JP4344621B2 - Cleaning method for inorganic materials - Google Patents

Cleaning method for inorganic materials Download PDF

Info

Publication number
JP4344621B2
JP4344621B2 JP2004005051A JP2004005051A JP4344621B2 JP 4344621 B2 JP4344621 B2 JP 4344621B2 JP 2004005051 A JP2004005051 A JP 2004005051A JP 2004005051 A JP2004005051 A JP 2004005051A JP 4344621 B2 JP4344621 B2 JP 4344621B2
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
cleaning method
inorganic
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004005051A
Other languages
Japanese (ja)
Other versions
JP2005200443A (en
Inventor
修司 稲田
菊智 佐藤
Original Assignee
ペットリファインテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペットリファインテクノロジー株式会社 filed Critical ペットリファインテクノロジー株式会社
Priority to JP2004005051A priority Critical patent/JP4344621B2/en
Publication of JP2005200443A publication Critical patent/JP2005200443A/en
Application granted granted Critical
Publication of JP4344621B2 publication Critical patent/JP4344621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Detergent Compositions (AREA)
  • Polyamides (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

本発明は無機部材の洗浄方法に関する。更に詳しくはポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂の付着している無機部材(例えば、ガラス製、セラミック製、金属製の部材)から該熱可塑性樹脂を除去する方法に関する。   The present invention relates to a method for cleaning an inorganic member. More specifically, the thermoplastic resin is removed from an inorganic member (for example, a glass member, a ceramic member, or a metal member) to which a thermoplastic resin having a group of —COO— and / or —CONH— is attached to the polymer main chain. It relates to a method of removing.

ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂、例えばポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリ尿素樹脂等は、機械特性、熱特性又は化学特性に優れることから、樹脂成形品、繊維、フィルムなど各種分野で用いられている。ポリエステル樹脂の代表的ポリマーであるポリエチレンテレフタレートは、通常、テレフタル酸とエチレングリコールのエステル化反応又はジメチルテレフタレートとエチレングリコールのエステル交換反応によってビス(2−ヒドロキシエチル)テレフタレート(以下、BHETと略称することがある)及びそのオリゴマーを主成分とする反応生成物を得た後、これをさらに重縮合させることによって製造される。ポリアミド樹脂の代表的ポリマーである6ナイロンはεカプロラクタムの自己縮合反応によって製造される。また、ポリウレタン樹脂は、ポリオールとイソシアネートを反応させることによって製造されている。   Thermoplastic resins having a group of —COO— and / or —CONH— in the polymer main chain, such as polyester resins, polyamide resins, polyurethane resins, polyurea resins, etc. are excellent in mechanical properties, thermal properties or chemical properties, It is used in various fields such as resin molded products, fibers, and films. Polyethylene terephthalate, which is a typical polymer of polyester resin, is usually bis (2-hydroxyethyl) terephthalate (hereinafter abbreviated as BHET) by esterification reaction of terephthalic acid and ethylene glycol or ester exchange reaction of dimethyl terephthalate and ethylene glycol. And a reaction product based on the oligomer thereof is obtained, and then this is further polycondensed. 6 nylon, which is a typical polymer of polyamide resin, is produced by the self-condensation reaction of ε-caprolactam. Moreover, the polyurethane resin is manufactured by making a polyol and isocyanate react.

ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂の製造や成形においては、該熱可塑性樹脂を溶融した状態で取り扱う工程、例えば樹脂の重合工程、移送工程、濾過工程、成形工程等が存在する。これら工程に用いられた無機部材、例えば反応器の内壁、成形機の内壁、攪拌機、温度計、圧力計、配管、スクリュー、ポンプ、フィルター、口金、口金パック等は使用済み、故障、検査等で時として交換する必要がある。その際、熱可塑性樹脂、特に溶融粘度の高い熱可塑性樹脂の付着を避けることが出来ず、例えばこれらの部材は該樹脂が固着した状態で取り外される。これらの無機部材を再利用に供するには、該部材を損傷させること無く熱可塑性樹脂を除去するために洗浄を行う必要がある。   In the production and molding of a thermoplastic resin having a group of —COO— and / or —CONH— in the polymer main chain, a process of handling the thermoplastic resin in a molten state, for example, a resin polymerization process, a transfer process, a filtration process There are molding steps and the like. Inorganic materials used in these processes, such as reactor inner walls, molding machine inner walls, stirrers, thermometers, pressure gauges, pipes, screws, pumps, filters, bases, base packs, etc. are used, broken, inspected, etc. Sometimes needs to be replaced. At that time, adhesion of a thermoplastic resin, particularly a thermoplastic resin having a high melt viscosity cannot be avoided. For example, these members are removed in a state where the resin is fixed. In order to reuse these inorganic members, it is necessary to perform washing in order to remove the thermoplastic resin without damaging the members.

無機部材から固着樹脂を除去する方法として、一般的に、(1)砂又はガーネットの微粒子の高温流動浴で熱分解する方法、(2)溶融酸化塩浴中で分解する方法、(3)強アルカリ性洗浄浴中で加熱加水分解する方法、(4)加熱蒸気を用いて加水分解炉中で分解する方法、が行なわれている。また、(5)ジエチレングリコールやトリエチレングリコールでポリエステル樹脂を溶解、分解する方法が知られている(特許文献1)。しかし、いずれの方法も固着樹脂の分解に伴う分解物、例えば(5)の場合、オリゴマー、エチレングリコール、テレフタル酸、炭酸ガス、水などの分解物が系外に排出されるが、これらの大気放出あるいは大気排出を防止するためにスクラバーを設置し、該スクラバーによって捕集する必要がある。しかし、しばしばスクラバーでの詰りも生じ、排水処理も必要である。また高温を維持するための熱エネルギーの消費量も大きく、さらに分解残渣の発生など廃棄物処理としての問題もある。さらに、(2)の酸化分解剤として硝酸カリウムあるいは硝酸ナトリウム系の酸化剤を使用する方法においては、該酸化剤が有機物やアルミニウムなどと接触して激しい反応を起こし、窒素酸化物を発生したり、火災や爆発の危険性があり、好ましい方法ではない。(3)の方法においては、アルカリの取り扱いによる作業者の薬傷、ステンレス鋼のアルカリによる脆化やハロゲンによる劣化等が生じるなどの問題がある。また、(1)〜(3)の方法においては、特にステンレス不織布を使用するプリーツフィルターにおいてステンレス不織布の損傷による高価なフィルターの損傷やフィルターの目開きが大きくなり、フィルターとしての機能が発揮できなくなるなどの問題がある。   As a method for removing the fixing resin from the inorganic member, generally, (1) a method of thermally decomposing the fine particles of sand or garnet in a high temperature fluid bath, (2) a method of decomposing in a molten oxide salt bath, (3) strong There are a method of hydrolyzing in an alkaline cleaning bath and a method of (4) decomposing in a hydrolysis furnace using heated steam. Further, (5) a method of dissolving and decomposing a polyester resin with diethylene glycol or triethylene glycol is known (Patent Document 1). However, in any method, in the case of (5), decomposition products accompanying the decomposition of the fixing resin, decomposition products such as oligomers, ethylene glycol, terephthalic acid, carbon dioxide gas, and water are discharged out of the system. In order to prevent emission or atmospheric discharge, it is necessary to install a scrubber and collect it by the scrubber. However, scrubber clogging often occurs and wastewater treatment is also necessary. Further, the consumption of heat energy for maintaining a high temperature is large, and there are also problems in waste treatment such as generation of decomposition residues. Furthermore, in the method of using a potassium nitrate or sodium nitrate type oxidant as the oxidative decomposition agent of (2), the oxidant is brought into contact with an organic substance or aluminum to cause a violent reaction, generating nitrogen oxides, There is a risk of fire and explosion, which is not the preferred method. In the method (3), there are problems such as chemical burns caused by handling of alkali, embrittlement of stainless steel due to alkali and deterioration due to halogen. In the methods (1) to (3), particularly in a pleated filter using a stainless non-woven fabric, damage to the expensive filter due to damage of the stainless non-woven fabric and the opening of the filter become large, and the function as a filter cannot be exhibited. There are problems such as.

また、金属製部材から固着ポリエステル樹脂を除去する方法として物理的な方法も考えられるが、本発明者の検討結果によると、この方法では固着ポリエステル樹脂を金属製部材に損傷を与えることなく除去することは極めて困難である。これらの問題は、ガラス製部材、セラミック製部材についても、また、ポリアミド樹脂、ポリウレタン樹脂等についても同様に存在する。   Further, although a physical method is also conceivable as a method for removing the fixed polyester resin from the metal member, according to the results of the study by the present inventors, this method removes the fixed polyester resin without damaging the metal member. It is extremely difficult. These problems similarly exist for glass members, ceramic members, and polyamide resins, polyurethane resins, and the like.

そこで、無機部材、特に精密な無機部材に損傷を与えることなく、かつ安全な洗浄方法を開発する必要があった。本発明者は、この洗浄方法について検討した結果、加熱されたエチレングリコール(以下、EGと略称することがある)、特に沸点近くに加熱されたエチレングリコールが優れた洗浄効果を奏することを見出し、(6)金属部材に固着しているポリエステル樹脂を解重合触媒の存在下エチレングリコールを沸騰させながら解重合して該固着ポリエステル樹脂を除去する洗浄方法を提案した(特許文献2)。   Therefore, it was necessary to develop a safe cleaning method without damaging the inorganic member, particularly a precise inorganic member. As a result of studying this cleaning method, the present inventors have found that heated ethylene glycol (hereinafter sometimes abbreviated as EG), particularly ethylene glycol heated near the boiling point, has an excellent cleaning effect, (6) A cleaning method was proposed in which the polyester resin fixed to the metal member is depolymerized while boiling ethylene glycol in the presence of a depolymerization catalyst to remove the fixed polyester resin (Patent Document 2).

しかし、この方法は高温での実施の為に加圧が前提となり、また危険物の取り扱いといった面からも、適用範囲が限定される。また使用済みEGとしての廃液が発生するために、EGの精製処理が可能な立地であれば、再利用が安いコストで可能であるが、そうでない場合は回収設備の新設あるいは外部委託での処理といった対応が必要となる点で、更なる改善を要することが明らかになった。
特開2002−265578号公報 特開2003−305424号公報
However, this method is premised on pressurization for implementation at a high temperature, and the scope of application is limited from the viewpoint of handling dangerous materials. In addition, since waste liquid is generated as used EG, it can be reused at a low cost if it is in a location where EG can be refined. It became clear that further improvement is necessary in that it is necessary to respond.
JP 2002-265578 A JP 2003-305424 A

本発明者は、さらにこの洗浄方法について検討した結果、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂の固着した無機部材から該熱可塑性樹脂部材を除去する方法として、該熱可塑性樹脂を溶融BHETで分解して除去する方法が極めて有用であることを見出した。また本発明者は、溶融BHETを用いれば、特に高度に結晶化した樹脂で解重合に長時間を要するものについても容易に分解し得ることを見出した。さらに本発明者は、溶融BHETにより分解された熱可塑性樹脂の分解物は常温では脆い固体となるために、冷却後の該無機部材から極めて容易に剥がれ、また温水に易溶性であることから分解物を剥がした後の仕上げ洗浄が極めて容易であるという利点を有することを見出した。加えて本発明者は、剥がした後の分解物が、再溶融後不溶性の物質を濾別した後、繰り返し分解洗浄に供することが可能であることを知見し、本発明に到達した。   As a result of further studying this cleaning method, the present inventor, as a method for removing the thermoplastic resin member from the inorganic member to which the thermoplastic resin having a —COO— and / or —CONH— group in the polymer main chain is fixed. The present inventors have found that a method of removing the thermoplastic resin by decomposing it with molten BHET is extremely useful. The inventor has also found that when molten BHET is used, a highly crystallized resin that requires a long time for depolymerization can be easily decomposed. Furthermore, the present inventor believes that the decomposition product of the thermoplastic resin decomposed by molten BHET becomes a brittle solid at room temperature, and therefore it is very easily peeled off from the inorganic member after cooling and is easily soluble in hot water. It has been found that it has the advantage that the finish cleaning after peeling off the object is very easy. In addition, the present inventor has found that the decomposed product after peeling can be repeatedly subjected to decomposing and washing after filtering off insoluble substances after remelting, and has reached the present invention.

すなわち、本発明は、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂が付着している無機部材を、溶融ビス(2−ヒドロキシエチル)テレフタレートと接触させ、該熱可塑性樹脂を除去することからなる無機部材の洗浄方法である。   That is, in the present invention, an inorganic member in which a thermoplastic resin having a —COO— and / or —CONH— group is attached to a polymer main chain is brought into contact with molten bis (2-hydroxyethyl) terephthalate, A method for cleaning an inorganic member comprising removing a plastic resin.

熱可塑性樹脂は、ポリエステル樹脂、ポリアミド樹脂又はポリウレタン樹脂であることが好ましい。無機部材は、金属製、ガラス製又はセラミック製の部材であることが好ましい。無機部材は、熱可塑性樹脂の重合反応器の内壁又は該重合反応器内に設けられた部材であることが好ましい。また無機部材は、熱可塑性樹脂の重合工程に設けられた配管、連結部材又は検出端であることが好ましい。さらに無機部材は、熱可塑性樹脂の溶融成形装置の内壁又は溶融成形装置内に設けられた部材であることが好ましい。加えて無機部材は、熱可塑性樹脂の溶融押出機の内壁又は溶融押出機内に設けられた部材であることが好ましい。   The thermoplastic resin is preferably a polyester resin, a polyamide resin or a polyurethane resin. The inorganic member is preferably a metal, glass or ceramic member. The inorganic member is preferably an inner wall of a thermoplastic resin polymerization reactor or a member provided in the polymerization reactor. Moreover, it is preferable that an inorganic member is piping, a connection member, or a detection end provided in the polymerization process of a thermoplastic resin. Furthermore, the inorganic member is preferably a member provided on the inner wall of the thermoplastic resin melt molding apparatus or in the melt molding apparatus. In addition, the inorganic member is preferably a member provided in the inner wall of the thermoplastic resin melt extruder or in the melt extruder.

溶融ビス(2−ヒドロキシエチル)テレフタレートの温度は、120〜300℃であることが好ましい。溶融ビス(2−ヒドロキシエチル)テレフタレートに接触させた後、さらにエチレングリコール又は熱水で洗浄することが好ましい。溶融ビス(2−ヒドロキシエチル)テレフタレートに接触させた後、エチレングリコールで洗浄し、さらに熱水で洗浄を行うことが好ましい。   The temperature of molten bis (2-hydroxyethyl) terephthalate is preferably 120 to 300 ° C. After contacting with molten bis (2-hydroxyethyl) terephthalate, it is preferable to wash with ethylene glycol or hot water. After contacting with molten bis (2-hydroxyethyl) terephthalate, it is preferable to wash with ethylene glycol and further with hot water.

本発明は、さらに、ビス(2−ヒドロキシエチル)テレフタレートからなる、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂が付着している無機部材の洗浄剤である。そして、本発明は、この熱可塑性樹脂の溶融押出機に、ビス(2−ヒドロキシエチル)テレフタレートを投入し、溶融混練することからなる洗浄方法を包含する。   The present invention is further a cleaning agent for an inorganic member comprising a bis (2-hydroxyethyl) terephthalate, wherein a thermoplastic resin having a group of —COO— and / or —CONH— is attached to a polymer main chain. And this invention includes the washing | cleaning method which puts a bis (2-hydroxyethyl) terephthalate in this thermoplastic resin melt extruder, and melt-kneads.

本発明の方法によれば、樹脂付着無機部材から該樹脂を効率良く洗浄除去することができる。その際、熱可塑性樹脂の製造や成形における条件とほぼ同じ様な温度と安全操作(常圧下での処理が可能)で、かつ特異な廃棄物や排ガスの発生を伴うこともなく、該樹脂を洗浄除去することができる。しかも、洗浄終了後の洗浄剤は、溶融状態で不溶物を適宜ろ過等の手法で分離することにより、繰り返し使用できるという利点を有する。   According to the method of the present invention, the resin can be efficiently removed from the resin-adhered inorganic member. At that time, the temperature and safety operation are almost the same as the conditions in the production and molding of thermoplastic resins (processing under normal pressure is possible), and there is no generation of peculiar waste or exhaust gas. It can be washed away. And the cleaning agent after completion | finish of washing | cleaning has the advantage that it can be repeatedly used by isolate | separating an insoluble matter by methods, such as filtration suitably, in a molten state.

(無機部材)
本発明における無機部材は、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂の付着している無機部材であればその素性を問わない。溶融状態での該熱可塑性樹脂の製造工程、移送工程、濾過工程や成形工程(例えば、押出成形、射出成形等)に使用された無機部材であることが好ましい。かかる工程は、所定の期間の運転や使用で、その目的を達成したり終了した時に停止し、また、故障、検査等で停止するが、そのとき工程内の設備を洗浄したり、部品(無機部材)を交換する必要がある。かかる場合、洗浄前の無機部材は熱可塑性樹脂の付着している状態であり、また工程から取り外す無機部材は熱可塑性樹脂の付着した状態で取り外されることになる。かかる無機部材の具体例として、熱可塑性樹脂の溶融重合反応器の内壁又は該器内に設けられた部材(例えば、攪拌機、温度計等)、溶融熱可塑性樹脂の移送又は濾過の工程に設けられた部材(例えば、配管、ポンプ、ミキサー、フィルター、温度計、圧力計等)、熱可塑性樹脂の溶融成形装置の内壁又は該装置内に設けられた部材(例えば、スクリュー、ポンプ、温度計、圧力計等)などを挙げることができる。また、ガラス製部材としては、例えば重合反応に用いるビーカー、フラスコ、攪拌棒等を挙げることができ、セラミック製部材としては、例えばフィルター、スタティックミキサー等を挙げることができ、また金属製部材としては、例えば溶融重合反応器の内壁、器内の攪拌機、温度計、移送工程のポンプ、フィルター、溶融成形装置(例えば、押出成形機、射出成形機等)のシリンダー内壁、スクリュー、圧力計、温度計、金型、口金、口金パック等を挙げることができる。これらの中、特に金属製部材、ガラス製部材が好ましい。
(Inorganic material)
The inorganic member in the present invention is not limited as long as it is an inorganic member to which a thermoplastic resin having a group of —COO— and / or —CONH— is attached to the polymer main chain. It is preferably an inorganic member used in the manufacturing process, transfer process, filtration process or molding process (for example, extrusion molding, injection molding, etc.) of the thermoplastic resin in a molten state. Such a process is stopped when it achieves its purpose or is completed by operation and use for a predetermined period, and also stops due to failure, inspection, etc. At that time, the equipment in the process is washed or parts (inorganic Member) needs to be replaced. In such a case, the inorganic member before washing is in a state where a thermoplastic resin is adhered, and the inorganic member removed from the process is removed in a state where the thermoplastic resin is adhered. Specific examples of the inorganic member include an inner wall of a thermoplastic polymerization reactor of a thermoplastic resin or a member (for example, a stirrer, a thermometer, etc.) provided in the reactor, a transfer or filtration process of the molten thermoplastic resin. Members (for example, pipes, pumps, mixers, filters, thermometers, pressure gauges, etc.), inner walls of thermoplastic resin melt molding apparatuses or members provided in the apparatus (for example, screws, pumps, thermometers, pressures) For example). Examples of the glass member include a beaker, a flask, and a stirring rod used for the polymerization reaction. Examples of the ceramic member include a filter and a static mixer. Examples of the metal member include For example, inner wall of melt polymerization reactor, stirrer, thermometer, pump of transfer process, filter, inner wall of cylinder of melt molding apparatus (for example, extrusion molding machine, injection molding machine, etc.), screw, pressure gauge, thermometer , Molds, caps, cap packs, and the like. Among these, a metal member and a glass member are particularly preferable.

(熱可塑性樹脂)
本発明におけるポリマー主鎖に−COO−の基を有する熱可塑性樹脂としては、ポリエステル樹脂、ポリアミド樹脂等を、またポリマー主鎖に−CONH−、又はCOO−及び−CONH−の基を有する熱可塑性樹脂としては、ポリウレタン樹脂、ポリ尿素樹脂等を好ましく挙げることができる。これらの中、ポリエステル樹脂及びポリアミド樹脂が好ましく、特にポリエステル樹脂が好ましい。
(Thermoplastic resin)
As the thermoplastic resin having a —COO— group in the polymer main chain in the present invention, a polyester resin, a polyamide resin, etc., and the thermoplastic having a —CONH—, or COO— and —CONH— group in the polymer main chain are used. Preferred examples of the resin include polyurethane resins and polyurea resins. Of these, polyester resins and polyamide resins are preferable, and polyester resins are particularly preferable.

前記ポリエステル樹脂は、例えば芳香族ジカルボン酸成分(例えば、テレフタル酸、2,6−ナフタレンジカルボン酸等)とグリコール成分(例えば、エチレングリコール、テトラメチレングリコール等)のエステルを主成分する樹脂であり、具体的にはポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレン−2,6−ナフタレート等を挙げることができる。かかるポリエステル樹脂は、平均重合度(エステル繰り返し単位の結合している数)が10以上、さらに30以上の樹脂であることが好ましい。尚、この平均重合度はポリエステル樹脂の使用形態によって変化するものであり特に上限の制限はないが、通常は200以下、さらには180以下であることが好ましい。また、ポリエステル樹脂として、ポリカーボネート(例えば、ビスフェノールAとジフェニルカーボネートの溶融重合法によるポリカーボネート等)を挙げることができる。かかるポリカーボネートの分子量は、その使用形態によって変化するが、数平均分子量で7,000以上、さらには9,000以上であることが好ましい。この分子量の上限は特に制限はないが、50,000以下、さらには40,000以下であることが好ましい。   The polyester resin is a resin mainly composed of an ester of an aromatic dicarboxylic acid component (for example, terephthalic acid, 2,6-naphthalenedicarboxylic acid, etc.) and a glycol component (for example, ethylene glycol, tetramethylene glycol, etc.), Specific examples include polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, and polyethylene-2,6-naphthalate. Such a polyester resin is preferably a resin having an average degree of polymerization (the number of bonded ester repeating units) of 10 or more, and more preferably 30 or more. The average degree of polymerization varies depending on the use form of the polyester resin, and there is no particular upper limit, but it is usually preferably 200 or less, more preferably 180 or less. Examples of the polyester resin include polycarbonate (for example, polycarbonate obtained by melt polymerization of bisphenol A and diphenyl carbonate). The molecular weight of such a polycarbonate varies depending on the use form, but is preferably 7,000 or more, more preferably 9,000 or more in terms of number average molecular weight. The upper limit of the molecular weight is not particularly limited, but is preferably 50,000 or less, more preferably 40,000 or less.

前記ポリアミド樹脂は、例えばεカプロラクタムの自己縮合による、或はジカルボン酸成分(例えば、アジピン酸)とジアミン成分(例えば、ヘキサメチレンジアミン)のアミドを主成分とする樹脂であり、具体的には6ナイロン、ポリヘキサメチレンジアミンアジペート(6,6ナイロン)等を挙げることができる。かかるポリアミド樹脂は、平均重合度(アミド繰り返し単位の結合している数)が10以上、さらに30以上の樹脂であることが好ましい。尚、この平均重合度はポリアミド樹脂の使用形態によって変化するものであり特に上限の制限はないが、通常は300以下、さらには250以下であることが好ましい。   The polyamide resin is a resin mainly composed of an amide of a dicarboxylic acid component (for example, adipic acid) and a diamine component (for example, hexamethylenediamine), for example, by self-condensation of ε-caprolactam. Examples thereof include nylon and polyhexamethylenediamine adipate (6,6 nylon). Such a polyamide resin is preferably a resin having an average degree of polymerization (number of bonded amide repeating units) of 10 or more, and more preferably 30 or more. The average degree of polymerization varies depending on the use form of the polyamide resin, and there is no particular upper limit, but it is usually 300 or less, more preferably 250 or less.

前記ポリウレタン樹脂は、通常、長鎖ポリオール及び短鎖ポリオールとイソシアネート化合物を反応させて得られるが、この長鎖ポリオールとしては、例えばエステル系ポリオール、エーテル系ポリオール等が挙げられる。このエステル系ポリオールとしては、例えば酸成分としてアジピン酸、グリコール成分としてエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール等の1種以上を用いたポリエステルを挙げることができる。またエーテル系ポリオールとしては、例えばポリエチレングリコール、ポリテトラメチレングリコール等を挙げることができる。短鎖ポリオールとしては、例えばエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、グリセリン等を挙げることができる。かかるポリウレタン樹脂は、平均重合度(ウレタン繰り返し単位の結合している数)が10以上、さらに30以上の樹脂であることが好ましい。尚、この平均重合度はポリウレタン樹脂の使用形態によって変化するものであり特に上限の制限はないが、通常は300以下、さらには250以下であることが好ましい。   The polyurethane resin is usually obtained by reacting a long-chain polyol or a short-chain polyol with an isocyanate compound. Examples of the long-chain polyol include ester-based polyols and ether-based polyols. Examples of the ester polyol include polyester using adipic acid as an acid component and one or more of ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol and the like as a glycol component. Examples of ether polyols include polyethylene glycol and polytetramethylene glycol. Examples of the short-chain polyol include ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, and glycerin. Such a polyurethane resin is preferably a resin having an average degree of polymerization (number of bonded urethane repeating units) of 10 or more, and more preferably 30 or more. The average degree of polymerization varies depending on the form of use of the polyurethane resin, and there is no particular upper limit, but it is usually 300 or less, more preferably 250 or less.

本発明は、好ましい態様として、熱可塑性樹脂がポリエステル樹脂であり、該ポリエステル樹脂の付着している無機部材が溶融ポリエステル樹脂と接する工程に設けられた又は該工程から取り外された金属製、ガラス製又はセラミック製の部材である洗浄方法を包含する。   In a preferred embodiment of the present invention, the thermoplastic resin is a polyester resin, and the inorganic member to which the polyester resin is attached is provided in a process in contact with the molten polyester resin, or is made of metal or glass that has been removed from the process. Or the cleaning method which is a member made from a ceramic is included.

また、熱可塑性樹脂がポリアミド樹脂であり、該ポリアミド樹脂の付着している無機部材が溶融ポリアミド樹脂と接する工程に設けられた又は該工程から取り外された金属製、ガラス製又はセラミック製の部材である洗浄方法を包含する。   Further, the thermoplastic resin is a polyamide resin, and the inorganic member to which the polyamide resin is attached is a metal, glass, or ceramic member that is provided or removed from the process in contact with the molten polyamide resin. Includes certain cleaning methods.

さらに、熱可塑性樹脂がポリウレタン樹脂であり、該ポリウレタン樹脂の付着している無機部材が溶融ポリウレタン樹脂と接する工程に設けられた又は該工程から取り外された金属製、ガラス製又はセラミック製の部材である洗浄方法を包含する。   Further, the thermoplastic resin is a polyurethane resin, and the inorganic member to which the polyurethane resin is attached is a metal, glass, or ceramic member provided or removed from the process in contact with the molten polyurethane resin. Includes certain cleaning methods.

熱可塑性樹脂は、溶融したBHET(洗浄剤)による分解処理時、120〜300℃、好ましくは150〜250℃に加熱して溶融BHETと接触することにより容易に分解し、モノマーないし低分子量体とすることができる。その際、分解触媒や安定剤を用いてもよい。例えば、ポリエステル樹脂を分解する場合、公知のエステル交換触媒(例えば、苛性ソーダ、苛性カリ、炭酸ソーダ、酢酸亜鉛等)を用いることにより容易に分解(解重合)をすることが出来、リン化合物(例えば、(亜)リン酸、このアルキルエステルやアリールエステル等)のような安定剤を加えることにより、熱分解の副反応を防止することができる。   The thermoplastic resin is easily decomposed by contact with molten BHET by heating to 120 to 300 ° C., preferably 150 to 250 ° C., during the decomposition treatment with molten BHET (cleaning agent). can do. At that time, a decomposition catalyst or a stabilizer may be used. For example, when decomposing a polyester resin, it can be easily decomposed (depolymerized) by using a known transesterification catalyst (for example, caustic soda, caustic potash, sodium carbonate, zinc acetate, etc.), and a phosphorus compound (for example, By adding a stabilizer such as (sub-) phosphoric acid, this alkyl ester or aryl ester), a side reaction of thermal decomposition can be prevented.

前記分解処理に用いるビス(2−ヒドロキシエチル)テレフタレート(BHET)はオリゴマー(重合度が好ましくは10以下、特に好ましくは6以下のもの)を小割合(例えば、40重量%以下、さらには30重量%以下)含むことができるが、BHETの割合が90重量%以上、さらには95重量%以上であることが好ましい。通常、BHETは常温で固体であり、その形状は特に限定されないが、好ましくはペレット、フレーク、粉砕物、粉、チップ等の形状で用いられる。分解処理時の溶融BHETの温度は120〜300℃、さらには150〜250℃であることが好ましい。   Bis (2-hydroxyethyl) terephthalate (BHET) used for the decomposition treatment is a small proportion (for example, 40% by weight or less, further 30% by weight) of oligomers (degree of polymerization is preferably 10 or less, particularly preferably 6 or less). %), But the proportion of BHET is preferably 90% by weight or more, more preferably 95% by weight or more. Usually, BHET is solid at normal temperature, and the shape thereof is not particularly limited, but is preferably used in the form of pellets, flakes, pulverized products, powders, chips and the like. The temperature of the molten BHET during the decomposition treatment is preferably 120 to 300 ° C, more preferably 150 to 250 ° C.

本発明における前記無機部材に付着した熱可塑性樹脂の分解(解重合)処理では、通常、加熱式容器を用い、該容器にBHET及び取り外した無機部材を入れて常圧下加熱洗浄するか、あるいは該部材を設置した工程内を加熱状態にして溶融BHETを循環させるか、成形機内を加熱状態にして溶融BHETを通液させるなどの洗浄処理を行う。その際、熱可塑性樹脂量の少なくとも4重量倍以上、さらには6〜30重量倍のBHETを用いることが好ましい。このBHETは、洗浄処理の際、熱可塑性樹脂の表面を常に覆っている状態にあることが好ましく、かかる点から、該無機部材を十分浸漬させる量であることがさらに好ましい。   In the decomposition (depolymerization) treatment of the thermoplastic resin adhering to the inorganic member in the present invention, usually, a heated container is used, and BHET and the removed inorganic member are put into the container and heated and washed under normal pressure, or the A cleaning process is performed such as heating the inside of the process in which the member is installed and circulating the molten BHET, or heating the inside of the molding machine and passing the molten BHET through. At that time, it is preferable to use BHET at least 4 times by weight, more preferably 6 to 30 times by weight the amount of the thermoplastic resin. The BHET is preferably in a state that always covers the surface of the thermoplastic resin during the cleaning treatment, and from this point, it is more preferable that the amount of the inorganic member is sufficiently immersed.

前記成形機内の洗浄には、通常、熱可塑性樹脂を部材から物理的に剥離する作用のあるパージ剤が使用されているが、パージ剤を使用する前、あるいはパージ剤と混合して溶融BHETを成形機内に流してもよい。これにより、成形機内の細かい隙間や物理的作用の届かない部分等の、パージ剤で除去することのできない部分の熱可塑性樹脂を容易に除去することも可能となる。前記パージ剤は、洗浄温度で溶融しないものであり、例えば、ポリスチレン樹脂(PS)、ポリメチルメタクリレート樹脂(PMMA)、アクリロニトリル/ブタジエン/スチレン樹脂(ABS)、アクリロニトリル/スチレン樹脂(AS)、ポリエチレン/酢酸ビニル樹脂(EVA)等のゲル状樹脂が好ましく挙げられる。BHETとパージ剤の混合比率は、成形機の樹脂供給機能(食い込み性)を損なわない範囲であれば特に制限はないが、BHET1重量部に対して1〜50重量部、さらには3〜40重量部のパージ剤と混合することが好ましい。   In order to clean the inside of the molding machine, a purge agent having an action of physically peeling the thermoplastic resin from the member is usually used, but before using the purge agent or mixing with the purge agent, the molten BHET is removed. You may flow in a molding machine. Thereby, it is also possible to easily remove the thermoplastic resin in a portion that cannot be removed by the purge agent, such as a fine gap in the molding machine or a portion that does not reach the physical action. The purge agent does not melt at the washing temperature. For example, polystyrene resin (PS), polymethyl methacrylate resin (PMMA), acrylonitrile / butadiene / styrene resin (ABS), acrylonitrile / styrene resin (AS), polyethylene / A gel-like resin such as vinyl acetate resin (EVA) is preferred. The mixing ratio of BHET and purge agent is not particularly limited as long as it does not impair the resin supply function (biting property) of the molding machine, but is 1 to 50 parts by weight, more preferably 3 to 40 parts by weight with respect to 1 part by weight of BHET. Part of the purge agent.

パージ剤の代わりに、他の熱可塑性樹脂を用いると、該熱可塑性樹脂による銘柄切り替え(色替え、樹脂替え等)が容易に行うことができる。   If another thermoplastic resin is used instead of the purge agent, brand switching (color change, resin change, etc.) by the thermoplastic resin can be easily performed.

さらに、前記加熱式容器を使用する場合、溶融BHETを攪拌機を攪拌翼と無機部材が接触しないように設置して攪拌する方法や、前記無機部材が設置された工程の場合も含めポンプ等で強制的に溶融BHETを循環する手段によって、付着樹脂等の表面を更新することにより、洗浄をさらに促進することが望ましい。   Furthermore, when using the heating type container, the molten BHET is forced by a pump or the like including a method of stirring the stirrer so that the stirrer blade and the inorganic member do not contact with each other, and the process in which the inorganic member is installed. In particular, it is desirable to further promote cleaning by renewing the surface of the adhered resin or the like by means of circulating molten BHET.

前記分解反応生成物は、BHETを主とする低分子量体であり、常温では脆い固体として扱うことができるものである。このため、分解反応生成物は無機部材から容易に剥離することができる。また、溶融状態での分解反応生成物から不溶性物質を濾過等の方法で除去すれば、得られる分解反応生成物は洗浄剤(解重合剤)として使用することが可能となる。さらに、前記分解反応生成物は公知の方法で高純度BHETに戻し、再度、洗浄剤(解重合剤)として使用することも可能となる。   The decomposition reaction product is a low molecular weight substance mainly composed of BHET and can be handled as a brittle solid at room temperature. For this reason, the decomposition reaction product can be easily peeled from the inorganic member. Moreover, if an insoluble substance is removed from the decomposition reaction product in a molten state by a method such as filtration, the resulting decomposition reaction product can be used as a cleaning agent (depolymerization agent). Further, the decomposition reaction product can be returned to high purity BHET by a known method and used again as a cleaning agent (depolymerization agent).

本発明においては、溶融BHETによる洗浄を行った後、洗浄効果をさらに高める為に、分解反応生成物を加熱したエチレングリコール(洗浄剤)を用いてさらに除去洗浄することができる。その際、エチレングリコールの温度は100〜190℃、さらには120〜180℃であることが好ましい。また、エチレングリコールの使用量は分解反応生成物の重量に対し1〜10重量倍、さらには2〜5重量倍であることが好ましい。
本発明においては、また、前記した溶融BHET又は加熱エチレングリコールによる洗浄を行った後、無機部材に付着している分解反応生成物を熱水を用いてさらに洗浄することができる。その際、熱水の温度は50〜95℃、さらには70〜90℃であることが好ましい。また、熱水の使用量は分解反応生成物の重量に対し1〜10重量倍、さらには2〜5重量倍であることが好ましい。
In the present invention, after washing with molten BHET, in order to further enhance the washing effect, the decomposition reaction product can be further removed and washed using heated ethylene glycol (cleaning agent). In that case, it is preferable that the temperature of ethylene glycol is 100-190 degreeC, Furthermore, it is preferable that it is 120-180 degreeC. Moreover, it is preferable that the usage-amount of ethylene glycol is 1-10 weight times with respect to the weight of a decomposition reaction product, Furthermore, it is 2-5 weight times.
In the present invention, after performing the above-described washing with molten BHET or heated ethylene glycol, the decomposition reaction product adhering to the inorganic member can be further washed with hot water. In that case, it is preferable that the temperature of hot water is 50-95 degreeC, Furthermore, it is 70-90 degreeC. Moreover, it is preferable that the usage-amount of a hot water is 1-10 weight times with respect to the weight of a decomposition reaction product, Furthermore, it is 2-5 weight times.

以下、実施例を挙げて本発明をさらに説明する。なお、例中の特性は下記の方法によって測定したものである。
(1)ビス(2−ヒドロキシエチル)テレフタレートの光学密度
試料5mgをメタノールに溶解して10重量%メタノール溶液とし、UVmini−1240((株)島津製作所製)によりセル長10mmで、ブランクはメタノールを用いてゼロ点補正し、この溶液の380nmの吸光度を測定した。
(2)ビス(2−ヒドロキシエチル)テレフタレートの純度
試料5mgを精秤し、クロロホルムを用いて約100ppmの溶液を調整し、カラムはSILICA SG 80、温度40℃、流速0.7ml/分、移動相はジクロロメタン/ジオキサン、検出器は紫外線吸光光度計を用いて、高速液体クロマトグラフ法((株)島津製作所製、LC−6型)により測定した。
(3)ポリマーの固有粘度(IV)
試料をフェノール/テトラクロロエタン=1/1(重量比)の混合溶媒に0.4g/dlの濃度で溶かし、温度25℃においてウベローデ型毛細管粘度計を用い溶液粘度の測定を行い、その後、上記混合溶液を徐々に添加して低濃度側の溶液粘度を測定し、0%濃度に外挿して固有粘度を求めた。
Hereinafter, the present invention will be further described with reference to examples. The characteristics in the examples are measured by the following methods.
(1) Optical density of bis (2-hydroxyethyl) terephthalate 5 mg of a sample was dissolved in methanol to give a 10 wt% methanol solution. The cell length was 10 mm by UVmini-1240 (manufactured by Shimadzu Corporation), and the blank was methanol. Using this, the zero point was corrected, and the absorbance of this solution was measured at 380 nm.
(2) Purity of bis (2-hydroxyethyl) terephthalate Weigh accurately 5 mg of sample, prepare a solution of about 100 ppm using chloroform, and column is SILICA SG 80, temperature 40 ° C., flow rate 0.7 ml / min, moving The phase was measured by high performance liquid chromatography (LC-6, manufactured by Shimadzu Corporation) using dichloromethane / dioxane and the detector using an ultraviolet absorptiometer.
(3) Intrinsic viscosity of polymer (IV)
The sample was dissolved in a mixed solvent of phenol / tetrachloroethane = 1/1 (weight ratio) at a concentration of 0.4 g / dl, and the solution viscosity was measured using an Ubbelohde capillary viscometer at a temperature of 25 ° C., and then the above mixing The solution was gradually added to measure the solution viscosity on the low concentration side, and extrapolated to 0% concentration to determine the intrinsic viscosity.

(実施例1)
溶融ポリエチレンテレフタレート(平均重合度:約110)の夾雑異物除去のフィルターとして使用され、かつ該樹脂が21kg付着しているSUS304製プリーツ型キャンドルフィルター(目開き1μm、直径70mm、高さ1,000mm)の12本を、洗浄用リングスタンドに該フィルターの樹脂出口を下向けにセットして、直径800mm、直胴部の高さ1,500mm、低部に直径20mmのパンチングプレートの敷板を設けた熱媒ジャケット付きSUS304製洗浄槽に入れた。次いで、この洗浄槽に160℃で溶融したビス(2−ヒドロキシエチル)テレフタレート(BHET;純度:98重量%)500kgを加え、該リングスタンドの中央に設けた直径400mmの開口部に翼径200mmの攪拌翼が収まるように上蓋をセットした。
Example 1
SUS304 pleated candle filter (opening 1 μm, diameter 70 mm, height 1,000 mm) used as a filter for removing foreign contaminants of molten polyethylene terephthalate (average polymerization degree: about 110) and 21 kg of the resin adhered The 12 pieces were set on a washing ring stand with the resin outlet of the filter facing down, and a punching plate with a diameter of 800 mm, a straight barrel height of 1,500 mm, and a lower portion of 20 mm in diameter was provided. It put into the washing tank made from SUS304 with a medium jacket. Next, 500 kg of bis (2-hydroxyethyl) terephthalate (BHET; purity: 98% by weight) melted at 160 ° C. was added to this washing tank, and a blade diameter of 200 mm was introduced into an opening of 400 mm in diameter provided at the center of the ring stand. The upper lid was set so that the stirring blades could be accommodated.

この洗浄槽のジャケットに250℃の熱媒を通し、内温を徐々に上昇し、200℃を超えた段階で攪拌機を60rpmで駆動させ洗浄を開始した。洗浄中は内温が200〜230℃に維持されるように熱媒の供給量を調整した。さらに該上蓋に設けた覗き窓から槽内を観察し、25分後固着樹脂がなくなり内溶液が透明になったことを確認し、さらに10分間攪拌洗浄を続けた。洗浄終了後、攪拌及び熱媒の供給を停止した。   A heating medium of 250 ° C. was passed through the jacket of the washing tank, the internal temperature was gradually increased, and when the temperature exceeded 200 ° C., the stirrer was driven at 60 rpm to start washing. During the washing, the supply amount of the heat medium was adjusted so that the internal temperature was maintained at 200 to 230 ° C. Further, the inside of the tank was observed through a viewing window provided on the upper lid, and after 25 minutes, it was confirmed that the fixing resin was gone and the inner solution became transparent, and stirring and washing were further continued for 10 minutes. After completion of washing, stirring and heating medium supply were stopped.

次いで、前記上蓋を開き、前記フィルタリングスタンドを引き上げ、液切りをした後、12本のキャンドルフィルターを80℃の熱水に浸漬して洗浄し乾燥した。得られたフィルターについては、イソプロパノール中でバブルテストを行い、圧損、バブルの発生状態とも正常であることを確認した。   Next, the upper lid was opened, the filtering stand was pulled up, drained, and then 12 candle filters were immersed in hot water at 80 ° C., washed and dried. The obtained filter was subjected to a bubble test in isopropanol, and it was confirmed that both pressure loss and bubble generation were normal.

(実施例2)
6ナイロン繊維からなるストッキングを数cm角にカットし、得られたカット布を溶融押出機(シリンダー内径50mmφ)に供し、供給ゾーン150℃、溶融ゾーン240℃、計量ゾーン260℃の温度設定で溶融押出しし、ペレット化して6ナイロン樹脂ペレットを得た。このペレット化処理が終了したのち押出機を停台するに当たり、カット布の供給を止めてからもしばらく押出機を運転して内部に残存している樹脂をできるだけ押出した。その後、供給ゾーンを常温まで降温し、溶融ゾーンの温度を230℃、計量ゾーンの温度を230℃として押出スクリューの回転を維持しながら、投入口から10kgのBHETのペレットを投入して押出しを行い、全量吐出したことを確認した。次いで、押出機の溶融ゾーン以降の温度も200℃まで降温して、再度10kgのBHET(純度:98重量%)のペレットを投入して押出しを行い、押出機内の洗浄を行った。洗浄の終わった後で、押出スクリューを抜き出し、表面を観察したところ、通常行うメタルクロスでぬぐうことは必要のない状態であった。次いで、押出スクリューを押出機に戻し、温度を当初のペレット化処理条件に戻した後、前記6ナイロン繊維のカット布を供給して運転を再開したところ、吐出された6ナイロン樹脂には炭化物といった異物の混入や異常な反応現象は認められなかった。
(Example 2)
A stocking made of 6 nylon fibers is cut into several cm squares, and the resulting cut cloth is supplied to a melt extruder (cylinder inner diameter 50 mmφ) and melted at a temperature setting of a supply zone 150 ° C., a melting zone 240 ° C., and a measuring zone 260 ° C. Extrusion and pelletization gave 6 nylon resin pellets. After stopping the extruder after the pelletization process was finished, the extruder was operated for a while after the supply of the cut cloth was stopped, and the resin remaining inside was extruded as much as possible. After that, the temperature of the supply zone is lowered to normal temperature, the temperature of the melting zone is 230 ° C., the temperature of the measuring zone is 230 ° C., and the extrusion screw is kept rotating, and 10 kg of BHET pellets are charged from the charging port and extruded. It was confirmed that the entire amount was discharged. Next, the temperature after the melting zone of the extruder was lowered to 200 ° C., 10 kg of BHET (purity: 98% by weight) pellets were again injected, and extrusion was performed to clean the inside of the extruder. After the cleaning was completed, the extrusion screw was taken out and the surface was observed. As a result, it was not necessary to wipe with a normal metal cloth. Next, the extrusion screw was returned to the extruder and the temperature was returned to the original pelletizing conditions, and then the cut cloth of 6 nylon fibers was supplied and the operation was resumed. There was no foreign matter or abnormal reaction.

(実施例3)
使用済みペットボトル(ポリエチレンテレフタレート製ボトル)のケミカルリサイクル法(エチレングリコールによる解重合、解重合反応生成溶液の固形不純物除去処理、活性炭処理、イオン交換処理及び晶析分離で粗BHETを得、さらに該粗BHETを分子蒸留処理する方法)で得られた高純度BHET(純度:98重量%、光学密度:0.003)50gを原料とし、さらに重合触媒として二酸化ゲルマニウム5mgを用い、これらをガラス製セパラブルフラコ(500ml)に入れてから、該フラスコを275℃に温度制御した湯浴に浸して、フラスコ内を真空度4Paに維持し、かつ反応液を攪拌しながら5時間掛けて重合反応を行った。重合反応終了後にフラスコから内容物のポリマー35gを掻き出した。得られたポリマー(ポリエチレンテレフタレート)の固有粘度(IV)は0.62であった。
(Example 3)
Chemical recycling method of used PET bottles (polyethylene terephthalate bottles) (depolymerization with ethylene glycol, solid impurity removal treatment of depolymerization reaction product solution, activated carbon treatment, ion exchange treatment and crystallization separation to obtain crude BHET; 50 g of high-purity BHET (purity: 98% by weight, optical density: 0.003) obtained by molecular distillation treatment of crude BHET was used as a raw material, and 5 mg of germanium dioxide was used as a polymerization catalyst. (500 ml), the flask was immersed in a hot water bath whose temperature was controlled at 275 ° C., the inside of the flask was maintained at a degree of vacuum of 4 Pa, and the reaction liquid was stirred for 5 hours to carry out the polymerization reaction. After completion of the polymerization reaction, 35 g of the content polymer was scraped from the flask. The obtained polymer (polyethylene terephthalate) had an intrinsic viscosity (IV) of 0.62.

内壁に掻き出せなかったポリマーが付着している前記セパラブルフラスコは、再度、275℃に温度制御した油浴に浸し、その状態で該セパラブルフラスコに300gのBHETペレット(純度:98重量%)を溶融させつつ投入した。投入後に攪拌機、コンデンサー、温度計を備えたセパラブルカバーをセパラブルフラスコに取付け、内温が150℃に到達した時点で攪拌機を始動し180rpmで攪拌した。内部を目視確認しつつポリマーが分解溶解し均一な液体となった時点で油浴より引き上げ、セパラブルカバーを取り外した後に内部溶液を流し出した。セパラブルフラスコ、攪拌翼、温度計等に付着した液は冷却後に固化したが、90℃の熱水にて浸漬洗浄を行い熱水中に分散・溶解せさた。水洗、乾燥の後、セパラブルフラスコ、攪拌翼、温度計等の表面に傷やポリマーの薄膜が無い事を確認した。   The separable flask with the polymer that could not be scraped on the inner wall was again immersed in an oil bath whose temperature was controlled at 275 ° C., and 300 g of BHET pellets (purity: 98% by weight) were placed in the separable flask in that state. Was added while melting. After the addition, a separable cover equipped with a stirrer, a condenser and a thermometer was attached to the separable flask. When the internal temperature reached 150 ° C., the stirrer was started and stirred at 180 rpm. While the inside was visually confirmed, the polymer was dissolved and dissolved to become a uniform liquid, and then pulled up from the oil bath. After removing the separable cover, the internal solution was poured out. The liquid adhering to the separable flask, stirring blade, thermometer and the like solidified after cooling, but was immersed and washed in hot water at 90 ° C. and dispersed and dissolved in hot water. After washing with water and drying, it was confirmed that there were no scratches or a polymer thin film on the surface of a separable flask, a stirring blade, a thermometer or the like.

(実施例4)
攪拌装置を組み込み、蓋に3ッ口を有し、容量が1リットルであるセパラブルフラスコに両末端が水酸基のポリエチレンアジペート(分子量2,100)200g、ジフェニルメタンジイソシアネート48g及びブチレングリコール44gを入れ、油浴で加熱し、窒素雰囲気下反応温度115℃で60分間攪拌反応させて、水酸基末端プレポリマーを得た。この水酸基末端プレポリマーの70℃における粘度(リオン(株)製、VT−04Eで測定)は4Pa・sであった。
(Example 4)
A stirrer is incorporated, and a separable flask having a three-neck in the lid and having a capacity of 1 liter is charged with 200 g of polyethylene adipate having a hydroxyl group at both ends (molecular weight 2,100), 48 g of diphenylmethane diisocyanate and 44 g of butylene glycol. The reaction mixture was heated in a bath and stirred at a reaction temperature of 115 ° C. for 60 minutes in a nitrogen atmosphere to obtain a hydroxyl group-terminated prepolymer. The viscosity (measured by VT-04E, manufactured by Rion Co., Ltd.) at 70 ° C. of this hydroxyl-terminated prepolymer was 4 Pa · s.

別に準備した前記と同じ形のセパラブルフラスコに両末端が水酸基のポリエチレンアジペート(分子量2,100)400g及びジフェニルメタンジイソシアネート168gを入れ、油浴で加熱し、窒素雰囲気下反応温度115℃で60分間攪拌反応させて、イソシアネート末端プレポリマーを得た。このイソシアネート末端プレポリマーの70℃における粘度(リオン(株)製、VT−04Eで測定)は1.5Pa・sであった。
このようにして得られた水酸基末端プレポリマー292gとイソシアネート末端プレポリマー568gを、熱媒加熱式で、容量が2リットルの掻面型攪拌機及び原料投入が可能な口を2つ有するオートクレーブに投入し、窒素雰囲気下反応温度190℃で30分間攪拌反応させた。得られた粘稠物は下部の排出口から、ポンプで抜き出して試験紡糸に供した。
Separately prepared separable flask having the same shape as described above was charged with 400 g of polyethylene adipate having a hydroxyl group at both ends (molecular weight 2,100) and 168 g of diphenylmethane diisocyanate, heated in an oil bath, and stirred at a reaction temperature of 115 ° C. for 60 minutes in a nitrogen atmosphere. Reaction was performed to obtain an isocyanate-terminated prepolymer. The viscosity (measured with VT-04E, manufactured by Rion Co., Ltd.) at 70 ° C. of this isocyanate-terminated prepolymer was 1.5 Pa · s.
292 g of the hydroxyl group-terminated prepolymer and 568 g of the isocyanate-terminated prepolymer thus obtained were charged into a heating medium heating type, a 2 liter scratched surface stirrer and an autoclave having two ports capable of charging raw materials. The reaction was stirred for 30 minutes at a reaction temperature of 190 ° C. in a nitrogen atmosphere. The resulting viscous material was extracted from the lower discharge port with a pump and subjected to test spinning.

オートクレーブに残った粘稠物を洗浄するために、該オートクレーブにBHET(純度:98重量%)のペレット200gを加え、200℃に加熱して20分間攪拌した。20分後に攪拌を停止し、溶解液を下部の排出口からSUS製のバットへ流し出し固化させた。流し出した固化前の溶解液を肉眼で観察したところ、粘稠物が均一に溶解されていることが確認された。次いで、該オートクレーブを90℃に下げ、90℃の温水200重量部を加えて10分間攪拌して残されていた内容物を溶解し、排水タンクに排出した。この温水洗浄を2回繰り返したのち、温風乾燥した。洗浄後のオートクレーブは上記ポリウレタン樹脂の合成に再使用したところ、特に異常な現象は認められず、反応は順調であった。   In order to wash the viscous material remaining in the autoclave, 200 g of BHET (purity: 98 wt%) pellets were added to the autoclave, and the mixture was heated to 200 ° C. and stirred for 20 minutes. After 20 minutes, stirring was stopped, and the solution was poured from a lower discharge port into a SUS vat to be solidified. When the undissolved dissolved solution poured out was observed with the naked eye, it was confirmed that the viscous material was uniformly dissolved. Next, the autoclave was lowered to 90 ° C., 200 parts by weight of 90 ° C. warm water was added, and the remaining contents were dissolved by stirring for 10 minutes and discharged to a drain tank. This hot water washing was repeated twice, and then hot air drying was performed. When the autoclave after washing was reused in the synthesis of the polyurethane resin, no abnormal phenomenon was observed, and the reaction was smooth.

(実施例5)
20mmφの溶融押出機と43mmφの溶融押出機を備え、それぞれの押出機から押出した溶融ポリマーを移送配管の途中で合流させ、その直後にスタティックミキサーで混合してから2種のポリマーを均一に混合したポリマーをノズルから押出して紡糸用ペレットを製造するペレット製造設備を準備し、該スタティックミキサーとしてセラミック製1/2インチの翼を30エレメント有するタイプをセットした。
(Example 5)
Equipped with a 20mmφ melt extruder and 43mmφ melt extruder, the molten polymers extruded from each extruder are merged in the middle of the transfer pipe, and immediately after that they are mixed by a static mixer and then the two polymers are mixed uniformly. A pellet production facility for producing spinning pellets by extruding the polymer obtained from a nozzle was prepared, and a type having 30 elements of ceramic 1/2 inch blades was set as the static mixer.

着色成分としてカーボンブラックを30重量%均一に分散含有する固有粘度(IV)0.62のポリエチレンテレフタレート(マスターバッチポリマー)とカーボンブラックを含まない固有粘度(IV)0.62のポリエチレンテレフタレートを準備し、該マスターバッチポリマーを前記20mmφの溶融押出機で押出温度280℃、押出速度6kg/hrで溶融押出しし、一方該ポリエチレンテレフタレートを前記43mmφの溶融押出機で押出温度280℃、押出速度54kg/hrで溶融押出しすると共にそれぞれの溶融ポリマーを移送配管の途中で合流させてから280℃に加熱された前記スタティックミキサーでさらに混合し、該ミキサーの先端に設置した5mmφのノズルからストランドとして押出し、25℃で水冷してストランドカッターに掛けて紡糸用の黒着色ポリエチレンテレフタレートペレットを製造した。得られた黒着色ポリエチレンテレフタレートペレットのカーボンブラック含有量は3.0重量%であり、固有粘度は0.60であった。   Prepare polyethylene terephthalate (master batch polymer) with intrinsic viscosity (IV) 0.62 containing 30% by weight of carbon black uniformly as a coloring component and polyethylene terephthalate with intrinsic viscosity (IV) 0.62 without carbon black. The master batch polymer was melt-extruded with the 20 mmφ melt extruder at an extrusion temperature of 280 ° C. and an extrusion speed of 6 kg / hr, while the polyethylene terephthalate was extruded with the 43 mmφ melt extruder at an extrusion temperature of 280 ° C. and an extrusion speed of 54 kg / hr. Then, the molten polymers were joined together in the middle of the transfer pipe and further mixed with the static mixer heated to 280 ° C., and extruded as a strand from a 5 mmφ nozzle installed at the tip of the mixer. Cool with water It was prepared black colored polyethylene terephthalate pellets for spinning over the cutter. The resulting black colored polyethylene terephthalate pellets had a carbon black content of 3.0% by weight and an intrinsic viscosity of 0.60.

このペレット製造を5時間行ってから、それぞれの溶融押出機へのポリマーの供給を停止した。溶融押出機を停台するにあたり、それぞれの溶融押出機の投入ゾーン(供給ゾーン)を常温まで降温し、かつ溶融ゾーン以降のゾーン部を240℃に降温した後、BHET(純度:98重量%)のペレットを20mmφの溶融押出機へは2kg、43mmφの溶融押出機へは18kg投入して溶融吐出させた。続いて、押出機の溶融ゾーン以降のゾーン部を200℃にまで降温してから上記と同じ手順でBHETのペレットを投入して再度溶融吐出をさせた。次いで、押出機の溶融ゾーン以降のゾーン部を160℃にまで降温してから上記と同じ手順でBHETのペレットを投入して3度目の溶融吐出を行い、押出機、スタティックミキサー、ノズル及びそれらの配管内を洗浄した。3度目の溶融吐出物にはカーボンブラックによる着色は認められなかった。   After this pellet production was performed for 5 hours, the supply of the polymer to each melt extruder was stopped. In stopping the melt extruder, the charging zone (feeding zone) of each melt extruder is cooled to room temperature, and the zone after the melt zone is cooled to 240 ° C., and then BHET (purity: 98% by weight) 2 kg of the pellets were put into a 20 mmφ melt extruder and 18 kg were put into a 43 mmφ melt extruder and melted and discharged. Subsequently, after the temperature of the zone part after the melting zone of the extruder was lowered to 200 ° C., BHET pellets were charged in the same procedure as described above, and melt discharge was performed again. Next, after the temperature of the zone after the melting zone of the extruder is lowered to 160 ° C., BHET pellets are charged in the same procedure as described above, and the third melt discharge is performed, and the extruder, static mixer, nozzle, and their The piping was cleaned. Coloring with carbon black was not observed in the third melt discharge.

3回目の洗浄処理を行った後、2つの溶融押出機の温度条件を最初の押出条件に戻し、上記カーボンブラックを含まない固有粘度(IV)0.62のポリエチレンテレフタレートをそれぞれの溶融押出機で溶融押出しして着色されていない紡糸用ポリエチレンテレフタレートペレットを製造した。このペレットを肉眼で観察したところ、カーボンブラックの混入は認められず、金属部材だけではなく、セラミック部材も充分洗浄されていることが確認できた。   After performing the third washing treatment, the temperature conditions of the two melt extruders were returned to the original extrusion conditions, and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.62 not containing carbon black was added to each melt extruder. Polyethylene terephthalate pellets for spinning which were not colored by melt extrusion were produced. When this pellet was observed with the naked eye, it was confirmed that carbon black was not mixed, and that not only the metal member but also the ceramic member was sufficiently washed.

(比較例1)
洗浄剤としてBHETの替わりにエチレングリコール500kg及び水酸化ナトリウム80gを用い、かつ洗浄槽に還流コンデンサーを設置し、洗浄時の内温を198〜200℃に維持し、常圧下で洗浄処理を行う以外は実施例1と同じように行った。この洗浄処理を2時間行った後、該上蓋に設けた覗き窓から内部を観察したところ、未だ固着樹脂が残っており、内溶液は不透明であった。引き続き洗浄処理を継続したところ、4時間掛かってようやく内溶液が透明になったことが確認された。
(Comparative Example 1)
Aside from using 500 kg of ethylene glycol and 80 g of sodium hydroxide in place of BHET as the cleaning agent, installing a reflux condenser in the cleaning tank, maintaining the internal temperature during cleaning at 198 to 200 ° C., and performing cleaning processing under normal pressure Was carried out in the same manner as in Example 1. After performing this washing process for 2 hours, when the inside was observed through a viewing window provided on the upper lid, the fixing resin still remained and the inner solution was opaque. When the washing process was continued, it was confirmed that the inner solution finally became transparent after 4 hours.

本発明の洗浄方法は、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂を製造したり、これらの樹脂を使用する産業への利用が期待される。
The cleaning method of the present invention is expected to be used in the production of thermoplastic resins having —COO— and / or —CONH— groups in the polymer main chain, or in industries using these resins.

Claims (13)

ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂が付着している無機部材を、溶融ビス(2−ヒドロキシエチル)テレフタレートと接触させ、該熱可塑性樹脂を除去することからなる無機部材の洗浄方法。   Contacting an inorganic member having a thermoplastic resin having a —COO— and / or —CONH— group attached to the polymer main chain with molten bis (2-hydroxyethyl) terephthalate to remove the thermoplastic resin; A method for cleaning an inorganic member comprising: 熱可塑性樹脂が、ポリエステル樹脂、ポリアミド樹脂又はポリウレタン樹脂である請求項1に記載の洗浄方法。   The cleaning method according to claim 1, wherein the thermoplastic resin is a polyester resin, a polyamide resin, or a polyurethane resin. 無機部材が、金属製、ガラス製又はセラミック製の部材である請求項1に記載の洗浄方法。   The cleaning method according to claim 1, wherein the inorganic member is a metal, glass, or ceramic member. 無機部材が、熱可塑性樹脂の重合反応器の内壁又は該重合反応器内に設けられた部材である請求項1〜3のいずれか1項に記載の洗浄方法。   The cleaning method according to any one of claims 1 to 3, wherein the inorganic member is an inner wall of a polymerization reactor of a thermoplastic resin or a member provided in the polymerization reactor. 無機部材が、熱可塑性樹脂の重合工程に設けられた配管、連結部材又は検出端である請求項1〜3のいずれか1項に記載の洗浄方法。   The cleaning method according to any one of claims 1 to 3, wherein the inorganic member is a pipe, a connecting member, or a detection end provided in the polymerization step of the thermoplastic resin. 無機部材が、熱可塑性樹脂の溶融成形装置の内壁又は溶融成形装置内に設けられた部材である請求項1〜3のいずれか1項に記載の洗浄方法。   The cleaning method according to claim 1, wherein the inorganic member is an inner wall of a thermoplastic resin melt molding apparatus or a member provided in the melt molding apparatus. 無機部材が、熱可塑性樹脂の溶融押出機の内壁又は溶融押出機内に設けられた部材である請求項1〜3のいずれか1項に記載の洗浄方法。   The cleaning method according to claim 1, wherein the inorganic member is an inner wall of a thermoplastic resin melt extruder or a member provided in the melt extruder. 溶融押出機に、ビス(2−ヒドロキシエチル)テレフタレートを投入し、溶融混練することからなる請求項7に記載の洗浄方法。   The cleaning method according to claim 7, wherein bis (2-hydroxyethyl) terephthalate is charged into a melt extruder and melt kneaded. 溶融ビス(2−ヒドロキシエチル)テレフタレートの温度が120〜300℃である請求項1〜8のいずれか1項に記載の洗浄方法。   The temperature of molten bis (2-hydroxyethyl) terephthalate is 120-300 degreeC, The washing | cleaning method of any one of Claims 1-8. 溶融ビス(2−ヒドロキシエチル)テレフタレートに接触させた後、さらにエチレングリコールで洗浄する請求項1に記載の洗浄方法。   The cleaning method according to claim 1, further comprising washing with ethylene glycol after contacting with molten bis (2-hydroxyethyl) terephthalate. さらに、熱水で洗浄を行う請求項1又は10に記載の洗浄方法。   Furthermore, the washing | cleaning method of Claim 1 or 10 which wash | cleans with hot water. ビス(2−ヒドロキシエチル)テレフタレートからなる、ポリマー主鎖に−COO−及び/又は−CONH−の基を有する熱可塑性樹脂が付着している無機部材の洗浄剤。   A cleaning agent for inorganic members made of bis (2-hydroxyethyl) terephthalate, wherein a thermoplastic resin having a group of —COO— and / or —CONH— is attached to the polymer main chain. 無機部材が溶融成形装置の内壁又は該装置内に設けた部材である、請求項12に記載の洗浄剤。
The cleaning agent according to claim 12, wherein the inorganic member is an inner wall of a melt molding apparatus or a member provided in the apparatus.
JP2004005051A 2004-01-13 2004-01-13 Cleaning method for inorganic materials Expired - Lifetime JP4344621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005051A JP4344621B2 (en) 2004-01-13 2004-01-13 Cleaning method for inorganic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005051A JP4344621B2 (en) 2004-01-13 2004-01-13 Cleaning method for inorganic materials

Publications (2)

Publication Number Publication Date
JP2005200443A JP2005200443A (en) 2005-07-28
JP4344621B2 true JP4344621B2 (en) 2009-10-14

Family

ID=34819483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005051A Expired - Lifetime JP4344621B2 (en) 2004-01-13 2004-01-13 Cleaning method for inorganic materials

Country Status (1)

Country Link
JP (1) JP4344621B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090863A (en) * 2005-08-31 2007-04-12 Nippon Polyurethane Ind Co Ltd Method for cleaning extruder for thermoplastic polyurethane resin
US20100175720A1 (en) 2007-05-29 2010-07-15 Asahi Kasei Chemicals Corporation Cleaning agent and process for cleaning resin-molding machine using the same
CN102728577B (en) * 2012-06-21 2014-11-19 信义汽车部件(芜湖)有限公司 Method for improving surface tension of glass plastic accessory
CN110268016B (en) * 2017-02-14 2022-05-03 日东化工株式会社 Resin cleaning agent and method for melt molding polyester resin
CN112055722B (en) * 2018-05-04 2022-09-30 巴斯夫欧洲公司 Method for extending the service life of a reactor comprising a distillation apparatus
CN111957715A (en) * 2020-07-23 2020-11-20 青海大学 Process for recycling waste crystalline silicon solar cell modules

Also Published As

Publication number Publication date
JP2005200443A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4908415B2 (en) Method for producing useful components from dyed polyester fiber
Karayannidis et al. Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis
US8309683B2 (en) Thermal crystallization of a molten polyester polymer in a fluid
CN103289122A (en) Production method for depolymerizing waste polyester fibers through utilizing ethylene glycol method
JPH08325407A (en) Method for recycling polymer mixture containing polyethyleneterephthalate
JP2007505969A (en) Thermal crystallization of polyester pellets in liquids
JP5178189B2 (en) Method for producing polyester resin solution
CN103360260B (en) Preparation technology of ethylene glycol terephthalate and preparation method of polyester
JP4344621B2 (en) Cleaning method for inorganic materials
EP0547249A1 (en) Method of regenerating coated plastic wastes
Datye et al. Poly (ethylene terephthalate) waste and its utilisation: A review
JP4937521B2 (en) Method for recovering high-purity monomer from polyester, high-purity monomer, polyester
JP2005255963A (en) Method for recovering ester monomer from fibrous polyester
TW401434B (en) Process for recovering a solid microporous polyester polymer from a recycle stream and products made thereby
EP2123705B1 (en) Method for separation/removal of foreign material from polyester fiber waste
JP4571395B2 (en) Process for obtaining aromatic dihydroxy compounds from waste aromatic polycarbonates
JP4712225B2 (en) Method for producing aromatic polycarbonate
JP3598018B2 (en) Polyester continuous production method
JP4606844B2 (en) Method for obtaining an aqueous alkali metal salt solution of an aromatic dihydroxy compound purified from waste aromatic polycarbonate
JP2006045371A (en) Method for obtaining aromatic dihydroxy compound from waste aromatic polycarbonate
CN111116876A (en) Production method for inhibiting oligomer in PET polyester forming process by using aromatic hydroxy sulfonate
JP3910098B2 (en) Cleaning method for polyester resin fixing member
CN108948341B (en) Device and method for preparing aromatic polycarbonate
CN108727579B (en) Device and method for preparing aromatic polycarbonate
JP6645139B2 (en) Method for cleaning polyester manufacturing apparatus and method for manufacturing polyester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term