WO2008093551A1 - Compound having olivine structure, method for producing the same, positive electrode active material using compound having olivine structure, and nonaqueous electrolyte battery - Google Patents

Compound having olivine structure, method for producing the same, positive electrode active material using compound having olivine structure, and nonaqueous electrolyte battery Download PDF

Info

Publication number
WO2008093551A1
WO2008093551A1 PCT/JP2008/050650 JP2008050650W WO2008093551A1 WO 2008093551 A1 WO2008093551 A1 WO 2008093551A1 JP 2008050650 W JP2008050650 W JP 2008050650W WO 2008093551 A1 WO2008093551 A1 WO 2008093551A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
compound
active material
electrode active
particle size
Prior art date
Application number
PCT/JP2008/050650
Other languages
French (fr)
Japanese (ja)
Inventor
Kumiko Sueto
Shinji Iizuka
Takeshi Shimada
Yuan Gao
Original Assignee
Kanto Denka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co., Ltd. filed Critical Kanto Denka Kogyo Co., Ltd.
Priority to JP2008556048A priority Critical patent/JP5385616B2/en
Publication of WO2008093551A1 publication Critical patent/WO2008093551A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an olivine-type positive electrode active material that is a low-cost, high-safety, battery property having excellent energy density, and a method for producing the same, and a nonaqueous electrolyte battery having a positive electrode including the same About.
  • lithium secondary batteries are widely used as power sources for electronic devices such as mobile phones, video cameras, and laptop computers.
  • electronic devices such as mobile phones, video cameras, and laptop computers.
  • the development of large-sized lithium secondary batteries that are inexpensive and highly safe for electric vehicles and nighttime power is also underway.
  • a layered rock salt type LiCoO 2 has been mainly used as a positive electrode active material of a lithium secondary battery.
  • L i C O_ ⁇ 2 is superior in charge-discharge cycle characteristics, abundance of raw Der Ru cobalt is small, cost is expensive. Therefore, as a positive electrode active material of an alternative, although L i N i 0 2 Ya spinel L i M n 2 0 4 of layered rock-salt type have been studied, L i N I_ ⁇ 2 safety problems of the state of charge Li M n 2 0 4 has a problem in chemical stability at high temperatures.
  • New cathode materials combining these elements have been proposed for small batteries, but new alternative materials have been proposed as positive electrode active materials for large batteries, which are more demanding in terms of cost and safety. It has been desired.
  • L i F e P 0 4 a positive electrode active material of olivine type, cost, safety 'j raw, in recent years developed a superior material in reliability have become active.
  • the olivine-type L i F e P 0 4 has a very high safety and stability, and because it is inexpensive, but that have been noted, electron conductivity low as a problem to practical use There is.
  • As methods for improving this mainly fine particles for increasing the reaction surface area, carbon coating for imparting conductivity, etc. are well known (for example, Non-Patent Document 1). It has been reported that battery characteristics can be improved by using fine particles, especially when the particles are uniform (Non-patent Documents 2 and 3). In addition, regarding the addition of Kibon There are numerous reports (for example, Patent Document 3 and Non-Patent Document 4).
  • Patent Document 1 a solid phase method (Patent Document 1, Non-Patent Document 5) using iron oxalate or iron acetate as a starting material has been generally used as a method for producing olipine-type lithium iron phosphate.
  • Patent Document 2 solid-phase methods using iron phosphate as a raw material
  • sol-gel methods for obtaining finer particles sol-gel methods for obtaining finer particles
  • hydrothermal methods Non-Patent Documents 6 and 7
  • the raw materials are expensive, equipment for preventing the oxidation of divalent iron is necessary, and it is difficult to obtain a target product with uniform and good crystallinity. Therefore, by either method, it is difficult to industrially produce uniform fine particles with inexpensive raw materials and simple manufacturing equipment, and low lithium olivine phosphate with practical battery characteristics is reduced. Manufacturing methods that can be realized at low cost are needed.
  • Patent Document 1 Japanese Patent No. 3484003
  • Patent Document 2 Japanese Patent No. 3319258
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-1511
  • Non-patent document 1 A. Yamada; Electrochemistry 71, o.3, 717-722 (2003)
  • Non-patent document 2 A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye,
  • Non-Patent Document 3 K. Striebel, J. Shim, V. Srinivasan, and J. Newman
  • Non-Patent Document 4 N. Ravet, Y. Chouinard,]. F. Magnan, S. Besner, M. Gauthier, M. Armand
  • Non-Patent Document 5 A. K. Padhi, ⁇ . S. Nanjundaswamy, and J.B. Goodenough,
  • Non-Patent Document 6 S. Yang, P.Y. Zavalji, M. S. Whit tinghain
  • Non Patent Literature 7 J. Yang and J. J. Xu
  • the present invention provides a positive electrode active material that is excellent in cost, safety, and reliability, enables inexpensive industrial production of a high-capacity non-electrolyte battery, a method for producing the same, and a non-aqueous electrolyte battery using the same. For the purpose.
  • the present invention provides the following.
  • a method for producing a compound having an olivine structure comprising mixing an iron source containing iron oxide particles having an average particle size of 500 nm or less, a lithium source, and a phosphorus source, followed by firing.
  • a compound having an olipine structure characterized by mixing an iron source containing iron oxide particles having an average particle size of 500 nm or less, a lithium source and a phosphorus source and carbon or / and a carbon precursor, followed by firing. Production method.
  • a compound having an olivine structure having an average particle size of 1000 nm or less obtained by any one of the methods [1 :) to [9].
  • a positive electrode active material comprising a compound having an olivine structure obtained by any method of [1] to [9] or a compound having an olivine structure of [10] or [11].
  • a nonaqueous electrolyte battery having a positive electrode comprising the positive electrode active material according to [12].
  • FIG. 1 is a TEM photograph of the iron oxide particles produced in Example 1.
  • FIG. 2 is an X-ray diffraction pattern of the iron oxide particles produced in Example 1.
  • FIG. 3 is a SEM photograph of the lithium iron phosphate produced in Example 1.
  • FIG. 4 is an X-ray diffraction pattern of the lithium iron phosphate produced in Example 1.
  • FIG. 5 is a schematic diagram of the lithium secondary battery (coin cell) used in the examples.
  • FIG. 6 is a graph showing the results of a charge / discharge test for the coin cell produced in Example 1. ,
  • FIG. 7 is a S EM photograph of the lithium iron phosphate produced in Example 2.
  • FIG. 8 is an X-ray diffraction pattern of lithium iron phosphate produced in Example 2.
  • FIG. 9 is a TEM photograph of the iron oxide particles produced in Example 3.
  • FIG. 10 is a SEM photograph of the lithium iron phosphate produced in Example 3.
  • FIG. 11 is an SEM photograph of lithium iron phosphate produced in Example 4.
  • FIG. 12 is a TEM photograph of the hematite particles used in Comparative Example 1.
  • FIG. 13 is an SEM photograph of the lithium iron phosphate produced in Comparative Example 1.
  • FIG. 14 is a TEM photograph of the lithium iron phosphate produced in Comparative Example 1.
  • FIG. 15 is a SEM photograph of the lithium iron phosphate produced in Comparative Example 2.
  • FIG. 16 is a schematic diagram of a coin cell.
  • FIG. 17 is a TEM photograph of the iron oxide particles produced in Example 5.
  • FIG. 18 is a SEM photograph of lithium iron phosphate produced in Example 5.
  • FIG. 19 is an X-ray diffraction pattern of the lithium iron phosphate produced in Example 5.
  • a method for producing a compound having an olipine structure, particularly an olipine-type lithium iron phosphate characterized in that an iron source, a lithium source and a phosphorus source are mixed and calcined.
  • the iron source contains iron oxide particles.
  • the iron oxide particles are fine and can be prepared with precisely controlled particle size distribution.
  • the present inventors pay attention to this point, and by including iron oxide particles as an iron source, a compound having an olipine structure, particularly an olipine-type iron phosphate, having extremely fine particles and a controlled particle size distribution.
  • the iron source used in the present invention includes iron oxide particles.
  • the iron oxide particles preferably have an average particle size of not more than 500 nm, more preferably not more than 300 nm, especially 5 to 300 nm. From an iron oxide particle having an average particle diameter of about 5 nm, a compound having an olivine structure of about 5 to 50 nm is obtained, and from an iron oxide particle having an average particle diameter of about 300 nm is formed from 100 to 50 A compound having an olivine structure of about 0 nm is obtained.
  • the iron oxide particles preferably also have a particle size distribution with a standard deviation ⁇ of 50 or less, particularly 30 or less, and a coefficient of variation [-(standard deviation ⁇ average particle diameter)] of particle diameter of 0.5 or less. Preferably, it has a BET specific surface area value of .10 to 150 m 2 / g.
  • triiron tetroxide (F e 30 4 ) is particularly preferable. Since triiron tetroxide (F e 3 0 4 ) can be prepared as a fine particle and with a precisely controlled particle size distribution by a wet process, using relatively inexpensive materials and equipment, the olivine of the present invention It is useful for producing type iron phosphate.
  • iron oxide is produced by reacting an iron salt with an alkali and mixing, for example, an iron salt and an alkaline water solution, in particular, alkali hydroxide and / or alkali carbonate, to produce iron hydroxide.
  • Fe 3 0 4 obtained by heating (oxidation synthesis) a reaction product containing iron hydroxide to a temperature of 30 to 90 ° C in an oxygen-containing atmosphere (for example, under atmospheric pressure) is preferable.
  • iron salts include iron sulfate, iron acetate, and iron chloride.
  • alkali hydroxide examples include sodium hydroxide, potassium hydroxide, and aqueous ammonia.
  • alkali carbonate examples include sodium carbonate, potassium carbonate, and ammonium carbonate. Even if an alkali metal is used as the alkali, most of the alkali metal generated as a by-product of the neutralization reaction can be removed by washing with water. However, in order to extremely reduce the alkali metal contamination, an ammonium salt is used. It is appropriate. In addition, fine particles can be obtained with only alkali hydroxide, but in order to obtain finer particles, it is effective to use a mixture with alkali carbonate.
  • the neutralization rate is 0.8 to 3.0 (where the neutralization rate is the alkali source used for neutralization with respect to the molar equivalent of the acid source before neutralization.
  • Li source and P source are mixed with the above iron source and calcined to obtain olivine type iron phosphate lithium.
  • Li sources include lithium carbonate, lithium hydroxide, lithium phosphate, etc.
  • P sources include phosphoric acid, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, lithium dihydrogen phosphate, lithium phosphate, etc. Can be mentioned.
  • the mixing method is not particularly limited, and wet mixing or dry mixing may be used.
  • a device it is appropriate to use a planetary pole mill, a jet mill, a magnetic stirrer or the like. (Baking process)
  • the firing step by supplying thermal energy to the mixture of raw materials, the mixture is converted to a thermodynamically stable olivine-type lithium iron phosphate compound, and impurities are vaporized and removed. This is a step of generating fine particles of an active material.
  • Firing is performed in an inert gas atmosphere or a reducing atmosphere.
  • the inert gas include nitrogen, helium, neon, and argon.
  • the reducing atmosphere include hydrogen, lower alcohols, for example, reducing compounds such as methanol and ethanol, mixtures of reducing compounds and inert gases, and the like.
  • the mixing ratio (volume ratio) of the reducing compound and the inert gas is not particularly limited.
  • the firing temperature is preferably 400 to 800 ° C. Sufficient crystallinity can be obtained even by one-step firing, but crystallinity can be further improved by performing a two-step firing step including a temporary firing step and a main firing step.
  • the pre-baking is usually performed at a temperature of 200 to 500 ° C
  • the main baking is usually performed at a temperature of 400 to 80 ° C, preferably 5 ° 0 to 80 ° C. C, more preferably at a temperature of 500 to 75 ° C. It is also possible to change the gas atmosphere for pre-baking and main baking.
  • various conductive materials for example, carbon
  • various conductive materials for example, carbon
  • inert gas atmosphere or a reducing atmosphere so that the surface of the olivine type lithium iron phosphate particles is treated as such. It is possible to obtain a very fine positive electrode active material in which a conductive material is present.
  • a carbon source when a carbon source is mixed, a single-phase olivine-type lithium iron phosphate can be obtained using only N 2 , for example, without using a reducing gas.
  • the conductive substance include carbon.
  • carbon is advantageous in terms of easy availability and handling.
  • the amount of carbon source added is not limited, but it goes without saying that the carbon content remaining after firing does not become excessive as the positive electrode, preferably 20% by weight or less based on the weight of the positive electrode active material, particularly 3 to It is desirable to add in the range of 20% by weight, and more preferably 5 to 15% by weight.
  • the carbon source is made up of at least carbon particles and carbon precursors that turn into conductive carbon upon firing. Including one.
  • a carbon precursor is used as a carbon source, the particle surface can be covered flat with carbon, and a positive electrode active material having a relatively low surface area can be produced.
  • carbon particles known particles can be used without limitation, and examples thereof include carbon black such as acetylene black; fullerene; carbon nanotubes and the like.
  • carbon precursors include polyvinyl alcohol, polyolefins, polyacrylonitrile, saccharides such as cellulose, starch, glucose, and granulated sugar, and natural organic polymer compounds (especially water-soluble compounds); acrylonitrile, divinylbenzene And polymerizable monomers such as vinyl acetate (particularly, unsaturated organic compounds having a carbon-carbon double bond).
  • the carbon source may be added to the raw material at any stage of the firing process.
  • the carbon source may be added before the pre-firing, or may be added after the pre-firing and before the main firing. It may be added before and at both levels.
  • by adding a carbon source it is possible to obtain an olivine single phase by firing only with an inert gas.
  • the feature of this method is to synthesize uniform iron oxide fine particles and perform solid phase synthesis using this as a raw material, thereby reducing the fine and uniform olivine type material with excellent battery characteristics. It is easy to manufacture industrially at a low cost.
  • the positive electrode active material of the present invention needs to contain olivine-type lithium iron phosphate as a main component.
  • a conductive material such as carbon is included. be able to.
  • the blending ratio of the other components must be 30% or less of the positive electrode active material.
  • the average particle size of the positive electrode active material is preferably 5 to 500 nm, more preferably 30 to 300 nm. In the case of an olivine-type positive electrode active material with low conductivity, if the average particle diameter is too large, sufficient capacity cannot be obtained.
  • the positive electrode active material or the standard deviation ⁇ preferably has a particle size distribution of 50 or less, particularly 30 or less, and the variation coefficient of the particle diameter is preferably 0.6 or less, particularly preferably 0.5 or less, It preferably has a BET specific surface area value of 5 to 50 m 2 Z g.
  • FIG. 16 is a cross-sectional view schematically showing the battery.
  • the nonaqueous electrolyte battery 1 is roughly composed of a negative electrode member 2 that functions as an external negative electrode of the battery, a positive electrode member 3 that functions as an external positive electrode of the battery, a negative electrode current collector 4, a negative electrode between the two members
  • the active material layer 5, the separator 8, the positive electrode active material layer 7, and the positive electrode current collector 6 are provided in this order.
  • the negative electrode member 2 has a substantially cylindrical shape, and is configured to accommodate the negative electrode current collector 4 and the negative electrode active material 5 therein.
  • the positive electrode member 3 also has a substantially cylindrical shape, and is configured to accommodate the positive electrode current collector 6 and the positive electrode active material layer 7 therein.
  • the radial dimension of the positive electrode member 3 and the separator plate 8 is set to be slightly larger than that of the negative electrode member 2, and the peripheral edge portion of the negative electrode member 2 and the peripheral edge portion of the separator member 8 and positive electrode member 3 are Are overlapping.
  • the space inside the battery is filled with a non-aqueous electrolyte 9, and a sealing material 10 is applied to the overlapping portions of the negative electrode member 2, the separator 8 and the peripheral edge of the positive electrode member 3, so that the inside of the battery is airtight. It is kept.
  • the negative electrode comprises a negative electrode member 2 as an external negative electrode, a negative electrode current collector 4 in contact therewith, and a negative electrode active material layer 5 on the negative electrode current collector.
  • the negative electrode current collector for example, nickel foil, copper foil or the like is used.
  • the negative electrode active material layer a layer that can be doped with lithium is used. Specifically, metallic lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound (a carbon material or a metal oxide) Etc.)
  • the binder contained in the negative electrode active material layer a known resin material or the like that is usually used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used.
  • the metal lithium foil can be used not only as the negative electrode active material but also as the negative electrode current collector, the battery structure can be simplified by using the metal lithium foil for the negative electrode.
  • the positive electrode comprises a positive electrode member 3 as an external positive electrode, a positive electrode current collector 6 in contact therewith, and a positive electrode active material layer 7 on the positive electrode current collector.
  • the positive electrode active material of the present invention described above is used as the positive electrode active material.
  • As the positive electrode current collector for example, an aluminum foil or the like is used.
  • the As a binder contained in the positive electrode active material layer as a binder for a positive electrode active material layer of this type of non-aqueous electrolyte battery such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). Commonly used known resin materials can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • a conductive material can be blended in the positive electrode active material layer in order to improve conductivity.
  • the conductive material examples include graphite and acetylene black.
  • the separator 8 is for separating the positive electrode and the negative electrode, and a known material that is usually used as a separator for this type of non-aqueous electrolyte battery can be used, for example, a polymer such as polypropylene. A film, a polyethylene-strength porous membrane, etc. are used. Also, from the relationship between lithium ion conductivity and energy density, it is desirable that the thickness of the separation evening be as thin as possible.
  • sealing material 10 a known resin material or the like that is normally used as a sealing material for the positive electrode active material layer of this type of nonaqueous electrolyte battery can be used.
  • non-aqueous electrolyte not only a liquid electrolyte but also various forms such as a solid electrolyte and a gel electrolyte containing a solvent can be used.
  • liquid electrolyte a solution in which the electrolyte is dissolved in an aprotic non-aqueous solvent is used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene strength, butylene strength, vinylene carbonate, and chain carbonates such as dimethyl carbonate, jetyl carbonate, and dipropyl carbonate.
  • cyclic force monoponates such as ethylene carbonate, propylene force monoponate, and vinylene force monoponate
  • chain force monoponates such as dimethyl carbonate, jetyl carbonate, and dipropyl carbonate are used. It is preferable to use it.
  • non-aqueous solvents may be used alone or in combination of two or more.
  • the electrolyte for example, the L i PF 6, L i C 10 4, L i As F 6, L i BF 4, L i CF 3 S0 3, L i N (CF 3 S0 2) 2 and lithium salt of Can be used.
  • Li PF 6 or Li BF 4 examples include inorganic solid electrolytes such as lithium nitride and lithium iodide; organic polymer electrolytes such as poly (ethylene oxide), poly (methacrylate), and poly (acrylate).
  • any material that can be gelled by absorbing the liquid electrolyte can be used without particular limitation.
  • poly (vinylidene fluoride), vinylidene fluoride can be used.
  • fluorine-containing polymers such as / hexafluoropropylene copolymer.
  • a nonaqueous electrolyte battery using the positive electrode active material of the present invention is produced, for example, as follows.
  • a negative electrode active material and a binder are dispersed in a solvent to prepare a slurry.
  • the obtained slurry is uniformly applied on a current collector and dried to form a negative electrode active material layer.
  • the obtained laminate including the negative electrode current collector and the negative electrode active material layer is accommodated in the negative electrode member so that the negative electrode current collector and the inner surface of the negative electrode member are in contact with each other to form a negative electrode.
  • the metal lithium foil can be used as it is as the negative electrode current collector and the negative electrode active material.
  • the positive electrode active material, conductive material and binder of the present invention are dispersed in a solvent to prepare a slurry.
  • the slurry is uniformly applied on the current collector and dried to form a positive electrode active material layer.
  • the obtained laminate including the positive electrode current collector and the positive electrode active material layer is accommodated in the positive electrode member so that the positive electrode current collector and the inner surface of the positive electrode member are in contact with each other, thereby forming a positive electrode.
  • a nonaqueous electrolyte When a nonaqueous electrolyte is used, it is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
  • the negative electrode and the positive electrode manufactured as described above are superposed so that a separate layer is interposed between the negative electrode active material layer and the positive electrode active material layer, filled with a nonaqueous electrolyte, and sealed with a sealing material. By sealing, a non-aqueous electrolyte battery is completed.
  • the shape of the nonaqueous electrolyte battery of the present invention is not particularly limited, and may be a cylindrical shape, a square shape, a coin shape, a button shape, or the like. Can be of various sizes. Further, the present invention can be applied to both a primary battery and a secondary battery.
  • iron oxide, positive electrode active material, and nonaqueous electrolyte battery were analyzed by the following method.
  • the specific surface area was measured using a fully automatic surface area measuring device Multisoap 12 (manufactured by Yuasa Ionics Co., Ltd.) according to the BET method.
  • the metal composition analysis was measured by ICP emission spectroscopic analysis (ICP emission spectrophotometer SPS 1500 VR Seiko Instr umen ts Inc.) and calculated by the mo 1 ratio to Fe.
  • Example 1 For the particle size, we randomly selected 200 particles observed with TEM (Transmission Electron Microscope H-7600 manufactured by Hitachi) or SEM (Scanning Electron Microscope DS 130, manufactured by Topcon Electron Beam Service Co., Ltd.) The particle diameter of the particles was measured, the average value and standard deviation of the measured values were calculated, and this average value was taken as the particle diameter. The variation coefficient of the particle diameter is a value obtained by dividing the standard deviation thus obtained by the average particle diameter.
  • TEM Transmission Electron Microscope H-7600 manufactured by Hitachi
  • SEM Sccanning Electron Microscope DS 130, manufactured by Topcon Electron Beam Service Co., Ltd.
  • a 60 L reaction vessel was charged with 40 L of an aqueous solution containing 23 mol of NaOH and 11 mol of Na 2 C0 3 , and was replaced by aeration of nitrogen gas and kept at 60 ° C. Where nitrogen aeration, stirring, 1 81110 1? 630 ⁇ 1 and 0. 9] 10 1? 6 2 20 L of an aqueous solution containing (S0 4 ) 3 was added to form a suspension containing iron hydroxide particles, and mixed at 60 ° C. for 60 minutes. Next, the air was passed through 1 OLZmin at 60 ° C, and the oxidation reaction was performed for 2 hours. The obtained suspension was filtered, washed and dried to obtain fine-particle magnetite (Fe 3 0 4 ).
  • the specific surface area of the sample was measured by the BET method.
  • the BET value of the obtained sample was 27.4 m 2 / g.
  • Figure 1 shows a TEM photograph of the sample obtained. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 65 nm and a coefficient of variation of 0.32.
  • X-ray diffraction measurement was performed on the obtained particles.
  • Figure 2 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be Fe 3 0 4 single phase.
  • Li FeP0 4 was synthesized from the magnetite cake (Fe 3 4 ) obtained in (1) above. Iron oxide obtained in (1) 0.05 mol 1, Li 2 C 0 3 0.083 mol, (NH 4 ) 2 HP0 4 0.15 mol 1 and dalcose 5 g 8 OmL planetary pole mill container In addition, 2 OmL of pure water was added and mixed at 25 Or. Pm for 12 hours. After drying, powdered in an agate mortar and mixed with hydrogen (H 2 ) and nitrogen (N 2 ) in a volume ratio of 2: 5 at 450 ° C for 2 hours and N 2 atmosphere at 600 ° C for 15 hours. firing to obtain a positive electrode active material L i F e P0 4.
  • H 2 hydrogen
  • N 2 nitrogen
  • the BET value of the obtained sample was 33.8 m 2 /.
  • Figure 3 shows an SEM photograph of the sample obtained.
  • the particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph.
  • the obtained sample had an average particle size of 52 nm and a coefficient of variation of 0.39.
  • Figure 4 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be an olivine type lithium iron phosphate single phase.
  • Table 1 shows the results of composition analysis by ICP analysis.
  • positive electrode active material obtained in (2) Using the positive electrode active material obtained in (2), a lithium secondary battery was produced.
  • positive electrode active material: conductive material: binder 70:25 (total amount of C, ie, pre-treated The amount of acetylene black added to the amount of bonbon (derived from glucose) ): After mixing at a weight ratio of 5 and kneading in an agate mortar, it was punched out into a disk with a diameter of 1.0 cm and a thickness of 0.2 mm using a cork poller, and this was taken as the positive electrode pellet. Used.
  • a coin cell was produced using the positive electrode pellet.
  • a lithium foil having a diameter of 1.5 cm and a thickness of 0.15 mm was used.
  • a separator a porous polyethylene sheet having a diameter of 22 mm and a thickness of 02 mm was used.
  • the non-aqueous electrolyte solution is Li PF 6 dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 1 at a concentration of about 1 mol Z liter. It was used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a charge / discharge test was conducted on the simple lithium secondary battery thus obtained.
  • the charge / discharge test was performed at 25 ° C, with a potential range of 2000 to 4500 mV, a rate of 1 C, and C. C. — C. V.
  • the initial charge / discharge characteristics are shown in Fig. 6 ("Chg.” Represents charge and "Dis.” Represents discharge).
  • Table 2 shows the initial charge / discharge capacity.
  • Example 1 Magnetite obtained in Example 1 (Fe 3 0 4) was synthesized L i FeP0 4 as a raw material. Put the iron oxide obtained in Example 1 0.05 mol, Li 2 C 0 3 0 083 mol 1, (NH 4 ) 2 HP0 4 0.15 mol, 3 g glucose into an 80 mL planetary pole mill container. Further, 2 OmL of pure water was added and mixed at 25 Or.pm for 5 hours. After drying, was ground in an agate mortar, N 2 atmosphere, 65 O: 3 hours, and calcined, to obtain a positive electrode active material L i F e ⁇ 0 4. The BET value of the obtained sample was 13.8 m 2 // g.
  • Figure 7 shows a SEM photograph of the sample obtained. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The average particle size of the obtained sample is 6
  • the variation coefficient was 0 nm and 0 nm.
  • Figure 8 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be an olipine-type lithium iron phosphate single phase. Table 1 shows the composition analysis results by ICP analysis.
  • Example 2 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
  • the BET value of the obtained sample was 13.5 m 2 Zg.
  • Figure 9 shows a TEM photograph of the obtained sample. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 107 nm and a coefficient of variation of 0.28.
  • Magunetai Bok obtained above in (1) to (Fe 3 0 4) was form if the L i F e P_ ⁇ 4 as a raw material.
  • Positive electrode active material Li F e P0 Got 4 was formed if the L i F e P_ ⁇ 4 as a raw material.
  • the BET value of the obtained sample was 5.3 m 2 Zg.
  • Figure 10 shows a SEM photograph of the obtained sample. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The obtained sample had an average particle size of 11 nm and a coefficient of variation of 0.39.
  • Table 1 shows the composition analysis results by ICP analysis.
  • Example 2 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
  • Example 3 Magne evening Ito obtained in Example 3 (Fe 3 ⁇ 4) was synthesized L i F e P0 4 in the raw material. Put the iron oxide obtained in Example 3 0.05 mol, Li 2 C0 3 0.086 mol 1, (NH 4 ) 2 HP0 4 0.15 mol, 5 g glucose into an 80 mL planetary pole mill container, Further, 2 OmL of pure water was added and mixed for 12 hours at 25 Or.pm. After drying, Kona ⁇ in an agate mortar, N 2 atmosphere, for 3 hours at 650 ° C, and fired to obtain a positive electrode active material L i Fe P_ ⁇ 4. The BET value of the obtained sample was 27.7m 2 Zg. Figure 11 shows an SEM photograph of the sample obtained. The particle size was calculated from an average value of randomly measured 200 particles from a TEM photograph. The obtained sample had an average particle size of 66 nm and a coefficient of variation of 0.36.
  • Table 1 shows the results of composition analysis by ICP analysis.
  • Example 2 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
  • Fig. 13 shows an S-photograph of the obtained sample
  • Fig. 14 shows a photo.
  • the obtained particles were also amorphous. From the X-ray diffraction pattern of the obtained particles, it was confirmed that it was a single phase olivine type lithium iron phosphate. confirmed.
  • Table 1 shows the results of composition analysis by ICP analysis.
  • Example 2 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
  • Synthesized magnetic evening site (BET value 2. 6 m 2 Zg, average particle size 520 nm, coefficient of variation 0.53) was synthesized L i F e P0 4 in the raw material. Put the above magnetite 0.05 mol, Li 2 C0 3 0.083 mol 1, (NH 4 ) 2 HP 0 4 0.15 mol, glucose 5 g into an 8 OmL planetary pole mill container, and then add 2 OmL of pure water. Add and mix at 25 Or. Pm for 5 hours. After drying, was ground in an agate mortar, under N 2 Kiri ⁇ air, 4 hours at 650 ° C, and fired to obtain a positive electrode active material L i FeP_ ⁇ 4. The BET value of the obtained sample was 25. Yn ⁇ Zg.
  • Figure 15 shows an SEM photograph of the sample obtained.
  • the particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph.
  • the obtained sample had an average particle size of 109 nm and a coefficient of variation of 0.62. From the obtained particle X-ray diffraction pattern, it was confirmed to be an olivine-type lithium iron phosphate single phase.
  • Table 1 shows the results of composition analysis by ICP analysis.
  • Example 2 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
  • Example 1 Mol ratio to Fe Example 1 1 1.0 1.0 5.8
  • Example 2 1 1.0 1.0 2.7
  • Example 3 1 1.0 1.0 0
  • Example 4 1 1.0 1.0 5.7 Comparative Example 1 1 1.0 1.0 5.3 Comparative Example 2 1 1.0 1.0 5.7
  • Example 1 131 138 Example 2 138 134 Example 3 117 110 Example 4 132 126 Comparative Example 1 87 66 Comparative Example 2 113 87 Example 5
  • a 60 L reaction vessel was charged with 40 L of an aqueous solution containing 52.8 mo 1 of NaOH, purged with nitrogen gas, and kept at 80 ° C.
  • 20 L of an aqueous solution containing 6 mol of Fe S0 4 and 6 mol of Fe 2 (S 0 4 ) 3 was added with nitrogen aeration and stirring, and mixed at 80 ° C. for 3 hours.
  • the obtained suspension was filtered, washed and dried to obtain fine-particle magnetite (Fe 3 0 4 ).
  • the specific surface area of the sample was measured by the BET method.
  • the BET value of the obtained sample was 74.2 m 2 / g.
  • Figure 17 shows a TEM photograph of the sample obtained. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The obtained sample had an average particle size of 11 nm and a coefficient of variation of 0.34.
  • the olivine-type iron phosphate was synthesized from the iron oxide (Fe 3 4 ) obtained in (1) above. Put the iron oxide obtained in (1) 0.05 mol, Li 2 C0 3 0.0 0.0 mol, (NH 4 ) 2 HP0 4 0.15 mo 1 and 4 g glucose into an 80 mL planetary pole mill container, Further, 2 OmL of pure water was added and mixed at 25 Or.pm for 12 hours. After drying at 120 ° C., the mixture was pulverized in an agate mortar and fired at 650 ° C. for 6 hours in an N 2 atmosphere to obtain a positive electrode active material L 1 Fe P0 4 . The obtained sample had a BET value of 12.501 2 and a carbon content of 3.3% by weight.
  • Figure 18 shows a SEM photograph of the obtained sample. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 80 nm and a coefficient of variation of 0.32.
  • FIG. 19 shows the X-ray diffraction pattern of the obtained particles. From the X-ray diffraction pattern, it was confirmed to be an olivine type lithium iron phosphate single phase.
  • a coin cell was assembled and a charge / discharge test was performed. The initial charge / discharge capacity was a charge capacity of 14 OmAh / g and a discharge capacity of 138 mAh / g.
  • non-aqueous electrolyte battery using the positive electrode active material of the present invention examples include lithium secondary batteries such as a metal lithium battery, a lithium ion battery, and a lithium polymer battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a compound having an olivine structure, which makes a low-cost positive electrode active material having high safety and excellent battery characteristics such as energy density. Also disclosed are a method for producing such a compound, and a nonaqueous electrolyte battery having a positive electrode containing such a compound. Specifically disclosed is a method for producing a compound having an olivine structure, which is characterized in that an iron source containing iron oxide particles, a lithium source and a phosphorus source are mixed and fired.

Description

明細書  Specification
オリビン構造を有する化合物及びその製造方法、並びにオリピン構造を有する化合 物を使用する正極活物質及び非水電解質電池 Compound having olivine structure and method for producing the same, and positive electrode active material and non-aqueous electrolyte battery using compound having olipine structure
技術分野 Technical field
本発明は、低コストで安全性が高く、 さらにエネルギー密度にも優れた電池特性 を有する正極活物質となるオリビン型の正極活物質およびその製造方法と、これを 含む正極を有する非水電解質電池に関する。  The present invention relates to an olivine-type positive electrode active material that is a low-cost, high-safety, battery property having excellent energy density, and a method for producing the same, and a nonaqueous electrolyte battery having a positive electrode including the same About.
背景技術 Background art
現在、 リチウム二次電池は携帯電話、 ビデオカメラやノートパソコン等の電子機 器の電源として、 広く普及している。 また、 環境保全問題やエネルギー問題から、 電気自動車や夜間電力用の安価で安全性の高い大型リチウム二次電池の開発も進 められている。  At present, lithium secondary batteries are widely used as power sources for electronic devices such as mobile phones, video cameras, and laptop computers. In addition, because of environmental conservation issues and energy issues, the development of large-sized lithium secondary batteries that are inexpensive and highly safe for electric vehicles and nighttime power is also underway.
従来、 リチウム二次電池の正極活物質には層状岩塩型の L i C o 02が主に用い られてきた。 L i C o〇2は充放電サイクル特性において優れているが、 原料であ るコバルトの資源量は少なく、 コストも高価である。そのため、 代替の正極活物質 として、 層状岩塩型の L i N i 02ゃスピネル型 L i M n 204が研究されてきたが、 L i N i〇2は充電状態の安全性に問題があり、 L i M n 204は高温域における化 学的安定性に問題がある。小型電池用としては、 これらの元素を組み合わせた新規 正極材が提案されてきているが、 コスト、安全性の面でさらに要求レベルの高くな る大型電池用正極活物質として、 新たな代替材料が望まれてきた。 Conventionally, a layered rock salt type LiCoO 2 has been mainly used as a positive electrode active material of a lithium secondary battery. Although L i C O_〇 2 is superior in charge-discharge cycle characteristics, abundance of raw Der Ru cobalt is small, cost is expensive. Therefore, as a positive electrode active material of an alternative, although L i N i 0 2 Ya spinel L i M n 2 0 4 of layered rock-salt type have been studied, L i N I_〇 2 safety problems of the state of charge Li M n 2 0 4 has a problem in chemical stability at high temperatures. New cathode materials combining these elements have been proposed for small batteries, but new alternative materials have been proposed as positive electrode active materials for large batteries, which are more demanding in terms of cost and safety. It has been desired.
オリピン型の正極活物質である L i F e P 04は、 コスト、 安全 'j生、 信頼性に優 れた材料として近年開発が活発になってきている。 このオリピン型 L i F e P 04 は、 極めて高い安全性と安定性を有し、 かつ、 低コストであるため、 注目されてい るが、実用化への問題点として電子伝導性の低さがある。 これを改善するため方法 として、主には反応表面積を増やすための微粒子化、導電性を付与するためのカー ボンコートなどは周知である (例えば、 非特許文献 1 )。 微粒子化では特にナノサ ィズの均一な粒子によって、電池特性の改善が図られることが報告されている (非 特許文献 2, 3 )。 また、 力一ボンの添加に関しては、 各種力一ボン材料について 非常に多くの報告がある (例えば、 特許文献 3や非特許文献 4)。 L i F e P 0 4 a positive electrode active material of olivine type, cost, safety 'j raw, in recent years developed a superior material in reliability have become active. The olivine-type L i F e P 0 4 has a very high safety and stability, and because it is inexpensive, but that have been noted, electron conductivity low as a problem to practical use There is. As methods for improving this, mainly fine particles for increasing the reaction surface area, carbon coating for imparting conductivity, etc. are well known (for example, Non-Patent Document 1). It has been reported that battery characteristics can be improved by using fine particles, especially when the particles are uniform (Non-patent Documents 2 and 3). In addition, regarding the addition of Kibon There are numerous reports (for example, Patent Document 3 and Non-Patent Document 4).
オリピン型リン酸鉄リチウムの製造方法としては、従来、 シユウ酸鉄や酢酸鉄を 出発原料とした固相法(特許文献 1、非特許文献 5 )が一般的であった。近年では、 りん酸鉄を原料とした固相法(特許文献 2)や、 より微細な粒子を得るためのゾル ゲル法や、 水熱法 (非特許文献 6、 7) などが報告されている。 しかしながら、 い ずれの方法も、原料が高価であったり、二価の鉄の酸化を防ぐ設備が必要であった り、 均一で結晶性の良い目的物を得ることが困難であった。そのため、 いずれの方 '法によっても、均一な微細粒子を安価な原料と単純な製造設備で、工業的に製造す ることは難しく、実用的な電池特性を有するォリビン型リン酸鉄リチウムを低コス トで実現できる製造方法が必要とされている。  Conventionally, a solid phase method (Patent Document 1, Non-Patent Document 5) using iron oxalate or iron acetate as a starting material has been generally used as a method for producing olipine-type lithium iron phosphate. In recent years, solid-phase methods using iron phosphate as a raw material (Patent Document 2), sol-gel methods for obtaining finer particles, hydrothermal methods (Non-Patent Documents 6 and 7) have been reported. . However, in either method, the raw materials are expensive, equipment for preventing the oxidation of divalent iron is necessary, and it is difficult to obtain a target product with uniform and good crystallinity. Therefore, by either method, it is difficult to industrially produce uniform fine particles with inexpensive raw materials and simple manufacturing equipment, and low lithium olivine phosphate with practical battery characteristics is reduced. Manufacturing methods that can be realized at low cost are needed.
特許文献 1 :特許第 3484003号公報  Patent Document 1: Japanese Patent No. 3484003
特許文献 2 :特許第 3319258号公報  Patent Document 2: Japanese Patent No. 3319258
特許文献 3 :特開 200 1— 1 511 1号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2001-1511
非特許文献 1 : A.Yamada; Electrochemistry 71, o.3, 717-722 (2003) 非特許文献 2 : A. Singhal, G. Skandan, G. Amatucci, F.Badway, N.Ye,  Non-patent document 1: A. Yamada; Electrochemistry 71, o.3, 717-722 (2003) Non-patent document 2: A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye,
A. Man t hi ram, H. Ye, J. J.Xu, Journal of Power Sources 129, 38-44(2004) 非特許文献 3 : K.Striebel, J. Shim, V. Srinivasan, and J.Newman  A. Man t hi ram, H. Ye, J. J. Xu, Journal of Power Sources 129, 38-44 (2004) Non-Patent Document 3: K. Striebel, J. Shim, V. Srinivasan, and J. Newman
J.Electrochem. Soc, 152, No.4, A554-A670 (2005)  J. Electrochem. Soc, 152, No. 4, A554-A670 (2005)
非特許文献 4 : N.Ravet, Y. Chouinard, 】.F.Magnan, S.Besner, M. Gauthier, M. Armand  Non-Patent Document 4: N. Ravet, Y. Chouinard,]. F. Magnan, S. Besner, M. Gauthier, M. Armand
Journal of Power Sources 97-98, 503-507(2001)  Journal of Power Sources 97-98, 503-507 (2001)
非特許文献 5 : A. K. Padhi, Κ. S. Nanjundaswamy, and J.B.Goodenough,  Non-Patent Document 5: A. K. Padhi, Κ. S. Nanjundaswamy, and J.B. Goodenough,
J.Electrochem. Soc, 144, No.4, 1188-1194(1997)  J. Electrochem. Soc, 144, No. 4, 1188-1194 (1997)
非特許文献 6 : S.Yang, P.Y.Zavalji, M. S.Whit tinghain  Non-Patent Document 6: S. Yang, P.Y. Zavalji, M. S. Whit tinghain
Electrochemistry Communicai ion 3, 505-508 (2001)  Electrochemistry Communicai ion 3, 505-508 (2001)
非特許文献 7 : J.Yang and J. J.Xu  Non Patent Literature 7: J. Yang and J. J. Xu
Electrochemical and Solid-State Letters, 7 (12) A515-A518 (2004) 発明の開示 発明が解決しょうとする課題 Electrochemical and Solid-State Letters, 7 (12) A515-A518 (2004) Disclosure of the Invention Problems to be solved by the invention
本発明は、 コスト、 安全性、 信頼性に優れ、 高容量の非電解質電池の安価な工業 的製造を可能にする正極活物質及びその製造方法、並びにこれを用いた非水電解質 電池を提供することを目的とする。  The present invention provides a positive electrode active material that is excellent in cost, safety, and reliability, enables inexpensive industrial production of a high-capacity non-electrolyte battery, a method for producing the same, and a non-aqueous electrolyte battery using the same. For the purpose.
課題を解決するための手段 Means for solving the problem
上記のような優れた特性を有する正極活物質を製造するために、本発明者らは鋭 意検討した結果、 本発明を完成するに至った。  In order to produce a positive electrode active material having excellent characteristics as described above, the present inventors have intensively studied, and as a result, completed the present invention.
すなわち、 本発明は以下のものを提供する。  That is, the present invention provides the following.
[ I ] 平均粒子径が 500 nm以下の酸化鉄粒子を含む鉄源、 リチウム源及び リン源を混合し、焼成することを特徴とするオリビン構造を有する化合物の製造方 法。  [I] A method for producing a compound having an olivine structure, comprising mixing an iron source containing iron oxide particles having an average particle size of 500 nm or less, a lithium source, and a phosphorus source, followed by firing.
[2] 酸化鉄粒子が、 鉄塩とアルカリとを反応させ、 その反応物を酸化して得 られたものである、 [1]の方法。  [2] The method according to [1], wherein the iron oxide particles are obtained by reacting an iron salt with an alkali and oxidizing the reaction product.
[3] 酸化鉄粒子がマグネ夕イトである、 [1] の方法。  [3] The method according to [1], wherein the iron oxide particles are magnetite.
[4] 酸化鉄粒子が、 平均粒子径が 500 nm以下であり、 かつ、 粒子径の変 動係数が 0. 5以下を有するマグネタイトである、 [3] の方法。  [4] The method according to [3], wherein the iron oxide particles are magnetite having an average particle size of 500 nm or less and a coefficient of variation of the particle size of 0.5 or less.
[5] アルカリが水酸化アルカリ及び Z又は炭酸アルカリである、 [2] の方 法。  [5] The method of [2], wherein the alkali is alkali hydroxide and Z or alkali carbonate.
[6] 酸化が 30〜90°Cの温度で行われる、 [2] 又は [5] の方法。  [6] The method according to [2] or [5], wherein the oxidation is performed at a temperature of 30 to 90 ° C.
[7] 平均粒子径が 500 nm以下の酸化鉄粒子を含む鉄源、 リチウム源及び リン源と炭素または/および炭素前駆体を混合し、焼成することを特徴とするオリ ピン構造を有する化合物の製造方法。  [7] A compound having an olipine structure characterized by mixing an iron source containing iron oxide particles having an average particle size of 500 nm or less, a lithium source and a phosphorus source and carbon or / and a carbon precursor, followed by firing. Production method.
[8] 焼成を不活性ガス雰囲気または還元雰囲気で行う、 [1] 〜 [7] の何 れかの方法。  [8] The method according to any one of [1] to [7], wherein the firing is performed in an inert gas atmosphere or a reducing atmosphere.
[9] 焼成を N2雰囲気で行う、 [8] の方法。 [9] The method according to [8], wherein the firing is performed in an N 2 atmosphere.
[10] [ 1:) 〜 [ 9 ] の何れかの方法により得られた平均粒子径が 1000 nm以下であるオリビン構造を有する化合物。  [10] A compound having an olivine structure having an average particle size of 1000 nm or less obtained by any one of the methods [1 :) to [9].
[I I] [ 1 ] 〜 [ 9 ] の何れかの方法により得られた平均粒子径が 1000 nm以下であり、 かつ、粒子径の変動係数が 0. 6以下を有するオリビン構造を有 する化合物。 [II] The average particle size obtained by any of the methods [1] to [9] is 1000. A compound having an olivine structure that is not more than nm and has a coefficient of variation of particle diameter of not more than 0.6.
[12] [1] 〜 [9] の何れかの方法により得られたオリビン構造を有する 化合物又は [10]又は [11]のオリビン構造を有する化合物を含む正極活物質。  [12] A positive electrode active material comprising a compound having an olivine structure obtained by any method of [1] to [9] or a compound having an olivine structure of [10] or [11].
[13] [12] の正極活物質を含む正極を有する非水電解質電池。  [13] A nonaqueous electrolyte battery having a positive electrode comprising the positive electrode active material according to [12].
図面の簡単な説明 Brief Description of Drawings
図 1は、 実施例 1で製造された酸化鉄粒子の T EM写真である。  FIG. 1 is a TEM photograph of the iron oxide particles produced in Example 1.
図 2は、 実施例 1で製造された酸化鉄粒子の X線回折図である。  FIG. 2 is an X-ray diffraction pattern of the iron oxide particles produced in Example 1.
図 3は、 実施例 1で製造されたリン酸鉄リチウムの S EM写真である。  FIG. 3 is a SEM photograph of the lithium iron phosphate produced in Example 1.
図 4は、 実施例 1で製造されたリン酸鉄リチウムの X線回折図である。  FIG. 4 is an X-ray diffraction pattern of the lithium iron phosphate produced in Example 1.
図 5は、 実施例で使用したリチウム二次電池 (コインセル) の概略図である。 図 6は、実施例 1で作製したコィンセルについて充放電試験の結果を示すグラフ である。 ,  FIG. 5 is a schematic diagram of the lithium secondary battery (coin cell) used in the examples. FIG. 6 is a graph showing the results of a charge / discharge test for the coin cell produced in Example 1. ,
図 7は、 実施例 2で製造されたリン酸鉄リチウムの S E M写真である。  FIG. 7 is a S EM photograph of the lithium iron phosphate produced in Example 2.
図 8は、 実施例, 2で製造されたリン酸鉄リチウムの X線回折図である。  FIG. 8 is an X-ray diffraction pattern of lithium iron phosphate produced in Example 2;
図 9は、 実施例 3で製造された酸化鉄粒子の TEM写真である。  FIG. 9 is a TEM photograph of the iron oxide particles produced in Example 3.
図 10は、 実施例 3で製造されたリン酸鉄リチウムの SEM写真である。  FIG. 10 is a SEM photograph of the lithium iron phosphate produced in Example 3.
図 11は、 実施例 4で製造されたリン酸鉄リチウムの SEM写真である。  FIG. 11 is an SEM photograph of lithium iron phosphate produced in Example 4.
図 12は、 比較例 1で使用されたへマタイト粒子の TEM写真である。  FIG. 12 is a TEM photograph of the hematite particles used in Comparative Example 1.
図 13は、 比較例 1で製造されたリン酸鉄リチウムの SEM写真である。  FIG. 13 is an SEM photograph of the lithium iron phosphate produced in Comparative Example 1.
図 14は、 比較例 1で製造されたリン酸鉄リチウムの TEM写真である。  FIG. 14 is a TEM photograph of the lithium iron phosphate produced in Comparative Example 1.
図 15は、 比較例 2で製造されたリン酸鉄リチウムの SEM写真である。  FIG. 15 is a SEM photograph of the lithium iron phosphate produced in Comparative Example 2.
図 16は、 コインセルの概略図である。  FIG. 16 is a schematic diagram of a coin cell.
図 17は、 実施例 5で製造された酸化鉄粒子の TEM写真である。  FIG. 17 is a TEM photograph of the iron oxide particles produced in Example 5.
図 18は、 実施例 5で製造されたリン酸鉄リチウムの SEM写真である。  FIG. 18 is a SEM photograph of lithium iron phosphate produced in Example 5.
図 19は、 実施例 5で製造されたリン酸鉄リチウムの X線回折図である。  FIG. 19 is an X-ray diffraction pattern of the lithium iron phosphate produced in Example 5.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[オリビン構造を有する化合物の製造方法] 本発明によれば、鉄源、 リチウム源及びリン源を混合し、 焼成することを特徴と するオリピン構造を有する化合物、特にオリピン型リン酸鉄リチウム、の製造方法 が提供される。 この方法において、 鉄源が、 酸化鉄粒子を含むことが重要である。 酸化鉄粒子は微細で、粒度分布を正確に制御して調製することができる。本発明 者らはこの点に着目し、鉄源として酸化鉄粒子を含ませることにより、極めて微細 な粒子で、 かつ、 粒度分布が制御されたオリピン構造を有する化合物、特にオリピ ン型リン酸鉄リチウムを得、この微細でかつ粒度分布の良好なオリビン構造を有す る化合物を含む正極活物質を用いることにより、優れた性能の非水電解質電池を製 造することに成功した。 [Method for producing compound having olivine structure] According to the present invention, there is provided a method for producing a compound having an olipine structure, particularly an olipine-type lithium iron phosphate, characterized in that an iron source, a lithium source and a phosphorus source are mixed and calcined. In this method, it is important that the iron source contains iron oxide particles. The iron oxide particles are fine and can be prepared with precisely controlled particle size distribution. The present inventors pay attention to this point, and by including iron oxide particles as an iron source, a compound having an olipine structure, particularly an olipine-type iron phosphate, having extremely fine particles and a controlled particle size distribution. By obtaining lithium and using a positive electrode active material containing a compound having a fine olivine structure with a fine particle size distribution, a non-aqueous electrolyte battery having excellent performance was successfully manufactured.
(鉄源)  (Iron source)
本発明で使用する鉄源は、酸化鉄粒子を含む。酸化鉄粒子は、好ましくは 5 0 0 nm以下の平均粒子径を有し、 より好ましくは 3 0 0 nm以下、特に 5〜3 0 0 n mの平均粒子径を有する。 5 nm程度の平均粒子径の酸化鉄粒子からは、 5〜5 0 nm程度のオリビン構造を有する化合物が、 3 0 0 nm程度の平均粒子径の酸化鉄 粒子からは、 1 0 0〜5 0 0 nm程度のオリビン構造を有する化合物が、得られる。 酸化鉄粒子はまた、標準偏差 σが 5 0以下、特に 3 0以下の粒度分布を有すること が好ましく、 0 . 5 0以下の粒子径の変動係数 [- (標準偏差 Ζ平均粒子径) ] を 有することが好ましく、 .1 0〜1 5 0 m2/ gの B E T比表面積値を有することが 好ましい。 The iron source used in the present invention includes iron oxide particles. The iron oxide particles preferably have an average particle size of not more than 500 nm, more preferably not more than 300 nm, especially 5 to 300 nm. From an iron oxide particle having an average particle diameter of about 5 nm, a compound having an olivine structure of about 5 to 50 nm is obtained, and from an iron oxide particle having an average particle diameter of about 300 nm is formed from 100 to 50 A compound having an olivine structure of about 0 nm is obtained. The iron oxide particles preferably also have a particle size distribution with a standard deviation σ of 50 or less, particularly 30 or less, and a coefficient of variation [-(standard deviation Ζaverage particle diameter)] of particle diameter of 0.5 or less. Preferably, it has a BET specific surface area value of .10 to 150 m 2 / g.
酸化鉄としては、 一酸化鉄 (F e O)、 マグネタイトなどの四酸化三鉄 (F e 3 04)、 へマタイトなどの三酸化二鉄 (F e 23) などが挙げられる。 これらの中 でも、 特に、 四酸化三鉄 (F e 304) が好ましい。 四酸化三鉄 (F e 34) は、 湿式法によって、比較的安価な材料と設備により、微細な粒子として且つ粒度分布 を正確に制御して調製することができるので、本発明のオリビン型リン酸鉄リチウ ムを製造するために有用である。 また、 三酸化二鉄 (F e 20 3) 等と比較して、 酸素含有率が低いため、還元しやすく、焼成時の焼結を防いだ粒子を得ることがで きる。 この他に、 微細な F e 2 03などからも、 微細な粒子が得られるので、 本発 明のオリビン型リン酸鉄リチウムを製造するために使用できる。 例えば、 酸化鉄は、 鉄塩とアルカリとを反応させて、 例えば、 鉄塩とアルカリ水 溶液、特に、水酸化アルカリ及び/又は炭酸アルカリ、 とを混合して水酸化鉄を生 成し、 この水酸化鉄を含む反応物を酸素含有雰囲気下(例えば大気圧下)で 3 0〜 9 0 °Cの温度に加熱 (酸化合成) することにより得られる F e 304などが好まし レ The iron oxide, monoxide iron (F e O), triiron tetroxide (F e 3 0 4), such as magnetite, ferric oxide, such as to hematite (F e 23), and the like. Of these, triiron tetroxide (F e 30 4 ) is particularly preferable. Since triiron tetroxide (F e 3 0 4 ) can be prepared as a fine particle and with a precisely controlled particle size distribution by a wet process, using relatively inexpensive materials and equipment, the olivine of the present invention It is useful for producing type iron phosphate. In addition, since the oxygen content is lower than that of ferric trioxide (F e 20 3 ) or the like, it is possible to obtain particles that are easy to reduce and that prevent sintering during firing. In addition, from such a fine F e 2 0 3, since fine particles are obtained, it can be used to produce the onset bright olivine type lithium iron phosphate. For example, iron oxide is produced by reacting an iron salt with an alkali and mixing, for example, an iron salt and an alkaline water solution, in particular, alkali hydroxide and / or alkali carbonate, to produce iron hydroxide. Fe 3 0 4 obtained by heating (oxidation synthesis) a reaction product containing iron hydroxide to a temperature of 30 to 90 ° C in an oxygen-containing atmosphere (for example, under atmospheric pressure) is preferable.
鉄塩としては、 硫酸鉄、 酢酸鉄、 塩化鉄などが挙げられる。  Examples of iron salts include iron sulfate, iron acetate, and iron chloride.
水酸化アルカリとしては、 水酸化ナトリウム、 水酸化カリウム、 アンモニア水な どが挙げられる。 炭酸アルカリとしては、 炭酸ナトリウム、 炭酸カリウム、 炭酸ァ ンモニゥムなどが挙げられる。 アルカリとしてアルカリ金属を用いても、 中和反応 の副生成物として生じるアルカリ金属分のほとんどは水洗により、除去が可能であ るが、アルカリ金属の混入を極めて低くするためにはアンモニゥム塩を用いること が適当である。 また、 水酸化アルカリ けでも微細粒子は得られるが、更に細かい 粒子を得るには、炭酸アルカリと混合して用いることが有効である。微細な単相の 酸化鉄粒子を得るためには、 中和率 0 . 8〜3 . 0 (ここで、 中和率は、 中和前の 酸源のモル当量に対する中和に使用したアルカリ源のモル当量の比である。例えば、 Examples of the alkali hydroxide include sodium hydroxide, potassium hydroxide, and aqueous ammonia. Examples of the alkali carbonate include sodium carbonate, potassium carbonate, and ammonium carbonate. Even if an alkali metal is used as the alkali, most of the alkali metal generated as a by-product of the neutralization reaction can be removed by washing with water. However, in order to extremely reduce the alkali metal contamination, an ammonium salt is used. It is appropriate. In addition, fine particles can be obtained with only alkali hydroxide, but in order to obtain finer particles, it is effective to use a mixture with alkali carbonate. In order to obtain fine single-phase iron oxide particles, the neutralization rate is 0.8 to 3.0 (where the neutralization rate is the alkali source used for neutralization with respect to the molar equivalent of the acid source before neutralization. The molar equivalent ratio of, for example,
F e S〇4の 1 0モルに N a OHの 2 0モルを使用した場合、 中和率は 2 0ノ ( 1 0 X 2 ) = 1 . 0となる。)、 温度 3 0〜 9 0 °Cの範囲で上記の酸化合成を行うこと が適当である。 When using the 2 0 moles of F e S_〇 4 1 0 mol N a OH, neutralization rate 2 0 Roh (1 0 X 2) = 1. 0 and becomes. ), It is appropriate to carry out the above oxidation synthesis within a temperature range of 30 to 90 ° C.
(リチウム源及びリン源)  (Lithium source and phosphorus source)
上記の鉄源に、 L i源及び P源を混合して、 焼成して、 オリビン型リン酸鉄リチ ゥムを得る。  Li source and P source are mixed with the above iron source and calcined to obtain olivine type iron phosphate lithium.
L i源としては、 炭酸リチウム、 水酸化リチウム、 リン酸リチウム等、 P源とし ては、 リン酸、 リン酸二水素アンモニゥム、 リン酸水素二アンモニゥム、 リン酸二 水素リチウム、 リン酸リチウム等が挙げられる。  Li sources include lithium carbonate, lithium hydroxide, lithium phosphate, etc.P sources include phosphoric acid, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, lithium dihydrogen phosphate, lithium phosphate, etc. Can be mentioned.
(混合工程)  (Mixing process)
混合方法は特に限定されず、 湿式混合でも乾式混合でも良く、 装置としては、 遊 星ポールミル、 ジェットミル、マグネチックスターラ一等を用いることが適当であ る。 (焼成工程) The mixing method is not particularly limited, and wet mixing or dry mixing may be used. As a device, it is appropriate to use a planetary pole mill, a jet mill, a magnetic stirrer or the like. (Baking process)
焼成工程は、原料の混合物に熱エネルギーを供給することにより、その混合物を 熱力学的に安定なオリビン型リン酸鉄リチウム化合物に転ィ匕させ、不純物を気化さ せ除去し、 本発明の正極活物質の微細粒子を生成する工程である。  In the firing step, by supplying thermal energy to the mixture of raw materials, the mixture is converted to a thermodynamically stable olivine-type lithium iron phosphate compound, and impurities are vaporized and removed. This is a step of generating fine particles of an active material.
焼成は、不活性ガス雰囲気もしくは還元性雰囲気下で行われる。不活性ガスとし ては、窒素、ヘリウム、ネオン、アルゴン等が挙げられる。還元性雰囲気としては、 水素、 低級アルコール、 例えば、 メタノール、 エタノール等の還元性化合物、 還元 性化合物と不活性ガスとの混合物等が挙げられる。還元性化合物と不活性ガスとの 混合物を使用する場合、 還元性化合物と不活性ガスとの混合比 (体積比) は、 特に 制限を受けない。  Firing is performed in an inert gas atmosphere or a reducing atmosphere. Examples of the inert gas include nitrogen, helium, neon, and argon. Examples of the reducing atmosphere include hydrogen, lower alcohols, for example, reducing compounds such as methanol and ethanol, mixtures of reducing compounds and inert gases, and the like. When a mixture of a reducing compound and an inert gas is used, the mixing ratio (volume ratio) of the reducing compound and the inert gas is not particularly limited.
焼成温度は、 4 0 0〜8 0 0 °Cが好ましい。 1段階の焼成でも十分な結晶性を得 ることは可能であるが、仮焼成工程と本焼成工程の二段階の焼成工程を行うことに よって、より結晶性を上げることも可能である。仮焼成は、通常、 2 0 0〜5 0 0 °C の温度で行い、 本焼成は、 通常、 4 0 0〜8 0 0 °Cの温度で行い、 好ましくは 5◦ 0〜8 0 0 °C、 より好ましくは 5 0 0〜7 5 0 °Cの温度で行う。 また、 仮焼成と本 焼成のガス雰囲気を変えることも可能である。  The firing temperature is preferably 400 to 800 ° C. Sufficient crystallinity can be obtained even by one-step firing, but crystallinity can be further improved by performing a two-step firing step including a temporary firing step and a main firing step. The pre-baking is usually performed at a temperature of 200 to 500 ° C, and the main baking is usually performed at a temperature of 400 to 80 ° C, preferably 5 ° 0 to 80 ° C. C, more preferably at a temperature of 500 to 75 ° C. It is also possible to change the gas atmosphere for pre-baking and main baking.
さらに、 焼成前に、 種々の導電性物質 (例えば、 炭素) またはその前駆体を混合 し、不活性ガス雰囲気もしくは還元性雰囲気下で焼成することにより、 オリビン型 リン酸鉄リチウム粒子表面にそのような導電性物質を存在させた非常に微細な正 極活物質を得ることができる。 特に炭素源を混合した場合、 還元性ガスを使わず、 例えば、 N 2だけで、 単相のオリビン型リン酸鉄リチウムを得ることができる。 導電性物質としては、 炭素等が挙げられる。特に炭素が入手の容易さ、取り扱い 易さの点で有利である。 Further, before firing, various conductive materials (for example, carbon) or precursors thereof are mixed and fired in an inert gas atmosphere or a reducing atmosphere, so that the surface of the olivine type lithium iron phosphate particles is treated as such. It is possible to obtain a very fine positive electrode active material in which a conductive material is present. In particular, when a carbon source is mixed, a single-phase olivine-type lithium iron phosphate can be obtained using only N 2 , for example, without using a reducing gas. Examples of the conductive substance include carbon. In particular, carbon is advantageous in terms of easy availability and handling.
炭素源の添加量は限定されないが、焼成後に残留する炭素分が正極として過剰に ならない範囲であることは言うまでもなく、好ましくは、正極活物質の重量を基準 として 2 0重量%以下、特に 3〜2 0重量%の範囲で添加することが望ましく、更 に好ましくは、 5〜1 5重量%でぁる。  The amount of carbon source added is not limited, but it goes without saying that the carbon content remaining after firing does not become excessive as the positive electrode, preferably 20% by weight or less based on the weight of the positive electrode active material, particularly 3 to It is desirable to add in the range of 20% by weight, and more preferably 5 to 15% by weight.
炭素源は、炭素粒子及び焼成により導電性炭素に変化する炭素前駆体の少なくと も一方を含む。炭素源として炭素前駆体を使用すると、粒子表面を炭素で平坦に被 覆でき、 比較的低い表面積を有する正極活物質を製造することができる。 The carbon source is made up of at least carbon particles and carbon precursors that turn into conductive carbon upon firing. Including one. When a carbon precursor is used as a carbon source, the particle surface can be covered flat with carbon, and a positive electrode active material having a relatively low surface area can be produced.
炭素粒子としては、公知のものを制限無く使用でき、例えば、 アセチレンブラッ クなどのカーボンブラック;フラーレン;カーボンナノチューブ等が挙げられる。 炭素前駆体としては、 例えば、 ポリビエルアルコール、 ポリオレフイン類、 ポリ アクリロニトリル、 セルロース、 デンプン、 グルコース、 グラニュー糖などの糖類 等及び天然の有機高分子化合物 (特に、 水溶性のもの);アクリロニトリル、 ジビ ニルベンゼン、 ビニルアセテート等の重合性単量体(特に、 炭素一炭素二重結合を 有する不飽和有機化合物) 等が挙げられる。  As the carbon particles, known particles can be used without limitation, and examples thereof include carbon black such as acetylene black; fullerene; carbon nanotubes and the like. Examples of carbon precursors include polyvinyl alcohol, polyolefins, polyacrylonitrile, saccharides such as cellulose, starch, glucose, and granulated sugar, and natural organic polymer compounds (especially water-soluble compounds); acrylonitrile, divinylbenzene And polymerizable monomers such as vinyl acetate (particularly, unsaturated organic compounds having a carbon-carbon double bond).
炭素源は、 焼成工程のどの段階で原料に加えてもよく、 例えば、 仮焼成の前に加 えてもよく、仮焼成後本焼成の前に加えてもよく、仮焼成の前と本焼成の前と両段 階で加えてもよい。 また、 炭素源を加えることにより、 不活性ガスのみで焼成し、 オリビン単相を得ることも可能となる。  The carbon source may be added to the raw material at any stage of the firing process. For example, the carbon source may be added before the pre-firing, or may be added after the pre-firing and before the main firing. It may be added before and at both levels. Moreover, by adding a carbon source, it is possible to obtain an olivine single phase by firing only with an inert gas.
以上述べてきたように、 本方法の特徴は、均一な酸化鉄微粒子を合成し、 これを 原料とした固相合成を行うことにより、電池特性に優れた微細で均一なオリビン型 材料を、 低コストで工業的にも容易に製造できることである。  As described above, the feature of this method is to synthesize uniform iron oxide fine particles and perform solid phase synthesis using this as a raw material, thereby reducing the fine and uniform olivine type material with excellent battery characteristics. It is easy to manufacture industrially at a low cost.
[正極活物質]  [Positive electrode active material]
本発明の正極活物質は、オリビン型リン酸鉄リチウムを主成分として含むことが 必要であるが、オリビン型リン酸鉄リチウム以外の他の成分として、炭素などの導 電性物質などを含ませることができる。 他の成分の配合割合は、 正極活物質の 3 0 %以下とすることが必要である。  The positive electrode active material of the present invention needs to contain olivine-type lithium iron phosphate as a main component. However, as a component other than olivine-type lithium iron phosphate, a conductive material such as carbon is included. be able to. The blending ratio of the other components must be 30% or less of the positive electrode active material.
正極活物質の平均粒子径は、好ましくは 5〜 5 0 0 nmであり、 より好ましくは 3 0〜3 0 0 nmである。導電性の低いオリビン型正極活物質の場合、その平均粒 子径が大きすぎると十分な容量が得られない。正極活物質また標準偏差 σが 5 0以 下、 特に 3 0以下の粒度分布を有することが好ましく、粒子径の変動係数が 0 . 6 0以下、 特に 0 . 5 0以下を有することが好ましく、 5〜5 0 m2Z gの B E T比 表面積値を有することが好ましい。 The average particle size of the positive electrode active material is preferably 5 to 500 nm, more preferably 30 to 300 nm. In the case of an olivine-type positive electrode active material with low conductivity, if the average particle diameter is too large, sufficient capacity cannot be obtained. The positive electrode active material or the standard deviation σ preferably has a particle size distribution of 50 or less, particularly 30 or less, and the variation coefficient of the particle diameter is preferably 0.6 or less, particularly preferably 0.5 or less, It preferably has a BET specific surface area value of 5 to 50 m 2 Z g.
[非水電解質電池] ' (電池の構造) [Nonaqueous electrolyte battery] ' (Battery structure)
本発明の正極活物質を用いた非水電解質電池の一例を添付図面を用いて説明す •る。  An example of a non-aqueous electrolyte battery using the positive electrode active material of the present invention will be described with reference to the attached drawings.
図 1 6は電池の概略を示す断面図である。 この図において非水電解質電池 1は、 大まかに言って電池の外部負極として機能する負極部材 2と、電池の外部正極とし て機能する正極部材 3と、 両部材間に負極集電体 4、 負極活物質層 5、 セパレー夕 8、正極活物質層 7及び正極集電体 6をこの順番で有してなる。負極部材 2はほぼ 円筒形をしており、その内部に負極集電体 4及び負極活物質 5を収容できるように 構成されている。一方、 正極部材 3もほぼ円筒形をしており、その内部に正極集電 体 6及び正極活物質層 7を収容できるように構成されている。正極部材 3及びセパ レー夕 8の半径方向の寸法は負極部材 2のものよりもやや大きめに設定されてお り、負極部材 2の周端部とセパレー夕 8及び正極部材 3の周端部とが重なり合うよ うになつている。電池内部の空間は非水電解質 9が充填され、 負極部材 2、 セパレ 一夕 8及び正極部材 3の周端部の重なり合う部分には封止材 1 0が施されて、電池 内部が気密状態に保たれている。  FIG. 16 is a cross-sectional view schematically showing the battery. In this figure, the nonaqueous electrolyte battery 1 is roughly composed of a negative electrode member 2 that functions as an external negative electrode of the battery, a positive electrode member 3 that functions as an external positive electrode of the battery, a negative electrode current collector 4, a negative electrode between the two members The active material layer 5, the separator 8, the positive electrode active material layer 7, and the positive electrode current collector 6 are provided in this order. The negative electrode member 2 has a substantially cylindrical shape, and is configured to accommodate the negative electrode current collector 4 and the negative electrode active material 5 therein. On the other hand, the positive electrode member 3 also has a substantially cylindrical shape, and is configured to accommodate the positive electrode current collector 6 and the positive electrode active material layer 7 therein. The radial dimension of the positive electrode member 3 and the separator plate 8 is set to be slightly larger than that of the negative electrode member 2, and the peripheral edge portion of the negative electrode member 2 and the peripheral edge portion of the separator member 8 and positive electrode member 3 are Are overlapping. The space inside the battery is filled with a non-aqueous electrolyte 9, and a sealing material 10 is applied to the overlapping portions of the negative electrode member 2, the separator 8 and the peripheral edge of the positive electrode member 3, so that the inside of the battery is airtight. It is kept.
負極は、 負極部材 2を外部負極として、 それに接する負極集電体 4、及び負極集 ' 電体上の負極活物質層 5が形成されてなる。負極集電体としては、例えばニッケル 箔、 銅箔等が用いられる。負極活物質層としては、 リチウムをドープノ脱ドープ可 能なものを用い、 具体的には、 金属リチウム、 リチウム合金、 リチウムがドープさ れた導電性高分子、 層状化合物 (炭素材料や金属酸化物等) 等を用いる。 負極活物 質層に含有される結着材としては、この種の非水電解質電池の負極活物質層の結着 材として通常用いられている公知の樹脂材料等を用いることができる。特に、金属 リチウム箔は負極活物質としてのみならず負極集電体としても用いることができ るので、負極に金属リチウム箔を使用することにより電池構造を簡易なものとする ことができる。  The negative electrode comprises a negative electrode member 2 as an external negative electrode, a negative electrode current collector 4 in contact therewith, and a negative electrode active material layer 5 on the negative electrode current collector. As the negative electrode current collector, for example, nickel foil, copper foil or the like is used. As the negative electrode active material layer, a layer that can be doped with lithium is used. Specifically, metallic lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound (a carbon material or a metal oxide) Etc.) As the binder contained in the negative electrode active material layer, a known resin material or the like that is usually used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used. In particular, since the metal lithium foil can be used not only as the negative electrode active material but also as the negative electrode current collector, the battery structure can be simplified by using the metal lithium foil for the negative electrode.
正極は、正極部材 3を外部正極として、 それに接する正極集電体 6、 及び正極集 電体上の正極活物質層 7が形成されてなる。正極活物質として、上述した本発明の 正極活物質を使用する。正極集電体としては、例えばアルミニウム箔等が用いられ る。正極活物質層に含有される結着材としては、ポリフッ化ビニリデン( P V D F )、 ポリテトラフルォロエチレン(PTFE)等のこの種の非水電解質電池の正極活物 質層の結着材として通常用いられている公知の樹脂材料等を用いることができる。 正極活物質層には、導電性を向上させるために導電材を配合することができる。 こ の導電材としては、 例えば、 グラフアイト、 アセチレンブラック等が挙げられる。 セパレ一夕 8は、正極と負極とを離間させるものであり、 この種の非水電解質電 池のセパレー夕として通常用いられている公知の材料を用いることができ、例えば、 ポリプロピレン等の高分子フィルム、ポリエチレン力一ポネート多孔質膜等が用い られる。 また、 リチウムイオン伝導度とエネルギー密度との関係から、 セパレー夕 の厚みはできるだけ薄いことが望ましレ^具体的には、セパレー夕の厚みは例えばThe positive electrode comprises a positive electrode member 3 as an external positive electrode, a positive electrode current collector 6 in contact therewith, and a positive electrode active material layer 7 on the positive electrode current collector. The positive electrode active material of the present invention described above is used as the positive electrode active material. As the positive electrode current collector, for example, an aluminum foil or the like is used. The As a binder contained in the positive electrode active material layer, as a binder for a positive electrode active material layer of this type of non-aqueous electrolyte battery such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). Commonly used known resin materials can be used. A conductive material can be blended in the positive electrode active material layer in order to improve conductivity. Examples of the conductive material include graphite and acetylene black. The separator 8 is for separating the positive electrode and the negative electrode, and a known material that is usually used as a separator for this type of non-aqueous electrolyte battery can be used, for example, a polymer such as polypropylene. A film, a polyethylene-strength porous membrane, etc. are used. Also, from the relationship between lithium ion conductivity and energy density, it is desirable that the thickness of the separation evening be as thin as possible.
50 m以下が好ましい。 50 m or less is preferable.
封止材 10としては、この種の非水電解質電池の正極活物質層の封止材として通 常用いられている公知の樹脂材料等を用いることができる。  As the sealing material 10, a known resin material or the like that is normally used as a sealing material for the positive electrode active material layer of this type of nonaqueous electrolyte battery can be used.
非水電解質としては、 液体電解質のみならず、 固体電解質、 溶媒を含有するゲル 状電解質など種々の形態のものが使用できる。液体電解質としては、非プロトン性 非水溶媒に電解質を溶解させた溶液を用いる。 非水溶媒としては、 例えば、 ェチレ ンカーボネート、 プロピレン力一ポネ一ト、 ブチレン力一ポネート、 ビニレンカー ポネート等の環状カーボネート類、ジメチルカーポネート、ジェチルカーボネート、 ジプロピルカーボネート等の鎖状カーボネート類、 ァープチルラクトン、スルホラ ン、 1, 2—ジメ卜キシェタン、 1, 2—ジエトキシェタン、 2—メチルテトラヒ ドロフラン、 3—メチル 1, 3—ジォキソラン、 プロピオン酸メチル、 酪酸メチル 等を挙げることができる。 特に、 電圧安定性の点からは、 エチレンカーボネート、 プロピレン力一ポネート、 ビニレン力一ポネート等の環状力一ポネート類、 ジメチ ルカーポネート、 ジェチルカーボネート、 ジプロピルカーボネート等の鎖状力一ポ ネート類を使用することが好ましい。 また、 このような非水溶媒は、 1種類を単独 で用いてもよいし、 2種類以上を混合して用いてもよい。電解質としては、例えば、 L i PF6、 L i C 104、 L i As F6、 L i BF4、 L i CF3S03、 L i N (C F3S02) 2等のリチウム塩を使用することができる。 これらのリチウム塩の中で も、 L i P F 6、 L i B F 4を使用することが好ましい。 また、 固体電解質として • は、 窒化リチウム、 ヨウ化リチウム等の無機固体電解質;ポリ (エチレンォキサイ ド)、 ポリ (メタクリレート)、 ポリ (アタリレート) 等の有機高分子電解質等が挙 げられる。更に、 ゲル状電解質を形成するための材料としては、 上記液体電解質を 吸収してゲル化できる材料であれば特に制限無く使用することができ、例えば、ポ リ (ビニリデンフルオライド)、 ビニリデンフルオライド/へキサフルォロプロピ レン共重合体などの含フッ素重合体が挙げられる。 As the non-aqueous electrolyte, not only a liquid electrolyte but also various forms such as a solid electrolyte and a gel electrolyte containing a solvent can be used. As the liquid electrolyte, a solution in which the electrolyte is dissolved in an aprotic non-aqueous solvent is used. Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene strength, butylene strength, vinylene carbonate, and chain carbonates such as dimethyl carbonate, jetyl carbonate, and dipropyl carbonate. , Aptyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 3-methyl 1,3-dioxolan, methyl propionate, methyl butyrate and the like. In particular, from the viewpoint of voltage stability, cyclic force monoponates such as ethylene carbonate, propylene force monoponate, and vinylene force monoponate, and chain force monoponates such as dimethyl carbonate, jetyl carbonate, and dipropyl carbonate are used. It is preferable to use it. Such non-aqueous solvents may be used alone or in combination of two or more. As the electrolyte, for example, the L i PF 6, L i C 10 4, L i As F 6, L i BF 4, L i CF 3 S0 3, L i N (CF 3 S0 2) 2 and lithium salt of Can be used. Among these lithium salts However, it is preferable to use Li PF 6 or Li BF 4 . Examples of solid electrolytes include inorganic solid electrolytes such as lithium nitride and lithium iodide; organic polymer electrolytes such as poly (ethylene oxide), poly (methacrylate), and poly (acrylate). Furthermore, as a material for forming the gel electrolyte, any material that can be gelled by absorbing the liquid electrolyte can be used without particular limitation. For example, poly (vinylidene fluoride), vinylidene fluoride can be used. And fluorine-containing polymers such as / hexafluoropropylene copolymer.
(電池の製造方法)  (Battery manufacturing method)
本発明の正極活物質を使用した非水電解質電池は、例えば、以下のように製造さ れる。  A nonaqueous electrolyte battery using the positive electrode active material of the present invention is produced, for example, as follows.
まず、負極の製造方法から説明する。負極活物質と結着材とを溶媒中に分散させ てスラリーを調製する。得られたスラリーを集電体上に均一に塗布、乾燥して負極 活物質層を形成する。得られた負極集電体及び負極活物質層からなる積層体を負極 部材内に負極集電体と負極部材内面が接するように収容して負極が形成される。ま た、前述したように負極集電体及び負極活物質として金属リチウム箔をそのまま用 いることもできる。  First, the negative electrode manufacturing method will be described. A negative electrode active material and a binder are dispersed in a solvent to prepare a slurry. The obtained slurry is uniformly applied on a current collector and dried to form a negative electrode active material layer. The obtained laminate including the negative electrode current collector and the negative electrode active material layer is accommodated in the negative electrode member so that the negative electrode current collector and the inner surface of the negative electrode member are in contact with each other to form a negative electrode. Further, as described above, the metal lithium foil can be used as it is as the negative electrode current collector and the negative electrode active material.
次に正極の製造方法を説明する。本発明の正極活物質、導電材及び結着材を溶媒 中に分散させてスラリーを調製する。スラリーを集電体上に均一に塗布、乾燥して 正極活物質層を形成する。得られた正極集電体及び正極活物質層からなる積層体を 正極部材内に正極集電体と正極部材内面が接するように収容して正極が形成され る。  Next, the manufacturing method of a positive electrode is demonstrated. The positive electrode active material, conductive material and binder of the present invention are dispersed in a solvent to prepare a slurry. The slurry is uniformly applied on the current collector and dried to form a positive electrode active material layer. The obtained laminate including the positive electrode current collector and the positive electrode active material layer is accommodated in the positive electrode member so that the positive electrode current collector and the inner surface of the positive electrode member are in contact with each other, thereby forming a positive electrode.
非水電解質は、液状のものを採用する場合は、電解質塩を非水溶媒中に溶解する ことにより調製される。  When a nonaqueous electrolyte is used, it is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
上述のようにして製造された負極及び正極を、負極活物質層と正極活物質層との 間にセパレ一夕が介在するように重ね合わせ、非水電解質を充填し、封止材により 電池内部を密封することにより、 非水電解質電池が完成する。  The negative electrode and the positive electrode manufactured as described above are superposed so that a separate layer is interposed between the negative electrode active material layer and the positive electrode active material layer, filled with a nonaqueous electrolyte, and sealed with a sealing material. By sealing, a non-aqueous electrolyte battery is completed.
本発明の非水電解質電池は、その形状については特に限定されることはなく、 円 筒型、 角型、 コイン型、 ポタン型等の形状とすることができ、 また、 薄型、 大型等 の種々の大きさにすることができる。 また、 本発明は、 一次電池についても二次電 池についても適用可能である。 The shape of the nonaqueous electrolyte battery of the present invention is not particularly limited, and may be a cylindrical shape, a square shape, a coin shape, a button shape, or the like. Can be of various sizes. Further, the present invention can be applied to both a primary battery and a secondary battery.
実施例 Example
以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限 定されるものではない。  EXAMPLES Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
なお、 以下の例において、 酸化鉄、 正極活物質及び非水電解質電池の分析は次の 方法により行った。  In the following examples, iron oxide, positive electrode active material, and nonaqueous electrolyte battery were analyzed by the following method.
(X線回折)  (X-ray diffraction)
X線回折測定は、 CoKo! R i g aku R I NT 2200V . ((株) リガ ク社製) を用いて行った。  X-ray diffraction measurement was performed using CoKo! Rigaku R INT 2200V (manufactured by Rigaku Corporation).
(比表面積)  (Specific surface area)
比表面積測定は、 BET法に従って、全自動表面積測定装置 マルチソープ 12 (湯浅アイオニックス (株) 社製) を用いて行った。  The specific surface area was measured using a fully automatic surface area measuring device Multisoap 12 (manufactured by Yuasa Ionics Co., Ltd.) according to the BET method.
(金属組成分析)  (Metal composition analysis)
金属組成分析は、 I C P発光分光分析( I C P発光分光分析装置 S PS 1500 VR S e i ko I n s t r umen t s I n c. 製) で測定し、 F eに対す る mo 1比で算出した。  The metal composition analysis was measured by ICP emission spectroscopic analysis (ICP emission spectrophotometer SPS 1500 VR Seiko Instr umen ts Inc.) and calculated by the mo 1 ratio to Fe.
(粒子径)  (Particle size)
粒子径について、 TEM (透過型電子顕微鏡 H— 7600 日立製) 又は S E M (走査型電子顕微鏡 DS 130 (株) トプコン電子ビームサービス社製) で 観察される 200個の粒子を無作為に選び、各粒子の粒子径を測定し、それら測定 値の平均値および標準偏差を算出し、 この平均値を粒子径とした。 なお、粒子径の 変動係数は、 このようにして求めた標準偏差を平均粒子径で除した値である。 実施例 1  For the particle size, we randomly selected 200 particles observed with TEM (Transmission Electron Microscope H-7600 manufactured by Hitachi) or SEM (Scanning Electron Microscope DS 130, manufactured by Topcon Electron Beam Service Co., Ltd.) The particle diameter of the particles was measured, the average value and standard deviation of the measured values were calculated, and this average value was taken as the particle diameter. The variation coefficient of the particle diameter is a value obtained by dividing the standard deviation thus obtained by the average particle diameter. Example 1
(1) 酸化鉄の製造  (1) Manufacture of iron oxide
60 Lの反応容器に NaOHを 23 mo l、 Na2C03を 11 mo 1を 含む水溶液 40 Lを仕込み、 窒素ガスを通気して置換し、 60°Cに保持した。 ここ に、 窒素通気、 攪拌しながら、 1 81110 1の? 630^1と 0. 9] 10 1の?62 (S04) 3を含む水溶液 20Lを添加して、水酸化鉄粒子を含有する懸濁液とし、 60°Cで 60分間混合した。次に、 60°Cのまま、 空気を 1 OLZmi nで通気さ せ、 2時間、 酸化反応を行った。 得られた懸濁液をろ過、 洗浄、 乾燥して、 微粒子 マグネタイト (Fe 304) を得た。 試料の比表面積測定は BET法で測定した。 得られた試料の BET値は 27. 4m2/gであった。 得られた試料の TEM写真 を図 1に示す。粒子径は TEM写真から 200個の粒子を無作為に測定し、平均値 で算出した。得られた試料の平均粒子径は 65nm、変動係数は 0.32であった。 得られた粒子の X線回折測定をおこなった。図 2に得られた粒子の X線回折図を 示す。 X線回折図より F e 304単相であることが確認された。 A 60 L reaction vessel was charged with 40 L of an aqueous solution containing 23 mol of NaOH and 11 mol of Na 2 C0 3 , and was replaced by aeration of nitrogen gas and kept at 60 ° C. Where nitrogen aeration, stirring, 1 81110 1? 630 ^ 1 and 0. 9] 10 1? 6 2 20 L of an aqueous solution containing (S0 4 ) 3 was added to form a suspension containing iron hydroxide particles, and mixed at 60 ° C. for 60 minutes. Next, the air was passed through 1 OLZmin at 60 ° C, and the oxidation reaction was performed for 2 hours. The obtained suspension was filtered, washed and dried to obtain fine-particle magnetite (Fe 3 0 4 ). The specific surface area of the sample was measured by the BET method. The BET value of the obtained sample was 27.4 m 2 / g. Figure 1 shows a TEM photograph of the sample obtained. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 65 nm and a coefficient of variation of 0.32. X-ray diffraction measurement was performed on the obtained particles. Figure 2 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be Fe 3 0 4 single phase.
(2) L i FeP04の製造方法 (2) Manufacturing method of Li FeP0 4
上記で (1) で得られたマグネタイ卜 (Fe34) を原料に L i FeP04を合成 した。 (1)で得られた酸化鉄 0. 05mo 1、 L i 2C〇3 0. 083mo l、 (NH4) 2HP04 0. 15 mo 1およびダルコ一ス 5 gを 8 OmL遊星ポー ルミル容器に入れ、 更に純水 2 OmLを添加して、 25 Or. p.m.で、 12時間混 合した。乾燥後、 メノウ乳鉢で粉碎し、体積比で 2: 5の水素(H2)及び窒素(N 2) の混合雰囲気下、 450°Cで 2時間、 N2雰囲気下、 600°Cで 15時間焼成 し、 正極活物質 L i F e P04を得た。 得られた試料の BET値は 33. 8m2/ であった。得られた試料の SEM写真を図 3に示す。粒子径は TEM写真から 2 00個の粒子を無作為に測定し、平均値で算出した。得られた試料の平均粒子径は 52 nm、 変動係数は 0. 39 であった。 Li FeP0 4 was synthesized from the magnetite cake (Fe 3 4 ) obtained in (1) above. Iron oxide obtained in (1) 0.05 mol 1, Li 2 C 0 3 0.083 mol, (NH 4 ) 2 HP0 4 0.15 mol 1 and dalcose 5 g 8 OmL planetary pole mill container In addition, 2 OmL of pure water was added and mixed at 25 Or. Pm for 12 hours. After drying, powdered in an agate mortar and mixed with hydrogen (H 2 ) and nitrogen (N 2 ) in a volume ratio of 2: 5 at 450 ° C for 2 hours and N 2 atmosphere at 600 ° C for 15 hours. firing to obtain a positive electrode active material L i F e P0 4. The BET value of the obtained sample was 33.8 m 2 /. Figure 3 shows an SEM photograph of the sample obtained. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 52 nm and a coefficient of variation of 0.39.
得られた粒子の X線回折測定をおこなった。図 4に得られた粒子の X線回折図を 示す。 X線回折図よりオリビン型リン酸鉄リチウム単相であることが確認された。  X-ray diffraction measurement was performed on the obtained particles. Figure 4 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be an olivine type lithium iron phosphate single phase.
I C P分析による組成分析結果を表 1に示す。  Table 1 shows the results of composition analysis by ICP analysis.
(3) (コインセルの作製)  (3) (Production of coin cell)
(2) で得られた正極活物質を使って、 リチウム二次電池を作製した。 得られた 試料と結着材としてポリテトラフルォロエチレン、導電材としてアセチレンブラッ クを用い、 正極活物質:導電材:結着材 = 70 : 25 (全 C量として、 即ち、 予め 処理してある力一ボン(グルコース由来)の量にアセチレンブラックを足した量と して): 5の重量比で混合し、 メノウ乳鉢で混鍊した後、 コルクポ一ラーを用いて 直径 1. 0 cm、 厚さ 0. 2mmのディスク状に型抜きし、 これを正極ペレットと して使用した。 Using the positive electrode active material obtained in (2), a lithium secondary battery was produced. Using the obtained sample and polytetrafluoroethylene as the binder and acetylene black as the conductive material, positive electrode active material: conductive material: binder = 70:25 (total amount of C, ie, pre-treated The amount of acetylene black added to the amount of bonbon (derived from glucose) ): After mixing at a weight ratio of 5 and kneading in an agate mortar, it was punched out into a disk with a diameter of 1.0 cm and a thickness of 0.2 mm using a cork poller, and this was taken as the positive electrode pellet. Used.
上記正極ペレツトを用いてコインセルを作製した。 正極ペレツトの対極として、 直径 1. 5 cm、 厚さ 0. 15mmのリチウム箔を用いた。 セパレ一タとしては、 直径 22mm、 厚さ 02 mmの多孔質ポリエチレンシートを用いた。 非水電解 質溶液としては、エチレンカーボネート (EC) とジメチルカーポネート (DMC) との体積比 1 : 1の混合溶媒に、 約 1モル Zリットルの濃度で L i PF6を溶解さ せたものを使用した。これらの構成要素をステンレス製の正極容器及び負極蓋に組 み込んで、 ガスケットで密封して、 厚さ 3. 2mm、 直径 20 mm (2032型) の図 5に示すコイン型測定用セルを作製した。なお、一連の電池組み立て作業はァ ルゴン精製装置を備えた露点一 90°C以下のドライボックス内で行った。 A coin cell was produced using the positive electrode pellet. As the counter electrode of the positive pellet, a lithium foil having a diameter of 1.5 cm and a thickness of 0.15 mm was used. As a separator, a porous polyethylene sheet having a diameter of 22 mm and a thickness of 02 mm was used. The non-aqueous electrolyte solution is Li PF 6 dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 1 at a concentration of about 1 mol Z liter. It was used. These components are assembled into a stainless steel positive electrode container and negative electrode lid, sealed with a gasket, and a coin-type measuring cell shown in Fig. 5 with a thickness of 3.2 mm and a diameter of 20 mm (2032 type) is produced. did. A series of battery assembly operations were performed in a dry box with a dew point of 90 ° C or less equipped with an Argon purification device.
このようにして得られた簡易リチウム二次電池について充放電試験を行った。充 放電試験は 25°Cにおいて、 電位範囲: 2000〜 4500mV、 レート: 1 C、 C. C. — C. V. で行った。 初期充放電特性を図 6に示す (図中、 「Chg.」 は充 電、 「Dis.」 は放電を表す。)。 また、 初期充放電容量を表 2に示す。  A charge / discharge test was conducted on the simple lithium secondary battery thus obtained. The charge / discharge test was performed at 25 ° C, with a potential range of 2000 to 4500 mV, a rate of 1 C, and C. C. — C. V. The initial charge / discharge characteristics are shown in Fig. 6 ("Chg." Represents charge and "Dis." Represents discharge). Table 2 shows the initial charge / discharge capacity.
実施例 2  Example 2
実施例 1で得られたマグネタイト (Fe 304) を原料に L i FeP04を合成し た。 実施例 1で得られた酸化鉄 0. 05mo l、 L i 2C〇3 0. 083mo 1、 (NH4) 2HP04 0. 15 mo l、 グルコース 3 gを 80 mL遊星ポー ルミル容器に入れ、更に純水 2 OmLを添加して、 25 Or. p.m.で、 5時間混合 した。 乾燥後、 メノウ乳鉢で粉砕し、 N2雰囲気下、 65 O :で 3時間、 焼成し、 正極活物質 L i F e Ρ04を得た。 得られた試料の BET値は 13. 8m2//gで あった。得られた試料の S EM写真を図 7に示す。粒子径は TEM写真から 200 個の粒子を無作為に測定し、平均値で算出した。得られた試料の平均粒子径は 6Magnetite obtained in Example 1 (Fe 3 0 4) was synthesized L i FeP0 4 as a raw material. Put the iron oxide obtained in Example 1 0.05 mol, Li 2 C 0 3 0 083 mol 1, (NH 4 ) 2 HP0 4 0.15 mol, 3 g glucose into an 80 mL planetary pole mill container. Further, 2 OmL of pure water was added and mixed at 25 Or.pm for 5 hours. After drying, was ground in an agate mortar, N 2 atmosphere, 65 O: 3 hours, and calcined, to obtain a positive electrode active material L i F e Ρ0 4. The BET value of the obtained sample was 13.8 m 2 // g. Figure 7 shows a SEM photograph of the sample obtained. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The average particle size of the obtained sample is 6
0 nm、 変動係数は 0. 38であった。 The variation coefficient was 0 nm and 0 nm.
得られた粒子の X線回折測定をおこなった。図 8に得られた粒子の X線回折図を 示す。 X線回折図よりオリピン型リン酸鉄リチウム単相であることが確認された。 I CP分析による組成分析結果を表 1に示す。 X-ray diffraction measurement was performed on the obtained particles. Figure 8 shows the X-ray diffraction pattern of the particles obtained. From the X-ray diffraction pattern, it was confirmed to be an olipine-type lithium iron phosphate single phase. Table 1 shows the composition analysis results by ICP analysis.
実施例 1と同様にして、 コインセルを組み立て、 充放電試験を行った。初期充放 電容量を表 2に示す。  In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
実施例 3  Example 3
(1) 酸化鉄の製造  (1) Manufacture of iron oxide
60 Lの反応容器に Na〇Hを 20 mo l、 Na2C〇3を 10 mo 1を 含む水溶液 35 Lを仕込み、 窒素ガスを通気して置換し、 60°Cに保持した。 ここ に、 窒素通気、 攪拌しながら、 18mo 1の FeC 12を含む水溶液 25Lを添加 して、 水酸化鉄粒子を含有する懸濁液とし、 60°Cで 60分間混合した。 次に、 6 0°Cのまま、 空気を lLZmi nで通気させ、 12時間、 酸化反応を行った。得ら れた懸濁液をろ過、 洗浄、 乾燥して、 微粒子マグネタイト (Fe34) を得た.。 試料の比表面積測定は B E T法で測定した。得られた試料の B E T値は 13. 5m 2Zgであった。 得られた試料の TEM写真を図 9に示す。 粒子径は TEM写真か ら 200個の粒子を無作為に測定し、平均値で算出した。得られた試料の平均粒子 径は 107 nm、 変動係数は 0. 28であった。 60 L 20 mo l the Na_〇_H reaction vessel, Na 2 C_〇 3 g of aqueous 35 L containing 10 mo 1, was replaced by a stream of nitrogen gas was maintained at 60 ° C. Here, nitrogen aeration, stirring, and adding an aqueous solution 25L containing FeC 1 2 of 18Mo 1, a suspension containing the iron hydroxide particles were mixed for 60 minutes at 60 ° C. Next, the air was passed through lLZmin while maintaining the temperature at 60 ° C., and the oxidation reaction was performed for 12 hours. Resulting et suspension is filtered, washed and dried to obtain fine magnetite (Fe 34) .. The specific surface area of the sample was measured by the BET method. The BET value of the obtained sample was 13.5 m 2 Zg. Figure 9 shows a TEM photograph of the obtained sample. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 107 nm and a coefficient of variation of 0.28.
得られた粒子の X線回折図より F e 34単相であることが確認された。 It from X-ray diffraction pattern of the resulting particles is F e 34 single phase was observed.
(2) L i F e P04の製造方法 (2) A method of manufacturing L i F e P0 4
上記で (1) で得られたマグネタイ卜 (Fe 304) を原料に L i F e P〇4を合 成した。 (1) で得られた酸化鉄 0. 05mo l、 L i 2C03 0. 083mo 1、 (NH4) 2HP〇4 0. 15 mo 1を 8 OmL遊星ボールミル容器に入れ、 更に純水 20 mLを添加して、 250 r. p. m.で、 12時間混合した。乾燥後、 メ ノウ乳鉢で粉砕し、 体積比で 2 : 5の水素 (H2) 及び窒素 (N2) の混合雰囲気 下、 450°Cで 5時間焼成し、 正極活物質 L i F e P04を得た。 得られた試料の BET値は 5. 3m2Zgであった。 得られた試料の S EM写真を図 10に示す。 粒子径は TEM写真から 200個の粒子を無作為に測定し、平均値で算出した。得 られた試料の平均粒子径は 1 1 l nm、 変動係数は 0. 39であった。 Magunetai Bok obtained above in (1) to (Fe 3 0 4) was form if the L i F e P_〇 4 as a raw material. Put iron oxide obtained in (1) 0.05 mol, Li 2 C0 3 0. 083 mol 1, (NH 4 ) 2 HP 0 4 0.15 mo 1 into an 8 OmL planetary ball mill container, and add pure water 20 mL was added and mixed at 250 rpm for 12 hours. After drying, the mixture is pulverized in an agate mortar and calcined at 450 ° C for 5 hours in a mixed atmosphere of hydrogen (H 2 ) and nitrogen (N 2 ) at a volume ratio of 2: 5. Positive electrode active material Li F e P0 Got 4 . The BET value of the obtained sample was 5.3 m 2 Zg. Figure 10 shows a SEM photograph of the obtained sample. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The obtained sample had an average particle size of 11 nm and a coefficient of variation of 0.39.
得られた粒子の X線回折図よりオリビン型リン酸鉄リチウム単相であることが 確認された。 I C P分析による組成分析結果を表 1に示す。 From the X-ray diffraction pattern of the obtained particles, it was confirmed to be a olivine-type lithium iron phosphate single phase. Table 1 shows the composition analysis results by ICP analysis.
実施例 1と同様にして、 コインセルを組み立て、 充放電試験を行った。初期充放 電容畺を表 2に示す。  In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
実施例 4  Example 4
実施例 3で得られたマグネ夕イト (Fe34) を原料に L i F e P04を合成し た。 実施例 3で得られた酸化鉄 0. 05mo l、 L i 2C03 0. 086mo 1、 (NH4) 2HP04 0. 15 mo l、 グルコース 5 gを 80 mL遊星ポー ルミル容器に入れ、更に純水 2 OmLを添加して、 25 Or. p.m.で、 12時間混 合した。乾燥後、 メノウ乳鉢で粉碎し、 N2雰囲気下、 650°Cで 3時間、焼成し、 正極活物質 L i Fe P〇4を得た。 得られた試料の BET値は 27. 7m2Zgで あった。得られた試料の SEM写真を図 11に示す。粒子径は TEM写真から 20 0個の粒子を無作為に測定し、平均値で算出した。得られた試料の平均粒子径は 6 6 nm、 変動係数は 0. 36であった。 Magne evening Ito obtained in Example 3 (Fe 34) was synthesized L i F e P0 4 in the raw material. Put the iron oxide obtained in Example 3 0.05 mol, Li 2 C0 3 0.086 mol 1, (NH 4 ) 2 HP0 4 0.15 mol, 5 g glucose into an 80 mL planetary pole mill container, Further, 2 OmL of pure water was added and mixed for 12 hours at 25 Or.pm. After drying, Kona碎in an agate mortar, N 2 atmosphere, for 3 hours at 650 ° C, and fired to obtain a positive electrode active material L i Fe P_〇 4. The BET value of the obtained sample was 27.7m 2 Zg. Figure 11 shows an SEM photograph of the sample obtained. The particle size was calculated from an average value of randomly measured 200 particles from a TEM photograph. The obtained sample had an average particle size of 66 nm and a coefficient of variation of 0.36.
得られた粒子の X線回折図よりオリビン型リン酸鉄リチウム単相であることが 確認された。  From the X-ray diffraction pattern of the obtained particles, it was confirmed to be a olivine-type lithium iron phosphate single phase.
I C P分析による組成分析結果を表 1に示す。  Table 1 shows the results of composition analysis by ICP analysis.
実施例 1と同様にして、 コインセルを組み立て、充放電試験を行った。初期充放 電容量を表 2に示す。  In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
比較例 1  Comparative Example 1
図 12に示すような不定形のへマタイ卜((株)高純度化学研究所製 純度 99 % BET値 10. 3m2/g) を原料に L i F e P04を合成した。 上記へマタイ ト 0. 075mo 1、 L i 2C03 0. 083mo 1 , (NH4) 2HP04 0. 15 mo l、 グルコース 5 gを 8 OmL遊星ポ一ルミル容器に入れ、 更に純水 2 OmLを添加して、 25 Or. p.m.で、 12時間混合した。 乾燥後、 メノウ乳鉢で 粉砕し、 N2雰囲気下、 600°Cで 12時間、 焼成し、 正極活物質 L i FeP〇4 を得た。 得られた試料の BET値は 32. θπι2//^であった。 得られた試料の S ΕΜ写真を図 13、 ΤΕΜ写真を図 14に示す。 得られた粒子も不定形であった。 得られた粒子の X線回折図よりオリビン型リン酸鉄リチウム単相であることが 確認された。 Was synthesized L i F e P0 4 Matthew Bok a (Co. Kojundo Chemical Laboratory Ltd. purity 99% BET value 10. 3m 2 / g) in the raw material into the amorphous as shown in FIG. 12. Hematite 0.075mo 1, Li 2 C0 3 0.0883mo 1, (NH 4 ) 2 HP0 4 0.15 mol, 5 g of glucose are placed in an 8 OmL planetary polymill container, and pure water 2 OmL was added and mixed for 12 hours at 25 Or.pm. After drying, was ground in an agate mortar, N 2 atmosphere, 12 hours at 600 ° C, and fired to obtain a positive electrode active material L i FeP_〇 4. The BET value of the obtained sample was 32. θπι 2 // ^. Fig. 13 shows an S-photograph of the obtained sample, and Fig. 14 shows a photo. The obtained particles were also amorphous. From the X-ray diffraction pattern of the obtained particles, it was confirmed that it was a single phase olivine type lithium iron phosphate. confirmed.
I C P分析による組成分析結果を表 1に示す。  Table 1 shows the results of composition analysis by ICP analysis.
実施例 1と同様にして、 コインセルを組み立て、 充放電試験を行った。初期充放 電容量を表 2に示す。  In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
比較例 2  Comparative Example 2
合成したマグネ夕イト (BET値 2. 6m2Zg、 平均粒子径 520 nm、 変動 係数 0. 53) を原料に L i F e P04を合成した。 上記マグネタイト 0. 05 mo l、 L i 2C03 0. 083mo 1、 (NH4) 2HP〇4 0. 15 mo l、 グルコース 5 gを 8 OmL遊星ポールミル容器に入れ、更に純水 2 OmLを添加 して、 25 Or. p.m.で、 5時間混合した。 乾燥後、 メノウ乳鉢で粉砕し、 N2雰囲 気下、 650°Cで 4時間、 焼成し、 正極活物質 L i FeP〇4を得た。 得られた試 料の BET値は 25. Yn^Zgであった。 得られた試料の SEM写真を図 15に 示す。粒子径は TEM写真から 200個の粒子を無作為に測定し、平均値で算出し た。 得られた試料の平均粒子径は 109 nm、 変動係数は 0. 62であった。 得られた粒子 X線回折図よりオリビン型リン酸鉄リチウム単相であることが確 認された。 Synthesized magnetic evening site (BET value 2. 6 m 2 Zg, average particle size 520 nm, coefficient of variation 0.53) was synthesized L i F e P0 4 in the raw material. Put the above magnetite 0.05 mol, Li 2 C0 3 0.083 mol 1, (NH 4 ) 2 HP 0 4 0.15 mol, glucose 5 g into an 8 OmL planetary pole mill container, and then add 2 OmL of pure water. Add and mix at 25 Or. Pm for 5 hours. After drying, was ground in an agate mortar, under N 2 Kiri囲air, 4 hours at 650 ° C, and fired to obtain a positive electrode active material L i FeP_〇 4. The BET value of the obtained sample was 25. Yn ^ Zg. Figure 15 shows an SEM photograph of the sample obtained. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 109 nm and a coefficient of variation of 0.62. From the obtained particle X-ray diffraction pattern, it was confirmed to be an olivine-type lithium iron phosphate single phase.
I C P分析による組成分析結果を表 1に示す。  Table 1 shows the results of composition analysis by ICP analysis.
実施例 1と同様にして、 コインセルを組み立て、 充放電試験を行った。初期充放 電容量を表 2に示す。 In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. Table 2 shows the initial charge / discharge capacity.
IGP分析結果 c分析値IGP analysis result c Analysis value
Fe U P %Fe U P%
Feに対する mol比 実施例 1 1 1.0 1.0 5.8 実施例 2 1 1.0 1.0 2.7 実施例 3 1 1.0 1.0 0 実施例 4 1 1.0 1.0 5.7 比較例 1 1 1.0 1.0 5.3 比較例 2 1 1.0 1.0 5.7 Mol ratio to Fe Example 1 1 1.0 1.0 5.8 Example 2 1 1.0 1.0 2.7 Example 3 1 1.0 1.0 0 Example 4 1 1.0 1.0 5.7 Comparative Example 1 1 1.0 1.0 5.3 Comparative Example 2 1 1.0 1.0 5.7
コイン電池評価結果 充電容量 放電容量 mAh/g Coin battery evaluation result Charging capacity Discharging capacity mAh / g
実施例 1 131 138 実施例 2 138 134 実施例 3 117 110 実施例 4 132 126 比較例 1 87 66 比較例 2 113 87 実施例 5 Example 1 131 138 Example 2 138 134 Example 3 117 110 Example 4 132 126 Comparative Example 1 87 66 Comparative Example 2 113 87 Example 5
(1) 酸化鉄の製造  (1) Manufacture of iron oxide
60Lの反応容器に NaOHを 52. 8 m o 1を含む水溶液 40 Lを仕込み、 窒素ガスを通気して置換し、 80°Cに保持した。ここに、窒素通気、攪拌しながら、 6mo lの Fe S04と 6 mo 1の F e 2 (S 04) 3を含む水溶液 20 Lを添加 して、 80°Cで 3時間混合した。 得られた懸濁液をろ過、 洗浄、 乾燥して、 微粒子 マグネタイト (Fe 304) を得た。 試料の比表面積測定は BET法で測定した。 得られた試料の BET値は 74. 2m2/gであった。 得られた試料の TEM写真 を図 17に示す。粒子径は TEM写真か.ら 200個の粒子を無作為に測定し、平均 値で算出した。得られた試料の平均粒子径は 11 nm、変動係数は 0. 34であつ た。 A 60 L reaction vessel was charged with 40 L of an aqueous solution containing 52.8 mo 1 of NaOH, purged with nitrogen gas, and kept at 80 ° C. To this, 20 L of an aqueous solution containing 6 mol of Fe S0 4 and 6 mol of Fe 2 (S 0 4 ) 3 was added with nitrogen aeration and stirring, and mixed at 80 ° C. for 3 hours. The obtained suspension was filtered, washed and dried to obtain fine-particle magnetite (Fe 3 0 4 ). The specific surface area of the sample was measured by the BET method. The BET value of the obtained sample was 74.2 m 2 / g. Figure 17 shows a TEM photograph of the sample obtained. The particle size was calculated from an average value of 200 particles randomly measured from a TEM photograph. The obtained sample had an average particle size of 11 nm and a coefficient of variation of 0.34.
得られた粒子の X線回折図より F e 304単相であることが確認された。 From the X-ray diffraction pattern of the obtained particles, it was confirmed to be Fe 3 0 4 single phase.
(2) L i FeP〇4の製造方法 (2) The method of producing L i FeP_〇 4
上記で (1) で得られた酸化鉄 (Fe34) を原料にオリビン型リン酸鉄リチ ゥムを合成した。 (1) で得られた酸化鉄 0. 05mo l、 L i 2C03 0. 0 79mo l、 (NH4) 2HP04 0. 15 m o 1およびグルコース 4 gを 80 mL遊星ポールミル容器に入れ、 更に純水 2 OmLを添加して、 25 Or. p.m. で、 12時間混合した。 120°Cで乾燥後、 メノウ乳鉢で粉碎し、 N2雰囲気下、 650°Cで 6時間焼成し、 正極活物質 L 1 Fe P04を得た。 得られた試料の BE T値は 12. 5012ノ 、 炭素含有量は 3. 3重量%であった。 得られた試料の S EM写真を図 18に示す。粒子径は TEM写真から 200個の粒子を無作為に測定 し、 平均値で算出した。 得られた試料の平均粒子径は 80nm、 変動係数は 0. 3 2であった。 The olivine-type iron phosphate was synthesized from the iron oxide (Fe 3 4 ) obtained in (1) above. Put the iron oxide obtained in (1) 0.05 mol, Li 2 C0 3 0.0 0.0 mol, (NH 4 ) 2 HP0 4 0.15 mo 1 and 4 g glucose into an 80 mL planetary pole mill container, Further, 2 OmL of pure water was added and mixed at 25 Or.pm for 12 hours. After drying at 120 ° C., the mixture was pulverized in an agate mortar and fired at 650 ° C. for 6 hours in an N 2 atmosphere to obtain a positive electrode active material L 1 Fe P0 4 . The obtained sample had a BET value of 12.501 2 and a carbon content of 3.3% by weight. Figure 18 shows a SEM photograph of the obtained sample. The particle size was calculated as an average value by randomly measuring 200 particles from a TEM photograph. The obtained sample had an average particle size of 80 nm and a coefficient of variation of 0.32.
得られた粒子の X線回折測定をおこなった。図 19に得られた粒子の X線回折図 を示す。 X線回折図よりオリビン型リン酸鉄リチウム単相であることが確認された。 実施例 1と同様にして、 コインセルを組み立て、 充放電試験を行った。初期充放 電容量は、 充電容量 14 OmAh/g, 放電容量 138mAh/gであった。  X-ray diffraction measurement was performed on the obtained particles. Figure 19 shows the X-ray diffraction pattern of the obtained particles. From the X-ray diffraction pattern, it was confirmed to be an olivine type lithium iron phosphate single phase. In the same manner as in Example 1, a coin cell was assembled and a charge / discharge test was performed. The initial charge / discharge capacity was a charge capacity of 14 OmAh / g and a discharge capacity of 138 mAh / g.
産業上の利用可能性 本発明の正極活物質を利用した非水電解質電池としては、例えば、金属リチウム 電池、 リチウムイオン電池、 リチウムポリマ一電池等のリチウム二次電池が挙げら れる。 Industrial applicability Examples of the non-aqueous electrolyte battery using the positive electrode active material of the present invention include lithium secondary batteries such as a metal lithium battery, a lithium ion battery, and a lithium polymer battery.

Claims

請求の範囲 The scope of the claims
[I] 平均粒子径が 5 0 0 nm以下の酸化鉄粒子を含む鉄源、 リチウム源及びリン 源を混合し、 焼成することを特徴とするオリビン構造を有する化合物の製造方法。  [I] A method for producing a compound having an olivine structure, comprising mixing an iron source containing an iron oxide particle having an average particle size of 500 nm or less, a lithium source, and a phosphorus source, followed by firing.
[2] 酸化鉄粒子が、 鉄塩とアルカリとを反応させ、 その反応物を酸化して得られ たものである、 請求項 1の方法。  [2] The method according to claim 1, wherein the iron oxide particles are obtained by reacting an iron salt and an alkali and oxidizing the reaction product.
[3] 酸化鉄粒子がマグネタイトである、 請求項 1の方法。  [3] The method of claim 1, wherein the iron oxide particles are magnetite.
[4] 酸化鉄粒子が、 平均粒子径が 5 0 0 nm以下であり、 かつ、 粒子径の変動係 数が 0 . 5以下を有するマグネタイトである、 請求項 3の方法。'  [4] The method according to claim 3, wherein the iron oxide particles are magnetite having an average particle size of 500 nm or less and a particle size variation coefficient of 0.5 or less. '
[5] アル力リが水酸化アル力リ及び Z又は炭酸アル力リである、請求項 2の方法。  [5] The method according to claim 2, wherein the strength is Al hydroxide and Z or Al carbonate.
[6] 酸化が 3 0〜9 0 °Cの温度で行われる、 請求項 2又は 5の方法。  [6] The method according to claim 2 or 5, wherein the oxidation is carried out at a temperature of 30 to 90 ° C.
'  '
[7] 平均粒子径が 5 0 0 nm以下の酸化鉄粒子を含む鉄源、 リチウム源及びリン 源と炭素または Zおよび炭素前駆体を混合し、焼成することを特徴とするオリビン 構造を有する化合物の製造方法。 ' [7] A compound having an olivine structure characterized by mixing an iron source including an iron oxide particle having an average particle diameter of 500 nm or less, a lithium source and a phosphorus source, and carbon or Z and a carbon precursor, followed by firing. Manufacturing method. '
[8] 焼成を不活性ガス雰囲気または還元雰囲気で行う、 請求項 1〜7の何れかの 方法。  [8] The method according to any one of claims 1 to 7, wherein the firing is performed in an inert gas atmosphere or a reducing atmosphere.
[9] 焼成を N 2雰囲気で行う、 請求項 8の方法。 [9] The method according to claim 8, wherein the firing is performed in an N 2 atmosphere.
[10] 請求項 1〜 9の何れかの方法により得られた平均粒子径が 1 0 0 0 n m以 下であるオリビン構造を有する化合物。  [10] A compound having an olivine structure, obtained by the method according to any one of claims 1 to 9, and having an average particle size of 100 nm or less.
[I I] 請求項 1〜 9の何れかの方法により得られた平均粒子径が 1 0 0 O n m以 下であり、 かつ、 粒子径の変動係数が 0 . 6以下を有するオリビン構造を有する化 合物。  [II] An olivine structure having an average particle size of 10 O nm or less obtained by the method of any one of claims 1 to 9 and a coefficient of variation of the particle size of 0.6 or less. Compound.
[12] 請求項 1〜 9の何れかの方法により得られたオリピン構造を有する化合物 又は請求項 1 0又は 1 1のオリビン構造を有する化合物を含む正極活物質。  [12] A positive electrode active material comprising the compound having an olipine structure obtained by the method according to any one of claims 1 to 9 or the compound having an olivine structure according to claim 10 or 11.
[13] 請求項 1 2の正極活物質を含む正極を有する非水電解質電池。  13. A nonaqueous electrolyte battery having a positive electrode comprising the positive electrode active material according to claim 12.
PCT/JP2008/050650 2007-01-29 2008-01-11 Compound having olivine structure, method for producing the same, positive electrode active material using compound having olivine structure, and nonaqueous electrolyte battery WO2008093551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008556048A JP5385616B2 (en) 2007-01-29 2008-01-11 COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-018491 2007-01-29
JP2007018491 2007-01-29

Publications (1)

Publication Number Publication Date
WO2008093551A1 true WO2008093551A1 (en) 2008-08-07

Family

ID=39673864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050650 WO2008093551A1 (en) 2007-01-29 2008-01-11 Compound having olivine structure, method for producing the same, positive electrode active material using compound having olivine structure, and nonaqueous electrolyte battery

Country Status (2)

Country Link
JP (1) JP5385616B2 (en)
WO (1) WO2008093551A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
JP2012056827A (en) * 2010-09-13 2012-03-22 Mitsui Mining & Smelting Co Ltd Iron oxide particle
JP2012530672A (en) * 2009-06-24 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing LiFePO4-carbon composite
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2016056093A (en) * 2010-06-30 2016-04-21 株式会社半導体エネルギー研究所 Method of producing positive electrode active material, positive electrode active material, and secondary battery
CN106058307A (en) * 2016-08-17 2016-10-26 刘新保 Method of preparing lithium ion battery cathode material lithium iron phosphate with lithium iron phosphate waste material
WO2023206226A1 (en) * 2022-04-28 2023-11-02 Dic Corporation Forsterite particles and method for producing forsterite particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067924A (en) * 2003-08-21 2005-03-17 Central Glass Co Ltd Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same
JP2006155941A (en) * 2004-11-25 2006-06-15 Kyushu Univ Method of manufacture for electrode active material
JP2006302671A (en) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd Cathode material for lithium-ion secondary battery and its manufacturing method as well as lithium-ion secondary battery using same
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058680B2 (en) * 2002-08-13 2008-03-12 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP4703985B2 (en) * 2004-08-02 2011-06-15 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium battery
JP2006261061A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067924A (en) * 2003-08-21 2005-03-17 Central Glass Co Ltd Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same
JP2006155941A (en) * 2004-11-25 2006-06-15 Kyushu Univ Method of manufacture for electrode active material
JP2006302671A (en) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd Cathode material for lithium-ion secondary battery and its manufacturing method as well as lithium-ion secondary battery using same
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530672A (en) * 2009-06-24 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing LiFePO4-carbon composite
US9209461B2 (en) 2009-06-24 2015-12-08 Basf Se Process for the preparation of LiFePO4-carbon composites
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
JP2016056093A (en) * 2010-06-30 2016-04-21 株式会社半導体エネルギー研究所 Method of producing positive electrode active material, positive electrode active material, and secondary battery
US10170764B2 (en) 2010-06-30 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing ultra small particle, positive electrode active material of second battery using the method for manufacturing ultra small particle and method for manufacturing the same, and secondary battery using the positive electrode active material and method for manufacturing the same
JP2012056827A (en) * 2010-09-13 2012-03-22 Mitsui Mining & Smelting Co Ltd Iron oxide particle
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
CN106058307A (en) * 2016-08-17 2016-10-26 刘新保 Method of preparing lithium ion battery cathode material lithium iron phosphate with lithium iron phosphate waste material
CN106058307B (en) * 2016-08-17 2018-11-27 刘新保 A method of lithium ion battery anode material lithium iron phosphate is prepared using LiFePO4 waste material
WO2023206226A1 (en) * 2022-04-28 2023-11-02 Dic Corporation Forsterite particles and method for producing forsterite particles

Also Published As

Publication number Publication date
JPWO2008093551A1 (en) 2010-05-20
JP5385616B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5314258B2 (en) Olivine-type lithium iron phosphate compound and method for producing the same, and positive electrode active material and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
JP5463561B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
CN101278425B (en) ,Method for producing battery and electrode containing mixed body of lithium iron phosphate and carbon
JP5344452B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
JP5509918B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
EP2966713B1 (en) Preparation method of porous manganese lithium phosphate-carbon composite material
JP5531532B2 (en) Method for producing lithium ion battery positive electrode active material
US20130318780A1 (en) Method for producing cathode active material for lithium ion secondary battery
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP5385616B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP2013080709A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2011071019A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
JP5716269B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
JP2009295566A (en) Manufacturing device for electrode material, manufacturing method for electrode material, and manufacturing method for lithium secondary battery
JP2014179176A (en) Electrode material and process of manufacturing the same
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
KR100984586B1 (en) Method of manufacturing lithium iron phosphate
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
KR101100029B1 (en) Method of preparing positive active material for lithium secondary battery and rechargeable lithium battery
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
KR101464369B1 (en) Method for the preparation of a lithium iron phosphate of olivine crystal structure and carbon-coated lithium iron phosphate of olivine crystal structure prepared thereby, including carbon inside
JP2020166931A (en) Positive electrode active material for lithium ion secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008556048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08703500

Country of ref document: EP

Kind code of ref document: A1