JP4344842B2 - Regeneration method of chelate adsorbent - Google Patents

Regeneration method of chelate adsorbent Download PDF

Info

Publication number
JP4344842B2
JP4344842B2 JP2003322634A JP2003322634A JP4344842B2 JP 4344842 B2 JP4344842 B2 JP 4344842B2 JP 2003322634 A JP2003322634 A JP 2003322634A JP 2003322634 A JP2003322634 A JP 2003322634A JP 4344842 B2 JP4344842 B2 JP 4344842B2
Authority
JP
Japan
Prior art keywords
chelate
cylindrical container
adsorbent
metal
chelate adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003322634A
Other languages
Japanese (ja)
Other versions
JP2005087825A (en
Inventor
守 佐塚
雅彦 重清
信義 南部
治 伊藤
憲一 小畑
允武 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chelest Corp
Chubu Chelest Co Ltd
Original Assignee
Chelest Corp
Chubu Chelest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chelest Corp, Chubu Chelest Co Ltd filed Critical Chelest Corp
Priority to JP2003322634A priority Critical patent/JP4344842B2/en
Publication of JP2005087825A publication Critical patent/JP2005087825A/en
Application granted granted Critical
Publication of JP4344842B2 publication Critical patent/JP4344842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、キレート吸着材を用いて、例えば産業排水や工業用水(以下、これらを纏めて被処理液ということがある)などに含まれる、例えば銅、亜鉛、ニッケル、コバルト等の重金属や、例えばホウ素、ゲルマニウム、ヒ素、アンチモン、セレン等の類金属を処理した後、吸着された金属あるいは類金属を吸着塔などの中で酸やアルカリ溶液を用いてキレート吸着材から溶離させてキレート吸着材を再生する方法に関するものである。   The present invention uses a chelate adsorbent, and is contained in, for example, industrial wastewater and industrial water (hereinafter, collectively referred to as a liquid to be treated), for example, heavy metals such as copper, zinc, nickel, cobalt, For example, after treating metals such as boron, germanium, arsenic, antimony, selenium, etc., the adsorbed metal or metals are eluted from the chelate adsorbent using acid or alkali solution in an adsorption tower etc. It is related with the method of reproducing | regenerating.

本発明の再生法を採用すれば、キレート吸着材を効率よく再生することができ、例えばガラス工場、めっき工場、発電所等から排出される各種産業排液の浄化、海水の淡水化、温泉水の浄化、更には、前記金属や類金属成分の有価資源としての回収などに幅広く活用できる。   If the regeneration method of the present invention is adopted, the chelate adsorbent can be efficiently regenerated, for example, purification of various industrial effluents discharged from glass factories, plating factories, power plants, etc., desalination of seawater, hot spring water, etc. It can be widely used for the purification of the above, and the recovery of the metal and the like metal components as valuable resources.

上記の様な各種産業排液などには様々の有害金属が含まれていることがあり、環境汚染防止の観点からそれらの有害金属は排液処理によって十分に除去する必要がなる。また河川や地下水中に含まれる重金属成分などは人体に悪影響を及ぼすので、これらを飲料水などとして使用するに当たっては十分に配慮しなければならない。   Various industrial effluents as described above may contain various toxic metals. From the viewpoint of preventing environmental pollution, these toxic metals need to be sufficiently removed by effluent treatment. In addition, heavy metal components contained in rivers and groundwater have a negative effect on the human body. Therefore, sufficient consideration must be given when using them as drinking water.

また、類金属類の中にも人体に悪影響を及ぼすものが多く、近年それらの環境基準が設定されてきている。より具体的には、類金属の1種であるホウ素やホウ素化合物は、ガラス工業をはじめ、めっき工業、防錆剤や化粧品分野などで広く用いられており、それらの製造工程から流出する排液中には、ホウ素が含まれる。その他、各種発電所の排水、排煙脱硫排水、更には海水にもホウ素が含まれている。ホウ素は健康障害を起こす可能性が指摘されており、水質汚濁に関する環境基準、地下水の水質汚濁に係る環境基準、土壌汚染に関する環境基準、更には、水道水質基準における追加項目として基準値が設定され、ホウ素含有排水の処理分野、更には海水淡水化により飲料水を製造する分野においても、ホウ素の除去、分離は重要な課題となっている。   In addition, many of the similar metals have an adverse effect on the human body, and their environmental standards have been set in recent years. More specifically, boron and boron compounds, which are one type of similar metals, are widely used in the glass industry, plating industry, rust preventives and cosmetics fields, etc., and the effluent discharged from their manufacturing processes. Some contain boron. In addition, wastewater from various power plants, flue gas desulfurization wastewater, and seawater also contain boron. It has been pointed out that boron can cause health problems. Environmental standards for water pollution, environmental standards for groundwater pollution, environmental standards for soil pollution, and standard values are set as additional items in tap water quality standards. In addition, in the field of treatment of boron-containing wastewater, and further in the field of producing drinking water by seawater desalination, removal and separation of boron are important issues.

これらホウ素含有水の処理法としては、硫酸アルミニウムや消石灰等を用いる凝集沈殿法(特許文献1など)、アルコール類を用いる溶剤抽出法(特許文献2など)、イオン交換樹脂などを用いる吸着法(特許文献3など)などが知られている。これら従来法のうち、特許文献1などに開示された凝集沈殿法では、ホウ素の除去効率を高めるのに多量の凝集沈殿剤を使用しなければならず、それに伴って大量のスラッジが発生するという問題が指摘される。また特許文献2などに開示された溶剤抽出法は、ホウ素の抽出率が低いため多量の溶剤を使用しなければならず、排水のCOD値を高める原因になる。更に特許文献3などに開示されているイオン交換樹脂を用いた吸着法は、低濃度のホウ素に対する選択的吸着効果が乏しく、除去効率の点で問題がある。   These boron-containing water treatment methods include a coagulation precipitation method using aluminum sulfate, slaked lime, etc. (Patent Document 1, etc.), a solvent extraction method using alcohols (Patent Document 2, etc.), an adsorption method using an ion exchange resin, etc. Patent Document 3 and the like) are known. Among these conventional methods, in the coagulation precipitation method disclosed in Patent Document 1 and the like, a large amount of coagulation precipitation agent must be used to increase the removal efficiency of boron, and a large amount of sludge is generated accordingly. Problems are pointed out. In addition, the solvent extraction method disclosed in Patent Document 2 and the like has a low boron extraction rate, so that a large amount of solvent must be used, which causes an increase in the COD value of waste water. Furthermore, the adsorption method using an ion exchange resin disclosed in Patent Document 3 has a problem in terms of removal efficiency due to a poor selective adsorption effect on low-concentration boron.

これらに代わる処理法として、キレート吸着材を用いた吸着法、中でも特許文献4に開示されている如く、繊維分子内へキレート形成性官能基が導入されたキレート形成性繊維を用いる吸着法は、低濃度のホウ素に対しても高い選択吸着性を有しており、また吸着速度が非常に高いなど、処理効率の点でも極めて優れた方法として有効活用が期待される。   As an alternative to these treatment methods, an adsorption method using a chelate adsorbent, particularly an adsorption method using a chelate-forming fiber having a chelate-forming functional group introduced into the fiber molecule as disclosed in Patent Document 4, It is expected to be effectively used as an extremely excellent method in terms of processing efficiency, such as having high selective adsorptivity for low concentrations of boron and having a very high adsorption rate.

しかし、前記キレート吸着材を充填した筒状容器に例えばホウ素含有排水を通液して処理した後、ホウ素を吸着したキレート吸着材から酸やアルカリ溶液でホウ素を溶離させる場合、単に酸やアルカリ溶液を筒状容器内へ投入するという一般的な手法では、酸やアルカリ溶液を大量に使用しなければならず、それに伴ってホウ素濃度の低い溶離液が多量に排出されるため、ランニングコストが高くなると共に溶離液の処理費用も嵩む。
特開平7−323292号公報 特開平11−652号公報 特開昭57−197040号公報 特開WO98/42910号公報
However, for example, when boron is drained from a chelate adsorbent adsorbed with boron after being treated by passing the boron-containing wastewater through the cylindrical container filled with the chelate adsorbent, the acid or alkali solution is simply used. In a general method of charging the liquid into a cylindrical container, a large amount of acid or alkali solution must be used, and a large amount of eluent with a low boron concentration is discharged accordingly. In addition, the processing cost of the eluent increases.
JP 7-323292 A Japanese Patent Laid-Open No. 11-652 Japanese Patent Laid-Open No. 57-197040 Japanese Patent Laid-Open No. WO98 / 42910

本発明は上記の様な事情に着目してなされたものであって、その目的は、排水などに含まれる金属および/または類金属をキレート吸着材で処理する際に、簡単な方法でキレート吸着材を効率よく再生することのできる方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to perform chelate adsorption by a simple method when treating metals and / or similar metals contained in waste water with chelate adsorbents. An object of the present invention is to provide a method capable of efficiently regenerating a material.

上記課題を解決することのできた本発明の再生法とは、金属および/または類金属を吸着したキレート吸着材を筒状容器内で再生するに当り、再生剤として酸溶液あるいはアルカリ溶液を使用し、前記金属および/または類金属を吸着したキレート吸着材が充填された筒状容器内の残留液を脱液し、次いで、脱液した該筒状容器内へ再生剤を投入することにより、キレート吸着材に吸着した金属および/または類金属を溶離させることころに要旨を有している。   The regeneration method of the present invention that was able to solve the above-mentioned problem is to use an acid solution or an alkali solution as a regenerant when regenerating a chelate adsorbent adsorbing a metal and / or a similar metal in a cylindrical container. The residual liquid in the cylindrical container filled with the chelate adsorbent that adsorbs the metal and / or the like metal is drained, and then the regenerant is put into the drained cylindrical container to thereby form a chelate. The gist of the present invention is to elute the metal and / or similar metal adsorbed on the adsorbent.

本発明を実施する際に、上記脱液と再生剤の投入を複数回繰り返せば、溶離、再生をより円滑に効率よく行なうことができるので好ましい。   When carrying out the present invention, it is preferable to repeat the above-mentioned liquid removal and the introduction of the regenerant multiple times, since elution and regeneration can be performed more smoothly and efficiently.

この方法を実施する際の処理対象となる前記金属および/または類金属としては、鉄、銅、ニッケル、アルミニウム、コバルト、カドミウム、水銀、鉛、亜鉛、カルシウム、マグネシウム、バリウム、マンガン、ホウ素、ゲルマニウム、ヒ素、セレン、アンチモンなどが挙げられ、これらを単独で含有し、もしくは2種以上を含む被処理液に有効に適用できる。   Examples of the metal and / or metal to be treated in carrying out this method include iron, copper, nickel, aluminum, cobalt, cadmium, mercury, lead, zinc, calcium, magnesium, barium, manganese, boron, germanium. , Arsenic, selenium, antimony, etc., which can be effectively applied to a liquid to be treated containing these alone or containing two or more thereof.

また、この方法を実施する際に用いられるキレート吸着材としては、ビーズ状や粒状のキレート樹脂を含む任意の形状のものを使用できるが、より高い溶離効率を得る上では、不織布状、織・編物状などの布状、あるいは糸状、粉末状、顆粒状などのキレート形成性繊維が特に好ましい。これらは単独で使用し得る他、通液による金属や類金属のキレート捕捉効率や圧損などを考慮して、2種以上を適宜組み合わせて使用することも可能である。   In addition, as the chelate adsorbent used in carrying out this method, those having any shape including bead-like or granular chelate resins can be used. Particularly preferred are chelate-forming fibers such as fabrics such as knitted fabrics, or yarns, powders, and granules. These can be used alone or in combination of two or more appropriately considering the chelate capture efficiency and pressure loss of metals and similar metals by liquid passage.

また前記キレート形成性繊維を構成する繊維基材としては、セルロース系、ポリオレフィン系、ナイロン系、ポリエステル系などが挙げられるが、これらの中でも特に好ましいのはセルロース系繊維である。   Examples of the fiber base material constituting the chelate-forming fiber include cellulose-based, polyolefin-based, nylon-based, and polyester-based materials. Among these, cellulose-based fibers are particularly preferable.

それらのキレート形成性繊維としては、金属を含有する被処理液に適用する場合は、キレート捕捉性官能基としてイミノジ酢酸基が繊維分子中に導入されたものを用いるのが特に望ましく、類金属を含む処理液に適用する場合は、キレート捕捉性官能基としてN−メチルグルカミン基が繊維分子内へ導入されたものを用いるのが特に望ましい。   As those chelate-forming fibers, when applied to a liquid to be treated containing a metal, it is particularly desirable to use those having iminodiacetic acid groups introduced into the fiber molecules as chelate-capturing functional groups. In the case of applying to a treatment liquid containing the same, it is particularly desirable to use a chelate-trapping functional group having an N-methylglucamine group introduced into the fiber molecule.

キレート吸着材が充填された上記筒状容器内の残留液を脱液する際には、例えば筒状容器の上部から筒状容器内へ気体を送り込んで残留液を押し出す方法や、筒状容器の下流側に設置されたポンプを用いて、残留液を筒状容器の下部から抜き出す方法を採用すれば、脱液をより短時間で効率よく行なうことができるので好ましい。またこの脱液工程では、筒状容器内に充填されているキレート吸着材の含水率[={筒状容器内の残留液質量/キレート吸着材固形分質量}×100(%)]が80〜300%となるように脱液を行なうことが望ましい。   When the residual liquid in the cylindrical container filled with the chelate adsorbent is drained, for example, a method of extruding the residual liquid by sending gas into the cylindrical container from the upper part of the cylindrical container, It is preferable to employ a method in which the residual liquid is extracted from the lower part of the cylindrical container using a pump installed on the downstream side because the liquid removal can be performed efficiently in a shorter time. In this liquid removal step, the moisture content of the chelate adsorbent filled in the cylindrical container [= {residual liquid mass in the cylindrical container / chelate adsorbent solid mass} × 100 (%)] is 80 to 80. It is desirable to perform liquid removal so that it may become 300%.

本発明に係るキレート吸着材の再生法によれば、金属および/または類金属を吸着したキレート吸着材を筒状容器内で再生する際に、再生剤としての酸溶液あるいはアルカリ溶液を使用し、キレート吸着材が充填された筒状容器内の残留液を脱液した後、再生剤を筒状容器内へ投入する、という操作を、好ましくは連続して複数回繰り返すことにより、キレート吸着材から金属および/または類金属を高い効率で溶離させることができ、排液処理後の溶離液の使用量および排出量を低減できる他、金属や類金属を有価物質として回収する場合はその回収率を高めることができる。   According to the method for regenerating a chelate adsorbent according to the present invention, when regenerating the chelate adsorbent adsorbing a metal and / or a similar metal in a cylindrical container, an acid solution or an alkali solution as a regenerant is used, After draining the residual liquid in the cylindrical container filled with the chelate adsorbent, the operation of charging the regenerant into the cylindrical container is preferably repeated from the chelate adsorbent by repeating the operation multiple times. In addition to being able to elute metals and / or similar metals with high efficiency and reducing the amount of used and discharged eluents after drainage treatment, the recovery rate can be improved when recovering metals and similar metals as valuable substances. Can be increased.

本発明の再生法は、金属および/または類金属を吸着したキレート吸着材を筒状容器内で再生するに当り、再生剤としての酸溶液またはアルカリ溶液を筒状容器内へ投入する際に、キレート吸着材が充填された筒状容器内の残留液を一旦脱液するところに大きな特徴を有している。即ち、キレート吸着材を充填した筒状容器に、例えばホウ素を含む排水を通液して処理した後、酸溶液を溶離液として用いてホウ素を吸着したキレート吸着材からホウ素を溶離させる際に、筒状容器内の残留液を脱液することなくそのまま酸溶液を筒状容器内へ投入する通常の方法では、酸溶液が筒状容器内で残留液により希釈されて通液初期の酸濃度が低下し、ホウ素に対する溶離性能が低下する。その結果として、ホウ素を定量的に回収するには多量の酸溶液が必要となり、溶離液中のホウ素濃度も必然的に低下すると共に、溶離液の絶対量も増大する。   In the regeneration method of the present invention, when a chelate adsorbent adsorbing a metal and / or a similar metal is regenerated in a cylindrical container, an acid solution or an alkali solution as a regenerant is charged into the cylindrical container. A major feature is that the residual liquid in the cylindrical container filled with the chelate adsorbent is once drained. That is, when a cylindrical container filled with a chelate adsorbent is treated by passing wastewater containing boron, for example, and then eluting boron from the chelate adsorbent adsorbing boron using an acid solution as an eluent, In a normal method in which an acid solution is poured into a cylindrical container without removing the residual liquid in the cylindrical container, the acid solution is diluted with the residual liquid in the cylindrical container, so that the acid concentration at the initial stage of liquid passing is reduced. The elution performance for boron is lowered. As a result, a large amount of acid solution is required to quantitatively recover boron, and the boron concentration in the eluent is inevitably lowered and the absolute amount of the eluent is increased.

そこで本発明では、再生剤として例えば酸溶液を筒状容器内へ投入する前に、筒状容器内の残留液を一旦脱液し、しかる後に酸溶液を投入する。そうすると、再生(溶離)初期における酸溶液の筒状容器内での希釈(濃度低下)を防止することができ、ホウ素の溶離効率を大幅に高めることができる。   Therefore, in the present invention, for example, before putting an acid solution into the cylindrical container as a regenerant, the residual liquid in the cylindrical container is once drained, and then the acid solution is charged. Then, dilution (concentration reduction) of the acid solution in the cylindrical container at the initial stage of regeneration (elution) can be prevented, and the elution efficiency of boron can be greatly increased.

こうした脱液と再生剤投入による再生操作は、1回で行なうことも勿論可能であるが、この操作を連続して複数回繰り返せば、再生効率を一段と高めることができる。例えばホウ素含有液を処理する場合、ホウ素を吸着したキレート吸着材に酸溶液を接触させたときには、キレート吸着材の内部の水分に酸が拡散するまでの時間、および、キレート吸着材から溶離したホウ素がキレート吸着材の表面へ拡散してくるまでの時間、更にはキレート吸着材の表面に拡散してきたホウ素がキレート吸着材の充填層全体へ拡散する時間、を要するため、吸着したホウ素の全てを1度の再生操作で完全に溶離させて回収することは難しい。しかし、上記溶離、再生操作を連続して複数回繰り返せば、溶離再生効率を著しく高めることができる。   It is of course possible to carry out such a regeneration operation by draining and adding a regenerant, but if this operation is repeated a plurality of times, the regeneration efficiency can be further improved. For example, when treating a boron-containing liquid, when the acid solution is brought into contact with the chelate adsorbent adsorbing boron, the time until the acid diffuses into the moisture inside the chelate adsorbent and the boron eluted from the chelate adsorbent Takes time to diffuse to the surface of the chelate adsorbent, and further, it takes time for the boron diffused to the surface of the chelate adsorbent to diffuse throughout the packed bed of chelate adsorbent. It is difficult to collect and elute completely in one regeneration operation. However, if the above elution and regeneration operations are continuously repeated a plurality of times, the elution regeneration efficiency can be remarkably improved.

該繰り返し操作において、1度に投入する再生剤の投入量や繰り返し回数については、その投入量は0.5Bed volume以下が望ましく、更に望ましくは0.3Bed volume以下である(Bed volumeとは、吸着材の充填体積に対する液体投入量の体積比をいう。以下、BVと略すことがある)
また繰り返し回数は、再生剤押し出しのための洗浄水投入を含めて、好ましくは2回以上が望ましく、更に望ましくは4回以上である。前記した投入量や繰り返し回数の望ましい範囲を外れると、ホウ素の回収率が低下したり、あるいは溶離ホウ素濃度が低下したりする傾向が現れてくる。また、再生剤を投入してから脱液するまでの保持時間は、20秒以上、望ましくは1分以上とすることが好ましい。
In the repetitive operation, the amount of regenerant introduced at one time and the number of repetitions are preferably 0.5 Bed volume or less, more preferably 0.3 Bed volume or less (Bed volume means adsorption). This refers to the volume ratio of the liquid input to the filling volume of the material (hereinafter sometimes abbreviated as BV).
The number of repetitions is preferably 2 times or more, more preferably 4 times or more, including the introduction of washing water for extruding the regenerant. If the above-mentioned input amount and the number of repetitions are out of the desired ranges, the boron recovery rate tends to decrease or the eluted boron concentration tends to decrease. In addition, the holding time from the introduction of the regenerant to the draining is preferably 20 seconds or longer, and preferably 1 minute or longer.

本発明の再生法で使用する再生剤は、酸溶液としては硫酸、塩酸、硝酸、リン酸などの水溶液が、またアルカリ溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水溶液が好ましく使用される。これら再生剤の濃度は特に制限されないが、好ましいのは1〜6Nの範囲であり、濃度が1N未満では、筒状容器内で希釈効果を受け易くなって再生効率が低下する傾向が表われ、逆に6Nを超えて濃度が過度に高くなると再生剤の粘度が高くなり、キレート吸着材との接触効率が低下して再生効率が低下すると共に、酸やアルカリによるキレート吸着材の劣化が促進されるので望ましくない。   The regenerating agent used in the regenerating method of the present invention is an aqueous solution such as sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid as the acid solution, and an aqueous solution such as sodium hydroxide, potassium hydroxide or lithium hydroxide as the alkaline solution. Preferably used. The concentration of these regenerants is not particularly limited, but is preferably in the range of 1 to 6N. If the concentration is less than 1N, a tendency to reduce the regeneration efficiency tends to be caused by the dilution effect in the cylindrical container, Conversely, if the concentration exceeds 6N and the concentration becomes excessively high, the viscosity of the regenerant increases, the contact efficiency with the chelate adsorbent decreases, and the regeneration efficiency decreases, and the deterioration of the chelate adsorbent due to acid or alkali is promoted. Therefore, it is not desirable.

本発明の再生法が適用される金属および/または類金属としては、溶液中に存在する様々の元素が挙げられるが、本発明の特徴がより効果的に発揮される元素の例としては、鉄、銅、ニッケル、アルミニウム、コバルト、カドミウム、水銀、鉛、亜鉛、カルシウム、マグネシウム、バリウム、マンガン、ホウ素、ゲルマニウム、ヒ素、セレン、アンチモンなどが挙げられる。   Examples of metals and / or similar metals to which the regeneration method of the present invention is applied include various elements present in a solution. Examples of elements that can effectively exhibit the characteristics of the present invention include iron. , Copper, nickel, aluminum, cobalt, cadmium, mercury, lead, zinc, calcium, magnesium, barium, manganese, boron, germanium, arsenic, selenium, antimony and the like.

本発明の再生法に使用されるキレート吸着材としては、ビーズ状や粒状のキレート樹脂を含む任意の形状のものを使用できるが、吸着後の溶離効率をより高めるには、表面積が大きくて且つ前述した如く再生剤などのキレート吸着材内部への拡散が速やかに進行し易い形状特性を備えた繊維状のキレート吸着材、即ちキレート形成性繊維を用いることが望ましい。キレート形成性繊維とは、繊維分子内に金属または類金属とのキレート形成能を有する基を導入したものであり、形状に格別の制限はないが、短繊維状の粉末、あるいはそれらを造粒した顆粒状、長繊維のモノフィラメントやマルチフィラメント、短繊維の紡績糸、もしくはそれらを織物状もしくは編物状に製織もしくは製編した布帛、更には不織布のいずれであってもよく、必要によっては、それら性状の異なる複数の繊維を2種以上組み合わせることによって、処理時のキレート捕捉効率や通液抵抗を調整することも有効である。   As the chelate adsorbent used in the regeneration method of the present invention, those having any shape including a bead-like or granular chelate resin can be used, but in order to further increase the elution efficiency after adsorption, the surface area is large and As described above, it is desirable to use a fibrous chelate adsorbent, that is, a chelate-forming fiber, having a shape characteristic in which diffusion into the chelate adsorbent such as a regenerant is likely to proceed rapidly. A chelate-forming fiber is a fiber in which a group capable of forming a chelate with a metal or a similar metal is introduced into a fiber molecule, and there is no particular limitation on the shape, but short fiber powder, or granulating them. It may be any of the above-mentioned granular, long-fiber monofilaments and multifilaments, short-fiber spun yarns, fabrics knitted or knitted into woven or knitted fabrics, and non-woven fabrics. It is also effective to adjust the chelate capture efficiency and the liquid flow resistance during the treatment by combining two or more types of fibers having different properties.

尚、キレート形成能を有する基が導入される繊維素材の種類は特に制限されず、例えば綿、麻などを始めとする種々の植物性繊維;絹、羊毛などを始めとする種々の動物性繊維;ビスコースレーヨンなどを始めとする種々の再生繊維;ポリアミド、アクリル、ポリエステルなどを始めとする様々の合成繊維を使用することができ、これらの繊維は必要に応じて各種の変性を加えたものであっても構わない。しかし、キレート形成性官能基の導入のし易さ、被処理水に対する濡れ性、強度、安定性などを考慮して最も好ましいのは、分子内に親水性の水酸基が多数存在している天然繊維、中でも植物性のセルロース系繊維である。   In addition, the kind of fiber material into which the group having chelate-forming ability is introduced is not particularly limited, for example, various vegetable fibers such as cotton and hemp; various animal fibers such as silk and wool Various kinds of recycled fibers such as viscose rayon; various synthetic fibers such as polyamide, acrylic and polyester can be used, and these fibers have various modifications as required. It does not matter. However, in consideration of ease of introduction of chelate-forming functional groups, wettability with water to be treated, strength, stability, etc., the most preferable natural fiber has a large number of hydrophilic hydroxyl groups in the molecule. Among these, vegetable cellulosic fibers are used.

また繊維に導入されるキレート形成能を有する基としては、金属あるいは類金属とのキレートを形成し得る官能基の全てが包含されるが、繊維分子への導入のし易さ、キレート形成能などを考慮して特に好ましいのはイミノジ酢酸基やN−メチルグルカミン基である。より具体的な例としては、特開2000−248467やWO98/42910に開示されている様なキレート形成性繊維が挙げられる。   In addition, the chelate-forming group introduced into the fiber includes all functional groups capable of forming a chelate with a metal or a similar metal, but is easy to introduce into the fiber molecule, chelate-forming ability, etc. Considering these, an iminodiacetic acid group and an N-methylglucamine group are particularly preferable. More specific examples include chelate-forming fibers as disclosed in JP 2000-248467 and WO 98/42910.

筒状容器内の残留液を脱液する具体的な方法としては、例えば筒状容器の上流側にエアポンプやエアコンプレッサーなどを設置し、エア(空気)によって筒状容器内の残留液を筒状容器の下方へ押し出す方法が挙げられる。また筒状容器の下流に送液ポンプやサクションポンプなどを設置し、筒状容器内の残留液を筒状容器の下方から抜き出す方法を採用することもできる。この際、必要によっては脱液時に用いる空気に代えて窒素などの非酸化性ガスや不活性ガスなどを吹き込みガスとして使用し、キレート吸着材の酸化劣化や溶離回収される吸着物質の酸化変質などを抑えることも可能である。   As a specific method for draining the residual liquid in the cylindrical container, for example, an air pump or an air compressor is installed on the upstream side of the cylindrical container, and the residual liquid in the cylindrical container is cylindrical by air (air). The method of extruding below a container is mentioned. It is also possible to employ a method in which a liquid feed pump, a suction pump or the like is installed downstream of the cylindrical container, and the residual liquid in the cylindrical container is extracted from below the cylindrical container. At this time, if necessary, a non-oxidizing gas such as nitrogen or an inert gas is used as the blowing gas instead of the air used for liquid removal. It is also possible to suppress this.

キレート吸着材が充填された筒状容器内の残留液を脱液する際における脱液の程度については、筒状容器内のキレート吸着材の含水率[含水率(%)=筒状容器内の残留液質量/キレート吸着材固形分質量×100]が80〜300%、更に望ましくは100〜250%となる範囲が好ましい。含水率を極力低くすることは、再生効率を高める上でこのましい条件であるが、上記適正範囲未満では、実質的に再生効率の顕著な向上が認められず、また使用するポンプの能力や脱液時間などを考慮すると、含水率を前記適正範囲より低くすることは実際的でない。また、含水率が上記適正範囲を超えると、再生剤(酸溶液またはアルカリ溶液)の筒状容器内での希釈率が高くなり、再生効率が低下する傾向が認められる。   Regarding the degree of liquid removal when the residual liquid in the cylindrical container filled with the chelate adsorbent is drained, the water content of the chelate adsorbent in the cylindrical container [moisture content (%) = in the cylindrical container Residual liquid mass / chelate adsorbent solid content mass × 100] is preferably 80 to 300%, more preferably 100 to 250%. Reducing the water content as much as possible is a favorable condition for improving the regeneration efficiency. However, if the moisture content is less than the above-mentioned appropriate range, a substantial improvement in the regeneration efficiency is not recognized, and the capacity of the pump to be used In view of the drainage time and the like, it is not practical to make the moisture content lower than the appropriate range. Moreover, when the moisture content exceeds the above appropriate range, the dilution rate of the regenerant (acid solution or alkali solution) in the cylindrical container increases, and a tendency for the regeneration efficiency to decrease is recognized.

しかし、上記適正含水率範囲となる様に調整すれば、キレート吸着材の再生を一段と効率よく遂行することができ、キレート吸着材から少量の再生剤で高濃度の金属や類金属を含む溶離液を得ることができ、即ち高い再生効率を得ることができる。   However, if adjusted so as to be within the above appropriate moisture content range, the regeneration of the chelate adsorbent can be carried out more efficiently, and the eluent containing a high concentration of metal or similar metal with a small amount of regenerant from the chelate adsorbent. Can be obtained, that is, high regeneration efficiency can be obtained.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following Examples, and may be appropriately changed within a range that can meet the purpose described above and below. Of course, the present invention can be carried out in addition to those described above, and both are included in the technical scope of the present invention.

実施例
長さ1mmにカットした17デシテックスのレーヨン糸に、N−メチルグルカミンを固定化したキレート形成性繊維(キレート基の導入量:0.8ミリモル/g)40gを、ホウ素濃度117ppmの工業排水2000mlに添加した後、20℃で1時間撹拌したところ、排水中のホウ素濃度は7ppmとなった。この処理で得たキレート形成性繊維(ホウ素吸着量:5.5mg−B/g−キレート形成性繊維)を直径5cmのポリプロピレン製カラムに充填し、サクションポンプを用いてカラム内の残留液をカラム下部から流出させた。次に、再生剤として所定濃度の硫酸と水の投入を所定回数繰り返して行ない、硫酸および水の投入毎に、サクションポンプを用いてカラム内の残留液をカラム下部から分取した。再生剤を投入してから脱液するまでの時間は1分とした。
Example 40 g of chelate-forming fiber (introduction amount of chelate group: 0.8 mmol / g) in which N-methylglucamine was immobilized on 17 dtex rayon yarn cut to 1 mm in length was applied to an industry with a boron concentration of 117 ppm. After adding to 2000 ml of wastewater, the mixture was stirred at 20 ° C. for 1 hour, and the boron concentration in the wastewater was 7 ppm. The chelate-forming fiber (boron adsorption amount: 5.5 mg-B / g-chelate-forming fiber) obtained by this treatment is packed into a polypropylene column having a diameter of 5 cm, and the residual liquid in the column is removed using a suction pump. I let it flow out from the bottom. Next, as a regenerant, sulfuric acid and water having a predetermined concentration were repeatedly supplied a predetermined number of times, and each time sulfuric acid and water were added, the residual liquid in the column was collected from the lower part of the column using a suction pump. The time from adding the regenerant to draining was 1 minute.

上記操作を下記表1〜3に示す如くラン1(各脱液時の含水率:110%、再生剤:2N−硫酸水溶液)、ラン2(各脱液時の含水率:134%、再生剤:4N−硫酸水溶液およびイオン交換水)、ラン3(各脱液時の含水率:152%、再生剤:6N−硫酸水溶液およびイオン交換水)について実施し、各々の結果を表1〜3に示した。また、投入した再生剤および洗浄水のBVに対する流出液のホウ素濃度およびホウ素回収率の変化を図1,2に示した。   As shown in Tables 1 to 3 below, run 1 (water content at each drainage: 110%, regenerant: 2N-sulfuric acid aqueous solution), run 2 (water content at each drainage: 134%, regenerant) : 4N-sulfuric acid aqueous solution and ion-exchanged water), Run 3 (water content at the time of each liquid removal: 152%, regenerant: 6N-sulfuric acid aqueous solution and ion-exchanged water). Indicated. In addition, FIGS. 1 and 2 show changes in the boron concentration and boron recovery rate of the effluent with respect to BV of the regenerant and washing water charged.

比較例
サクションポンプを用いてカラム内の残留液を脱液する作業を行なわず、キレート吸着材がカラム内で残留液に完全に満たされた状態のまま、流速20ml/minで再生液として2Nの硫酸水溶液を通液させた以外は上記実施例と同様にして試験を行ない、結果を図1,2に併記した。
Comparative Example The operation of removing the residual liquid in the column using a suction pump was not performed, and 2N of the regenerating liquid was regenerated at a flow rate of 20 ml / min while the chelate adsorbent was completely filled in the residual liquid in the column. A test was conducted in the same manner as in the above example except that an aqueous sulfuric acid solution was passed, and the results are shown in FIGS.

図1,2に示した実施例および比較例を比較すれば明らかな様に、筒状容器(カラム)内の残留液を予め脱液するか否かによって、溶離液中のホウ素濃度、延いてはキレート吸着材の再生効率は著しく変わり、カラム内残留液の脱液を行なった場合は、該脱液処理を行わなかった場合に比べてホウ素の回収率が極めて高く、また溶離液のホウ素濃度も著しく高く、卓越した再生効率が得られることを確認できる。   As is clear from the comparison between the example shown in FIGS. 1 and 2 and the comparative example, the boron concentration in the eluent is increased depending on whether or not the residual liquid in the cylindrical container (column) is drained in advance. The regenerative efficiency of the chelate adsorbent is remarkably changed, and when the residual liquid in the column is drained, the boron recovery rate is extremely high compared to the case where the liquid removal treatment is not performed, and the boron concentration in the eluent It is remarkably high, and it can be confirmed that excellent reproduction efficiency can be obtained.

実施例および比較例で得た再生時の流出液中のほう素濃度と再生剤投入BVの関係を対比して示すグラフである。It is a graph which compares and shows the relationship of the boron density | concentration in the effluent at the time of reproduction | regeneration obtained by the Example and the comparative example, and regeneration agent input BV. 実施例および比較例で得たホウ素の回収率と再生剤投入BVの関係を対比して示すグラフである。It is a graph which compares and shows the relationship of the collection | recovery rate of boron obtained by the Example and the comparative example, and regenerant input BV.

Claims (8)

金属および/または類金属を吸着したキレート吸着材を筒状容器内で再生する方法において、再生剤として酸溶液あるいはアルカリ溶液を使用し、前記金属および/または類金属を吸着したキレート吸着材が充填された筒状容器内の残留液を脱液し、次いで、脱液した該筒状容器内へ再生剤または再生剤押し出しのための洗浄水を投入することを4回以上繰り返すことにより、キレート吸着材に吸着した金属および/または類金属を溶離させることを特徴とするキレート吸着材の再生法。 In a method for regenerating a chelate adsorbent adsorbing a metal and / or a similar metal in a cylindrical container, an acid solution or an alkaline solution is used as a regenerant, and the chelate adsorbent adsorbing the metal and / or the similar metal is filled. The residual liquid in the cylindrical container is drained, and then the chelating adsorption is repeated four or more times by adding the regenerant or washing water for extruding the regenerant into the drained cylindrical container. A method for regenerating a chelate adsorbent characterized by eluting a metal and / or a similar metal adsorbed on the material. キレート吸着材が充填された前記筒状容器内の残留液を脱液する際に、キレート吸着材の含水率[含水率(%)=筒状容器内の残留液質量/キレート吸着材固形分質量×100]が80〜300%となる様に脱液を行なう請求項に記載の再生法。 When the residual liquid in the cylindrical container filled with the chelate adsorbent is drained, the moisture content of the chelate adsorbent [moisture content (%) = residual liquid mass in the cylindrical container / chelate adsorbent solid mass × reproduction method according to claim 1, 100] performs drainer as a 80 to 300%. 前記金属および/または類金属が、鉄、銅、ニッケル、アルミニウム、コバルト、カドミウム、水銀、鉛、亜鉛、カルシウム、マグネシウム、バリウム、マンガン、ホウ素、ゲルマニウム、ヒ素、セレン、アンチモンよりなる群から選択される少なくとも1種である請求項1または2に記載の再生法。   The metal and / or metal is selected from the group consisting of iron, copper, nickel, aluminum, cobalt, cadmium, mercury, lead, zinc, calcium, magnesium, barium, manganese, boron, germanium, arsenic, selenium, and antimony. The regeneration method according to claim 1, wherein the regeneration method is at least one kind. 前記キレート吸着材が、布状、糸状、粉末状、顆粒状よりなる群から選択される少なくとも1種の形状を有するキレート形成性繊維である請求項1〜3のいずれかに記載の再生法。   The regeneration method according to any one of claims 1 to 3, wherein the chelate adsorbent is a chelate-forming fiber having at least one shape selected from the group consisting of cloth, thread, powder, and granules. 前記キレート形成性繊維の基材がセルロース系繊維である請求項4に記載の再生法。   The regeneration method according to claim 4, wherein the base material of the chelate-forming fiber is a cellulosic fiber. 前記キレート形成性繊維が、イミノジ酢酸基またはN−メチルグルカミン基が繊維分子中に導入されたものである請求項4または5に記載の再生法。   The regeneration method according to claim 4 or 5, wherein the chelate-forming fiber has an iminodiacetic acid group or an N-methylglucamine group introduced into a fiber molecule. 前記筒状容器の上部から該筒状容器内へ気体を送り込み、キレート吸着材が充填された前記筒状容器内の残留液を該筒状容器の下部へ押し出すことによって脱液を行なう請求項1〜6のいずれかに記載の再生法。   2. The liquid is removed by feeding gas into the cylindrical container from the upper part of the cylindrical container and pushing out the residual liquid in the cylindrical container filled with the chelate adsorbent to the lower part of the cylindrical container. The regeneration method in any one of -6. 前記筒状容器の下流側にポンプを配置し、キレート吸着材が充填された筒状容器内の残留液を該ポンプによって筒状容器下部から抜き出すことにより脱液を行なう請求項7に記載のキレート吸着材の再生法。   8. The chelate according to claim 7, wherein a pump is disposed downstream of the cylindrical container, and the liquid is removed by extracting the residual liquid in the cylindrical container filled with the chelate adsorbent from the lower part of the cylindrical container by the pump. Adsorbent regeneration method.
JP2003322634A 2003-09-16 2003-09-16 Regeneration method of chelate adsorbent Expired - Fee Related JP4344842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322634A JP4344842B2 (en) 2003-09-16 2003-09-16 Regeneration method of chelate adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322634A JP4344842B2 (en) 2003-09-16 2003-09-16 Regeneration method of chelate adsorbent

Publications (2)

Publication Number Publication Date
JP2005087825A JP2005087825A (en) 2005-04-07
JP4344842B2 true JP4344842B2 (en) 2009-10-14

Family

ID=34453924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322634A Expired - Fee Related JP4344842B2 (en) 2003-09-16 2003-09-16 Regeneration method of chelate adsorbent

Country Status (1)

Country Link
JP (1) JP4344842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409683B2 (en) * 2015-06-03 2018-10-24 住友金属鉱山株式会社 Arsenic recovery method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111145A (en) * 1984-11-06 1986-05-29 Nippon Mining Co Ltd Extrusion treatment in ion exchange treatment of liquid by column system
JP2001121004A (en) * 1999-10-26 2001-05-08 Sumitomo Metal Mining Co Ltd Continuous ion exchange equipment and cleaning method thereof
JP4484993B2 (en) * 1999-12-24 2010-06-16 キレスト株式会社 Treatment of boron-containing water
JP2003200152A (en) * 2001-12-28 2003-07-15 Toyobo Co Ltd Filter for filtering metal ions in solution

Also Published As

Publication number Publication date
JP2005087825A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Han et al. Copper (II) and lead (II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite
CN1176265C (en) Metal chelate-forming fiber, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber
Chen et al. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater
Zhou et al. Development of a fixed‐bed column with cellulose/chitin beads to remove heavy‐metal ions
JP2011056349A (en) Fibrous adsorbent for adsorbing metal, and method of producing the same
JP3822329B2 (en) Fiber having metal chelate-forming ability, process for producing the same, and metal ion trapping method using the fiber
JP4683820B2 (en) Method for treating metal and / or metal-containing solution
JP4344842B2 (en) Regeneration method of chelate adsorbent
CN102965312A (en) Modification method for improving bacteria heavy metal adsorption capacity, adsorbent and application thereof
TWI748288B (en) Methods for extraction and recovery of au, pt, re, ru, rh and pd from aqueous acidic solutions and chelating fibers used therefor
CN1229540C (en) Metal chelate-forming fibers, process for producing the same, process for sequestering with the same, and filter produced therefrom
Low et al. Metal soprtion enhancement of rice hull through chemical modification
EP0974694B1 (en) Chelate-forming fiber, process for preparing the same, and use thereof
US20200354884A1 (en) Functionalized Fibers for Removal of Contaminants in Water and Soil
JP2015114315A (en) Method for removing strontium using crystallization
JP2004068182A (en) Arsenic-catching fiber and method for treating arsenic-containing water with the same
JP3887484B2 (en) Filter device and liquid cleaning method using the filter device
JP2004000874A (en) Filter apparatus for metal ions in solution
Sun et al. Functionalized moso bamboo powder adsorbent for Cd (II) complexes with citric acid/tartrate acid: characterization, adsorptive performance, and mechanism
JP4637737B2 (en) Regeneration method of boron adsorbent
JP3887487B2 (en) Filter and liquid cleaning method using the filter
JP2003200152A (en) Filter for filtering metal ions in solution
JP2014206522A (en) Material and method for simultaneously removing radioactive cesium and strontium
US20150014240A1 (en) Filter media for gravity filtration applications
JP2002282711A (en) Apparatus and method for capturing ion by using powdery chelating/capturing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090619

R150 Certificate of patent or registration of utility model

Ref document number: 4344842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees