JP4341440B2 - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP4341440B2
JP4341440B2 JP2004088500A JP2004088500A JP4341440B2 JP 4341440 B2 JP4341440 B2 JP 4341440B2 JP 2004088500 A JP2004088500 A JP 2004088500A JP 2004088500 A JP2004088500 A JP 2004088500A JP 4341440 B2 JP4341440 B2 JP 4341440B2
Authority
JP
Japan
Prior art keywords
sintered body
thermoelectric conversion
thermoelectric
conversion material
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088500A
Other languages
Japanese (ja)
Other versions
JP2005005675A (en
Inventor
靖昌 大空
淳 長井
一宏 藤井
英邦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004088500A priority Critical patent/JP4341440B2/en
Publication of JP2005005675A publication Critical patent/JP2005005675A/en
Application granted granted Critical
Publication of JP4341440B2 publication Critical patent/JP4341440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は,熱を直接電気に変換する熱電変換材料に関するものである。熱電変換材料を用いて製造される熱電モジュールは、特に自動車や各種製造プラント、発電プラント、ゴミ焼却施設などの排熱等未利用のエネルギーを効率良く電気に変換するもので、本技術により省エネルギーに寄与するとともに、昨今問題となっている二酸化炭素の排出を抑制する効果を有するものである。   The present invention relates to a thermoelectric conversion material that directly converts heat into electricity. Thermoelectric modules manufactured using thermoelectric conversion materials efficiently convert unused energy such as exhaust heat from automobiles, various manufacturing plants, power plants, garbage incineration facilities, etc. into electricity efficiently. It contributes and has the effect of suppressing the emission of carbon dioxide, which has become a problem in recent years.

熱電変換材料は、その材料の両端に温度差をつけることにより、熱エネルギーを直接電気エネルギーに変換して(ゼーベック効果)取り出せる性質を持つ材料で、その性能の高さの指標として、性能指数(Figure of Merit)Zが用いられ、この値が大きいほど高性能であることを意味する。
Z=α2σ/κ(K-1) (1)
ここで、α:ゼーベック係数(V/K),σ:電気伝導度(S/m),κ:熱伝導率(W/m・K)である。
A thermoelectric conversion material is a material that has the property of converting heat energy directly into electrical energy (Seebeck effect) by creating a temperature difference at both ends of the material. The performance index ( Figure of Merit) Z is used, and a larger value means higher performance.
Z = α 2 σ / κ (K −1 ) (1)
Here, α: Seebeck coefficient (V / K), σ: electrical conductivity (S / m), and κ: thermal conductivity (W / m · K).

Zは温度の逆数の次元なので、これに絶対温度をかけて無次元量として表現した、無次元性能指数ZTを用いることも多い。また、性能指数の分子α2σを出力因子と言い、性能の目安とすることもある。 Since Z is a dimension of the reciprocal of temperature, a dimensionless figure of merit ZT expressed as a dimensionless quantity is often used by multiplying this by an absolute temperature. In addition, the numerator α 2 σ of the figure of merit is called an output factor and may be used as a measure of performance.

図1は、従来の代表的な熱電変換材料の無次元性能指数を示す図であり、図中破線および実線は、それぞれp型、n型を示す。また、一点鎖線は、性能の目安として無次元性能指数が1の曲線を示す。この図から分かるように、熱電材料は、その特性の温度依存性により、使用温度域によって、材料を使い分ける必要がある。これらの熱電変換材料の中から、これまで実用に供されてきた代表的な3つの材料について、簡単に特性や特徴を述べる。   FIG. 1 is a diagram showing a dimensionless figure of merit of a typical conventional thermoelectric conversion material. In the figure, a broken line and a solid line indicate a p-type and an n-type, respectively. The alternate long and short dash line indicates a curve having a dimensionless figure of merit of 1 as a measure of performance. As can be seen from this figure, the thermoelectric material needs to be properly used depending on the operating temperature range due to the temperature dependence of its characteristics. Of these thermoelectric conversion materials, the characteristics and characteristics of three typical materials that have been put to practical use will be briefly described.

BiTe系材料は、図1でも分かる通り、低温度域では最も高い性能指数を示す材料で、現在では熱電冷却用の材料として実用化された最も利用されている熱電材料である。実用材料としては、BiTeとSbTe材料の固溶体が用いられ、その比率や、BiSeなどの添加により電気的特性を制御する。 As can be seen in FIG. 1, the BiTe-based material is a material that exhibits the highest performance index in the low temperature range, and is currently the most utilized thermoelectric material that has been put to practical use as a thermoelectric cooling material. As a practical material, a solid solution of Bi 2 Te 3 and Sb 2 Te 3 material is used, and the electrical characteristics are controlled by the ratio and addition of Bi 2 Se 3 or the like.

BiTe系材料の結晶構造は層状化合物であり、物性も強い異方性があり、それを利用して高い性能の素子を構成できるが、c軸に垂直な面で容易に劈開する性質を持つため機械的強度に難点があり、焼結方法の工夫が必要となる。   The crystal structure of the BiTe-based material is a layered compound, and the physical properties are also strong anisotropy, making it possible to construct a high-performance element, but it has the property of being easily cleaved in a plane perpendicular to the c-axis The mechanical strength is difficult, and it is necessary to devise a sintering method.

PbTe系材料は、800K以下の中温域で使用される材料で、宇宙で使用される原子炉の熱を利用する発電システムRTG(Radioactive Thermoelectric Generator)を開発する米国のSNAP(Systems for Nuclear Auxiliary Power)計画の中心的材料となった。この計画により作られたRTGは、アポロ12〜17号や探査衛星であるパイオニア、ヴァイキングに搭載された。   PbTe-based materials are materials used in the middle temperature range of 800K or less, and US SNAP (Systems for Nuclear Auxiliary Power), which develops a power generation system RTG (Radioactive Thermoelectric Generator) that uses the heat of the reactors used in space. It became the central material of the plan. The RTG produced by this project was installed in Apollo 12-17 and the exploration satellite Pioneer and Viking.

実用材料として用いるには、ドーパントとして、p型ではAgTeやNaを、n型ではPbIやPbBrを用いて特性を制御している。ただし、この材料は、大気中で酸化しやすく、そのため大気中で使用するには特殊な容器に不活性ガスと共に封入するなどの工夫が必要となる。 For use as a practical material, the characteristics are controlled using Ag 2 Te or Na for the p-type and PbI 2 or PbBr 2 for the n-type as the dopant. However, since this material is easily oxidized in the atmosphere, it is necessary to devise measures such as enclosing it in a special container together with an inert gas in order to use it in the atmosphere.

この材料系で最も高い性能指数を示すものは、図1に示しているように、TAGSと呼ばれるGeTe−AgSbTe系で、400℃(絶対温度673.15K)での性能指数Zが2×10−3/Kと大きく、性能指数Zと絶対温度Tの積である無次元性能指数ZTが1を大きく越えるp型材料である。しかしながら使用温度域で構造相転移が起こるなど使いにくい材料である。 As shown in FIG. 1, the material system having the highest performance index is a GeTe-AgSbTe 2 system called TAGS, and the performance index Z at 400 ° C. (absolute temperature 673.15 K) is 2 × 10. It is a p-type material having a dimensionless figure of merit ZT which is as large as −3 / K and whose dimensionless figure of merit ZT, which is the product of the figure of merit Z and the absolute temperature T, greatly exceeds 1. However, it is a material that is difficult to use, such as a structural phase transition occurring in the operating temperature range.

SiGe系材料は、1270Kまで優れた熱電特性を有する材料で、有名な応用例として、深宇宙探査宇宙船のVoyageに搭載されたRTGへの応用がある。   The SiGe-based material is a material having excellent thermoelectric properties up to 1270 K. As a famous application example, there is an application to RTG mounted on a Voyage of a deep space exploration spacecraft.

実用材料として用いるには、ドーパントとして、p型ではBを用い、n型ではPを用いて、電気的特性を制御している。近年、GaPの添加により、熱伝導率を大きく低減できることが見い出され、性能指数が飛躍的に向上した。図1に示したSiGe系材料の特性はGaPを添加した材料の特性を示している。   In order to use as a practical material, B is used as a dopant for p-type and P is used for n-type to control electrical characteristics. In recent years, it has been found that the addition of GaP can greatly reduce the thermal conductivity, and the figure of merit has been dramatically improved. The characteristics of the SiGe-based material shown in FIG. 1 indicate the characteristics of the material to which GaP is added.

上述のように、低温度領域ではBiTe系材料が最も性能が高く、むしろ熱電冷却用の材料として、広く実用に供されている。しかしながら、自動車の排ガスを典型例とする中温度領域での熱電発電のために供する材料としては、性能は高くとも実用上に問題があるTAGSなどのPbTe系材料しかなく、宇宙用途など特殊な例に留まっており、長い間この中温度領域での実用的高性能熱電変換材料が求められていた。   As described above, BiTe-based materials have the highest performance in the low temperature region, and are widely used practically as thermoelectric cooling materials. However, as a material used for thermoelectric power generation in the middle temperature range, which is typically an automobile exhaust gas, there is only a PbTe-based material such as TAGS that has high performance, but there are special examples such as space use. For a long time, there has been a demand for a practical high-performance thermoelectric conversion material in this intermediate temperature range.

また、これまで長い間熱電変換材料は、TAGS以外ではZT=1を越える高性能材料はなく、「ZT=1の壁」があるといわれていたが、最近になってZT=1を越える材料系が報告されるようになった。   In addition, it has been said that there is no high-performance material exceeding ZT = 1 except for TAGS for a long time, and there is a “ZT = 1 wall”, but recently, a material exceeding ZT = 1. The system is now reported.

本発明に述べるZnSb系材料は歴史のある材料で、有名な例としてよく引用されるのは「パルチザンの飯ごう」といわれる応用例で1940年代に金属のコンスタンタンと組み合わせて、ゲリラが無線用の電源として使用したとのことである。しかしながら、より高性能なBiTe系やPbTe系材料のために、あまり注目されていなかった。ところが、最近になってβ−ZnSbについて、TAGSを越える性能指数(700KにおいてZTが約1.3)を達成したとの報告(非特許文献1参照)があったことから、注目をあびている材料である。 The ZnSb-based material described in the present invention is a material with a history, and a well-known example is the application example called “partisan rice”. It was used as. However, it has not received much attention because of its higher performance BiTe and PbTe materials. However, recently, there has been a report (see Non-Patent Document 1) that β-Zn 4 Sb 3 has achieved a figure of merit that exceeds TAGS (ZT is about 1.3 at 700K). It is a frightening material.

Proceedings of 15th International Conference on Thermoelectrics, p.150, 1996年Proceedings of 15th International Conference on Thermoelectrics, p.150, 1996

上述のように、ZnSb材料は、高性能との報告があるものの、実用化への研究はなかなか進展していない。その原因として本材料の機械的強度に問題があることが熱電材料の研究者の間では一般に知られている。   As described above, although ZnSb materials have been reported to have high performance, research into practical use has not progressed very easily. It is generally known among thermoelectric material researchers that the cause is a problem in the mechanical strength of the material.

また、ZnSb粉末は難焼結性であることも問題の一つである。そのため、焼結には高温、高圧を必要とするという報告もある。ところが、β−ZnSbは490℃付近にβ→γの変態点が存在し、これにより高温で焼結を試みると、その相変態のため焼結体に割れを生じる。また、高圧での焼結は、装置が大がかりになりコストが大幅にアップする。そこで、通常の一軸ホットプレスで焼結を行うと、低密度となり電気伝導性が悪く低性能となる。また、強度においても、低密度であるため低いものとなり、実用上問題となる。 Another problem is that the ZnSb powder is difficult to sinter. Therefore, there is a report that sintering requires high temperature and high pressure. However, β-Zn 4 Sb 3 has a β → γ transformation point in the vicinity of 490 ° C., and when sintering is attempted at a high temperature, the sintered body is cracked due to the phase transformation. In addition, sintering at a high pressure makes the apparatus large and the cost is greatly increased. Therefore, when sintering is performed by a normal uniaxial hot press, the density becomes low and the electrical conductivity is poor and the performance is low. Also, the strength is low due to the low density, which is a problem in practical use.

従って、本発明の目的は、高い熱電性能を有するβ−ZnSb系熱電材料において、さらに高い機械的強度を有する熱電材料を提供することである。これにより、従来一般の使用に耐える高性能熱電変換材料がなかった、自動車の排ガスを代表とする中温度領域の未利用エネルギーの効率的活用の可能性を拓くことができる。 Accordingly, an object of the present invention is to provide a thermoelectric material having higher mechanical strength in a β-Zn 4 Sb 3 -based thermoelectric material having high thermoelectric performance. Thereby, the possibility of the efficient use of the unused energy in the middle temperature region represented by the exhaust gas of automobiles, which has not had a high performance thermoelectric conversion material that can withstand general use in the past, can be opened.

本発明は、上記目的を、下記の熱電変換材料を提供することにより達成したものである。 The present invention achieves the above object by providing the following thermoelectric conversion material.

即ち、本発明は、β−ZnSbの焼結体であって、添加成分としてPb、Bi、およびSnのうち少なくとも1種を含有している熱電変換材料に関する。 That is, the present invention relates to a thermoelectric conversion material that is a sintered body of β-Zn 4 Sb 3 and contains at least one of Pb, Bi, and Sn as an additive component.

また、本発明は、前記添加成分がPbであり、該Pbの含有量が、β−ZnSbに対するモル比で、0.5〜1.2%であることを特徴とする熱電変換材料に関する。 In the present invention, the additive component is Pb, and the Pb content is 0.5 to 1.2% in terms of a molar ratio to β-Zn 4 Sb 3 . About.

特に、好ましい形態として、前記β−ZnSbの焼結体が、粒径20μm未満の微細単結晶粒を1次粒子とし、粒径20μm未満の不定形結晶粒が緊密に充填された粒径10μmから粒径200μmの多結晶粒の間を、上記1次粒子が充填された微細構造を有する焼結体であることを特徴とする。 In particular, as a preferred form, the β-Zn 4 Sb 3 sintered body is a particle in which fine single crystal grains having a particle diameter of less than 20 μm are primary particles and irregular crystal grains having a particle diameter of less than 20 μm are closely packed. It is a sintered body having a fine structure filled with the primary particles between polycrystalline grains having a diameter of 10 μm to a diameter of 200 μm.

本発明では、β−ZnSbの焼結体であって、添加成分としてPb、Bi、およびSnのうち少なくとも1種を含有していることにより、β−ZnSbの焼結体の機械的強度が向上した熱電変換材料を提供することができる。さらに、β−ZnSbの焼結体が、粒径20μm未満の微細単結晶粒を1次粒子とし、粒径20μm未満の不定形結晶粒が緊密に充填された粒径10μmから粒径200μmの多結晶粒の間を、上記1次粒子が充填された微細構造を有することにより、優れた熱電特性と機械的強度を有する熱電材料を提供することができる。 In the present invention, a sintered body of β-Zn 4 Sb 3 , which contains at least one of Pb, Bi, and Sn as an additive component, so that a sintered body of β-Zn 4 Sb 3 A thermoelectric conversion material with improved mechanical strength can be provided. Further, the sintered body of β-Zn 4 Sb 3 has a particle diameter of 10 μm, in which fine single crystal grains having a particle diameter of less than 20 μm are primary particles, and irregular crystal grains having a particle diameter of less than 20 μm are closely packed. A thermoelectric material having excellent thermoelectric properties and mechanical strength can be provided by having a fine structure filled with the primary particles between the 200 μm polycrystalline grains.

また、前記熱電材料において、添加成分がPbであり、Pbの含有量を、β−ZnSbに対するモル比で、0.5〜1.2%とすることにより、熱電性能を示す無次元性能指数ZTが最高で2.3という優れた熱電変換材料を提供することが出来る。 In the thermoelectric material, the additive component is Pb, and the Pb content is 0.5 to 1.2% in terms of a molar ratio with respect to β-Zn 4 Sb 3 . An excellent thermoelectric conversion material having a figure of merit ZT of up to 2.3 can be provided.

以下、まず本発明の熱電変換材料について説明する。   Hereinafter, the thermoelectric conversion material of the present invention will be described first.

本発明の熱電変換材料は、基本的結晶構造はβ−ZnSbの焼結体であり、Pb、Bi、およびSnのうち少なくとも1種を添加成分として含むものである。Pb、Bi、およびSnは、β−ZnSbの焼結性を向上し、β−ZnSb粒子間の結合を強固にし、高い熱電特性を保ったまま、焼結体の機械的強度を高めることができる。 The basic crystal structure of the thermoelectric conversion material of the present invention is a sintered body of β-Zn 4 Sb 3 and includes at least one of Pb, Bi, and Sn as an additive component. Pb, Bi, and Sn is to improve the sinterability of the β-Zn 4 Sb 3, to strengthen the bonds between β-Zn 4 Sb 3 particles, while maintaining a high thermoelectric properties, mechanical sintered body Strength can be increased.

上記Pb、Bi、およびSnの添加成分の焼結体中における含有量については、好ましい熱電性能と機械的強度が得られる範囲であれば特に限定されないが、好ましくは、β−ZnSbに対するモル比で、10%以下であり、さらに好ましくは0.2〜8%、より好ましくは0.5〜5%である。添加成分の含有量が少ない場合強度向上の効果が小さく、反対に添加成分の含有量が多すぎると、元素単体での析出や異相が必要以上に生成するため、熱電性能の劣化を招く傾向にある。 The content of the additive components of Pb, Bi, and Sn in the sintered body is not particularly limited as long as preferable thermoelectric performance and mechanical strength can be obtained. Preferably, the content relative to β-Zn 4 Sb 3 The molar ratio is 10% or less, further preferably 0.2 to 8%, and more preferably 0.5 to 5%. When the content of the additive component is small, the effect of improving the strength is small. On the other hand, when the content of the additive component is too large, the precipitation of the element alone and the heterogeneous phase are generated more than necessary, which tends to cause deterioration of the thermoelectric performance. is there.

上に述べた強度向上の効果に加え、Pbを添加したβ−ZnSbにおいては熱電性能に殊に顕著な効果が現れる。特に、Pbの含有量が、β−ZnSbに対するモル比で、0.5〜1.2%であるβ−ZnSbの焼結体においては、無次元性能指数ZTが最高で2.3という優れた熱電性能を示す。上にも述べたように、熱電性能を示す無次元性能指数ZTでは、ZT=1を超える材料が最近になるまで現れてこなかった。本発明のβ−ZnSbにおいては、すでに述べたとおり、無添加の場合においても、400℃において、ZT=1.6を達成した旨の発明を本発明者らにより出願された特願2002−11454号に詳細に記載されている。 In addition to the above-described strength improvement effect, β-Zn 4 Sb 3 to which Pb is added has a particularly remarkable effect on thermoelectric performance. In particular, in a sintered body of β-Zn 4 Sb 3 having a Pb content of 0.5 to 1.2% in terms of a molar ratio to β-Zn 4 Sb 3 , the dimensionless figure of merit ZT is the highest. Excellent thermoelectric performance of 2.3. As described above, in the dimensionless figure of merit ZT indicating thermoelectric performance, materials exceeding ZT = 1 have not appeared until recently. In the β-Zn 4 Sb 3 of the present invention, as already described, the patent application filed by the present inventors for the invention that ZT = 1.6 was achieved at 400 ° C. even in the case of no addition. No. 2002-11454, which is described in detail.

本発明は、上に述べた強度向上の効果に加え、無次元性能指数ZTが1.6を超え、最高でZT=2.3という、従来にない特に優れた性能を示す材料の開発に初めて成功したものである。   The present invention is the first in the development of a material exhibiting a particularly excellent performance that has not been achieved so far, in addition to the above-described strength improvement effect, the dimensionless figure of merit ZT exceeds 1.6 and the maximum is ZT = 2.3. It is a success.

β−ZnSbの焼結体の好ましい形態は、微細な単結晶粒を1次粒子とし、微細な不定形結晶粒が緊密に充填された多結晶粒の間をこの1次粒子が埋めるという構造を有するβ−ZnSbの焼結体からなる。 In a preferred form of the sintered body of β-Zn 4 Sb 3 , fine single crystal grains are used as primary particles, and the primary particles are filled between polycrystalline grains in which fine amorphous crystals are closely packed. It consists of a sintered body of β-Zn 4 Sb 3 having the structure:

上記1次粒子(単結晶粒)は、粒径が20μm未満であり、好ましくは粒径15μm以下、より好ましくは粒径10μmである。また、上記多結晶粒は、粒径が10〜200μmであり、好ましくは粒径15〜150μm、より好ましくは粒径20〜100μmである。また、上記多結晶粒の内部は、粒径20μm未満、好ましくは15μm以下、より好ましくは10μm以下の不定形結晶粒が密に均一に分布した組織となっている。   The primary particles (single crystal grains) have a particle size of less than 20 μm, preferably 15 μm or less, more preferably 10 μm. The polycrystalline grains have a particle size of 10 to 200 μm, preferably a particle size of 15 to 150 μm, and more preferably a particle size of 20 to 100 μm. The inside of the polycrystalline grains has a structure in which amorphous crystal grains having a grain size of less than 20 μm, preferably 15 μm or less, more preferably 10 μm or less are densely and uniformly distributed.

このように、上記焼結体は、粒径20μm未満の1次粒子(単結晶粒)と、粒径20μm未満の不定形結晶粒からなる粒径が10〜200μmの多結晶粒とからなる微細構造を有することが好ましい。   As described above, the sintered body is a fine particle composed of primary particles (single crystal grains) having a particle size of less than 20 μm and polycrystalline grains having an amorphous crystal particle having a particle size of less than 20 μm. It preferably has a structure.

なお、上記焼結体を構成する1次粒子(単結晶粒)および多結晶粒の粒径並びに該多結晶粒を構成する不定形結晶粒の粒径は、下記の〔粒径の測定方法〕により測定したものである。   The primary particles (single crystal grains) and polycrystalline grains constituting the sintered body and the amorphous grains constituting the polycrystalline grains have the following particle size measurement method: It is measured by.

〔粒径の測定方法〕
1.試料(焼結体)を切断し、断面を研磨する。
2.試料研磨面を化学エッチングし、粒界を顕微鏡で視認できるようにする。
3.光学顕微鏡で、エッチング面を拡大撮影する。同条件で、標準スケールの写真も撮影しておく。
4.写真をスキャナで読み取り、パソコンに画像として取りこむ。その際、拡大率がわかるよう、同条件で撮影した標準スケールの写真も、同様に取りこんでおく。
5.パソコンの画面上で、得られた画像の粒界をトレースし、そのトレース画像のみを残す。
6.得られたトレース画像から、画像処理ソフト「NIH Image (Public domain software, by Wayne Rasband, National Institute of Health, USA)」にて、粒径を測定する。測定原理は、トレースで囲まれた部分の画素数を勘定して面積として、同面積の円の直径に換算して粒径とする。その際、スケールバーを画面上で測定することによって、拡大率が算出できるので、その拡大率で除して実際の粒径とする。
[Measuring method of particle size]
1. The sample (sintered body) is cut and the cross section is polished.
2. The sample polished surface is chemically etched so that the grain boundaries can be visually confirmed with a microscope.
3. Magnify the etched surface with an optical microscope. Under the same conditions, take a standard-scale photo.
4). Read a photo with a scanner and import it into a computer as an image. At that time, in order to know the enlargement ratio, the standard scale photograph taken under the same conditions is taken in the same way.
5. Trace the grain boundaries of the obtained image on the computer screen, leaving only the trace image.
6). From the obtained trace image, the particle size is measured by image processing software “NIH Image (Public domain software, by Wayne Rasband, National Institute of Health, USA)”. As a measurement principle, the number of pixels surrounded by the trace is counted as an area, and converted into a diameter of a circle having the same area as a particle diameter. At that time, since the enlargement ratio can be calculated by measuring the scale bar on the screen, it is divided by the enlargement ratio to obtain the actual particle size.

上記のような緻密な微細構造を有するβ−ZnSbの焼結体では、電気伝伝導度が大きく、このため、キャリア密度一定と考えると、ゼーベック係数はほぼ一定でも、電気伝導度の寄与が大きいため、出力因子(パワーファクター)が大幅に向上する。また、このような微細構造では、熱伝導度が低下し、この面からも性能指数が大幅に増大する。なお、上記の緻密な微細構造およびその製造方法に関しては、本発明者らにより出願された特願2002−11454号に詳細に記載されている。 In the sintered body of β-Zn 4 Sb 3 having a dense microstructure as described above, the electric conductivity is large. For this reason, when the carrier density is considered constant, the electric conductivity is almost constant even if the Seebeck coefficient is almost constant. Since the contribution is large, the output factor (power factor) is greatly improved. Further, in such a fine structure, the thermal conductivity is lowered, and the figure of merit is greatly increased also from this aspect. The above-mentioned fine microstructure and the manufacturing method thereof are described in detail in Japanese Patent Application No. 2002-11454 filed by the present inventors.

次に、本発明の熱電変換材料の製造方法の好ましい実施形態を説明する。   Next, a preferred embodiment of the method for producing a thermoelectric conversion material of the present invention will be described.

まず、所定量のZn粉末、Sb粉末と、Pb、Bi、およびSnのうち少なくとも1種からなる添加成分とを秤量し、溶解法により焼結原料となる、β−ZnSbの溶製材を製造する。次いで、上記溶製材を粉砕、分級し、粒径20μm未満のβ−ZnSbと、粒径が該溶製材の粒径より大きく且つ200μm以下のβ−ZnSb溶製材とを作製する。次いで、これらの溶製材を混合して、焼結原料を得る。粒径20μm未満のβ−ZnSb溶製材と、粒径が該溶製材の粒径より大きく且つ200μm以下のβ−ZnSb溶製材との混合割合は、重量比で、好ましくは、前者:後者=1:5〜100、より好ましくは1:10〜50である。 First, a predetermined amount of Zn powder, Sb powder, and an additive component composed of at least one of Pb, Bi, and Sn are weighed, and a molten material of β-Zn 4 Sb 3 that is a sintering raw material by a melting method Manufacturing. Next, the molten material is pulverized and classified to produce β-Zn 4 Sb 3 having a particle size of less than 20 μm and β-Zn 4 Sb 3 molten material having a particle size larger than the particle size of the molten material and not more than 200 μm. To do. Next, these melted materials are mixed to obtain a sintered raw material. And β-Zn 4 Sb 3 ingot material of particle size less than 20 [mu] m, the mixing ratio of the large and 200μm following β-Zn 4 Sb 3 ingot material than the particle diameter of the particle size solution lumber, by weight, preferably The former: the latter = 1: 5 to 100, more preferably 1:10 to 50.

次に、上記焼結体原料を型に充填し、加熱・加圧して、焼結体を作製する。   Next, the sintered body raw material is filled in a mold, heated and pressurized to produce a sintered body.

上記加熱・加圧条件は、好ましくは温度400℃〜550℃、圧力30〜200MPa、より好ましくは、温度450℃〜490℃、圧力40〜100MPaである。また、上記加熱・加圧手段としては、ホットプレス法やHIP法などが挙げられる。   The heating / pressurizing conditions are preferably a temperature of 400 ° C. to 550 ° C. and a pressure of 30 to 200 MPa, more preferably a temperature of 450 ° C. to 490 ° C. and a pressure of 40 to 100 MPa. Examples of the heating / pressurizing means include a hot press method and a HIP method.

本発明の熱電変換材料は、Pb、Bi、およびSnのうち少なくとも1種の添加成分を含有することで、添加成分を含有しないβ−ZnSb焼結体にくらべ、はるかに高い強度を有する材料となる。 The thermoelectric conversion material of the present invention contains at least one additive component of Pb, Bi, and Sn, and thus has a much higher strength than a β-Zn 4 Sb 3 sintered body that does not contain an additive component. It becomes the material which has.

以下、実施例および比較例をあげ、本発明の効果を具体的に説明する。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1
Zn粉末(レアメタリック社製、純度99.99%、粒度10〜30メッシュ)を84.0396g、Sb粉末(レアメタリック社製、純度99.99%、粒度10〜30メッシュ)を115.9604g秤量し、Znが化学量論組成より0.3at%リッチな組成とした紛末の3つのサンプルを用意した。各粉末のサンプルに対し、Pbがβ−ZnSbに対してモル比で3%(例えば、β−ZnSbに100モルに対し、Pbを3モル)となるように秤量し、各粉末のサンプルに加え、混合した。これらをアンプル管に不活性ガスを導入し、封入した。このアンプル管を溶解撹拌炉にセットし、溶解し原料となるβ−ZnSb溶製材を作製した。次いで、この溶製材をジェットミルで乾式粉砕し、20μm未満の粒径の原料1を作製した。また、上記溶製材を自動乳鉢により乾式粉砕し、粒径20〜200μmの原料2を作製した。これら原料1と原料2を、原料1:原料2=1:15の重量比でVブレンダーで24時間乾式混合し、焼結原料とした。この焼結原料を黒鉛型に充填し、40MPaの加圧下、470℃で300分ホットプレスし、β−ZnSb焼結体を得た。
Example 1
Weighed 84.0396 g of Zn powder (Rare Metallic, purity 99.99%, particle size 10-30 mesh) and 115.604 g of Sb powder (Rare Metallic, purity 99.99%, particle size 10-30 mesh). Three powder samples were prepared in which Zn was 0.3 at% richer than the stoichiometric composition. For each powder sample, Pb was weighed to a molar ratio of 3% with respect to β-Zn 4 Sb 3 (eg, 3 mol of Pb with respect to 100 mol of β-Zn 4 Sb 3 ), Added to each powder sample and mixed. These were sealed by introducing an inert gas into an ampule tube. This ampule tube was set in a melting and stirring furnace, and a melted β-Zn 4 Sb 3 melted material was produced. Next, this melted material was dry-pulverized with a jet mill to prepare a raw material 1 having a particle size of less than 20 μm. Further, the melted material was dry-pulverized with an automatic mortar to prepare a raw material 2 having a particle size of 20 to 200 μm. These raw materials 1 and 2 were dry-mixed in a V blender for 24 hours at a weight ratio of raw material 1: raw material 2 = 1: 15 to obtain a sintered raw material. This sintered raw material was filled in a graphite mold and hot-pressed at 470 ° C. for 300 minutes under a pressure of 40 MPa to obtain a β-Zn 4 Sb 3 sintered body.

上記焼結体の、アルキメデス法により測定した密度は6.25〜6.39g/cmであり、従来一般に信頼され引用されてきた結晶構造(H. W. Mayer, I. Mikhail, and K. Schubert, J. Less Common Metals 59, 43 (1978).参照)から計算した理論密度6.078g/cmを大きく上まわるものであった。 The density of the sintered body measured by the Archimedes method is 6.25 to 6.39 g / cm 3 , and the crystal structure (HW Mayer, I. Mikhail, and K. Schubert, J The theoretical density calculated from Less Common Metals 59, 43 (1978)) was significantly higher than 6.078 g / cm 3 .

得られた焼結体を粉砕し、粉末X線回折測定を行った。その結果、図2のように従来一般に信頼できるデータと言われてきた結晶構造であるβ−ZnSb単相のデータと一致するパターンが得られた。この粉末X線回折データと密度との関係は不明である。 The obtained sintered body was pulverized and subjected to powder X-ray diffraction measurement. As a result, as shown in FIG. 2, a pattern consistent with the β-Zn 4 Sb 3 single-phase data, which is a crystal structure that has been generally known as reliable data, was obtained. The relationship between the powder X-ray diffraction data and the density is unknown.

以上のようにして作製した焼結体から3w×1.5t×20Lの試験片を切り出しゼーベック係数、電気伝導度を測定し、出力因子(パワーファクター)を算出した。この結果、いずれも元素添加のない上記と同様に作製されたβ−ZnSb焼結体と同等の特性を有することが明らかとなった。また、熱伝導率を測定し求めた無次元性能指数は、元素添加のない上記と同様に作製されたβ−ZnSb焼結体と同等の特性を有し、従来報告されているβ−ZnSb系材料の無次元性能指数1.3(700Kにて)を大きく上回る、熱電性能において優れたものであることが確認された。結果を表1に示す。 A test piece of 3w × 1.5t × 20L was cut out from the sintered body produced as described above, the Seebeck coefficient and the electrical conductivity were measured, and the output factor (power factor) was calculated. As a result, it has been clarified that all of them have the same characteristics as the β-Zn 4 Sb 3 sintered body produced in the same manner as described above without addition of elements. Further, the dimensionless figure of merit obtained by measuring the thermal conductivity has the same characteristics as the β-Zn 4 Sb 3 sintered body produced in the same manner as described above without addition of elements, and has been reported in the past. It was confirmed that the thermoelectric performance was superior to the dimensionless figure of merit 1.3 (at 700 K) of the —Zn 4 Sb 3 -based material. The results are shown in Table 1.

焼結体から4w×3t×20Lの3点曲げ試験片を切り出し3点曲げ試験を行ったところ、以下の比較例に示す、元素添加のないβ−ZnSb焼結体をこえる高い値を得た。この結果を表1に示す。この破面は図5のようであり、破壊は粒内破壊の様相を呈しており、粒子間の結合も強固であることが実証できた。 When a three-point bending test piece of 4 w × 3 t × 20 L was cut out from the sintered body and a three-point bending test was performed, a high value exceeding the β-Zn 4 Sb 3 sintered body without element addition shown in the following comparative example. Got. The results are shown in Table 1. This fracture surface is as shown in FIG. 5, and the fracture has a form of intragranular fracture, and it has been proved that the bond between the particles is also strong.

Figure 0004341440
Figure 0004341440

実施例2
実施例1の添加元素であるPbの代わりに、Biを実施例1と同様に、β−ZnSbに対してモル比で3%となるように添加して、3つのサンプルのβ−ZnSb焼結体を得た。焼成条件、測定条件等はすべて実施例1と同様である。得られた焼結体を粉砕し測定した粉末X線回折図を図3に示す。また、特性測定結果を表1に、この焼結体の破面を図6に示す。
Example 2
Instead of Pb, which is the additive element of Example 1, Bi was added in a molar ratio of 3% with respect to β-Zn 4 Sb 3 in the same manner as in Example 1, and β- A Zn 4 Sb 3 sintered body was obtained. The firing conditions, measurement conditions, and the like are all the same as in Example 1. FIG. 3 shows a powder X-ray diffraction pattern obtained by pulverizing and measuring the obtained sintered body. The characteristic measurement results are shown in Table 1, and the fracture surface of this sintered body is shown in FIG.

実施例3
実施例1の添加元素であるPbの代わりに、Snを実施例1と同様に、β−ZnSbに対してモル比で3%となるように添加して、3つのサンプルのβ−ZnSb焼結体を得た。焼成条件、測定条件等はすべて実施例1と同様である。得られた焼結体を粉砕し測定した粉末X線回折図を図4に示す。また、特性測定結果を表1に、この焼結体の破面を図7に示す。
Example 3
Instead of Pb, which is the additive element of Example 1, Sn was added in a molar ratio of 3% with respect to β-Zn 4 Sb 3 in the same manner as in Example 1, and β- A Zn 4 Sb 3 sintered body was obtained. The firing conditions, measurement conditions, and the like are all the same as in Example 1. FIG. 4 shows a powder X-ray diffraction diagram obtained by pulverizing and measuring the obtained sintered body. The characteristic measurement results are shown in Table 1, and the fracture surface of this sintered body is shown in FIG.

実施例4
実施例1の添加元素であるPbがβ−ZnSbに対してモル比で0.5%となるように添加して、3つのサンプルのβ−ZnSb焼結体を得た。焼成条件、測定条件等はすべて実施例1と同様である。得られた焼結体を粉砕し測定した粉末X線回折図は、実施例1の図2と同様のパターンであることを確認した。特性測定結果を表1に示す。また、焼結体の破面もやはり、実施例1の図5と同様の様相を示していることを確認した。
Example 4
Was added to 0.5% in the molar ratio with respect to Pb is beta-Zn 4 Sb 3 is a added element of Example 1, to obtain a beta-Zn 4 Sb 3 sintered body of three samples . The firing conditions, measurement conditions, and the like are all the same as in Example 1. The powder X-ray diffraction pattern obtained by crushing and measuring the obtained sintered body was confirmed to be the same pattern as that of FIG. The characteristic measurement results are shown in Table 1. It was also confirmed that the fracture surface of the sintered body showed the same aspect as that of FIG.

実施例5
実施例1の添加元素であるPbがβ−ZnSbに対してモル比で1.0%となるように添加して、3つのサンプルのβ−ZnSb焼結体を得た。焼成条件、測定条件等はすべて実施例1と同様である。得られた焼結体を粉砕し測定した粉末X線回折図は、実施例1の図2と同様のパターンであることを確認した。特性測定結果を表1に示す。また、焼結体の破面もやはり、実施例1の図5と同様の様相を示していることを確認した。
Example 5
Was added to a 1.0% by molar ratio relative to Pb is beta-Zn 4 Sb 3 is a added element of Example 1, to obtain a beta-Zn 4 Sb 3 sintered body of three samples . The firing conditions, measurement conditions, and the like are all the same as in Example 1. The powder X-ray diffraction pattern obtained by crushing and measuring the obtained sintered body was confirmed to be the same pattern as that of FIG. The characteristic measurement results are shown in Table 1. It was also confirmed that the fracture surface of the sintered body showed the same aspect as that of FIG.

実施例6
実施例1の添加元素であるPbがβ−ZnSbに対してモル比で1.2%となるように添加して、3つのサンプルのβ−ZnSb焼結体を得た。焼成条件、測定条件等はすべて実施例1と同様である。得られた焼結体を粉砕し測定した粉末X線回折図は、実施例1の図2と同様のパターンであることを確認した。特性測定結果を表1に示す。また、焼結体の破面もやはり、実施例1の図5と同様の様相を示していることを確認した。
Example 6
Was added to a 1.2% by molar ratio relative to Pb is beta-Zn 4 Sb 3 is a added element of Example 1, to obtain a beta-Zn 4 Sb 3 sintered body of three samples . The firing conditions, measurement conditions, and the like are all the same as in Example 1. The powder X-ray diffraction pattern obtained by crushing and measuring the obtained sintered body was confirmed to be the same pattern as that of FIG. The characteristic measurement results are shown in Table 1. It was also confirmed that the fracture surface of the sintered body showed the same aspect as that of FIG.

比較例1
第3元素を添加せず、ZnとSbを所定量用いること以外は実施例1とすべて同一の工程により、β−ZnSb焼結体得た。
Comparative Example 1
A β-Zn 4 Sb 3 sintered body was obtained by the same process as in Example 1 except that the third element was not added and a predetermined amount of Zn and Sb was used.

アルキメデス法により測定した密度は6.25g/cmであり、実施例1の試料の密度と同等であった。得られた焼結体を、実施例1と同様の試料片に加工して3点曲げ強度を測定した結果を表1に示す。 The density measured by Archimedes method was 6.25 g / cm 3 , which was equivalent to the density of the sample of Example 1. Table 1 shows the results of processing the obtained sintered body into a sample piece similar to Example 1 and measuring the three-point bending strength.

従来の代表的な熱電変換材料の性能指数を示す図である。It is a figure which shows the figure of merit of the conventional typical thermoelectric conversion material. 実施例1で得られた、Pbを3%添加したβ−ZnSb焼結体を粉砕し測定した粉末X線回折図である。FIG. 3 is a powder X-ray diffraction diagram obtained by pulverizing and measuring the β-Zn 4 Sb 3 sintered body to which 3% of Pb is added, obtained in Example 1. 実施例2で得られた、Biを3%添加したβ−ZnSb焼結体を粉砕し測定した粉末X線回折図である。 4 is a powder X-ray diffraction diagram obtained by pulverizing and measuring a β-Zn 4 Sb 3 sintered body to which 3% of Bi is added obtained in Example 2. FIG. 実施例3で得られた、Snを3%添加したβ−ZnSb焼結体を粉砕し測定した粉末X線回折図である。 4 is a powder X-ray diffraction pattern obtained by pulverizing and measuring a β-Zn 4 Sb 3 sintered body added with 3% of Sn obtained in Example 3. FIG. 実施例1で得られた、Pbを3%添加したβ−ZnSb焼結体の3点曲げ試験後の曲げ破面のSEM写真である。It is a SEM photograph of the bending fracture surface after the three-point bending test of the β-Zn 4 Sb 3 sintered body added with 3% Pb obtained in Example 1. 実施例2で得られた、Biを3%添加したβ−ZnSb焼結体の3点曲げ試験後の曲げ破面のSEM写真である。It is a SEM photograph of the bending fracture surface after the three-point bending test of the β-Zn 4 Sb 3 sintered body added with 3% Bi obtained in Example 2. 実施例3で得られた、Snを3%添加したβ−ZnSb焼結体の3点曲げ試験後の曲げ破面のSEM写真である。It is a SEM photograph of the bending fracture surface after the three-point bending test of the β-Zn 4 Sb 3 sintered body added with 3% of Sn obtained in Example 3.

Claims (3)

β−ZnSbの焼結体であって、添加成分としてPb、Bi、およびSnのうち少なくとも1種を含有しており、前記添加成分の焼結体中における含有量が、β−Zn Sb に対するモル比で、0.2〜10%であることを特徴とする熱電変換材料。 β-Zn 4 Sb 3 sintered body containing at least one of Pb, Bi, and Sn as an additive component, and the content of the additive component in the sintered body is β-Zn 4. A thermoelectric conversion material having a molar ratio with respect to 4 Sb 3 of 0.2 to 10% . 前記添加成分がPbであり、該Pbの含有量が、β−ZnSbに対するモル比で、0.5〜1.2%であることを特徴とする請求項1記載の熱電変換材料。 2. The thermoelectric conversion material according to claim 1, wherein the additive component is Pb, and the Pb content is 0.5 to 1.2% in terms of a molar ratio to β-Zn 4 Sb 3 . 前記β−ZnSbの焼結体が、粒径20μm未満の微細単結晶粒を1次粒子とし、粒径20μm未満の不定形結晶粒が緊密に充填された粒径10μmから粒径200μmの多結晶粒の間を、上記1次粒子が充填された微細構造を有する焼結体であることを特徴とする請求項1記載の熱電変換材料。
In the sintered body of β-Zn 4 Sb 3 , fine single crystal grains having a particle diameter of less than 20 μm are used as primary particles, and irregular crystal grains having a particle diameter of less than 20 μm are closely packed, and the particle diameter is from 10 μm to 200 μm. The thermoelectric conversion material according to claim 1, which is a sintered body having a fine structure filled with the primary particles between the polycrystalline grains.
JP2004088500A 2003-05-21 2004-03-25 Thermoelectric conversion material Expired - Fee Related JP4341440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088500A JP4341440B2 (en) 2003-05-21 2004-03-25 Thermoelectric conversion material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003143800 2003-05-21
JP2004088500A JP4341440B2 (en) 2003-05-21 2004-03-25 Thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2005005675A JP2005005675A (en) 2005-01-06
JP4341440B2 true JP4341440B2 (en) 2009-10-07

Family

ID=34106492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088500A Expired - Fee Related JP4341440B2 (en) 2003-05-21 2004-03-25 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP4341440B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044293B2 (en) * 2005-02-18 2011-10-25 GM Global Technology Operations LLC High performance thermoelectric nanocomposite device
EP1728880A1 (en) * 2005-05-31 2006-12-06 Aarhus Universitet Improved p-type thermoelectric materials, a process for their manufacture and uses thereof
JP2007129007A (en) * 2005-11-02 2007-05-24 Hitachi Ltd Method of manufacturing semiconductor device having organic semiconductor film
KR100795194B1 (en) * 2006-06-08 2008-01-16 한국기계연구원 Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2008016610A (en) * 2006-07-05 2008-01-24 Furukawa Co Ltd Zinc-antimony system thermoelectric conversion material and method for manufacturing the same
KR20100009455A (en) 2008-07-18 2010-01-27 삼성전자주식회사 Thermoelectric materials and chalcogenide compounds
CN104419977A (en) * 2013-09-07 2015-03-18 云南师范大学 Method for preparing beta-Zn4Sb3 single crystal thermoelectric material

Also Published As

Publication number Publication date
JP2005005675A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
KR101365251B1 (en) Aluminum/magnesium/ silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module
JP2012190984A (en) Magnesium silicide powder, sintered compact and thermoelectric conversion element using the same, and method for producing the same
JP4341440B2 (en) Thermoelectric conversion material
WO2009101946A1 (en) Method for producing sintered body
KR101673315B1 (en) Thermoelectric materials and their manufacturing method
JP2003243734A (en) Thermoelectric conversion material and method for manufacturing the same
JP2013219308A (en) Bismuth-tellurium based thermoelectric material
JP4865531B2 (en) Yb-AE-Fe-Co-Sb (AE: Ca, Sr, Ba, Ag) based thermoelectric conversion material
JP2008047806A (en) Clathrate compound and thermoelectric conversion element formed of same
JP4273692B2 (en) Method for producing thermoelectric conversion material
JP2006253291A (en) Thermoelectric material
WO2018066657A1 (en) Thermoelectric material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP5931413B2 (en) P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module
JP7159635B2 (en) Silicide-based alloy material and element using the same
JP2012069968A (en) MANUFACTURING METHOD OF n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
KR101322779B1 (en) Bismuth doped Magnesium Silicide composition for thermoelectric material and the manufacturing method of the same
JP5482229B2 (en) Thermoelectric material and manufacturing method thereof
JP4373296B2 (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
Thom et al. Effect of ternary additions on the oxidation resistance of Ti 5 Si 3
EP3633745B1 (en) Thermoelectric material and thermoelectric element comprising same
JP6799341B2 (en) Thermoelectric materials, their manufacturing methods and thermoelectric power generation modules using them
JP2008047754A (en) n-TYPE Yb-Co-Sb-BASED THERMOELECTRIC TRANSDUCTION MATERIAL, YbxCoySbz-BASED THERMOELECTRIC TRANSDUCTION MATERIAL AND METHOD FOR PRODUCING n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC TRANSDUCTION MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees