JP4343618B2 - Method for producing polyanion type lithium iron composite oxide and battery using the same - Google Patents

Method for producing polyanion type lithium iron composite oxide and battery using the same Download PDF

Info

Publication number
JP4343618B2
JP4343618B2 JP2003297164A JP2003297164A JP4343618B2 JP 4343618 B2 JP4343618 B2 JP 4343618B2 JP 2003297164 A JP2003297164 A JP 2003297164A JP 2003297164 A JP2003297164 A JP 2003297164A JP 4343618 B2 JP4343618 B2 JP 4343618B2
Authority
JP
Japan
Prior art keywords
iron
polyanion
composite oxide
lithium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003297164A
Other languages
Japanese (ja)
Other versions
JP2005067924A (en
Inventor
哲也 田村
辻岡  章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003297164A priority Critical patent/JP4343618B2/en
Publication of JP2005067924A publication Critical patent/JP2005067924A/en
Application granted granted Critical
Publication of JP4343618B2 publication Critical patent/JP4343618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウム二次電池の正極活物質に用いることのできるポリアニオン型リチウム鉄複合酸化物の製造方法及びそれを用いた電池に関する。   The present invention relates to a method for producing a polyanion-type lithium iron composite oxide that can be used as a positive electrode active material of a lithium secondary battery, and a battery using the same.

リチウム二次電池は、情報通信機器などの電源として広く普及しており、近年ではさらに、エネルギー、環境問題の観点からも、自動車などの動力源として応用が検討され、実用化もされるようになってきた。このため、これまで用いられてきたコバルト等に代えて、資源量が豊富な鉄を構成元素として含む、リチウム鉄複合酸化物を正極材料とすることが試みられている。   Lithium secondary batteries are widely used as a power source for information and communication equipment, and in recent years, in view of energy and environmental issues, their application as a power source for automobiles is being studied and put into practical use. It has become. For this reason, it has been attempted to use a lithium iron composite oxide containing, as a constituent element, iron having abundant resources as a positive electrode material instead of cobalt or the like that has been used so far.

その試みの一つとして、例えば、特開平9−134725号公報(特許文献1)に、オリビン構造を有するLiFePO4、LiFeVO4等を正極活物質として用いたリチウム二次電池が示されている。これらのリチウム鉄複合酸化物は、ポリアニオン型と総称されるもので、リン、バナジウム、硫黄などの元素を酸素格子の中に導入することで、鉄の+2価と+3価の間の酸化還元電位が高くなり、優れたエネルギー密度を達成できると言われている(非特許文献1)。 As one of the attempts, for example, Japanese Patent Laid-Open No. 9-134725 (Patent Document 1) discloses a lithium secondary battery using LiFePO 4 , LiFeVO 4, or the like having an olivine structure as a positive electrode active material. These lithium iron composite oxides are collectively referred to as polyanion type, and by introducing elements such as phosphorus, vanadium, and sulfur into the oxygen lattice, an oxidation-reduction potential between +2 and +3 valences of iron. It is said that the high energy density can be achieved (Non-patent Document 1).

ポリアニオン型リチウム鉄複合酸化物は、放電状態ではリチウムを吸蔵しており、鉄は、+2の原子価を有する。従来はこれを合成するために、シュウ酸鉄二水和物(FeC・2HO)や酢酸鉄(Fe(CHCO)などの、原子価が+2価の鉄化合物を鉄源に用いていた(特許文献2)。しかし、+2価の鉄化合物は安定性に乏しく、高価である。また、合成の際に雰囲気や共存化合物の影響で酸化や還元を受けやすい。さらに、これらの鉄源は焼成時に多量のガスを発生し、それに伴ってかさ密度も低下するため、合成がしにくいという問題もある。 The polyanion-type lithium iron composite oxide occludes lithium in a discharged state, and iron has a valence of +2. Conventionally, in order to synthesize this, an iron compound having a valence of +2 such as iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) or iron acetate (Fe (CH 3 CO 2 ) 2 ) is used. It was used as an iron source (Patent Document 2). However, + 2-valent iron compounds have poor stability and are expensive. Further, it is susceptible to oxidation and reduction due to the influence of the atmosphere and coexisting compounds during synthesis. In addition, these iron sources generate a large amount of gas during firing, and the bulk density is reduced accordingly, which makes it difficult to synthesize.

一方、+3価の鉄化合物を原料に用いて前駆体を合成した後にこれを還元するという方法も報告されているが、工程が複雑になるという問題がある(非特許文献2、3)。また、金属鉄を用いてFePO(+3価の鉄化合物)を合成する方法(非特許文献4)も報告されているが、LiFePO4を直接合成する方法はこれまでなかった。
「リチウムイオン電池の次世代正極材料」山田敦夫、スイッチング電源・バッテリーシステムシンポジウム(2003年4月)講演要旨集、F5-1-1 Seung-Taek Myung et al., 電気化学および工業物理化学、71(3), 177(2003) Pier Paolo Prosiniet al., J. Electrochem. Soc., 149(7), A886(2002) 山本貴文、岡田重人、山木準一、2003年電気化学会創立70周年記念大会講演要旨集(H15年4月)、3A19, p60 特開平9−134725号公報 特開2003−034534号公報
On the other hand, a method of synthesizing a precursor using a + trivalent iron compound as a raw material and then reducing it has been reported, but there is a problem that the process becomes complicated (Non-patent Documents 2 and 3). Although using metallic iron FePO 4 (+3 valent iron compound) method of synthesizing a (non-patent document 4) have also been reported, a method for direct synthesis of LiFePO 4 was not before.
"Next-generation cathode materials for lithium-ion batteries" Yasuo Yamada, Abstracts of Switching Power Supply / Battery Systems Symposium (April 2003), F5-1-1 Seung-Taek Myung et al., Electrochemistry and industrial physical chemistry, 71 (3), 177 (2003) Pier Paolo Prosiniet al., J. Electrochem. Soc., 149 (7), A886 (2002) Takafumi Yamamoto, Shigeto Okada, Junichi Yamaki, Abstracts of the 70th Anniversary Conference of the Electrochemical Society of Japan (April 2015), 3A19, p60 JP-A-9-134725 JP 2003-034534 A

本発明者らは鋭意検討を重ねた結果、+2価より原子価の低い鉄含有物質を酸化することで酸化・還元状態を制御しながらポリアニオン型リチウム鉄複合酸化物を容易に合成できることを見出し本発明に到達した。   As a result of intensive studies, the present inventors have found that a polyanion-type lithium iron composite oxide can be easily synthesized by controlling an oxidation / reduction state by oxidizing an iron-containing substance having a valence lower than +2. The invention has been reached.

すなわち本発明は、少なくとも、リチウム含有物質と、+2価より原子価の低い鉄含有物質と、ポリアニオン形成元素がリンであるポリアニオン形成元素含有物質と、+2価より原子価の高い鉄含有物質である酸化剤とを混合し、300〜1000℃の温度範囲で焼成することを特徴とし、特に、この酸化剤として、Feを用いることを特徴とするポリアニオン型リチウム鉄複合酸化物の製造方法を提供するものである。 That is, the present invention is at least a lithium-containing material, an iron-containing material having a valence lower than +2 , a polyanion-forming element-containing material in which the polyanion-forming element is phosphorus, and an iron-containing material having a valence higher than +2. an oxidizing agent are mixed, characterized by firing at a temperature range of 300 to 1000 ° C., in particular, the production method as the oxidizing agent, polyanionic lithium-iron composite oxide which comprises using a Fe 3 O 4 Is to provide.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、ポリアニオン型リチウム鉄複合酸化物とは、基本的にリチウムと鉄とポリアニオン形成元素を酸素格子の空隙に有し、充電によってリチウムの脱離と鉄の+2価から+3価への酸化が起こり、放電によってリチウムの挿入と鉄の+3価から+2価への還元が起こるような複合酸化物である。一例としては、LiFePOが挙げられる。ポリアニオン形成元素としては、Pが挙げられる。なお、ここで「基本的に」とは、これらの構成元素の一部を他の元素で置換した化合物も含むことを意味する。 In the present invention, the polyanion-type lithium iron composite oxide basically has lithium, iron, and a polyanion-forming element in the void of the oxygen lattice, and is desorbed from lithium and oxidized from +2 to +3 by charging. This is a composite oxide in which lithium insertion and iron reduction from +3 to +2 occur due to electric discharge. An example is LiFePO 4 . An example of the polyanion-forming element is P. Here, “basically” means that a compound in which some of these constituent elements are substituted with other elements is included.

本発明のポリアニオン型リチウム鉄複合酸化物の製造方法は、少なくとも、リチウム含有物質と、+2価より原子価の低い鉄含有物質と、ポリアニオン形成元素がリンであるポリアニオン形成元素含有物質と、+2価より原子価の高い鉄含有物質である酸化剤とを混合して混合物を得る原料混合工程と、該混合物を焼成する焼成工程とを含んでなることを特徴とする。また、この酸化剤として+2価より原子価の高い鉄含有物質を用いれば、酸化剤が鉄源の一部にもなり、目的のリチウム鉄複合酸化物を安価で簡単に製造することが可能になる。 The method for producing a polyanion-type lithium iron composite oxide of the present invention includes at least a lithium-containing material, an iron-containing material having a valence lower than +2 , a polyanion-forming element-containing material in which the polyanion-forming element is phosphorus, It is characterized by comprising a raw material mixing step of mixing an oxidizing agent that is an iron-containing substance having a higher valence and a baking step of baking the mixture. In addition, if an iron-containing substance having a valence higher than +2 is used as the oxidant, the oxidant becomes a part of the iron source, and the target lithium iron composite oxide can be easily manufactured at low cost. Become.

本発明で用いる+2価より原子価の低い鉄含有物質としては、金属鉄、Fe(CO)等が挙げられる。特に、金属鉄は、安価で取り扱いやすいため好ましい。 Examples of the iron-containing substance having a lower valence than +2 used in the present invention include metallic iron and Fe (CO) 5 . In particular, metallic iron is preferable because it is inexpensive and easy to handle.

本発明で用いるリチウム化合物としては、LiCO、Li(OH)、Li(OH)・HO、LiNO、LiHPO等が挙げられる。 Examples of the lithium compound used in the present invention include Li 2 CO 3 , Li (OH), Li (OH) · H 2 O, LiNO 3 , LiH 2 PO 4 and the like.

ポリアニオン形成元素としては、リンが挙げられる。ポリアニオン形成元素がリンの場合、その原料となる物質としては、NHPO、(NHHPO、P10等、あるいは亜リン酸塩などを用いることができる。また、リチウム源とリン源を兼ねた化合物として、Li:Pが1:1で含まれるような、LiHPO等の化合物を用いることもできる。さらに、FePO4・2HOのような、リン源と鉄源と酸化剤を兼ねた化合物も用いることができる An example of the polyanion-forming element is phosphorus . When the polyanion-forming element is phosphorus, NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , P 4 O 10 or the like, or phosphite can be used as a raw material. A compound such as LiH 2 PO 4 in which Li: P is contained at a ratio of 1: 1 can also be used as a compound that serves as both a lithium source and a phosphorus source. Furthermore, a compound that combines a phosphorus source, an iron source, and an oxidizing agent, such as FePO 4 .2H 2 O, can also be used .

また、本発明で用いる酸化剤としては、Fe、Fe、FePO等の鉄化合物が挙げられる。特にFe、Fe、FePO等の常温の空気中で安定な物質を用いると、組成と酸化の程度を容易に制御できる。反応雰囲気は炭素質の添加や雰囲気ガスの選択や原料化合物の選択の影響も受けるので、酸化剤の選択とそれらの混合比は、原料中の元素組成比と反応性と反応雰囲気の酸化状態に応じて決定、調節すればよい。特に金属鉄とFeの混合物を不活性ガス雰囲気下で用いれば、Feが金属鉄の酸化剤として作用するため、製造したいポリアニオン型リチウム鉄複合酸化物中の鉄の価数を+2価に制御することができる。
As the oxidizing agent used in the present invention, Fe 3 O 4, Fe 2 O 3, FePO iron compounds such as 4. In particular, when a material stable in air at normal temperature such as Fe 3 O 4 , Fe 2 O 3 , FePO 4 is used, the composition and the degree of oxidation can be easily controlled. Since the reaction atmosphere is also affected by the addition of carbonaceous material, the selection of atmospheric gas, and the selection of raw material compounds, the selection of oxidants and their mixing ratio depend on the elemental composition ratio, reactivity, and oxidation state of the reaction atmosphere Decide and adjust accordingly. In particular, when a mixture of metallic iron and Fe 3 O 4 is used in an inert gas atmosphere, Fe 3 O 4 acts as an oxidizing agent for metallic iron, so the valence of iron in the polyanionic lithium iron composite oxide to be produced Can be controlled to +2.

次に、混合物の焼成条件は、300〜1000℃の温度範囲が好ましく、より好ましくは450〜700℃の範囲で行なう。300℃より低い温度ではポリアニオン型複合酸化物相が十分に成長せず、1000℃より高い温度では結晶粒が成長しすぎて表面積が少なくなり、正極活物質としての特性が低下するため好ましくない。   Next, the firing conditions of the mixture are preferably in the temperature range of 300 to 1000 ° C, more preferably in the range of 450 to 700 ° C. When the temperature is lower than 300 ° C., the polyanion type complex oxide phase does not grow sufficiently, and when the temperature is higher than 1000 ° C., the crystal grains grow too much to reduce the surface area and the characteristics as the positive electrode active material are deteriorated.

鉄含有物質の粒子径は0.1〜1000μmの範囲が好ましく、より好ましくは1〜150μmの範囲のものが用いやすい。1000μmより粒子径が大きい場合、接触面積が小さくなるために固相反応が進行しにくく、0.1μmより粒子径が小さい場合、特に金属鉄の粉末などの場合には発火しやすく、取り扱いが難しいので好ましくない。   The particle size of the iron-containing substance is preferably in the range of 0.1 to 1000 μm, more preferably in the range of 1 to 150 μm. When the particle diameter is larger than 1000 μm, the contact area is small, so that the solid phase reaction is difficult to proceed. When the particle diameter is smaller than 0.1 μm, especially in the case of metallic iron powder, it is easy to ignite and difficult to handle. Therefore, it is not preferable.

本発明の製造方法により、原子価の制御性があり、安価で簡単にリチウム鉄複合酸化物を製造することができる。   According to the production method of the present invention, the lithium iron composite oxide can be produced easily and inexpensively with controllability of valence.

以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.

実施例1
金属鉄を0.72g(粒子径 45μm)、Feを2.99g(粒子径 5μm)、LiHPOを5.37g秤量し、適量のアセトンを添加してボールミルで混合した後、乾燥して原料混合物を得た。
Example 1
After weighing 0.72 g of metal iron (particle diameter 45 μm), 2.99 g of Fe 3 O 4 (particle diameter 5 μm) and 5.37 g of LiH 2 PO 4 , adding an appropriate amount of acetone and mixing with a ball mill, The raw material mixture was obtained by drying.

この原料混合物をArガスの流通下、400℃で24時間焼成したところ、Fe(JCPDSカード6−696)、Fe(JCPDSカード19−629)、LiPO(JCPDSカード26−1177)の回折線が見られ、LiFePOと思われる相の回折線は弱く不明瞭であった。 When this raw material mixture was calcined at 400 ° C. for 24 hours under the flow of Ar gas, Fe (JCPDS card 6-696), Fe 3 O 4 (JCPDS card 19-629), LiPO 3 (JCPDS card 26-1177) A diffraction line was observed, and a diffraction line of a phase considered to be LiFePO 4 was weak and unclear.

そこで、原料混合物2.42gをArガスの流通下、600℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに600℃で24時間焼成し、生成物2.15gを得た。図1にこの生成物のX線回折を示す。得られた生成物は、LiFePO(JCPDSカード40−1499、Triphylite)と良く一致していた。 Therefore, 2.42 g of the raw material mixture was baked at 600 ° C. for 24 hours under the flow of Ar gas, left to cool, taken out and remixed in a mortar, and further baked at 600 ° C. for 24 hours to obtain 2.15 g of product. . FIG. 1 shows the X-ray diffraction of this product. The product obtained was in good agreement with LiFePO 4 (JCPDS card 40-1499, Triphylite).

この生成物を正極活物質に用いてリチウム二次電池を作成した。試験用セルは以下のように作製した。生成物粉末70重量部に導電材としてアセチレンブラックを25重量部混合し、さらにバインダーとして5重量部のポリテトラフルオロエチレン(PTFE)を添加、混合して試験用正極体とした。この正極体を一定の厚みに延ばし、直径10mmの円形に打抜き、120℃で12時間真空乾燥したところ、重量は37mgであった。負極には金属リチウムを用い、ポリエチレン製セパレーターに電解液として1M−LiPF/EC+EMC(1:2)溶液を浸み込ませてセルを組み立てた。これを用いた充放電試験の結果、充放電試験の電流密度は、0.2mA/cm、充電は4.2V、放電は2.5V(vs.Li/Li+ )まで行ったところ、放電容量は生成物粉末に対して80mAh/gであった。 Using this product as the positive electrode active material, a lithium secondary battery was prepared. The test cell was produced as follows. 25 parts by weight of acetylene black as a conductive material was mixed with 70 parts by weight of the product powder, and 5 parts by weight of polytetrafluoroethylene (PTFE) was further added and mixed as a binder to obtain a test positive electrode body. When this positive electrode body was extended to a certain thickness, punched out into a circle having a diameter of 10 mm, and vacuum dried at 120 ° C. for 12 hours, the weight was 37 mg. Metal lithium was used for the negative electrode, and a cell was assembled by immersing a 1M-LiPF 6 / EC + EMC (1: 2) solution as an electrolyte in a polyethylene separator. As a result of the charge / discharge test using this, the current density of the charge / discharge test was 0.2 mA / cm 2 , the charge was 4.2 V, and the discharge was 2.5 V (vs. Li / Li +). Was 80 mAh / g based on the product powder.

実施例2
実施例1の45μmの金属鉄の代わりに通常の金属鉄粉(150μm以下成分95%含有)を用いて同様の原料混合物を調製した。600℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに600℃で24時間焼成したところ、X線回折ではLiFePOの他にFeとLiFe(PO(JCPDSカード43−526)が検出された。同じ原料混合物を700℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに700℃で24時間焼成したところ、X線回折ではLiFePOが検出され、実施例1と同様の方法で作成した電池の放電容量は32mAh/gであった。
Example 2
A similar raw material mixture was prepared using ordinary metal iron powder (containing 95% of component of 150 μm or less) in place of the 45 μm metal iron of Example 1. It was baked at 600 ° C. for 24 hours, allowed to cool, taken out, remixed in a mortar, and further baked at 600 ° C. for 24 hours. In X-ray diffraction, in addition to LiFePO 4 , Fe and Li 3 Fe 2 (PO 4 ) 3 ( JCPDS card 43-526) has been detected. The same raw material mixture was baked at 700 ° C. for 24 hours, allowed to cool, taken out, remixed in a mortar, and further baked at 700 ° C. for 24 hours. LiFePO 4 was detected by X-ray diffraction, and the same method as in Example 1 The discharge capacity of the battery prepared in (3) was 32 mAh / g.

実施例3
実施例1の原料混合物0.81gにショ糖0.24gを含む水溶液を添加し、混合後に350℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに700℃で24時間焼成したところ、X線回折からはLiFePOの他にFeが検出された。
Example 3
An aqueous solution containing 0.24 g of sucrose is added to 0.81 g of the raw material mixture of Example 1, and after mixing, baked at 350 ° C. for 24 hours, left to cool, taken out and remixed in a mortar, and further baked at 700 ° C. for 24 hours. As a result, Fe was detected in addition to LiFePO 4 from X-ray diffraction.

そこで、金属鉄を減らし、その分のFe量をFeで補完した混合物、すなわち金属鉄を0.50g、Feを2.22g、LiHPOを3.92g秤量し、適量のアセトンを添加してボールミルで混合した後、乾燥して原料混合物を得た。この原料混合物0.80gにショ糖0.24gを含む水溶液を添加し、混合後に350℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに700℃で24時間焼成したところ、X線回折ではLiFePOとFeが検出されたが、Feの回折線は上述のFeとFeの当量混合物の場合よりも有意に弱くなっていた。 Therefore, reducing the metallic iron, the mixture was supplemented by that amount of Fe content in Fe 3 O 4, that is, the metallic iron 0.50 g, 2.22 g of Fe 3 O 4, the LiH 2 PO 4 and 3.92g weighed, An appropriate amount of acetone was added and mixed with a ball mill, and then dried to obtain a raw material mixture. An aqueous solution containing 0.24 g of sucrose was added to 0.80 g of this raw material mixture, baked at 350 ° C. for 24 hours after mixing, taken out after standing to cool, remixed in a mortar, and further baked at 700 ° C. for 24 hours. In X-ray diffraction, LiFePO 4 and Fe were detected, but the diffraction line of Fe was significantly weaker than that of the above-mentioned equivalent mixture of Fe and Fe 3 O 4 .

実施例4
金属鉄を0.85g(粒子径 45μm)、Feを2.43g、LiHPOを4.75g秤量し、適量のアセトンを添加してボールミルで混合した後、乾燥して原料混合物を得た。
Example 4
0.85 g of metallic iron (particle diameter 45 μm), 2.43 g of Fe 2 O 3 and 4.75 g of LiH 2 PO 4 were weighed, added with an appropriate amount of acetone, mixed with a ball mill, and then dried to obtain a raw material mixture Got.

この原料混合物をArガスの流通下、600℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに600℃で24時間焼成し、生成物を得た。X線回折からはLiFePOのほかにFe、Fe、LiPOが検出された。 This raw material mixture was baked at 600 ° C. for 24 hours under the flow of Ar gas, allowed to cool, taken out, remixed in a mortar, and further baked at 600 ° C. for 24 hours to obtain a product. In addition to LiFePO 4 , Fe, Fe 2 O 3 and LiPO 3 were detected from X-ray diffraction.

実施例5
金属鉄を0.43g(粒子径 45μm)、FePO・2HOを2.88g、LiPOを0.89g秤量し、適量のアセトンを添加してボールミルで混合した後、乾燥して原料混合物を得た。
Example 5
0.43 g of metallic iron (particle diameter 45 μm), 2.88 g of FePO 4 · 2H 2 O and 0.89 g of Li 3 PO 4 were weighed, added with an appropriate amount of acetone, mixed with a ball mill, and then dried. A raw material mixture was obtained.

この原料混合物をArガスの流通下、600℃で24時間焼成し、放冷後取り出して乳鉢で再混合し、さらに600℃で24時間焼成し、生成物を得た。X線回折からはLiFePOのほかにFe、LiFe(POが検出された。 This raw material mixture was baked at 600 ° C. for 24 hours under the flow of Ar gas, allowed to cool, taken out, remixed in a mortar, and further baked at 600 ° C. for 24 hours to obtain a product. In addition to LiFePO 4 , Fe and Li 3 Fe 2 (PO 4 ) 3 were detected from X-ray diffraction.

実施例1の方法で製造したLiFePOのX線回折図である。 2 is an X-ray diffraction diagram of LiFePO 4 produced by the method of Example 1. FIG.

Claims (2)

少なくとも、リチウム含有物質と、+2価より原子価の低い鉄含有物質と、ポリアニオン形成元素がリンであるポリアニオン形成元素含有物質と、+2価より原子価の高い鉄含有物質である酸化剤とを混合し、300〜1000℃の温度範囲で焼成することを特徴とするポリアニオン型リチウム鉄複合酸化物の製造方法。 Mix at least a lithium-containing material, an iron-containing material having a valence lower than +2 , a polyanion-forming element-containing material whose polyanion-forming element is phosphorus, and an oxidizing agent that is an iron-containing material having a valence higher than +2 And baking in a temperature range of 300 to 1000 ° C., a method for producing a polyanion-type lithium iron composite oxide. +2価より原子価の高い鉄含有物質がFeであることを特徴とする請求項1記載のポリアニオン型リチウム鉄複合酸化物の製造方法。 The method for producing a polyanion-type lithium iron composite oxide according to claim 1, wherein the iron-containing substance having a valence higher than +2 is Fe 3 O 4 .
JP2003297164A 2003-08-21 2003-08-21 Method for producing polyanion type lithium iron composite oxide and battery using the same Expired - Fee Related JP4343618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297164A JP4343618B2 (en) 2003-08-21 2003-08-21 Method for producing polyanion type lithium iron composite oxide and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297164A JP4343618B2 (en) 2003-08-21 2003-08-21 Method for producing polyanion type lithium iron composite oxide and battery using the same

Publications (2)

Publication Number Publication Date
JP2005067924A JP2005067924A (en) 2005-03-17
JP4343618B2 true JP4343618B2 (en) 2009-10-14

Family

ID=34403101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297164A Expired - Fee Related JP4343618B2 (en) 2003-08-21 2003-08-21 Method for producing polyanion type lithium iron composite oxide and battery using the same

Country Status (1)

Country Link
JP (1) JP4343618B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988879B2 (en) * 2006-08-21 2011-08-02 Lg Chem, Ltd. Method for preparing lithium metal phosphate
JP5216960B2 (en) * 2006-12-26 2013-06-19 日立マクセル株式会社 Positive electrode active material for lithium ion secondary battery
WO2008093551A1 (en) * 2007-01-29 2008-08-07 Kanto Denka Kogyo Co., Ltd. Compound having olivine structure, method for producing the same, positive electrode active material using compound having olivine structure, and nonaqueous electrolyte battery
JP5388822B2 (en) * 2009-03-13 2014-01-15 Jfeケミカル株式会社 Method for producing lithium iron phosphate
KR20110139281A (en) * 2009-03-17 2011-12-28 바스프 에스이 Synthesis of lithium-iron-phosphates under hydrothermal conditions
JP5581065B2 (en) * 2010-01-14 2014-08-27 Jfeケミカル株式会社 Method for producing lithium iron phosphate
KR101661823B1 (en) * 2011-07-20 2016-09-30 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 Method for preparing battery composite material and precursor thereof
JP5424285B2 (en) * 2012-11-30 2014-02-26 日立マクセル株式会社 Method for producing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005067924A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US10205158B2 (en) LMFP cathode materials with improved electrochemical performance
JP5479096B2 (en) Method for producing lithium metal phosphate
JP4660812B2 (en) Lithium transition metal phosphate powder for storage battery
US7824802B2 (en) Method of preparing a composite cathode active material for rechargeable electrochemical cell
KR101718054B1 (en) Positive active material, and electrode and lithium battery containing the material
EP2383820B1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
KR101578973B1 (en) Positive-electrode active material, manufacturing method of the same, and nonaqueous electrolyte rechargeable battery having the same
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2003036889A (en) Lithium secondary battery
JP5300370B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
JP4343618B2 (en) Method for producing polyanion type lithium iron composite oxide and battery using the same
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5820219B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
KR100454238B1 (en) composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR20150120498A (en) High energy materials for a battery and methods for making and use
JP2001006673A (en) Nonaqueous electrolyte lithium secondary battery and its positive electrode active material
KR101668929B1 (en) Secondary battery and method for producing same
US20220263074A1 (en) Positive electrode active material for lithium secondary battery
JP2010027603A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees