の筒内噴射時期ΘdiはBTDC290度(CA)とする。これは、前記第3及び第4機関回転数NE3、NE4を境として筒内噴射時期Θdiを吸気下死点側から吸気上死点側へ切り替えると、内燃機関1のトルクが急激に変動しドライバビリティを悪化させるからである。したがって、上記のように筒内噴射時期Θdiを決定することにより、急激なトルク変動を抑制して滑らかに筒内噴射時期Θdiを切り替えるためである。このとき、内燃機関の制御装置10が備える噴射割合決定部24は、吸気上死点側燃料噴射量FTDCと吸気下死点側燃料噴射量FBDCとを決定する(ステップS204)。この決定手順について説明する。 When the engine speed NE satisfies the relationship NE3 <NE <NE4 (step S201; No: step S202; No), the in-cylinder injection timing determination unit 23 determines whether the intake top dead center side and the intake bottom dead center side are The in-cylinder injection timing Θdi is determined so as to inject fuel into the cylinder 1s in steps (step S203). Specifically, the in-cylinder injection timing Θdi on the intake bottom dead center side is BTDC 270 degrees (CA), and the in-cylinder injection timing Θdi on the intake top dead center side is BTDC 290 degrees (CA). This is because when the in-cylinder injection timing Θdi is switched from the intake bottom dead center side to the intake top dead center side with the third and fourth engine speeds NE3 and NE4 as a boundary, the torque of the internal combustion engine 1 changes abruptly. Because it deteriorates the ability. Therefore, by determining the in-cylinder injection timing Θdi as described above, the in-cylinder injection timing Θdi is smoothly switched while suppressing rapid torque fluctuations. At this time, the injection ratio determination unit 24 included in the control device 10 for the internal combustion engine determines the intake top dead center side fuel injection amount FTDC and the intake bottom dead center side fuel injection amount FBDC (step S204). This determination procedure will be described.

図10は、機関回転数に対する燃料噴射割合決定係数の関係を記述した燃料噴射割合決定マップを示す説明図である。燃料噴射割合決定マップ52の実線に示すように、吸気下死点側燃料噴射量FBDCの燃料噴射割合決定係数KBDCは、機関回転数NEの増加とともに
減少するように決定される。このとき、吸気上死点側燃料噴射量FTDCの燃料噴射割合決定係数KTDCは、(1−KBDC)で表される。そして、吸気下死点側燃料噴射量FBDCは、KBDC×TAUdiで、吸気上死点側燃料噴射量FTDCは、KTDC×TAUdi=(1−KBDC)×TAUdiで決定される。
FIG. 10 is an explanatory diagram showing a fuel injection ratio determination map describing the relationship of the fuel injection ratio determination coefficient with respect to the engine speed. As shown by the solid line of the fuel injection ratio determination map 52, the fuel injection ratio determination coefficient K BDC of the intake bottom dead center side fuel injection amount F BDC is determined so as to decrease as the engine speed NE increases. At this time, the fuel injection rate determination coefficient K TDC of the intake top dead center side fuel injection amount F TDC is represented by (1-K BDC). The intake bottom dead center side fuel injection amount F BDC is determined by K BDC × TAU di , and the intake top dead center side fuel injection amount F TDC is determined by K TDC × TAU di = (1−K BDC ) × TAU di . Is done.

このようにすると、機関回転数NEの上昇とともに吸気下死点側燃料噴射量FBDCを減少させ、吸気上死点側燃料噴射量FTDCを増加させて気筒1s内へ燃料を噴射することができる。その結果、筒内噴射時期Θdiの切り替えに起因する内燃機関1のトルク変動をより滑らかにできる。また、機関回転数NEがNE3<NE<NE4の範囲において、空気冷却と、燃料と空気との混合との最適なバランスを維持しながら気筒1s内へ燃料を噴射することができるので、トルクの向上も図ることができる。なお、吸気下死点側燃料噴射量FBDCの燃料噴射割合決定係数KBDCは、機関回転数NEの増加とともに減少するように決定すればよいので、燃料噴射割合決定マップ52の一点鎖線や二点鎖線で示すように非線形としてもよい。ここで、燃料噴射割合決定マップ52は、実験や数値シミュレーションにより作成することができる。なお、吸気下死点側燃料噴射量FBDCと、吸気上死点側燃料噴射量FTDCとの噴射割合を、機関回転数NEに関わらず1:1としてもよい。このようにすれば、燃料噴射量を制御するアルゴリズムを簡略化できる。上記手順により吸気上死点側燃料噴射量FTDCと吸気下死点側燃料噴射量FBDCとを決定したら、筒内噴射時期Θdiの決定手順が終了する。 By doing so, the intake bottom dead center side fuel injection amount FBDC is decreased as the engine speed NE rises, and the intake top dead center side fuel injection amount FTDC is increased to inject fuel into the cylinder 1s. it can. As a result, the torque fluctuation of the internal combustion engine 1 due to the switching of the in-cylinder injection timing Θdi can be made smoother. In addition, when the engine speed NE is in the range of NE3 <NE <NE4, fuel can be injected into the cylinder 1s while maintaining an optimal balance between air cooling and mixing of fuel and air. Improvement can also be achieved. Note that the fuel injection ratio determination coefficient K BDC of the intake bottom dead center side fuel injection amount F BDC may be determined so as to decrease as the engine speed NE increases. It may be non-linear as shown by the dotted line. Here, the fuel injection ratio determination map 52 can be created by experiment or numerical simulation. The injection ratio between the intake bottom dead center side fuel injection amount FBDC and the intake top dead center side fuel injection amount FTDC may be 1: 1 irrespective of the engine speed NE. In this way, the algorithm for controlling the fuel injection amount can be simplified. When the above procedure by determining an intake top dead center side fuel injection amount F TDC and the intake bottom dead center the fuel injection amount F BDC, determination procedure Θdi injection timing cylinder is completed.

筒内噴射弁3の燃料噴射時期を決定したら(ステップS105)、内燃機関の制御装置10が備える噴射割合決定部24は、筒内噴射割合とポート噴射割合とを決定する(ステップS106)。この噴射割合決定手順について説明する。図11は、筒内噴射割合とポート噴射割合との決定手順を説明するフローチャートである。図12は、筒内噴射割合を記述した筒内噴射割合マップを示す説明図である。   When the fuel injection timing of the in-cylinder injection valve 3 is determined (step S105), the injection ratio determination unit 24 provided in the control device 10 for the internal combustion engine determines the in-cylinder injection ratio and the port injection ratio (step S106). This injection ratio determination procedure will be described. FIG. 11 is a flowchart illustrating a procedure for determining the in-cylinder injection ratio and the port injection ratio. FIG. 12 is an explanatory diagram showing an in-cylinder injection ratio map describing the in-cylinder injection ratio.

ポート噴射弁2と筒内噴射弁3との両方から燃料を噴射させる場合、機関回転数NEに応じてポート噴射弁2からの燃料噴射割合と筒内噴射弁3からの燃料噴射割合とを変化させる。機関回転数NEが大きくなるにしたがって、燃料と空気との混合を促進した方が内燃機関1のトルクを大きくするためには効果的である。このため、機関回転数NEが大きくなるにしたがって、ポート噴射弁2による燃料噴射割合を増加させて、燃料と空気との混合をより促進させる。   When fuel is injected from both the port injection valve 2 and the in-cylinder injection valve 3, the fuel injection ratio from the port injection valve 2 and the fuel injection ratio from the in-cylinder injection valve 3 are changed according to the engine speed NE. Let In order to increase the torque of the internal combustion engine 1, it is effective to promote the mixing of fuel and air as the engine speed NE increases. For this reason, as the engine speed NE increases, the fuel injection ratio by the port injection valve 2 is increased to further promote the mixing of fuel and air.

噴射割合決定部24は、記憶部10mに格納されている筒内噴射割合マップ55に、機関回転数NEを与えて、当該機関回転数NEにおける筒内噴射割合Kdiを決定し、これを取得する(ステップS301)。そして、ポート噴射弁2及び筒内噴射弁3からの燃料噴射量を次のように定める(ステップS302)。
ポート噴射弁2による燃料噴射量TAUp=(1−Kdi)×TAU
筒内噴射弁3による燃料噴射量TAUdi=Kdi×TAU
ここで、TAUは内燃機関1の負荷や機関回転数NE等によって定められる全燃料噴射量である。
The injection ratio determination unit 24 gives the engine speed NE to the in-cylinder injection ratio map 55 stored in the storage unit 10m, determines the in-cylinder injection ratio K di at the engine speed NE, and obtains this. (Step S301). Then, the fuel injection amounts from the port injection valve 2 and the in-cylinder injection valve 3 are determined as follows (step S302).
Fuel injection amount TAUp = (1-K di ) × TAU by the port injection valve 2
Fuel injection amount by cylinder injection valve 3 TAU di = K di × TAU
Here, TAU is the total fuel injection amount determined by the load of the internal combustion engine 1, the engine speed NE, and the like.

図12に示すように、この実施例に係る筒内噴射割合マップ55は、機関回転数NEの増加とともに、筒内噴射割合Kdiを80%から20%まで変化させる。これにより、ポート噴射弁2と筒内噴射弁3との両方から燃料Fを噴射させる場合、筒内噴射弁3による燃料噴射量は、機関回転数NEの増加とともに全燃料噴射量TAUの80%から20%まで変化する。また、ポート噴射弁2による燃料噴射量は、機関回転数NEの増加とともに全燃料噴射量の20%から80%まで変化する。なお、この筒内噴射割合マップ55は一例であり、筒内噴射割合Kdiの変化量はこれに限定されるものではない。さらに、機関回転数NEではなく、エンジンの負荷(充填効率)KEによって筒内噴射割合Kdiを変化させ
てもよい。
As shown in FIG. 12, the in-cylinder injection ratio map 55 according to this embodiment changes the in-cylinder injection ratio K di from 80% to 20% as the engine speed NE increases. Thus, when fuel F is injected from both the port injection valve 2 and the in-cylinder injection valve 3, the fuel injection amount by the in-cylinder injection valve 3 is 80% of the total fuel injection amount TAU as the engine speed NE increases. To 20%. Further, the fuel injection amount by the port injection valve 2 changes from 20% to 80% of the total fuel injection amount as the engine speed NE increases. The in-cylinder injection ratio map 55 is an example, and the amount of change in the in-cylinder injection ratio K di is not limited to this. Further, the in-cylinder injection ratio K di may be changed not by the engine speed NE but by the engine load (charging efficiency) KE.

また、前記筒内噴射割合Kdiは、機関回転数NEの増加とともに減少するように決定すればよい。したがって、前記筒内噴射割合Kdiと機関回転数NEとの関係は、図12の実線で示すような線形のみならず、筒内噴射割合マップ55の点線で示すように非線形としてもよい。なお、筒内噴射割合マップ55は、実験や数値シミュレーションにより作成することができる。 Further, the in-cylinder injection ratio K di may be determined so as to decrease as the engine speed NE increases. Therefore, the relationship between the in-cylinder injection ratio K di and the engine speed NE may be not only linear as shown by the solid line in FIG. 12 but also non-linear as shown by the dotted line in the in-cylinder injection ratio map 55. The in-cylinder injection ratio map 55 can be created by experiment or numerical simulation.

ポート噴射弁2及び筒内噴射弁3からの燃料噴射量が上記のように決定されたら、噴射割合決定手順が終了する。そして、ポート噴射弁2と筒内噴射弁3とは、決定された燃料噴射割合及び燃料噴射時期で、それぞれ吸気通路4と気筒1s内へ燃料を噴射する(ステップS107)。なお、ポート噴射弁2の噴射時期は内燃機関1の吸気行程であればよい。ここで、吸気弁58が開く時期と排気弁59が閉じる時期とにオーバーラップがある場合、ポート噴射弁2で噴射した燃料が排気通路9へ吹き抜けることを抑制するため、排気弁59が閉じてからポート噴射弁2で燃料を噴射することが好ましい。   When the fuel injection amounts from the port injection valve 2 and the in-cylinder injection valve 3 are determined as described above, the injection ratio determination procedure ends. The port injection valve 2 and the in-cylinder injection valve 3 inject fuel into the intake passage 4 and the cylinder 1s, respectively, at the determined fuel injection ratio and fuel injection timing (step S107). Note that the injection timing of the port injection valve 2 may be the intake stroke of the internal combustion engine 1. Here, when there is an overlap between the timing at which the intake valve 58 is opened and the timing at which the exhaust valve 59 is closed, the exhaust valve 59 is closed to prevent the fuel injected by the port injection valve 2 from blowing into the exhaust passage 9. It is preferable to inject the fuel by the port injection valve 2.

ここで、上記ステップS109において、噴射判定部22が筒内噴射弁3のみで燃料Fを噴射させると判定した場合、噴射割合決定部24は筒内噴射割合Kdiを1.0として、全燃料を筒内噴射弁3から気筒1s内へ噴射させるように制御する。また、上記ステップS110において、噴射判定部22がポート噴射弁2のみで燃料Fを噴射させると判定した場合、噴射割合決定部24は筒内噴射割合Kdiを0として、全燃料をポート噴射弁2から吸気通路4内へ噴射させるように制御する。 Here, in step S109, when the injection determination unit 22 determines that the fuel F is injected only by the in-cylinder injection valve 3, the injection ratio determination unit 24 sets the in-cylinder injection ratio K di to 1.0 and sets the total fuel. Is injected from the in-cylinder injection valve 3 into the cylinder 1s. In step S110, when the injection determination unit 22 determines that the fuel F is to be injected only by the port injection valve 2, the injection ratio determination unit 24 sets the in-cylinder injection ratio K di to 0 and all the fuel is port injection valves. 2 is controlled to be injected into the intake passage 4.

次に、本発明の実施例に係る内燃機関の制御装置及び制御方法によって内燃機関の制御を実行した場合における制御結果について説明する。図13は、内燃機関の機関回転数とトルクとの関係を示した説明図である。本発明に係る内燃機関の制御装置で本発明に係る内燃機関の制御方法を実行するにあたり、機関回転数NEがNE1以上NE2の領域において、ポート噴射弁2と筒内噴射弁3との両方から燃料を噴射させた。また、機関回転数NEがNE1からNE2までの増加するにしたがって、筒内噴射割合Kdiを80%から20%まで変化させることにより、ポート噴射弁2及び筒内噴射弁3の燃料噴射量を制御した。制御結果は、内燃機関1のトルクの機関回転数NEに対する変化で表す。比較対象として、筒内噴射弁3のみの場合(図13中点線で示す)と、ポート噴射弁2のみの場合(図13中一点鎖線で示す)とを併記する。なお、いずれも均質燃焼領域である。 Next, the control result when the control of the internal combustion engine is executed by the control device and control method for the internal combustion engine according to the embodiment of the present invention will be described. FIG. 13 is an explanatory diagram showing the relationship between the engine speed and torque of the internal combustion engine. When the internal combustion engine control method according to the present invention is executed by the control apparatus for an internal combustion engine according to the present invention, both the port injection valve 2 and the in-cylinder injection valve 3 are in the region where the engine speed NE is NE1 or higher. Fuel was injected. Further, as the engine speed NE increases from NE1 to NE2, the in-cylinder injection ratio K di is changed from 80% to 20%, whereby the fuel injection amounts of the port injection valve 2 and the in-cylinder injection valve 3 are changed. Controlled. The control result is expressed as a change in the torque of the internal combustion engine 1 with respect to the engine speed NE. As a comparison object, the case of only the in-cylinder injection valve 3 (shown by a dotted line in FIG. 13) and the case of only the port injection valve 2 (shown by an alternate long and short dash line in FIG. 13) are shown. Note that both are homogeneous combustion regions.

図13に示すように、本発明により内燃機関の運転を制御した場合には、機関回転数NEがNE1以上NE2以下の範囲において、ポート噴射弁2又は筒内噴射弁3のみで燃料を噴射した場合と比較して、ほぼ前記範囲全体にわたって内燃機関1のトルクが向上していることがわかる。このように、本発明によれば、均質燃焼領域において、ポート噴射と筒内噴射とで燃料を噴射するとともに、ポート噴射の時期を機関回転数NEに応じて変化させるので、ポート噴射又は筒内噴射のみの場合と比較して、トルクの向上を図ることができる。   As shown in FIG. 13, when the operation of the internal combustion engine is controlled according to the present invention, fuel is injected only by the port injection valve 2 or the in-cylinder injection valve 3 when the engine speed NE is in the range of NE1 to NE2. It can be seen that the torque of the internal combustion engine 1 is improved substantially over the entire range as compared with the case. Thus, according to the present invention, in the homogeneous combustion region, the fuel is injected by the port injection and the in-cylinder injection, and the timing of the port injection is changed according to the engine speed NE. Compared with the case of injection only, the torque can be improved.

以上、本発明では、均質燃焼領域であって、筒内噴射弁及びポート噴射弁の両方を使用する領域では、機関回転数が低回転の場合は吸気下死点側で筒内噴射し、機関回転数が高回転の場合は吸気上死点側で筒内噴射する。これにより、機関回転数の低い範囲では空気冷却を効果的に利用して充填効率を向上させ、また、機関回転数の高い範囲では燃料と空気との混合を効率的に促進して燃料と空気とを効果的に均質化させることができる。その結果、均質燃焼領域であって、筒内噴射弁及びポート噴射弁の両方を使用する領域でのトルク向上を図ることができる。   As described above, in the present invention, in the homogeneous combustion region where both the in-cylinder injection valve and the port injection valve are used, in-cylinder injection is performed on the intake bottom dead center side when the engine speed is low. When the rotational speed is high, in-cylinder injection is performed on the intake top dead center side. As a result, air cooling is effectively used to improve the charging efficiency in the range where the engine speed is low, and in the range where the engine speed is high, the mixing of fuel and air is promoted efficiently, so that the fuel and air Can be effectively homogenized. As a result, it is possible to improve the torque in the homogeneous combustion region where both the in-cylinder injection valve and the port injection valve are used.

また、吸気上死点側の筒内噴射を続けた場合におけるトルクピークが、吸気下死点側の筒内噴射を続けた場合におけるトルクピーク以上になる機関回転数で、筒内噴射に加えてポート噴射を追加する。これにより、筒内噴射による空気冷却効果とポート噴射による燃料と空気との混合促進効果とを効果的に両立させることができる。その結果、筒内噴射やポート噴射単独の場合と比較して、均質燃焼領域における内燃機関のトルクを向上させることができる。   In addition, in addition to in-cylinder injection, the engine speed is such that the torque peak when in-cylinder injection on the intake top dead center side continues to be greater than the torque peak when in-cylinder injection on the intake bottom dead center side continues. Add port injection. Thereby, the air cooling effect by in-cylinder injection and the mixing promotion effect of fuel and air by port injection can both be made effective effectively. As a result, the torque of the internal combustion engine in the homogeneous combustion region can be improved as compared with the case of in-cylinder injection or port injection alone.

また、均質燃焼領域であって、筒内噴射弁及びポート噴射弁の両方を使用する領域において、機関回転数が低回転及び高回転以外の場合には、吸気下死点近傍と吸気上死点近傍との2回に分けて、筒内噴射弁から筒内噴射する。これにより、トルクの向上を図ることができるとともに、筒内噴射弁からの燃料噴射時期を切り替える際に発生するトルク変動を滑らかにすることができる。   Further, in the homogeneous combustion region where both the in-cylinder injection port and the port injection valve are used and the engine speed is other than low and high, the vicinity of the intake bottom dead center and the intake top dead center In-cylinder injection is performed from the in-cylinder injection valve in two steps with the vicinity. Thereby, torque can be improved, and torque fluctuations that occur when the fuel injection timing from the in-cylinder injection valve is switched can be smoothed.

また、均質燃焼領域であって、筒内噴射弁及びポート噴射弁の両方を使用する領域においては、機関回転数の増加とともに、筒内噴射弁による燃料噴射割合を低減させる。これによって、トルクを大きくするためには、燃料と空気との混合を促進させる方が効果的な領域、すなわち機関回転数が高い領域では、ポート噴射弁による燃料噴射割合を増加させることにより燃料と空気との混合を促進して、内燃機関のトルクを向上させることができる。   Further, in the homogeneous combustion region where both the in-cylinder injection valve and the port injection valve are used, the fuel injection ratio by the in-cylinder injection valve is reduced as the engine speed increases. Thus, in order to increase the torque, in a region where it is more effective to promote the mixing of fuel and air, that is, in a region where the engine speed is high, the fuel injection rate by the port injection valve is increased to increase the fuel. The torque of the internal combustion engine can be improved by promoting the mixing with air.

以上のように、本発明に係る内燃機関の制御装置及び制御方法は、ポート噴射弁と筒内噴射弁とを備える内燃機関に適し、均質燃焼領域で内燃機関のトルクを向上させることに適している。   As described above, the control device and control method for an internal combustion engine according to the present invention are suitable for an internal combustion engine including a port injection valve and a cylinder injection valve, and are suitable for improving the torque of the internal combustion engine in a homogeneous combustion region. Yes.

本発明の実施例に係る内燃機関の制御装置により内燃機関を制御する場合の一例を示す概念図である。It is a conceptual diagram which shows an example in the case of controlling an internal combustion engine with the control apparatus of the internal combustion engine which concerns on the Example of this invention. 気筒内に直接燃料を噴射する場合における燃料噴射時期とトルクとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the fuel injection timing in the case of injecting a fuel directly in a cylinder, and a torque. 吸気上死点近傍において気筒内へ燃料を噴射した状態を示す説明図である。It is explanatory drawing which shows the state which injected the fuel in the cylinder in the vicinity of an intake top dead center. 吸気下死点近傍において気筒内へ燃料を噴射した状態を示す説明図である。It is explanatory drawing which shows the state which injected the fuel in the cylinder in the vicinity of an intake bottom dead center. 燃料噴射に使用する噴射弁と機関回転数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the injection valve used for fuel injection, and an engine speed. 筒内噴射弁及びポート噴射弁の両方を使用する領域における筒内噴射弁の噴射時期を示す説明図である。It is explanatory drawing which shows the injection timing of the cylinder injection valve in the area | region which uses both a cylinder injection valve and a port injection valve. 吸気上死点側と吸気下死点側とについて説明する概念図である。It is a conceptual diagram explaining the intake top dead center side and the intake bottom dead center side. 本発明の実施例に係る内燃機関の制御装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the control apparatus of the internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る内燃機関の制御方法の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the control method of the internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る内燃機関の制御方法における筒内噴射弁による噴射時期を決定する手順を示すフローチャートである。It is a flowchart which shows the procedure which determines the injection timing by the cylinder injection valve in the control method of the internal combustion engine which concerns on the Example of this invention. 筒内噴射弁の燃料噴射時期マップを示す説明図である。It is explanatory drawing which shows the fuel injection timing map of a cylinder injection valve. 筒内噴射弁の燃料噴射時期マップを示す説明図である。It is explanatory drawing which shows the fuel injection timing map of a cylinder injection valve. 機関回転数に対する燃料噴射割合決定係数の関係を記述した燃料噴射割合決定マップを示す説明図である。It is explanatory drawing which shows the fuel injection ratio determination map which described the relationship of the fuel injection ratio determination coefficient with respect to engine speed. 筒内噴射割合とポート噴射割合との決定手順を説明するフローチャートである。It is a flowchart explaining the determination procedure of a cylinder injection ratio and a port injection ratio. 筒内噴射割合を記述した筒内噴射割合マップを示す説明図である。It is explanatory drawing which shows the cylinder injection ratio map which described the cylinder injection ratio. 内燃機関の機関回転数とトルクとの関係を示した説明図である。It is explanatory drawing which showed the relationship between the engine speed of an internal combustion engine, and a torque.

符号の説明Explanation of symbols

1 内燃機関
1s 気筒
2 ポート噴射弁
3 筒内噴射弁
4 吸気通路
5 ピストン
9 排気通路
10 内燃機関の制御装置
10m 記憶部
10p 処理部
21 燃焼判定部
22 噴射判定部
23 噴射割合決定部
23 筒内噴射時期決定部
24 噴射割合決定部
58 吸気弁
59 排気弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 1s Cylinder 2 Port injection valve 3 In-cylinder injection valve 4 Intake passage 5 Piston 9 Exhaust passage 10 Control apparatus of an internal combustion engine 10m Memory | storage part 10p Processing part 21 Combustion determination part 22 Injection determination part 23 Injection ratio determination part 23 In-cylinder Injection timing determination unit 24 Injection ratio determination unit 58 Intake valve 59 Exhaust valve

Claims (8)

ポート噴射弁と筒内噴射弁とを備える内燃機関を制御するものであり、
前記内燃機関が均質燃焼領域で運転されるか否かを判定する燃焼判定部と、
前記内燃機関が均質燃焼領域で運転される場合であり、かつ前記内燃機関の機関回転数が、吸気上死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークが、吸気下死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークを上回る機関回転数以上の所定の回転数範囲である場合には、前記ポート噴射弁と前記筒内噴射弁との両方から燃料を噴射させる噴射条件であると判定する噴射判定部と、
前記噴射条件と判定された場合、前記所定の回転数範囲における機関回転数が低回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気下死点側とし、前記所定の範囲における機関回転数が高回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気上死点側として、前記筒内噴射弁から燃料を噴射させる筒内噴射時期決定部と、
を含んで構成されることを特徴とする内燃機関の制御装置。
Control an internal combustion engine having a port injection valve and a cylinder injection valve,
A combustion determination unit that determines whether or not the internal combustion engine is operated in a homogeneous combustion region;
The internal combustion engine is operated in a homogeneous combustion region, and the engine speed of the internal combustion engine is such that the torque peak of the internal combustion engine due to fuel injection of the in-cylinder injection valve on the intake top dead center side When the engine speed exceeds a torque peak of the internal combustion engine due to fuel injection of the cylinder injection valve on the dead center side, both the port injection valve and the cylinder injection valve An injection determination unit that determines that the injection condition for injecting fuel from
When it is determined that the injection condition is satisfied, the fuel injection timing by the in-cylinder injection valve is set to the intake bottom dead center side in the range where the engine speed in the predetermined speed range is low, and the engine speed in the predetermined range. In-cylinder injection timing determination unit for injecting fuel from the in-cylinder injection valve, with the fuel injection timing by the in-cylinder injection valve as the intake top dead center side in the range of high rotation,
A control apparatus for an internal combustion engine, comprising:
前記筒内噴射時期決定部は、
前記所定の回転数範囲において、機関回転数が大きくなるにしたがって、前記筒内噴射弁による燃料噴射時期を前記内燃機関の吸気上死点側に進角させることを特徴とする請求項1に記載の内燃機関の制御装置。
The in-cylinder injection timing determination unit
2. The fuel injection timing by the in-cylinder injection valve is advanced to the intake top dead center side of the internal combustion engine as the engine speed increases in the predetermined speed range. Control device for internal combustion engine.
前記筒内噴射時期決定部は、
前記所定の回転数範囲において、前記低回転の範囲と前記高回転の範囲との中間の回転数範囲の場合には、前記内燃機関の吸気上死点側と吸気下死点側とで前記筒内噴射弁に燃料を噴射させることを特徴とする請求項1又は2に記載の内燃機関の制御装置。
The in-cylinder injection timing determination unit
In the predetermined rotational speed range, when the rotational speed range is intermediate between the low rotational speed range and the high rotational speed range, the cylinder is formed between the intake top dead center side and the intake bottom dead center side of the internal combustion engine. 3. The control device for an internal combustion engine according to claim 1, wherein fuel is injected into the internal injection valve.
前記内燃機関の吸気上死点側と吸気下死点側とでの前記筒内噴射弁による燃料噴射割合を、機関回転数に応じて変化させる噴射割合決定部をさらに有することを特徴とする請求項3に記載の内燃機関の制御装置。 The fuel injection system according to claim 1, further comprising: an injection ratio determining unit that changes a fuel injection ratio by the in-cylinder injection valve on an intake top dead center side and an intake bottom dead center side of the internal combustion engine according to an engine speed. Item 4. The control device for an internal combustion engine according to Item 3 . 前記噴射割合決定部は、
さらに前記ポート噴射弁と前記筒内噴射弁との噴射割合を、前記機関回転数又は前記内燃機関の負荷に応じて変化させることを特徴とする請求項4に記載の内燃機関の制御装置。
The injection ratio determination unit
5. The control apparatus for an internal combustion engine according to claim 4, wherein an injection ratio between the port injection valve and the in-cylinder injection valve is changed according to the engine speed or a load of the internal combustion engine.
ポート噴射弁と筒内噴射弁とを備える内燃機関を制御するにあたり、
前記内燃機関が均質燃焼領域で運転されるか否かを判定する手順と、
前記内燃機関が均質燃焼領域で運転され、かつ前記内燃機関の機関回転数が、吸気上死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークが、吸気下死点側における前記筒内噴射弁の燃料噴射による前記内燃機関のトルクピークを上回る機関回転数以上の所定の回転数範囲である場合には、前記ポート噴射弁と前記筒内噴射弁との両方から燃料を噴射させる噴射条件であると判定する手順と、
前記所定の回転数範囲における機関回転数が低回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気下死点側に決定し、前記所定の範囲における機関回転数が高回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気上死点側に決定する手順と、
を含むことを特徴とする内燃機関の制御方法。
In controlling an internal combustion engine provided with a port injection valve and a cylinder injection valve,
Determining whether the internal combustion engine is operated in a homogeneous combustion region;
The internal combustion engine is operated in a homogeneous combustion region, and the engine rotation speed of the internal combustion engine is such that the torque peak of the internal combustion engine due to fuel injection of the in-cylinder injection valve on the intake top dead center side is on the intake bottom dead center side. When the engine speed exceeds a torque peak of the internal combustion engine due to fuel injection from the in-cylinder injection valve, fuel is injected from both the port injection valve and the in-cylinder injection valve. A procedure for determining that the injection condition is
When the engine speed in the predetermined speed range is low, the fuel injection timing by the in-cylinder injection valve is determined to the intake bottom dead center side, and in the range where the engine speed in the predetermined range is high, the fuel injection timing is determined. A procedure for determining the fuel injection timing by the in-cylinder injection valve to the intake top dead center side;
A control method for an internal combustion engine comprising:
ポート噴射弁と筒内噴射弁とを備える内燃機関を制御するにあたり、
前記内燃機関が均質燃焼領域で運転されるか否かを判定する手順と、
前記内燃機関が均質燃焼領域で運転され、かつ前記内燃機関の機関回転数が所定の回転数範囲である場合には、前記ポート噴射弁と前記筒内噴射弁との両方から燃料を噴射させる噴射条件であると判定する手順と、
前記所定の回転数範囲における機関回転数が低回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気下死点側に決定し、前記所定の範囲における機関回転数が高回転の範囲では前記筒内噴射弁による燃料噴射時期を吸気上死点側に決定する手順と、
を含み、前記所定の回転数範囲において、前記低回転の範囲と前記高回転の範囲との中間の回転数範囲である場合には、前記内燃機関の吸気上死点側と吸気下死点側とで前記筒内噴射弁に燃料を噴射させることを特徴とする内燃機関の制御方法。
In controlling an internal combustion engine provided with a port injection valve and a cylinder injection valve,
Determining whether the internal combustion engine is operated in a homogeneous combustion region;
Injection in which fuel is injected from both the port injection valve and the in-cylinder injection valve when the internal combustion engine is operated in a homogeneous combustion region and the engine rotation speed of the internal combustion engine is within a predetermined rotation speed range. A procedure for determining that the condition is satisfied;
When the engine speed in the predetermined speed range is low, the fuel injection timing by the in-cylinder injection valve is determined to the intake bottom dead center side, and in the range where the engine speed in the predetermined range is high, the fuel injection timing is determined. A procedure for determining the fuel injection timing by the in-cylinder injection valve to the intake top dead center side;
And the intake top dead center side and the intake bottom dead center side of the internal combustion engine when the predetermined rotational speed range is an intermediate rotational speed range between the low rotational speed range and the high rotational speed range A method for controlling an internal combustion engine, wherein fuel is injected into the in-cylinder injection valve.
さらに前記ポート噴射弁と前記筒内噴射弁との噴射割合を、前記機関回転数又は前記内燃機関の負荷に応じて変化させることを特徴とする請求項7に記載の内燃機関の制御方法。   8. The control method for an internal combustion engine according to claim 7, wherein an injection ratio between the port injection valve and the in-cylinder injection valve is changed in accordance with the engine speed or a load on the internal combustion engine.
JP2003371715A 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine Expired - Fee Related JP4345439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371715A JP4345439B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371715A JP4345439B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005133663A JP2005133663A (en) 2005-05-26
JP4345439B2 true JP4345439B2 (en) 2009-10-14

Family

ID=34648290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371715A Expired - Fee Related JP4345439B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4345439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985459B2 (en) * 2008-02-22 2012-07-25 トヨタ自動車株式会社 Fuel injection control device
JP6111899B2 (en) * 2013-06-28 2017-04-12 三菱自動車工業株式会社 Engine control device
CN115750067B (en) * 2022-11-09 2024-04-12 重庆长安汽车股份有限公司 Combustion system and combustion method of hybrid gasoline engine, engine and vehicle

Also Published As

Publication number Publication date
JP2005133663A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US7104255B2 (en) Method and apparatus for controlling operation of internal combustion engine, and the internal combustion engine
JP3189734B2 (en) Spark ignition direct injection internal combustion engine
JP4407581B2 (en) Gas fuel engine
EP1781911B1 (en) Strategy for fueling a diesel engine by selective use of fueling maps to provide hcci, hcci + cd, and cd combustion modes
JP2005083277A (en) Control device for spark ignition internal combustion engine
JP4605057B2 (en) Fuel injection control device for internal combustion engine
US10385791B2 (en) Engine control device
US9976497B2 (en) Control device for internal combustion engine
JP2008031932A (en) Direct-injection spark-ignition internal combustion engine
JP4539171B2 (en) Control device for internal combustion engine
JP2008019729A (en) Control device of cylinder injection type engine
US20160348606A1 (en) Control apparatus for internal combustion engine
JP2009062940A (en) Fuel injection control device of internal combustion engine and internal combustion engine
US8996282B2 (en) Fueling systems, methods and apparatus for an internal combustion engine
JP4345439B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2005315234A (en) Internal combustion engine and control device for internal combustion engine
JP4114008B2 (en) Control device for spark ignition direct injection engine with turbocharger
JP6183004B2 (en) Engine control device
JP2005098132A (en) Combustion control system of compression ignition type internal combustion engine
JP4269895B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2005133637A (en) Internal combustion engine, control device of internal combustion engine and control method for internal combustion engine
JP4497318B2 (en) Combustion mode switching control device for internal combustion engine
JP2005201209A (en) Combustion control system of internal combustion engines
JP4497319B2 (en) Combustion mode switching control device for internal combustion engine
JP2006144629A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees