JP4335844B2 - Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane - Google Patents

Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane Download PDF

Info

Publication number
JP4335844B2
JP4335844B2 JP2005150557A JP2005150557A JP4335844B2 JP 4335844 B2 JP4335844 B2 JP 4335844B2 JP 2005150557 A JP2005150557 A JP 2005150557A JP 2005150557 A JP2005150557 A JP 2005150557A JP 4335844 B2 JP4335844 B2 JP 4335844B2
Authority
JP
Japan
Prior art keywords
fluorine
containing polymer
polymer film
temperature
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005150557A
Other languages
Japanese (ja)
Other versions
JP2006328130A (en
JP2006328130A5 (en
Inventor
勝弘 小野
Original Assignee
勝弘 小野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝弘 小野 filed Critical 勝弘 小野
Priority to JP2005150557A priority Critical patent/JP4335844B2/en
Publication of JP2006328130A publication Critical patent/JP2006328130A/en
Publication of JP2006328130A5 publication Critical patent/JP2006328130A5/ja
Application granted granted Critical
Publication of JP4335844B2 publication Critical patent/JP4335844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

この発明は、燃料電池に適した固体高分子電解質膜であって優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜及びその製造方法及び製造装置に関する。特に、含フッ素系高分子イオン交換膜の基材となる改質された含フッ素系高分子膜を工業的に安価に大量生産する方法及びその装置に関する。   The present invention relates to a fluorine-containing polymer ion exchange membrane which is a solid polymer electrolyte membrane suitable for a fuel cell and has excellent oxidation resistance and a wide range of ion exchange capacities, and a method and apparatus for producing the same. In particular, the present invention relates to a method and an apparatus for mass-producing a modified fluorine-containing polymer membrane as a base material for a fluorine-containing polymer ion exchange membrane industrially at low cost.

固体高分子イオン交換膜を使用した燃料電池においては、高分子イオン交換膜はプロトンを伝導するための電解質として作用するとともに、燃料である水素やメタノールと酸化剤である空気または酸素を直接混合させないための隔膜として作用する。従って、高分子イオン交換膜には、電解質としての役割から、(1)イオン交換容量が高いこと、(2)水酸化ラジカル等に対する耐性つまり耐酸化性に優れていて耐久性があること、(3)膜の保水性が高く一定に保てることにより電気抵抗を低く保持できること等が要求されている。また、高分子イオン交換膜には、隔膜としての役割から、(4)膜の力学的な強度や膜の寸法の安定性に優れていること、(5)水素ガス、メタノール又は酸素ガスに対して過剰な透過性を有しないこと等が要求されている。更に、高分子イオン交換膜には、工業製品として実用化するために、(6)十分に低価格であり大量生産できることが要求されている。   In a fuel cell using a solid polymer ion exchange membrane, the polymer ion exchange membrane acts as an electrolyte for conducting protons and does not directly mix hydrogen or methanol as a fuel with air or oxygen as an oxidant. Act as a diaphragm for. Therefore, the polymer ion exchange membrane has (1) high ion exchange capacity, (2) resistance to hydroxide radicals, that is, excellent oxidation resistance and durability because of its role as an electrolyte. 3) It is required that the electric resistance can be kept low by keeping the water retention property of the film high and constant. In addition, the polymer ion exchange membrane has (4) excellent mechanical strength and dimensional stability of the membrane because of its role as a diaphragm, and (5) against hydrogen gas, methanol or oxygen gas. Therefore, it is required not to have excessive permeability. Furthermore, in order to put the polymer ion exchange membrane into practical use as an industrial product, (6) it is required that the polymer ion exchange membrane be sufficiently inexpensive and can be mass-produced.

初期の高分子イオン交換膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系高分子イオン交換膜が使用された。しかし、このイオン交換膜は耐酸化性に起因する耐久性が非常に劣っていた為に実用性に乏しかった。この問題はデュポン社により解決され、「ナフィオン(デュポン社登録商標)」として開発されたパーフルオロスルホン酸膜等が一般に使用されてきた。   Early polymer ion exchange membrane fuel cells used hydrocarbon polymer ion exchange membranes produced by copolymerization of styrene and divinylbenzene. However, this ion exchange membrane has poor practicality because of its extremely poor durability due to oxidation resistance. This problem has been solved by DuPont, and a perfluorosulfonic acid membrane developed as “Nafion (registered trademark of DuPont)” has been generally used.

しかしながら、「ナフィオン」等の従来の含フッ素系高分子イオン交換膜は次のような欠点を有している。即ち、(1)イオン交換容量が1meq/g前後と小さいことや、(2)保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下することや、(3)メタノールを燃料とする場合には膜の膨潤やメタノールのクロスオーバーが起きること、等である。また、イオン交換容量を大きくする目的でスルホン酸基を多く導入しようとすると、膜強度が著しく低下して容易に破損するようになることが知られている。したがって、従来の含フッ素系高分子のイオン交換膜では膜強度が保持される程度にスルホン酸基の量を抑える必要があり、このためイオン交換容量が1meq/g程度のものしかできなかった。また、「ナフィオン」などの従来の含フッ素系高分子イオン交換膜は、その製造工程が複雑であるために非常に高価であり、実用化の際の大きな障害となっている。そのため、前記「ナフィオン」等に替る、低価格でありながら前記の諸要求を満たした新たな電解質膜を開発することが求められている。   However, conventional fluorine-containing polymer ion exchange membranes such as “Nafion” have the following drawbacks. That is, (1) the ion exchange capacity is as small as around 1 meq / g, (2) the water retention is insufficient and the ion exchange membrane is dried and the proton conductivity is lowered, and (3) methanol is used as fuel. In this case, membrane swelling and methanol crossover occur. Further, it is known that when a large amount of sulfonic acid groups are introduced for the purpose of increasing the ion exchange capacity, the membrane strength is remarkably lowered and easily broken. Accordingly, in the conventional ion exchange membranes of fluorine-containing polymers, it is necessary to suppress the amount of sulfonic acid groups to such an extent that the membrane strength is maintained. For this reason, only an ion exchange capacity of about 1 meq / g could be achieved. Further, conventional fluorine-containing polymer ion exchange membranes such as “Nafion” are very expensive due to their complicated manufacturing process, which is a major obstacle to practical use. Therefore, it is required to develop a new electrolyte membrane that satisfies the above-mentioned requirements while being low in price, replacing the “Nafion” or the like.

含フッ素系高分子膜基材にスルホン酸基を導入することが出来るモノマーをグラフト重合して固体高分子電解質膜を作製する放射線グラフト重合法の試みが成されている。しかし、通常の含フッ素系高分子膜基材を用いるとグラフト反応が膜の内部まで進行せず膜表面に限られるため、電解質膜としての特性が向上しない。また、電子線やγ線などの電離放射線を照射した場合に、通常の含フッ素系高分子膜基材は主鎖切断反応が起きて劣化する。さらに、グラフトモノマーとして炭化水素系のモノマーを用いた場合には耐酸化性が低いことが問題である。例えば、エチレンーテトラフルオロエチレン共重合体にスチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として機能することが特開平9−102322号公報に開示されているが、スチレングラフト鎖が炭化水素で構成されているため、膜に長時間電流を流すとグラフト鎖部の酸化劣化が起こり、膜のイオン交換能が大幅に低下するという欠点を有している。   Attempts have been made for a radiation graft polymerization method in which a solid polymer electrolyte membrane is produced by graft polymerization of a monomer capable of introducing a sulfonic acid group onto a fluorine-containing polymer membrane substrate. However, when a normal fluorine-containing polymer membrane substrate is used, the graft reaction does not proceed to the inside of the membrane and is limited to the membrane surface, so the characteristics as an electrolyte membrane are not improved. In addition, when irradiated with ionizing radiation such as an electron beam or γ-ray, a normal fluorine-containing polymer film substrate deteriorates due to a main chain scission reaction. Furthermore, when a hydrocarbon monomer is used as the graft monomer, there is a problem that the oxidation resistance is low. For example, an ion exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer by a radiation graft reaction and then sulfonating functions as an ion exchange membrane for a fuel cell. Although it is disclosed in the publication, since the styrene graft chain is composed of hydrocarbons, the oxidative degradation of the graft chain occurs when a current is passed through the membrane for a long time, and the ion exchange capacity of the membrane is greatly reduced. have.

含フッ素系高分子膜基材を予め架橋しておくと、膜の耐熱性が向上しモノマーのグラフト率が向上し、さらに、グラフトのための照射による膜強度の低下を抑制することが出来るので、高温作動で高性能の燃料電池用イオン交換膜には好適であることが特開2004−51685号公報や特開2004−300360号公報に開示されている。特に、ポリテトラフルオロエチレン(PTFE)の放射線グラフト反応では架橋構造を膜基材の分子構造に導入することによって無定形部分が多くなり、未架橋のポリテトラフルオロエチレン(PTFE)ではグラフト率が低いという欠点を解決できることが特開2004−300360号公報や特開2001−348439号公報に開示されている。このように、架橋構造を有する含フッ素系高分子膜を基材として用いることにより優れた耐酸化性と広範囲なイオン交換容量を有して燃料電池に適した固体高分子電解質膜として使用できる含フッ素系高分子イオン交換膜が出来ることが知られている。   If the fluorine-containing polymer membrane substrate is previously cross-linked, the heat resistance of the membrane is improved and the grafting ratio of the monomer is improved, and further, the decrease in membrane strength due to irradiation for grafting can be suppressed. JP-A-2004-51685 and JP-A-2004-300360 disclose that it is suitable for high-temperature and high-performance ion exchange membranes for fuel cells. In particular, in the radiation grafting reaction of polytetrafluoroethylene (PTFE), an amorphous part is increased by introducing a crosslinked structure into the molecular structure of the membrane substrate, and a graft ratio is low in uncrosslinked polytetrafluoroethylene (PTFE). It is disclosed in Japanese Patent Application Laid-Open Nos. 2004-300360 and 2001-348439 that the above disadvantage can be solved. Thus, by using a fluorine-containing polymer membrane having a crosslinked structure as a substrate, it has excellent oxidation resistance and a wide range of ion exchange capacity, and can be used as a solid polymer electrolyte membrane suitable for fuel cells. It is known that a fluorine-based polymer ion exchange membrane can be formed.

一般に、含フッ素系高分子膜基材は耐熱性と耐薬品性に優れた特性を有し、産業用および民生用の樹脂として広く利用されている。しかし、含フッ素系高分子膜基材は放射線に対して感受性が高く、放射線を照射することによって分子鎖の切断が進行し、吸収線量が50kGyを超えると機械特性が低下する。そのため原子力施設や宇宙空間などの放射線環境下では利用することが出来なかった。含フッ素系高分子膜基材の代表であるポリテトラフルオロエチレン(PTFE)は放射線に対して極めて感受性が高く、1kGyを超える照射を受けると機械特性が低下することが知られている。ポリテトラフルオロエチレン(PTFE)では、放射線照射により分子切断が優先的に生じ、結晶化が容易に進行してしまうことを意味している。然るに、ポリテトラフルオロエチレン(PTFE)にその結晶融点以上の特定の温度で酸素不存在下において電離放射線を照射すると架橋が起こり、特性が大きく改善されることが特開平6−116423号公報や特開平7−118423号公報に開示されている。   In general, a fluorine-containing polymer film substrate has excellent heat resistance and chemical resistance, and is widely used as an industrial and consumer resin. However, the fluorine-containing polymer film substrate is highly sensitive to radiation, and molecular chain scission progresses when irradiated with radiation. When the absorbed dose exceeds 50 kGy, mechanical properties deteriorate. Therefore, it could not be used in a radiation environment such as a nuclear facility or outer space. Polytetrafluoroethylene (PTFE), which is a representative of the fluorine-containing polymer film substrate, is extremely sensitive to radiation, and it is known that mechanical properties deteriorate when irradiated with radiation exceeding 1 kGy. In polytetrafluoroethylene (PTFE), it means that molecular cutting occurs preferentially by irradiation and crystallization easily proceeds. However, when polytetrafluoroethylene (PTFE) is irradiated with ionizing radiation in the absence of oxygen at a specific temperature equal to or higher than its crystalline melting point, crosslinking occurs and the characteristics are greatly improved. This is disclosed in Japanese Utility Model Laid-Open No. 7-118423.

特開平6−116423号公報にはポリテトラフルオロエチレン(PTFE)を架橋する方法が開示されている。これは、酸素不在環境下、すなわち真空中または不活性ガス雰囲気中において、結晶融点(327℃)以上の温度に保った状態で電離放射線(γ線、電子線、X線、中性子線、高エネルギーイオン等)を照射する方法である。照射時のポリテトラフルオロエチレン(PTFE)膜基材の温度は340℃前後が望ましく、照射される線量は1kGyから10MGyの範囲が適当であることや、特にゴム特性を得たい場合には200kGyから5MGyの範囲が望ましいこと、が開示されている。このような条件で放射線処理されたポリテトラフルオロエチレン(PTFE)膜は耐放射性が付与され、真空中で室温環境下において電離放射線を照射した場合と比較すると、破断伸びの減少や降伏点強度の低下等の材料劣化が著しく抑制されたことが記述されている。   JP-A-6-116423 discloses a method of crosslinking polytetrafluoroethylene (PTFE). This is because ionizing radiation (γ-rays, electron beams, X-rays, neutron beams, high energy) is maintained in a temperature in excess of the crystal melting point (327 ° C.) in an oxygen-free environment, that is, in a vacuum or in an inert gas atmosphere. Ion). The temperature of the polytetrafluoroethylene (PTFE) film substrate at the time of irradiation is desirably around 340 ° C., and the irradiation dose is suitably in the range of 1 kGy to 10 MGy, and in particular when obtaining rubber properties, from 200 kGy It is disclosed that a range of 5MGy is desirable. The polytetrafluoroethylene (PTFE) film that has been subjected to radiation treatment under such conditions is imparted with radiation resistance. Compared with the case of irradiation with ionizing radiation in a room temperature environment in a vacuum, the elongation at break and the strength of the yield point are reduced. It is described that material deterioration such as a decrease is remarkably suppressed.

特開平11−49867号公報には、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)およびテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)に同様の条件下で電離放射線を照射することによって、放射線環境下における耐熱性と機械特性が向上することが開示されている。テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)もしくはテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)に、酸素不在下すなわち真空中もしくは不活性ガス雰囲気中において、各々の結晶融点よりも約20℃低い温度から各々の結晶融点よりも約20℃高い温度の範囲内に保ちながら電離放射線(γ線、電子線、X線、中性子線、高エネルギーイオン等)を照射することによってこれらの含フッ素系高分子膜基材は架橋されることが開示されている。さらに、照射時の樹脂の温度は、各々の含フッ素系高分子膜基材の結晶融点を中心としてそれよりもおよそ±10℃の範囲の温度が好ましいことが開示されている。また照射線量は1kGy〜15MGyの範囲が好ましく、ゴム特性を付与する場合には500kGy〜10MGyの範囲がより好ましいことが開示されている。このように処理されたこれらの含フッ素系高分子膜は耐熱性と耐薬品性が改善されており、これらの特性が求められる機器類のシール材料やパッキング材料に適している。特に、耐放射線特性が付与されているので、放射線環境下での工業材料としてテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)やテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)が利用できるようになる。   In JP-A-11-49867, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) are irradiated with ionizing radiation under the same conditions. Discloses that heat resistance and mechanical properties in a radiation environment are improved. Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) is more than the crystalline melting point in the absence of oxygen, that is, in a vacuum or in an inert gas atmosphere. By irradiating with ionizing radiation (γ-ray, electron beam, X-ray, neutron beam, high-energy ions, etc.) while maintaining within a temperature range from about 20 ° C lower than each crystal melting point about 20 ° C. It is disclosed that the fluorine-containing polymer film substrate is crosslinked. Furthermore, it is disclosed that the temperature of the resin at the time of irradiation is preferably a temperature in the range of about ± 10 ° C., centering on the crystal melting point of each fluorine-containing polymer film substrate. Further, it is disclosed that the irradiation dose is preferably in the range of 1 kGy to 15 MGy, and more preferably in the range of 500 kGy to 10 MGy when imparting rubber properties. These fluorine-containing polymer films treated in this way have improved heat resistance and chemical resistance, and are suitable for equipment sealing materials and packing materials that require these characteristics. In particular, since radiation resistance is imparted, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) are used as industrial materials in a radiation environment. become able to.

また、特開平7−118423号公報には、ポリテトラフルオロエチレン(PTFE)の未処理状態に於ける結晶融点である327℃以上の温度で放射線照射を長時間続けると、架橋反応に加えて熱分解反応や解重合反応が起こり、モノマーがポリテトラフルオロエチレン(PTFE)の表面から飛散し、重量が減少してしまうことが開示されている。ポリテトラフルオロエチレン(PTFE)に、その結晶融点以上の温度で真空中又は不活性ガス中で放射線を照射すると架橋するが、その結晶融点は放射線の吸収線量が増大すると低下してくる。そこで、照射時のポリテトラフルオロエチレン(PTFE)の温度を、吸収線量にあわせて変化させ、熱分解や解重合を抑制しつつ架橋を進めると良いことが開示されている。例えば、照射初期には、327℃以上、望ましくは340℃〜350℃に昇温するが、その後、50kGy照射後では320〜330℃に、100kGy照射後では290〜300℃に、200kGy照射後では280〜290℃に、500kGy照射後では260〜270℃に、そして1MGy照射後では230〜240℃に温度を下げる例が開示されている。ポリテトラフルオロエチレン(PTFE)の温度を低下させる方法としては、液体窒素等の冷媒によって冷却したり、系内に流通せしめる不活性ガスの温度を徐々に下げたりする方法が開示されている。しかし、これらの温度低下方法は具体的では無く、正確な温度管理が困難である。   Japanese Patent Application Laid-Open No. 7-118423 discloses that when radiation irradiation is continued for a long time at a temperature of 327 ° C. or higher, which is the crystalline melting point of polytetrafluoroethylene (PTFE) in an untreated state, in addition to the crosslinking reaction, It is disclosed that a decomposition reaction or a depolymerization reaction occurs, the monomer is scattered from the surface of polytetrafluoroethylene (PTFE), and the weight is reduced. Polytetrafluoroethylene (PTFE) is crosslinked when irradiated with radiation in a vacuum or in an inert gas at a temperature equal to or higher than its crystalline melting point, but its crystalline melting point decreases as the absorbed dose of radiation increases. Therefore, it is disclosed that the temperature of polytetrafluoroethylene (PTFE) at the time of irradiation may be changed in accordance with the absorbed dose, and crosslinking should be advanced while suppressing thermal decomposition and depolymerization. For example, at the initial stage of irradiation, the temperature is raised to 327 ° C. or higher, desirably 340 ° C. to 350 ° C., but then to 320 to 330 ° C. after irradiation with 50 kGy, to 290 to 300 ° C. after irradiation with 100 kGy, and after 200 kGy irradiation. Examples are disclosed in which the temperature is lowered to 280-290 ° C., to 260-270 ° C. after irradiation with 500 kGy, and to 230-240 ° C. after irradiation with 1 MGy. As a method for lowering the temperature of polytetrafluoroethylene (PTFE), a method of cooling with a refrigerant such as liquid nitrogen or a method of gradually lowering the temperature of an inert gas circulated in the system is disclosed. However, these temperature lowering methods are not specific and accurate temperature management is difficult.

以下において、含フッ素系高分子膜基材をその結晶融点近くの予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法を記した例について述べる。特開平6−116423号公報には、厚さ1mmの市販のポリテトラフルオロエチレン(PTFE)シートを真空中(0.01Torr以下)において340℃に加熱してコバルト−60から放射されたγ線を1.7kGyから20kGyまで照射した例や、厚さ0.3mmのポリテトラフルオロエチレン(PTFE)シートを真空中(0.01Torr以下)において340℃に加熱し、エネルギーが2MeVの電子線を100kGyから2MGyまで照射した例が開示されている。また、厚さ0.3mm、0.5mm、1mmのそれぞれのポリテトラフルオロエチレン(PTFE)シートを真空中で、370℃において電子線を照射したところ、照射時間が長くなるにしたがってポリテトラフルオロエチレン(PTFE)の熱分解が進行してシートの厚さが薄くなる旨の記述がある。   In the following, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer film substrate at a low oxygen partial pressure while keeping the fluorine-containing polymer film substrate at a temperature within a predetermined set temperature range near its crystal melting point. An example describing a method for producing a modified fluorine-containing polymer film by irradiation in an environment will be described. In JP-A-6-116423, a commercially available polytetrafluoroethylene (PTFE) sheet having a thickness of 1 mm is heated to 340 ° C. in a vacuum (0.01 Torr or less), and γ rays emitted from cobalt-60 are detected. An example of irradiation from 1.7 kGy to 20 kGy, or a polytetrafluoroethylene (PTFE) sheet having a thickness of 0.3 mm is heated to 340 ° C. in a vacuum (0.01 Torr or less), and an electron beam with an energy of 2 MeV is applied from 100 kGy. An example of irradiation up to 2MGy is disclosed. In addition, each of the polytetrafluoroethylene (PTFE) sheets having a thickness of 0.3 mm, 0.5 mm, and 1 mm was irradiated with an electron beam at 370 ° C. in a vacuum. There is a description that the thermal decomposition of (PTFE) proceeds to reduce the thickness of the sheet.

特開平11−49867号公報には、厚さが0.5mmであるテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)シートをアルゴン気流中でその結晶融点(270℃)より高い280℃に加熱して、エネルギーが2MeVの電子線を100kGy照射すると架橋して耐放射線性が付与された例が開示されている。同様に、厚さが0.5mmであるテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)シートをアルゴン気流中でその結晶融点(310℃)より高い320℃に加熱して、エネルギーが2MeVの電子線を300kGy照射することにより架橋して耐放射線性が付与された例が開示されている。   In JP-A-11-49867, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) sheet having a thickness of 0.5 mm is heated to 280 ° C. higher than its crystalline melting point (270 ° C.) in an argon stream. An example is disclosed in which radiation resistance is imparted by crosslinking when an electron beam having an energy of 2 MeV is irradiated with 100 kGy. Similarly, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) sheet having a thickness of 0.5 mm is heated to 320 ° C. higher than its crystalline melting point (310 ° C.) in an argon stream, and the energy is 2 MeV. An example in which radiation resistance is imparted by crosslinking by irradiating 300 kGy of the electron beam is disclosed.

特開2001−348439号公報には厚さが0.5mmで数平均分子量が1x10のポリテトラフルオロエチレン(PTFE)シートの10cm x 10cmの片を加熱型の照射容器に入れ、容器内を10−3Torr程度に脱気してアルゴンガスに置換した後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)シートの温度を335〜345℃として、エネルギーが2MeVの電子線を50kGy、100kGy、300kGy、500kGy、または1MGyの線量まで照射し、照射後に容器を冷却して高温照射を終了したポリテトラフルオロエチレン(PTFE)シートを取り出したことが開示されている。 In Japanese Patent Laid-Open No. 2001-348439, a 10 cm × 10 cm piece of a polytetrafluoroethylene (PTFE) sheet having a thickness of 0.5 mm and a number average molecular weight of 1 × 10 7 is placed in a heating type irradiation container. -3 After degassing to about Torr and replacing with argon gas, the temperature of the polytetrafluoroethylene (PTFE) sheet is set to 335 to 345 ° C by heating with an electric heater, and an electron beam with an energy of 2 MeV is 50 kGy, 100 kGy, It is disclosed that a polytetrafluoroethylene (PTFE) sheet that has been irradiated to a dose of 300 kGy, 500 kGy, or 1 MGy, cooled after the irradiation, and finished high-temperature irradiation was taken out.

また、特開2002−348389号公報には、長鎖分岐型ポリテトラフルオロエチレン(PTFE)シートを得る為に以下の照射を行ったことが記されている。すなわち、厚さが50μm又は100μmで数平均分子量が1x10のポリテトラフルオロエチレン(PTFE)シートの10cm x 6cm片をステンレススチールでできた枠で固定し、50μm厚のチタン箔からできた電子線入射窓が付いたステンレススチール製の加熱型照射容器に入れ、容器内を10−3Torr程度に脱気してアルゴンガスに置換し、その後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)シートの温度を335〜340℃として、ごくわずかにアルゴンガスを流しながらエネルギーが2MeVの電子線を照射したことが開示されている。このときの線量率は0.5kGy/秒で、線量は100kGy又は200kGyであり、照射時間はそれぞれ200秒または400秒であることが開示されている。照射後、容器を冷却して放射線照射を終了したポリテトラフルオロエチレン(PTFE)シートを取り出して長鎖分岐型ポリテトラフルオロエチレン(PTFE)膜を得ている。 Japanese Patent Application Laid-Open No. 2002-348389 describes that the following irradiation was performed in order to obtain a long-chain branched polytetrafluoroethylene (PTFE) sheet. That is, a 10 cm x 6 cm piece of a polytetrafluoroethylene (PTFE) sheet having a thickness of 50 μm or 100 μm and a number average molecular weight of 1 × 10 7 is fixed with a frame made of stainless steel, and an electron beam made of a 50 μm thick titanium foil Place in a stainless steel heating type irradiation container with an entrance window, degas the container to about 10 -3 Torr and replace with argon gas, and then heat with an electric heater to polytetrafluoroethylene (PTFE) It is disclosed that the temperature of the sheet is set to 335 to 340 ° C. and an electron beam having an energy of 2 MeV is irradiated while flowing an argon gas very slightly. It is disclosed that the dose rate at this time is 0.5 kGy / second, the dose is 100 kGy or 200 kGy, and the irradiation time is 200 seconds or 400 seconds, respectively. After irradiation, the container was cooled and the polytetrafluoroethylene (PTFE) sheet after radiation irradiation was taken out to obtain a long-chain branched polytetrafluoroethylene (PTFE) film.

特開2004−51685号公報や特開2004−14436号公報や特開2003−261697号公報や特開2003−82129号公報に開示されているように、架橋したポリテトラフルオロエチレン(PTFE)つまり長鎖分岐型ポリテトラフルオロエチレン(PTFE)膜を得る為に以下の照射が行われている。厚さ50μmのポリテトラフルオロエチレン(PTFE)フィルムの10cm角をヒータ付きのステンレススチール製オートクレーブ照射容器(内径7cmΦ、高さ30cm)に入れ、容器内を10−3Torrに脱気してアルゴンガスに置換し、その後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)フィルムの温度を340℃(又は300℃〜365℃の温度範囲)として、コバルト−60のγ線を3kGy/時の線量率で90kGyの線量まで照射した後、容器を冷却して放射線照射を終了したポリテトラフルオロエチレン(PTFE)フィルムを取り出したことが記されている。この際の照射に必要な時間は30時間であった。 As disclosed in JP-A-2004-51685, JP-A-2004-14436, JP-A-2003-261697, and JP-A-2003-82129, crosslinked polytetrafluoroethylene (PTFE), that is, long The following irradiation is performed to obtain a chain-branched polytetrafluoroethylene (PTFE) film. A 10cm square of polytetrafluoroethylene (PTFE) film with a thickness of 50μm is placed in a stainless steel autoclave irradiation container (inner diameter 7cmΦ, height 30cm) with a heater, and the inside is degassed to 10 -3 Torr with argon gas After that, the temperature of the polytetrafluoroethylene (PTFE) film is set to 340 ° C. (or a temperature range of 300 ° C. to 365 ° C.) by heating with an electric heater, and the dose of cobalt-60 γ rays is 3 kGy / hour. It is described that after irradiation to a dose of 90 kGy at a rate, the polytetrafluoroethylene (PTFE) film after cooling the container and completing irradiation was taken out. The time required for irradiation at this time was 30 hours.

以上に公開された処理方法では、処理される含フッ素系高分子膜基材は10cm角程度の小片であり、小容積の容器内に入れて容器ごと加熱した後に、電離放射線の照射処理を行い、その後容器を冷却して処理された含フッ素系高分子膜を取り出した例のみが示されている。電離放射線の照射処理を行うに際して、コバルト−60のγ線を使用した例が示されているが、この場合には線量率が低い為に90kGyの線量を照射するのに30時間もの長時間を要している。また、エネルギーが2MeVの電子線を照射した例も開示されているが、やはり線量率があまり高くないので小片の処理のために400秒程度を要している。さらに、一般的に容器の冷却のためには長時間を要する。このような照射において照射処理速度を高められなかったのは、電離放射線の線量率を高めると、電離放射線の加熱効果によって照射中に被照射膜基材の温度が上昇するとともに温度が偏在分布して部分的に熱分解が進行する不都合が生じるからである。以上に記した通り、含フッ素系高分子膜基材を高温放射線処理するに際して、大面積の含フッ素系高分子膜基材を処理できることや、大線量率の電離放射線を照射する時に含フッ素系高分子膜基材を正確な温度に且つ均一な温度に保てることが重要である。   In the treatment method disclosed above, the fluorine-containing polymer membrane substrate to be treated is a small piece of about 10 cm square, and after being placed in a small volume container and heated together, the ionizing radiation is irradiated. Only an example in which the container is cooled and then the treated fluorine-containing polymer film is taken out is shown. An example of using cobalt-60 gamma rays when performing ionizing radiation irradiation treatment is shown. In this case, since the dose rate is low, it takes 30 hours to irradiate a dose of 90 kGy. I need it. Moreover, although the example which irradiated the electron beam whose energy is 2 MeV is also disclosed, since the dose rate is not so high, about 400 seconds are required for processing of a small piece. Furthermore, it generally takes a long time to cool the container. The reason why the irradiation processing speed could not be increased in such irradiation is that when the dose rate of ionizing radiation is increased, the temperature of the irradiated film substrate increases during irradiation due to the heating effect of ionizing radiation, and the temperature is unevenly distributed. This is because there is a disadvantage that the thermal decomposition partially proceeds. As described above, when a fluorine-containing polymer membrane substrate is subjected to high-temperature radiation treatment, it is possible to treat a large-area fluorine-containing polymer membrane substrate, or when irradiating a large dose rate of ionizing radiation. It is important to be able to keep the polymer membrane substrate at an accurate and uniform temperature.

更に、架橋した含フッ素系高分子膜を工業製品として実用化するためには、処理速度を高めて低価格化するとともに処理条件の高度な管理を行って品質の均一化を達成することが必要である。電離放射線の照射処理を行うに際して処理速度を高める為に線量率を高めた場合には、電離放射線による含フッ素系高分子膜基材の加熱が重畳されて含フッ素系高分子膜基材の温度が上昇するだけでなく、温度の分布が変わり、処理後の含フッ素系高分子膜の品質を均一化することが困難であった。特に、30cmを超える幅広で長尺の含フッ素系高分子膜基材を放射線照射処理する場合には照射開始直後や照射中に於ける膜基材の温度及び温度の空間分布及び温度の時間変化の管理が困難であった。このような理由により、架橋した含フッ素系高分子膜やこれを使用した含フッ素系高分子イオン交換膜やこれを使用した燃料電池は工業製品として実用化するのが困難であった。
特開平6−116423号公報 特開平7−118423号公報 特開平9−102322号公報 特開平11−19190号公報 特開平11−49867号公報 特開2001−348439号公報 特開2003−82129号公報 特開2003−261697号公報 特開2004−14436号公報 特開2004−51685号公報 特開2004−300360号公報
Furthermore, in order to put the cross-linked fluorine-containing polymer membrane into practical use as an industrial product, it is necessary to increase the processing speed, reduce the price, and achieve high quality by performing advanced management of processing conditions. It is. When the dose rate is increased in order to increase the processing speed when performing the ionizing radiation irradiation process, the heating of the fluorine-containing polymer film substrate by ionizing radiation is superimposed on the temperature of the fluorine-containing polymer film substrate. In addition to the increase in temperature, the temperature distribution changed, and it was difficult to make the quality of the fluorine-containing polymer film after treatment uniform. In particular, when a long and long fluorine-containing polymer film substrate exceeding 30 cm is subjected to radiation treatment, the temperature of the film substrate and the spatial distribution of the temperature and the time change of the temperature immediately after the start of irradiation or during the irradiation It was difficult to manage. For these reasons, it has been difficult to put a crosslinked fluorine-containing polymer membrane, a fluorine-containing polymer ion exchange membrane using the same, and a fuel cell using the same into an industrial product.
JP-A-6-116423 JP 7-118423 A JP-A-9-102322 Japanese Patent Laid-Open No. 11-19190 JP 11-49867 A JP 2001-348439 A JP 2003-82129 A JP 2003-261697 A JP 2004-14436 A JP 2004-51685 A JP 2004-300360 A

解決しようとする課題は、含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ含フッ素系高分子イオン交換膜の製造方法において、処理速度を高めて低価格化するとともに、処理条件の管理を高度化して品質の均一化を達成することにより、安価で高寿命の大面積の含フッ素系高分子イオン交換膜を大量生産できるようにすることである。更に、これを使用して自動車などに搭載できる安価で長寿命の燃料電池を提供することである。特に、大面積の含フッ素系高分子膜基材を照射野内の全ての位置にわたってかつ照射処理の全時間中にわたって常に最適に定められた温度範囲に保ちながら電離放射線を大きな線量率で照射することによって、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産する方法を提供することである。   The problem to be solved is that an ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer film substrate in a low oxygen partial pressure environment while maintaining the fluorine-containing polymer film substrate at a temperature within a predetermined set temperature range. In the manufacturing method of fluorine-containing polymer ion exchange membranes including the irradiation process under irradiation, the processing speed is increased and the price is reduced, and the management of the processing conditions is advanced to achieve uniform quality. It is to enable mass production of a large area fluorine-containing polymer ion exchange membrane that is inexpensive and has a long lifetime. It is another object of the present invention to provide an inexpensive and long-life fuel cell that can be used in an automobile or the like. In particular, irradiate ionizing radiation at a large dose rate while keeping a large area fluorine-containing polymer membrane substrate at an optimally determined temperature range at all positions in the irradiation field and throughout the entire irradiation process. Thus, it is intended to provide a method for producing a large amount of a fluorine-containing polymer film having a stable quality cross-linked structure in a short time and at a low cost.

本発明においては、長尺の含フッ素系高分子膜基材を、その温度を最適値に制御しながら当該基材に電離放射線を照射できる恒温放射線処理装置内を通過させることによって上記の課題を解決している。この恒温放射線処理装置の入口位置および出口位置においては、前記含フッ素系高分子膜基材の長手方向の一部分を常温に保って機械的に保持するとともに走行機能を付与させる部分が設けられている。前記恒温放射線処理装置の内部においては発熱体が設けられている。この発熱体は含フッ素系高分子膜基材の長手方向および幅方向に沿って多数の発熱体要素に分割して配列されている。これら各々の発熱体要素の表面温度は空間的および/又は時間的に適正に制御されて、照射中および照射直前直後を問わず、照射野内の大部分を占める所望範囲内に於ける含フッ素系高分子膜基材の全ての位置での温度をその結晶融点近くの設定温度範囲内の値で一様に分布させるようになっている。前記電離放射線の照射中においては、電離放射線の照射野に位置する部分に不活性ガスを吹き付けて電離放射線の加熱効果を打ち消す冷却効果を生じさせて前記含フッ素系高分子膜基材の前記所望範囲内に於ける全ての位置での温度を前記設定温度範囲内の値で一様に分布させる。所定の線量の照射処理が進行すれば前記恒温放射線処理装置の出口部分に位置する前記長尺の含フッ素系高分子膜の処理済部分を部分的に冷却して恒温放射線処理装置外に送り出す。このようにして短時間に多量の長尺の含フッ素系高分子膜基材を放射線処理ができるようになっている。   In the present invention, the above-mentioned problem is achieved by passing a long fluorine-containing polymer membrane substrate through a constant temperature radiation treatment apparatus capable of irradiating the substrate with ionizing radiation while controlling the temperature to an optimum value. It has been solved. At the entrance position and the exit position of the constant temperature radiation processing apparatus, there are provided portions that mechanically hold a part in the longitudinal direction of the fluorine-containing polymer film substrate at room temperature and add a running function. . A heating element is provided inside the constant temperature radiation processing apparatus. This heating element is divided into a large number of heating element elements along the longitudinal direction and width direction of the fluorine-containing polymer film substrate. The surface temperature of each heating element is appropriately controlled spatially and / or temporally, and the fluorine-containing system within a desired range occupying most of the irradiation field, whether during irradiation or immediately before irradiation. The temperature at all positions of the polymer film substrate is uniformly distributed within a set temperature range near the crystal melting point. During the irradiation of the ionizing radiation, an inert gas is blown onto a portion located in the irradiation field of the ionizing radiation to produce a cooling effect that counteracts the heating effect of the ionizing radiation, and thus the desired fluorine-containing polymer film substrate. Temperatures at all positions within the range are uniformly distributed with values within the set temperature range. When the irradiation treatment of a predetermined dose proceeds, the treated portion of the long fluorine-containing polymer film located at the exit portion of the constant temperature radiation processing apparatus is partially cooled and sent out of the constant temperature radiation processing apparatus. In this way, a large amount of a long fluorine-containing polymer film substrate can be subjected to radiation treatment in a short time.

前記恒温放射線処理装置内において、電離放射線を照射しない位置、または電離放射線を照射しないタイミングでは、前記発熱体要素の表面温度を同一要素内では均一にし、照射野中心から離れた要素ほど高く設定することにより、照射野内およびその周辺位置に存する前記含フッ素系高分子膜基材の部位の温度を一様な分布に保ちながら短時間に結晶融点前後の予め定められた設定温度範囲まで高める。電離放射線を照射する位置、および電離放射線を照射するタイミングでは、照射野内の近傍に位置する冷媒通路から不活性ガスを前記含フッ素系高分子膜基材の照射野内に位置する部分に吹き付けて、前記含フッ素系高分子膜基材の温度を照射野を中心として蒲鉾状に分布した状態で低下させるように放熱させ、この放熱を打ち消すように分布した熱量を有する電離放射線を照射することによって結果として照射中のどの時間でも含フッ素系高分子膜基材の温度が前記予め定められた設定温度範囲内に収まるようにしている。また、前記の放出される熱量の空間分布も時間変化も電離放射線によって与えられる熱量の空間分布と時間変化とにそれぞれ一致しており、結果として空間的および時間的に前記設定温度範囲内の一様な温度分布となった状態で短時間に必要な線量を与えることができるようになっている。本発明においては、冷媒を局部的に吹き付けて大きな冷却率を有するように照射野に位置する部分を冷却しているので、大きな線量率で電離放射線を照射した場合でも照射野内の温度を安定して一様に分布させることができる。多くの場合、前記所望範囲は前記照射野と一致するが、処理後に切除する等で不使用となる部分は前記所望範囲から除外しても良い。これは、本発明のいずれの場合にも共通している。前記設定温度範囲は、前記含フッ素系高分子膜基材の結晶融点を中心として±20℃の温度範囲に設定することが許容される場合もあるが、前記含フッ素系高分子膜基材の結晶融点を超える特定の温度を中心として±5℃程度の温度範囲に設定することが好ましい。   In the isothermal radiation processing apparatus, at a position where no ionizing radiation is irradiated, or at a timing where no ionizing radiation is irradiated, the surface temperature of the heating element is made uniform within the same element, and is set higher as the element is farther from the irradiation field center. Thus, the temperature of the portion of the fluorine-containing polymer film substrate existing in the irradiation field and its peripheral position is quickly increased to a predetermined set temperature range around the crystal melting point while maintaining a uniform distribution. At the position to irradiate ionizing radiation and the timing to irradiate ionizing radiation, the inert gas is blown from the refrigerant passage located in the vicinity of the irradiation field to the portion located in the irradiation field of the fluorine-containing polymer film substrate, Results are obtained by radiating ionizing radiation having a heat quantity distributed so as to lower the temperature of the fluorine-containing polymer film substrate in a state of being distributed in a bowl-like shape around the irradiation field, and to cancel the heat dissipation. As described above, the temperature of the fluorine-containing polymer film substrate is kept within the predetermined temperature range at any time during irradiation. Further, the spatial distribution and temporal change of the released heat amount coincide with the spatial distribution and temporal change of the heat amount given by the ionizing radiation, respectively, and as a result, one of the set temperature ranges spatially and temporally. A necessary dose can be given in a short time with such a temperature distribution. In the present invention, since the portion located in the irradiation field is cooled so as to have a large cooling rate by blowing the refrigerant locally, the temperature in the irradiation field is stabilized even when ionizing radiation is irradiated at a large dose rate. Can be distributed uniformly. In many cases, the desired range coincides with the irradiation field, but a portion that is not used due to excision after processing may be excluded from the desired range. This is common in any case of the present invention. The set temperature range may be allowed to be set within a temperature range of ± 20 ° C. around the crystal melting point of the fluorine-containing polymer membrane substrate. It is preferable to set a temperature range of about ± 5 ° C. around a specific temperature exceeding the crystalline melting point.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、前記含フッ素系高分子膜基材前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を所定の加熱率を有して加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を所定の冷却率を有して冷却する第2の工程とを含み、前記第1の工程における加熱は前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によってなされ、前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記冷却率と前記加熱率とを前記含フッ素系高分子膜基材の前記所望範囲内における全ての部位において照射時間中にわたって実質的に一致させるように設定され又は制御されることを特徴とする製造方法である。ここで、冷却率とは、特定部位に於ける、単位時間内に低下する温度を表しており、熱伝導や熱輻射や対流による特定部位の温度低下速度をまとめて表した値である。同様に、加熱率とは、特定部位に於ける、単位時間内で上昇する温度を表している。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記照射野内の大部分を占める所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で高速度の改質処理ができる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is kept at a temperature within a predetermined set temperature range while the fluorine-containing polymer membrane substrate is ionized by 1 kGy or more. In the method for producing a modified fluorine-containing polymer film including an irradiation step of irradiating radiation in a low oxygen partial pressure environment, the irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction, and the width direction has a radiation field length, the fluorine-containing polymer membrane substrate includes a desired range of the irradiation field substantially matches the magnitude of the ionizing radiation, the irradiation step, the free A first step of heating the desired range of the fluoropolymer membrane substrate to a temperature within the set temperature range, and irradiating a portion occupying the desired range with the ionizing radiation having a predetermined intensity distribution The part has a predetermined heating rate And a second step of cooling the portion with a predetermined cooling rate by blowing an inert gas to the portion occupying the desired range during the irradiation time of the ionizing radiation, The heating in the step is performed by a heating element having a distributed calorific value provided in a non-contact manner facing the fluorine-containing polymer film substrate, and the blowing of the inert gas in the second step is performed as follows: The ionizing radiation which gives heat quantity distributed so that the temperature of the fluorine-containing polymer film substrate is partially decreased with time within the irradiation field width of the irradiation field and the heat distribution is distributed to cancel the heat dissipation. By irradiating, at least one of the blowing intensity distribution of the inert gas and the intensity distribution of the ionizing radiation has the cooling rate and the heating rate changed to the fluorine-containing polymer film. Is a manufacturing method characterized in that it is set or controlled so as to substantially coincide over in the irradiation time at all sites within the desired range of wood. Here, the cooling rate represents a temperature that falls within a unit time in a specific portion, and is a value that collectively represents the temperature decrease rate of the specific portion due to heat conduction, heat radiation, or convection. Similarly, the heating rate represents the temperature rising within a unit time at a specific part. When the present invention is adopted, the temperature of the fluorine-containing polymer film substrate at all positions within a desired range that occupies most of the irradiation field from immediately before the start of the irradiation of the ionizing radiation to immediately after the end of the irradiation is the set temperature. The fluorine-containing polymer membrane substrate having a large area can be accommodated within the range, and high-speed modification treatment can be performed under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、前記含フッ素系高分子膜基材前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を冷却する第2の工程とを含み、前記第1の工程における加熱は前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によってなされ、前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記含フッ素系高分子膜基材の前記所望範囲内の実質的に全ての部分の温度が前記設定温度範囲内に収まるように照射時間中にわたって他方に関連して設定され又は制御されることを特徴とする製造方法である。前記発熱体の発熱量の分布を設定するには、前記発熱体を多数の発熱体要素に分割し、これらの発熱体要素要素の発熱量を独立して適切に設定するとよい。前記電離放射線の強度分布の設定は、前記電離放射線の線源と前記含フッ素系高分子膜基材との間に適当な透過率を有するフィルタを挿入すること等で実現できる。前記不活性ガスの吹き付け強度分布の設定は、前記所望範囲を除く部分には前記不活性ガスが当たらないように成形した仕切板を設けて前記不活性ガスの分布範囲を制限するとともに、前記所望範囲を除く部分に設けられた多数のノズルから前記不活性ガスを前記所望範囲を占める部分に向って吹き付けて、当該多数のノズルを有する不活性ガス通路内のガス圧力を前記電離放射線の強度分布に関連して適切に調節することによって行える。当該不活性ガスの吹き付けは前記電離放射線の照射タイミングに合わせて行う。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で短時間に改質処理できる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is kept at a temperature within a predetermined set temperature range while the fluorine-containing polymer membrane substrate is ionized by 1 kGy or more. In the method for producing a modified fluorine-containing polymer film including an irradiation step of irradiating radiation in a low oxygen partial pressure environment, the irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction, and the width direction has a radiation field length, the fluorine-containing polymer membrane substrate includes a desired range of the irradiation field substantially matches the magnitude of the ionizing radiation, the irradiation step, the free A first step of heating the desired range of the fluoropolymer membrane substrate to a temperature within the set temperature range, and irradiating a portion occupying the desired range with the ionizing radiation having a predetermined intensity distribution While heating the part, A second step of cooling the portion by blowing an inert gas to the portion occupying the desired range during the irradiation time of the ionizing radiation, and the heating in the first step is the fluorine-containing polymer film It is made by a heating element having a distributed calorific value provided in a non-contact manner facing the substrate, and the spraying of the inert gas in the second step is performed by setting the temperature of the fluorine-containing polymer film substrate. The radiation intensity of the inert gas is irradiated by irradiating the ionizing radiation which gives heat that is distributed so as to partially cancel the heat dissipation within the irradiation field width of the irradiation field. At least one of the distribution and the intensity distribution of the ionizing radiation is such that the temperature of substantially all the portion within the desired range of the fluorine-containing polymer film substrate is within the set temperature range. On the other hand the set in connection with or controlled by it over in the irradiation time to fit a manufacturing method comprising. In order to set the distribution of the heat generation amount of the heat generating element, the heat generating element may be divided into a large number of heat generating element elements, and the heat generation amounts of these heat generating element element elements may be set appropriately and independently. The setting of the ionizing radiation intensity distribution can be realized by inserting a filter having an appropriate transmittance between the ionizing radiation source and the fluorine-containing polymer film substrate. The inert gas spray strength distribution is set by limiting the distribution range of the inert gas by providing a partition plate formed so that the inert gas does not hit the portion other than the desired range. The inert gas is blown toward a portion occupying the desired range from a plurality of nozzles provided in a portion excluding the range, and the gas pressure in the inert gas passage having the plurality of nozzles is determined as the intensity distribution of the ionizing radiation. This can be done by adjusting appropriately in relation to The inert gas is sprayed in accordance with the irradiation timing of the ionizing radiation. By adopting the present invention, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of irradiation with the ionizing radiation to immediately after the end of irradiation can be kept within the set temperature range. The fluorine-containing polymer film substrate having a large area can be modified in a short time under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、前記含フッ素系高分子膜基材前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によって前記所望範囲を占める部分を加熱するとともに、所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を冷却する第2の工程とを含み、前記第1の工程における加熱は前記発熱体によってなされ、前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布と前記発熱体の発熱量分布との少なくとも一方は、前記含フッ素系高分子膜基材の前記所望範囲内の実質的に全ての部分の温度が前記設定温度範囲内に収まるように照射時間中にわたって他方に関連して設定され又は制御されることを特徴とする製造方法である。前記電離放射線の照射を開始する前に前記含フッ素系高分子膜基材の温度を前記設定温度範囲内に収める前記第1の工程を設けているので、前記電離放射線の照射開始直後において低温状態下で照射して前記含フッ素系高分子膜基材を劣化させる危険を回避できる。この第1の工程では、前記発熱体を多数の発熱体要素に分割して、これら発熱体要素のそれぞれの発熱量を適正に空間分布させることによって前記含フッ素系高分子膜基材の温度を適正値で均一に保っている。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記所望範囲内の全ての位置における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で高速度に照射処理できる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is kept at a temperature within a predetermined set temperature range while the fluorine-containing polymer membrane substrate is ionized by 1 kGy or more. In the method for producing a modified fluorine-containing polymer film including an irradiation step of irradiating radiation in a low oxygen partial pressure environment, the irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction, and the width direction has a radiation field length, the fluorine-containing polymer membrane substrate includes a desired range of the irradiation field substantially matches the magnitude of the ionizing radiation, the irradiation step, the free A first step of heating the desired range of the fluorine-based polymer membrane substrate to a temperature within the set temperature range, and a distributed heat generation provided in a non-contact manner facing the fluorine-containing polymer membrane substrate Part occupying the desired range by a heating element And heating the part by irradiating the part occupying the desired range with the ionizing radiation having a predetermined intensity distribution, and inert to the part occupying the desired range during the irradiation time of the ionizing radiation A second step of cooling the portion by blowing a gas, the heating in the first step is performed by the heating element, and the blowing of the inert gas in the second step is performed by the fluorine-containing step. Radiating the ionizing radiation to give a heat quantity distributed so as to partially reduce the temperature of the system polymer film substrate within the irradiation field width of the irradiation field to partially decrease with time Therefore, at least one of the inert gas spray intensity distribution, the ionizing radiation intensity distribution, and the heat generation amount distribution of the heating element is The temperature of substantially all the portion within the desired range of the fluorine-containing polymer film substrate is set or controlled in relation to the other over the irradiation time so as to be within the set temperature range. This is a manufacturing method. Since the first step of keeping the temperature of the fluorine-containing polymer film substrate within the set temperature range before starting the irradiation of the ionizing radiation is provided, a low temperature state immediately after the start of the irradiation of the ionizing radiation The danger of deteriorating the fluorine-containing polymer membrane substrate by irradiation under the above can be avoided. In this first step, the heating element is divided into a number of heating element elements, and the temperature of the fluorine-containing polymer film substrate is adjusted by appropriately distributing the amount of heat generated by the heating element elements. It is kept at a proper value and uniform. When the present invention is adopted, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of the irradiation of the ionizing radiation to immediately after the end of the irradiation may be within the set temperature range. The fluorine-containing polymer film substrate having a large area can be irradiated at high speed under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、前記含フッ素系高分子膜基材前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によって前記所望範囲を占める部分を加熱するとともに、所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を加熱する第2の工程とを含み、前記発熱体は前記幅方向に整列した複数の発熱体要素を含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記第1の工程における加熱は前記発熱体によってなされ、前記第2の工程における前記電離放射線の強度分布と前記発熱体の発熱量分布との少なくとも一方は、前記含フッ素系高分子膜基材の前記所望範囲内の実質的に全ての部分の温度が前記設定温度範囲内に収まるように照射時間中にわたって設定され又は制御されることを特徴とする製造方法である。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記所望範囲内の全ての位置における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で高速度に照射処理できる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is kept at a temperature within a predetermined set temperature range while the fluorine-containing polymer membrane substrate is ionized by 1 kGy or more. In the method for producing a modified fluorine-containing polymer film including an irradiation step of irradiating radiation in a low oxygen partial pressure environment, the irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction, and the width direction has a radiation field length, the fluorine-containing polymer membrane substrate includes a desired range of the irradiation field substantially matches the magnitude of the ionizing radiation, the irradiation step, the free A first step of heating the desired range of the fluorine-based polymer membrane substrate to a temperature within the set temperature range, and a distributed heat generation provided in a non-contact manner facing the fluorine-containing polymer membrane substrate Part occupying the desired range by a heating element A second step of heating the portion by irradiating the portion occupying the desired range with the ionizing radiation having a predetermined intensity distribution, and the heating elements are arranged in the width direction. The first heat generating element group and the second heat generating element group including the heat generating element, and the first heat generating element group and the second heat generating element group are aligned in the longitudinal direction. The heating in the first step is performed by the heating element, and at least one of the intensity distribution of the ionizing radiation and the calorific value distribution of the heating element in the second step is the fluorine-containing polymer film substrate. The temperature is set or controlled over the irradiation time so that the temperature of substantially all of the portion within the desired range falls within the set temperature range. When the present invention is adopted, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of the irradiation of the ionizing radiation to immediately after the end of the irradiation may be within the set temperature range. The fluorine-containing polymer film substrate having a large area can be irradiated at high speed under accurate temperature control.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材は、前記設定温度範囲より低い温度に保たれて機械的に保持された第1の基材領域と、前記発熱体によって加熱された第2の基材領域と、前記電離放射線の照射を受けて前記設定温度範囲内の温度に保たれた第3の基材領域とを含んでおり、当該第3の基材領域は前記所望範囲を含んでいることを特徴とする方法である。前記第1の基材領域では好ましくは常温に保たれており、前記含フッ素系高分子膜基材の保持が容易に行えるとともに前記含フッ素系高分子膜基材を走行させられるので、照射処理が連続的に行える。前記第1の基材領域を前記第3の基材領域を挟んでその両側に設けることによって照射処理が終了した含フッ素系高分子膜を処理終了直後に移動させて取り出すことができ、処理速度が大きくなる。前記第2の基材領域では、前記電離放射線の照射を受けない状態で前記設定温度範囲内又はその近くの温度まで加熱されているので、低温状態下で前記電離放射線を照射して前記含フッ素系高分子膜基材を劣化させる危険が回避できる。前記第2の基材領域及び前記第3の基材領域では、これらの近傍に設けられた前記発熱体を多数の発熱体要素に分割して、これら発熱体要素のそれぞれの発熱量を適正に空間分布させることによって、その温度を適正値に保つようになっている。本発明を採用すると、能率よく正確に大量の照射処理を行うことができる。   One of the present invention, in any one of the above inventions, the fluorine-containing polymer membrane substrate is a first substrate region that is mechanically held at a temperature lower than the set temperature range; A second base material region heated by the heating element; and a third base material region that is irradiated with the ionizing radiation and maintained at a temperature within the set temperature range. The substrate region includes the desired range. The first base material region is preferably kept at room temperature, and can easily hold the fluorine-containing polymer film substrate and run the fluorine-containing polymer film substrate. Can be done continuously. By providing the first base material region on both sides of the third base material region, the fluorine-containing polymer film that has been subjected to the irradiation treatment can be moved and taken out immediately after the end of the processing, and the processing speed Becomes larger. Since the second base material region is heated to a temperature within or near the set temperature range without being irradiated with the ionizing radiation, the fluorine-containing material is irradiated with the ionizing radiation under a low temperature condition. The danger of deteriorating the polymer base material can be avoided. In the second base material region and the third base material region, the heating element provided in the vicinity thereof is divided into a large number of heating element elements, and the respective heat generation amounts of these heating element elements are appropriately set. The temperature is kept at an appropriate value by spatial distribution. When the present invention is employed, a large amount of irradiation processing can be performed efficiently and accurately.

本発明の一つは、上記いずれかの発明において、前記所望範囲は前記電離放射線の照射を受ける恒温放射線処理装置内を通過し、当該恒温放射線処理装置は、前記発熱体を含んでおり、前記含フッ素系高分子膜基材の一部を前記設定温度範囲より低い温度に保つとともに機械的に保持する第1の装置領域と、前記発熱体によって前記所望範囲を占める部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲を占める部分に電離放射線を照射して所定の線量を与える第3の装置領域とを順に有していることを特徴とする方法である。好ましくは、前記含フッ素系高分子膜基材は、常温に保つ前記第1の装置領域と、前記電離放射線の照射を受けない状態で前記設定温度範囲内又はその近くの温度まで均一に加熱する前記第2の装置領域と、前記電離放射線の照射を行う前記第3の装置領域とを順次通過するようになっている。従って、前記電離放射線の照射の開始直前から照射の直後まで前記所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、正確な温度管理下で短時間に多量の照射処理ができる。   One of the present invention, in any one of the above inventions, the desired range passes through the isothermal radiation processing apparatus that receives the ionizing radiation, and the isothermal radiation processing apparatus includes the heating element, A first device region that maintains a part of the fluorine-containing polymer film substrate at a temperature lower than the set temperature range and mechanically holds the portion, and a portion that occupies the desired range by the heating element is within the set temperature range. Or a second device region for heating to a temperature close thereto, and a third device region for applying a predetermined dose by irradiating the portion occupying the desired range with ionizing radiation. Is the method. Preferably, the fluorine-containing polymer film substrate is uniformly heated to a temperature within or near the set temperature range without being irradiated with the first device region maintained at room temperature and the ionizing radiation. The second device region and the third device region that performs irradiation with the ionizing radiation are sequentially passed. Accordingly, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of the ionizing radiation irradiation to immediately after the irradiation can be kept within the set temperature range, and accurate temperature management is possible. A large amount of irradiation treatment can be performed in a short time under.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材は第4の基材領域を含んでおり、当該第4の基材領域は、前記第1の基材領域と前記第2の基材領域との間に位置する基材領域であり、又は前記第1の装置領域と前記第2の装置領域との間に位置する装置領域に対向配置された前記含フッ素系高分子膜基材の基材領域であり、当該第4の基材領域における前記含フッ素系高分子膜基材の温度は前記それぞれの他の基材領域に向う方向の距離に対する第1の変化率を有して分布しており、前記第2の基材領域又は前記第3の基材領域において、又は前記第2の装置領域又は前記第3の装置領域においてそれぞれに対向配置された前記含フッ素系高分子膜基材の基材領域における前記含フッ素系高分子膜基材の温度は前記それぞれの他の基材領域に向う方向の距離に対する第2の変化率を有して分布しており、前記第1の変化率の大きさは前記各基材領域内のいたる所で当該第2の変化率の大きさよりも実質的に大きくなっていることを特徴とする方法である。本発明を採用すると、前記第4の基材領域において短い距離で大きな温度勾配を保って加熱されるので前記含フッ素系高分子膜基材の保持が容易であるとともに、処理の為の装置が小型になり、低価格化できる。前記含フッ素系高分子膜基材の高温部分を、前記照射野を含む比較的に狭い範囲に限定できるので、処理中における被処理部位の位置決めが容易であり、処理の正確化と高速化ができるようになる。 One of the present invention is the above invention, wherein the fluorine-containing polymer film substrate includes a fourth substrate region, and the fourth substrate region is the first substrate. a base region located between the region and the second base region, or the containing disposed opposite to the device region located between the first device region and said second device region A temperature of the fluorine-containing polymer film substrate in the fourth substrate region is a first region relative to a distance in a direction toward each of the other substrate regions. Distributed in the second base material region or the third base material region, or arranged opposite to each other in the second device region or the third device region . The temperature of the fluorine-containing polymer film substrate in the substrate region of the fluorine-containing polymer film substrate is Each of the substrate regions is distributed with a second rate of change with respect to the distance in the direction toward the other substrate region, and the magnitude of the first rate of change is the same everywhere in each substrate region. The method is characterized in that it is substantially larger than the magnitude of the change rate of 2. When the present invention is adopted, since the fourth substrate region is heated with a large temperature gradient at a short distance, the fluorine-containing polymer film substrate can be easily held, and an apparatus for processing can be provided. Smaller and lower price. Since the high-temperature part of the fluorine-containing polymer film substrate can be limited to a relatively narrow range including the irradiation field, it is easy to position the processing site during processing, and the processing accuracy and speed can be increased. become able to.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に所定の線量の電離放射線を照射する恒温放射線処理装置であって、前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、前記含フッ素系高分子膜基材は当該恒温放射線処理装置内で位置決め保持される被保持部分と前記設定温度範囲内又はその近くの温度に加熱される被加熱範囲と前記電離放射線の照射野実質的に一致する大きさの所望範囲とを含んでおり、前記恒温放射線処理装置は、前記被保持部分を保持可能な低い温度に保つとともに当該被保持部分を機械的に保持する第1の装置領域と、前記照射野の近傍において前記含フッ素系高分子膜基材に対向して非接触に設けられた複数の発熱体要素を含んで成る発熱体によって前記被加熱範囲を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲に前記電離放射線を照射して所定の加熱率を有して加熱して、前記所望範囲を占める部分を前記設定温度範囲内の温度に保つ第3の装置領域とを含んでおり、当該第3の装置領域においては、前記電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分は所定の冷却率を有して冷却され、当該不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記電離放射線の照射を受ける時間中において、前記所望範囲内のあらゆる部分を前記設定温度範囲内の温度に保つように他方に関連して設定され又は制御されるようにしたことを特徴とする装置である。前記第1の装置領域では前記含フッ素系高分子膜基材の温度を常温に保つようになっていることが好ましい。本発明の装置を採用すると、前記電離放射線の照射中における含フッ素系高分子膜基材の温度を前記設定温度範囲内の温度に管理しながら容易に大線量率で照射することができ、照射処理が終了した部分は前記処理装置を別途冷却したり開放したりすることなく素早く前記処理装置外に移動させて取り出すことができる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is kept at a temperature within a predetermined set temperature range while a predetermined dose is applied to the fluorine-containing polymer membrane substrate. An isothermal radiation treatment apparatus for irradiating ionizing radiation , wherein the irradiation field of ionizing radiation has an irradiation field width in the longitudinal direction and an irradiation field length in the width direction, and the fluorine-containing polymer film size substrate to match the isothermal radiation treatment device in the retained portion and the set temperature range or the irradiation field and substantially of the ionizing radiation and the heated range heated to near the temperature that is positioned and held The constant-temperature radiation processing apparatus maintains a low temperature at which the held portion can be held and mechanically holds the held portion, and the irradiation field of the irradiation field. In the vicinity, the fluorine-containing high content A second apparatus region for heating the heated range to a temperature within or near the set temperature range by a heating element comprising a plurality of heating element elements provided in a non-contact manner facing the membrane substrate; A third device region that irradiates the ionizing radiation to the desired range and heats it with a predetermined heating rate, and maintains a portion occupying the desired range at a temperature within the set temperature range; and In the third device region, the portion is cooled with a predetermined cooling rate by spraying an inert gas on the portion occupying the desired range during the irradiation time of the ionizing radiation, and the inert gas The spraying dissipates heat so that the temperature of the fluorine-containing polymer film substrate is partially reduced with time within the irradiation field width of the irradiation field, and gives a quantity of heat distributed so as to cancel the heat dissipation. The ionization By irradiating with radiation, at least one of the blowing intensity distribution of the inert gas and the intensity distribution of the ionizing radiation is set to the set temperature at any part within the desired range during the time of irradiation with the ionizing radiation. A device characterized in that it is set or controlled in relation to the other to keep the temperature within a range. In the first apparatus region, it is preferable that the temperature of the fluorine-containing polymer film substrate is kept at room temperature. When the apparatus of the present invention is employed, irradiation with a large dose rate can be easily performed while controlling the temperature of the fluorine-containing polymer film substrate during irradiation with the ionizing radiation to a temperature within the set temperature range. The portion where the processing is completed can be quickly moved out of the processing apparatus and taken out without separately cooling or opening the processing apparatus.

本発明の一つは、上記いずれかの発明において、前記発熱体は空間的に分割させた複数の発熱体要素を含んでおり、当該発熱体要素は前記照射野内の中央部において前記含フッ素系高分子膜基材に対向して設けられた第1の発熱体要素と、前記幅方向に前記照射野の中心から離れた位置において前記含フッ素系高分子膜基材に対向して設けられた第2の発熱体要素とを含んでおり、当該第2の発熱体要素の表面温度は前記第1の発熱体要素の表面温度よりも高く設定されたことを特徴とする方法である。前記含フッ素系高分子膜基材の表面に対向して設けられた一様な表面温度を有する一体化した発熱体によって前記含フッ素系高分子膜基材を加熱する場合には、その周辺部位の温度が中央部位の温度よりも低くなる。この状況は、前記電離放射線を照射しない時も、強度が均一に分布する前記電離放射線を照射している時も変わらない。前記電離放射線の強度分布のみを複雑に制御することによって照射中における前記含フッ素系高分子膜基材又はその他の長尺被照射体の温度分布を均一化できるが、照射直後の温度を前記設定温度範囲内に収めるのが困難であるばかりでなく吸収線量が不均一に分布することになり好ましくない。しかるに、本発明を採用すると、前記発熱体による加熱に際して前記含フッ素系高分子膜基材の温度分布を前記照射野内で均一にし易く、且つ前記電離放射線の吸収線量の分布を均一に保つことが容易である。また、簡単な装置を用いて照射中における前記含フッ素系高分子膜基材の温度管理が行える。 One aspect of the present invention is that in any one of the above-described inventions, the heating element includes a plurality of heating element elements that are spatially divided, and the heating element includes the fluorine-containing system at a central portion in the irradiation field. A first heating element provided opposite to the polymer membrane substrate, and provided opposite to the fluorine-containing polymer membrane substrate at a position away from the center of the irradiation field in the width direction . includes a second heating element, the surface temperature of the second heating element is a method which is characterized in that it is set higher than the surface temperature of the first heating element. When the fluorine-containing polymer film substrate is heated by an integrated heating element having a uniform surface temperature provided opposite to the surface of the fluorine-containing polymer film substrate, the peripheral portion Is lower than the temperature of the central part. This situation does not change when the ionizing radiation is not irradiated or when the ionizing radiation is distributed with a uniform intensity. By controlling only the intensity distribution of the ionizing radiation in a complex manner, the temperature distribution of the fluorine-containing polymer film substrate or other long irradiated object during irradiation can be made uniform, but the temperature immediately after irradiation is set as described above. Not only is it difficult to be within the temperature range, but the absorbed dose is unevenly distributed, which is not preferable. However, when the present invention is adopted, it is easy to make the temperature distribution of the fluorine-containing polymer film substrate uniform in the irradiation field upon heating by the heating element, and to keep the absorbed dose distribution of the ionizing radiation uniform. Easy. Further, the temperature of the fluorine-containing polymer film substrate during irradiation can be controlled using a simple apparatus.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材は長手方向と幅方向とを有し、前記発熱体は当該幅方向に整列した複数の発熱体要素を含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列していることを特徴とする方法である。簡単な構造の発熱体を用いて照射中における前記含フッ素系高分子膜基材の温度管理が容易に行える。特に、前記含フッ素系高分子膜基材の幅方向温度分布を一様に保った状態で長手方向の温度分布を制御し易いので、前記幅方向に整列した前記発熱体要素群を同じ時間関数で制御できることになり、前記電離放射線の照射中における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内の温度に管理しながら容易に照射することができる。 One aspect of the present invention is that in any one of the above-described inventions, the fluorine-containing polymer film substrate has a longitudinal direction and a width direction, and the heating element includes a plurality of heating element elements aligned in the width direction. Including a first heat generating element group and a second heat generating element group, wherein the first heat generating element group and the second heat generating element group are aligned in the longitudinal direction. Is the method . Using a heating element having a simple structure, temperature control of the fluorine-containing polymer film substrate during irradiation can be easily performed. In particular, since the temperature distribution in the longitudinal direction can be easily controlled in a state in which the temperature distribution in the width direction of the fluorine-containing polymer film substrate is kept uniform, the heating element elements aligned in the width direction can have the same time function. Therefore, it is possible to easily irradiate while controlling the temperature of the fluorine-containing polymer film substrate during irradiation with the ionizing radiation to a temperature within the set temperature range.

本発明の一つは、上記いずれかの発明において、前記幅方向に整列した同一の発熱体要素群に含まれる各発熱体要素は同一の時間関数に従ってそれらの発熱量が制御されることを特徴とする方法である。本発明を採用すると、簡単な構造の発熱体及び制御器を用いて照射中における前記含フッ素系高分子膜基材の温度管理が容易に行える。特に、前記含フッ素系高分子膜基材の幅方向温度分布を一様に保った状態で長手方向の温度分布を制御し易く、前記幅方向に整列した前記発熱体要素群を同じ時間関数で制御しているので、前記電離放射線の照射中における前記含フッ素系高分子膜基材の温度を単純な制御方式で前記設定温度範囲内の温度に管理できる。 One aspect of the present invention is that in any one of the above-described inventions, each heating element included in the same heating element group aligned in the width direction is controlled in accordance with the same time function. It is a method . When the present invention is adopted, the temperature control of the fluorine-containing polymer film substrate during irradiation can be easily performed using a heating element and controller having a simple structure. In particular, it is easy to control the temperature distribution in the longitudinal direction while keeping the temperature distribution in the width direction of the fluorine-containing polymer film substrate uniform, and the heating element elements aligned in the width direction can be controlled with the same time function. Since it is controlled, the temperature of the fluorine-containing polymer film substrate during the irradiation of the ionizing radiation can be managed to a temperature within the set temperature range by a simple control method.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材の任意の部分における前記設定温度範囲は前記含フッ素系高分子膜基材の同一の前記任意部分において過去に吸収された前記電離放射線の吸収線量の積算値に対応して予め定められた関係を保って低下するように定められることを特徴とする方法である。前記設定温度範囲を低下させることは、過去の吸収線量の積算値の増加に応じて、(1)前記電離放射線の線量率を低下するか、(2)前記不活性ガスによる冷却率を増加するか、(3)前記発熱体の発熱量を減少することによって達成できる。本発明を採用すると、前記含フッ素系高分子膜基材に吸収された前記電離放射線の吸収線量の積算値が増加するにしたがってその結晶融点が低下した場合にも、吸収線量の積算値と前記設定温度範囲との関係を予め決められた最良の関係に常に保つことができて最適温度条件にて高温放射線処理を行うことができる。 One of the present invention, in any one of the invention, the set temperature range in any portion of the fluorine-containing polymer membrane substrate, in the same said any portion of the fluorine-containing polymer membrane substrate The method is characterized in that it is determined so as to decrease while maintaining a predetermined relationship corresponding to the integrated value of the absorbed dose of the ionizing radiation absorbed in the past. Decreasing the set temperature range is either (1) decreasing the dose rate of the ionizing radiation or (2) increasing the cooling rate by the inert gas in accordance with an increase in the integrated value of the past absorbed dose. (3) This can be achieved by reducing the amount of heat generated by the heating element. When the present invention is adopted, even when the integrated value of the absorbed dose of the ionizing radiation absorbed by the fluorine-containing polymer film substrate increases and the crystalline melting point thereof decreases, the integrated value of the absorbed dose and the The relationship with the set temperature range can always be kept at a predetermined best relationship, and high-temperature radiation processing can be performed under optimum temperature conditions.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材はポリテトラフルオロエチレン膜、又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体膜、又はテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体膜のいずれかであることを特徴とする方法である。本発明を採用すると、放射線環境下で使用できなかった大面積のポリテトラフルオロエチレン(PTFE)膜やテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体膜やテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体膜を放射線環境下でも使用できるように改質して工業製品として安価に提供できる。更に、改質したこれらの含フッ素系高分子膜を基材として使用することにより、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子型イオン交換膜を安価に大量生産できるようになる。更に、これを用いると安価で耐久性がある燃料電池を提供できる。
One of the present invention is the above invention, wherein the fluorine-containing polymer film substrate is a polytetrafluoroethylene film, a tetrafluoroethylene-hexafluoropropylene copolymer film, or a tetrafluoroethylene-perfluoro. It is a method characterized by being one of alkyl vinyl ether copolymer films. When the present invention is adopted, a polytetrafluoroethylene (PTFE) film, a tetrafluoroethylene-hexafluoropropylene copolymer film, or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer film that cannot be used in a radiation environment. Can be used at low cost as an industrial product by modifying it so that it can be used even in a radiation environment. Furthermore, by using these modified fluorine-containing polymer membranes as a base material, it is possible to mass-produce fluorine-containing polymer ion exchange membranes having excellent oxidation resistance and a wide range of ion exchange capacity at low cost. It becomes like this. Furthermore, if this is used, a cheap and durable fuel cell can be provided.

本発明の一つは、上記いずれかの発明に係わる方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射して、製造された架橋構造を有する含フッ素系高分子膜基材に、放射線照射によって種々のモノマーをグラフト重合させ、得られた膜のグラフト鎖中のハロゲン基をスルホン酸塩とし、引き続きグラフト鎖中のスルホン酸塩基をスルホン酸基とすることを特徴とする含フッ素系高分子イオン交換膜の製造方法ある。本発明を採用すると、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになる。更に、これを用いると安価で耐久性がある燃料電池を提供できる。 One of the present invention, the use or device by a method according to any one of the invention, substantially all portions in the desired range, while preventing mechanical contact, in the set temperature range While maintaining the temperature, it is obtained by irradiating the ionizing radiation in a low oxygen partial pressure environment and graft-polymerizing various monomers to the produced fluorine-containing polymer film substrate having a crosslinked structure by irradiation. There is a method for producing a fluorine-containing polymer ion exchange membrane, characterized in that a halogen group in a graft chain of a membrane is a sulfonate, and a sulfonate group in the graft chain is subsequently a sulfonate group. By employing the present invention, it becomes possible to mass-produce a fluorine-containing polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange capacity at a low cost. Furthermore, if this is used, a cheap and durable fuel cell can be provided.

本発明の一つは、上記いずれかの発明に係わる方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射して、製造された架橋構造を有する含フッ素系高分子膜基材に、放射線照射によって種々のモノマーをグラフト重合させ、得られた膜のグラフト鎖中のエステル基を酸性又はアルカリ性液中で加水分解してスルホン酸基とすることを特徴とする含フッ素系高分子イオン交換膜の製造方法である。本発明を採用すると、燃料電池の寿命と性能を高める為に最も重要な構成要素であるイオン交換膜が優れた耐酸化性と広範囲なイオン交換容量を有するとともに、これを安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に大量生産できるようになる One of the present invention, the use or device by a method according to any one of the invention, substantially all portions in the desired range, while preventing mechanical contact, in the set temperature range While maintaining the temperature, it is obtained by irradiating the ionizing radiation in a low oxygen partial pressure environment and graft-polymerizing various monomers to the produced fluorine-containing polymer film substrate having a crosslinked structure by irradiation. And a sulfonic acid group by hydrolyzing an ester group in a graft chain of the membrane in an acidic or alkaline solution. By adopting the present invention, the ion exchange membrane, which is the most important component for enhancing the life and performance of the fuel cell, has excellent oxidation resistance and a wide range of ion exchange capacity, and can be mass-produced at low cost. As a result, high-performance, stable operation and long-life fuel cells can be mass-produced at low cost.

本発明の一つは、上記いずれかの発明に係わる方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射して、製造されたことを特徴とする架橋構造を有する含フッ素系高分子膜である。本発明を採用すると、放射線環境下で使用できなかった大面積の含フッ素系高分子膜を放射線環境下でも使用できるように改質して工業製品として安価に提供できる。更に、改質した含フッ素系高分子膜を基材として使用することにより、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになる。更に、これを用いると安価で耐久性がある燃料電池を提供できる。 One of the present invention, the use or device by a method according to any one of the invention, substantially all portions in the desired range, while preventing mechanical contact, in the set temperature range A fluorine-containing polymer film having a cross-linked structure produced by irradiating the ionizing radiation in a low oxygen partial pressure environment while maintaining a temperature . By adopting the present invention, a fluorine-containing polymer film having a large area that could not be used in a radiation environment can be modified so that it can be used in a radiation environment and provided as an industrial product at low cost. Furthermore, by using a modified fluorine-containing polymer membrane as a base material, it becomes possible to mass-produce a fluorine-containing polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange capacity at a low cost. . Furthermore, if this is used, a cheap and durable fuel cell can be provided.

本発明の一つは、上記いずれかの発明に係わる方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射して、製造された架橋構造を有する含フッ素系高分子膜を用いて製造されたことを特徴とする含フッ素系高分子イオン交換膜である。本発明を採用すると、燃料電池の寿命と性能を高める為に最も重要な構成要素であるイオン交換膜が優れた耐酸化性と広範囲なイオン交換容量を有するようにできるとともに、これを安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に大量生産できるようになる。 One of the present invention, the use or device by a method according to any one of the invention, substantially all portions in the desired range, while preventing mechanical contact, in the set temperature range A fluorine-containing polymer ion produced by using the fluorine-containing polymer film having a crosslinked structure produced by irradiating the ionizing radiation in a low oxygen partial pressure environment while maintaining the temperature. It is an exchange membrane. By adopting the present invention, the ion exchange membrane, which is the most important component for enhancing the life and performance of the fuel cell, can be made to have excellent oxidation resistance and a wide range of ion exchange capacity, and it can be manufactured in large quantities at low cost. As a result, it becomes possible to mass-produce long-lived fuel cells that have high performance and stable operation at low cost.

本発明の一つは、上記いずれかの発明に係わる方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射する工程を含んで、製造されたことを特徴とする含フッ素系高分子イオン交換膜である。本発明を採用すると、燃料電池の寿命と性能を高める為に最も重要な構成要素であるイオン交換膜が優れた耐酸化性と広範囲なイオン交換容量を有するとともに、これを安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に大量生産できるようになる。
One of the present invention, the use or device by a method according to any one of the invention, substantially all portions in the desired range, while preventing mechanical contact, in the set temperature range A fluorine-containing polymer ion exchange membrane produced by irradiating the ionizing radiation in a low oxygen partial pressure environment while maintaining the temperature . By adopting the present invention, the ion exchange membrane, which is the most important component for enhancing the life and performance of the fuel cell, has excellent oxidation resistance and a wide range of ion exchange capacity, and can be mass-produced at low cost. As a result, it becomes possible to mass-produce long-lived fuel cells that have high performance and stable operation at low cost.

本発明を採用すると、大面積の含フッ素系高分子膜基材の温度を照射野内の実質的に全ての部位にわたって且つ処理の全時間中にわたって最適に定められた温度範囲に常に保った状態で酸素不在環境下において大線量率の電離放射線を照射することができ、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産することができる。本発明を採用して生産された安価で高品質の架橋構造を有する含フッ素系高分子膜を基材として用いると、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになり、結果として高性能で安定な動作をする長寿命の燃料電池を安価に生産できるようになる。また、本発明によって得られた改質含フッ素系高分子膜は耐放射線性を付与されるために放射線環境下で使用できるその他の工業材料としてまたは放射線滅菌が可能な医療用具素材として有用となる。   When the present invention is adopted, the temperature of the fluorine-containing polymer membrane substrate having a large area is always kept in an optimally defined temperature range over substantially all sites in the irradiation field and throughout the entire processing time. A large dose rate of ionizing radiation can be irradiated in an oxygen-free environment, and a fluorine-containing polymer film having a stable quality cross-linked structure can be produced in a large amount in a short time and at a low cost. Fluorine-containing polymer ions having excellent oxidation resistance and a wide range of ion exchange capacities when using a fluorine-containing polymer membrane having a crosslinked structure of high quality produced by employing the present invention as a base material The exchange membrane can be mass-produced at low cost, and as a result, a long-life fuel cell that operates stably at high performance can be produced at low cost. In addition, the modified fluorine-containing polymer film obtained by the present invention is useful as other industrial material that can be used in a radiation environment or as a medical device material that can be sterilized by radiation because it is given radiation resistance. .

本発明に係わる含フッ素系高分子膜基材の好適な放射線処理方法では、長尺の含フッ素系高分子膜基材を、温度制御と電子線照射とが同時に行える恒温電子線処理装置内を通過させる。この恒温電子線処理装置では、その入口位置および出口位置において、前記含フッ素系高分子膜基材の長手方向の一部分を常温に保って機械的に保持するとともに走行させる機能を付与させた部分が設けられている。前記恒温電子線処理装置内においては発熱体を設け、この発熱体を前記含フッ素系高分子膜基材の長手方向および幅方向に沿って多数の発熱体要素に分割して構成しておき、これらの発熱体要素の表面温度を空間的および/又は時間的に適正に制御する。電子線を照射する部位及びそのタイミングでは電子線照射による前記含フッ素系高分子膜基材の発熱効果を打ち消す冷却効果を与えるように不活性ガスを吹き付ける。このようにして、照射中および照射前後を問わず、前記含フッ素系高分子膜基材の照射野内に位置する全ての部位の温度を実質的に一様に保ち、所定の処理が進行すれば前記恒温電子線処理装置の出口位置において処理済の長尺含フッ素系高分子膜を部分的に冷却して前記恒温電子線処理装置外に送り出すことによって短時間に多量の処理ができるようになっている。   In a preferred radiation treatment method for a fluorine-containing polymer film substrate according to the present invention, a long fluorine-containing polymer film substrate is subjected to a constant-temperature electron beam treatment apparatus capable of simultaneously performing temperature control and electron beam irradiation. Let it pass. In this constant temperature electron beam processing apparatus, at the entrance position and the exit position, a part to which a part of the longitudinal direction of the fluorine-containing polymer film substrate is mechanically held at a normal temperature and is allowed to run is provided. Is provided. A heating element is provided in the constant temperature electron beam processing apparatus, and the heating element is divided into a large number of heating element elements along the longitudinal direction and the width direction of the fluorine-containing polymer film substrate, The surface temperature of these heating element is appropriately controlled in space and / or time. An inert gas is blown so as to provide a cooling effect that counteracts the heat generation effect of the fluorine-containing polymer film substrate by electron beam irradiation at the timing and timing of electron beam irradiation. In this way, regardless of whether or not during irradiation, the temperature of all the parts located within the irradiation field of the fluorine-containing polymer film substrate is kept substantially uniform, and the predetermined process proceeds. A large amount of processing can be performed in a short time by partially cooling the processed long fluorine-containing polymer film at the outlet position of the constant temperature electron beam processing apparatus and sending it out of the constant temperature electron beam processing apparatus. ing.

前記恒温電子線処理装置内において、電子線を照射しない位置、または電子線を照射しないタイミングでは、前記発熱体要素のそれぞれの表面温度を前記照射野の中心から離れて設けられた発熱体要素ほど高く設定することにより、前記含フッ素系高分子膜基材の照射野内およびその周辺に位置する部位の温度を一様に保ちながら短時間に結晶融点前後の予め定められた設定温度範囲内の温度まで高める。電子線を照射する位置、および電子線を照射するタイミングでは、照射野外でその近傍に位置して設けられた冷媒通路から前記含フッ素系高分子膜基材の照射野内の部位に不活性ガスを吹き付けて前記含フッ素系高分子膜基材の温度を、照射野を中心として、蒲鉾状に分布した状態で低下させるように放熱させ、かつ、この放熱を打ち消すように分布した熱量を有する電子線を照射することによって加熱し、結果として照射中のどのタイミングでも前記含フッ素系高分子膜基材の温度が限度以上に変化しないようにしている。また、前記の放出される熱量の空間分布および時間変化は、照射野内においては、電子線によって与えられる熱量の空間分布および時間変化とそれぞれ実質的に一致しており、結果として照射野内においては空間的および時間的に一様で前記設定温度範囲内に収まった温度分布となる。   In the constant temperature electron beam processing apparatus, at a position where the electron beam is not irradiated, or at a timing where the electron beam is not irradiated, the surface temperature of each of the heat generating element is set as far as the heat generating element provided away from the center of the irradiation field. By setting it high, the temperature within a predetermined set temperature range around the crystalline melting point in a short time while keeping the temperature of the portion located in and around the irradiation field of the fluorine-containing polymer film substrate uniform. To increase. At the position where the electron beam is irradiated and the timing when the electron beam is irradiated, an inert gas is supplied to the site within the irradiation field of the fluorine-containing polymer film substrate from the refrigerant passage located near the outside of the irradiation field. An electron beam having a calorific value distributed so as to reduce the temperature of the fluorine-containing polymer film substrate by spraying and lowering the temperature in a state distributed in a bowl shape around the irradiation field. As a result, the temperature of the fluorine-containing polymer film substrate is prevented from changing beyond the limit at any timing during irradiation. In addition, the spatial distribution and temporal change of the amount of heat released are substantially the same as the spatial distribution and temporal change of the amount of heat given by the electron beam in the irradiation field. The temperature distribution is uniform in terms of time and time and is within the set temperature range.

また、前記含フッ素系高分子膜基材は吸収線量の増加とともに結晶融点が低下し、したがって最適設定温度範囲が吸収線量の積算値の増加とともに低下するので、前記設定温度範囲を吸収線量の積算値に応じて変化させて常に最適な温度で最適な架橋処理を行えるようになっている。このように吸収線量の積算値によって照射時の温度を変化させる場合には前記含フッ素系高分子膜基材を静止させた状態で前記発熱体要素の表面温度又は前記電離放射線の線量率又は前記不活性ガスの吹き付けによる放熱の少なくとも一つを吸収線量の積算値に応じて変更し、既定の吸収線量値に達した後に電子線の照射を休止して照射野の幅に相当する距離だけ前記含フッ素系高分子膜基材を長手方向に移動させるとともに、前記の変更を取り消すように初期化して前記含フッ素系高分子膜基材の温度を照射開始時の設定値に戻した後、前記の照射を繰り返す。この際、前記含フッ素系高分子膜基材はステップ状に自動的に移動される。   In addition, the melting point of the fluorine-containing polymer film substrate decreases as the absorbed dose increases, and therefore the optimum set temperature range decreases as the integrated value of absorbed dose increases. The optimum cross-linking treatment can be performed at the optimum temperature by changing the value according to the value. Thus, when changing the temperature at the time of irradiation by the integrated value of the absorbed dose, the surface temperature of the heating element, the dose rate of the ionizing radiation, or the Change at least one of the heat dissipation by blowing inert gas according to the integrated value of absorbed dose, and after reaching the predetermined absorbed dose value, stop the electron beam irradiation and only the distance corresponding to the width of the irradiation field After moving the fluorine-containing polymer film substrate in the longitudinal direction and initializing it to cancel the change and returning the temperature of the fluorine-containing polymer film substrate to the set value at the start of irradiation, Repeat the irradiation. At this time, the fluorine-containing polymer film substrate is automatically moved stepwise.

電子線の照射線量率が大きい場合には、前記含フッ素系高分子膜基材の内で照射野に位置する部分の温度上昇を防ぐ為に多量の不活性ガスを吹き付けてこの冷却率を増加させる必要がある。この場合に前記含フッ素系高分子膜基材に前記不活性ガスの流束によって圧力を受けて前記含フッ素系高分子膜基材の撓みが大きくなるのを防ぐ為に前記含フッ素系高分子膜基材を前記長手方向に適正な大きさの張力を与えるようになっている。   When the electron beam irradiation dose rate is large, a large amount of inert gas is blown to increase the cooling rate in order to prevent the temperature rise in the portion of the fluorine-containing polymer film substrate located in the irradiation field. It is necessary to let In this case, in order to prevent the fluorinated polymer membrane base material from being subjected to pressure due to the inert gas flux, the fluorinated polymer membrane base material is prevented from being greatly bent. The membrane substrate is provided with an appropriate tension in the longitudinal direction.

照射する線量の積算値が多くない場合には、最適設定温度範囲を一定値にプリセットできるので、この場合には前記発熱体要素の温度設定値を一定として前記含フッ素系高分子膜基材を一定速度で移動させながら架橋処理を行うことができる。この場合でも、不活性ガスの流量を増す等によって前記含フッ素系高分子膜基材の冷却率を大きくしておくと、放熱に釣り合う電子線の発熱量を増加できるのでより大きな線量率で短時間に照射できる。   When the integrated value of irradiation dose is not large, the optimum set temperature range can be preset to a constant value. In this case, the temperature setting value of the heating element is kept constant, and the fluorine-containing polymer film substrate is The crosslinking treatment can be performed while moving at a constant speed. Even in this case, if the cooling rate of the fluorine-containing polymer film substrate is increased by increasing the flow rate of the inert gas, etc., the amount of heat generated by the electron beam in proportion to the heat radiation can be increased. Can be irradiated on time.

以上に述べたように、前記恒温電子線処理装置内において前記含フッ素系高分子膜基材の保持部分を常温に保ったままで照射野およびその近傍に位置する部分を急速に加熱した後に、大きな照射線量率で照射しながら照射中の温度を最適値に保った状態で前記含フッ素系高分子膜基材に多量の線量を短時間に照射し、照射が終了すると処理済の前記含フッ素系高分子膜の前記恒温電子線処理装置出口に位置する部位を部分的に急速に冷却して前記恒温電子線処理装置の外部に移動させて取り出す。このようにして、大面積の前記含フッ素系高分子膜基材を高速度で多量に自動的に放射線処理できるようになっている。以下に、実施例を用いて本発明の実施形態及び作用についてより具体的且つ詳細に説明する。   As described above, after rapidly heating the irradiation field and the portion located in the vicinity thereof while maintaining the holding portion of the fluorine-containing polymer film substrate at room temperature in the constant temperature electron beam processing apparatus, While irradiating at an irradiation dose rate, the fluorine-containing polymer film substrate is irradiated with a large amount of dose in a short time with the temperature during irradiation kept at an optimum value, and when the irradiation is completed, the treated fluorine-containing polymer A portion of the polymer film located at the outlet of the constant temperature electron beam processing apparatus is partially and rapidly cooled and moved out of the constant temperature electron beam processing apparatus and taken out. In this way, a large amount of the fluorine-containing polymer film substrate can be automatically subjected to radiation treatment at a high speed and in large quantities. Hereinafter, the embodiment and operation of the present invention will be described more specifically and in detail using examples.

図1、図2、図3、図4を参照して本発明の含フッ素系高分子膜基材の放射線処理方法について説明する。これらの図において、同じ部分は同じ番号を付して表している。図1及び図2は、本発明に係わる含フッ素系高分子膜基材の恒温電子線処理装置の例を示している。図1は縦断面図であり、図2は横断面図である。図1において、1は長尺で幅広に形成された含フッ素系高分子膜基材であり、本実施例では、厚さが100μmで幅が30cmで長さが10mのポリテトラフルオロエチレン(PTFE)膜を用いている。これは、初期的にリール2に巻き取られており、処理の進行とともにリール3に巻き取られた状態に移動する。含フッ素系高分子膜基材1はプーリー4によって位置決めされて恒温電子線処理装置10内に導かれて、340℃程度に加熱された後に温度を340±5℃の範囲内に保った状態を維持しつつ電子線Eを照射される。恒温電子線処理装置10の入口部分及び出口部分には冷却用プーリー5及び6が設けられており、これらは含フッ素系高分子膜基材1を機械的に保持しつつこの部分を常時常温に保つとともに含フッ素系高分子膜基材1の位置決め及び走行を促すように作動する。恒温電子線処理装置10の出口部分の外側にはプーリー7及び8が設けられている。プーリー7は位置が固定されており、含フッ素系高分子膜基材1の位置決めを行う。プーリー8は移動可能になっており、予め定められた張力F1を常時含フッ素系高分子膜基材1に付与するようになっており、恒温電子線処理装置10内に位置する含フッ素系高分子膜基材1の部分に常時適切な張力を与えるようになっている。プーリー8を通過した含フッ素系高分子膜基材1はリール3によって巻き取られる。 With reference to FIG. 1, FIG. 2, FIG. 3, FIG. 4, the radiation treatment method for the fluorine-containing polymer film substrate of the present invention will be described. In these drawings, the same parts are denoted by the same reference numerals. 1 and 2 show an example of a constant temperature electron beam processing apparatus for a fluorine-containing polymer film substrate according to the present invention. 1 is a longitudinal sectional view, and FIG. 2 is a transverse sectional view. In FIG. 1, reference numeral 1 denotes a long and wide fluorine-containing polymer membrane substrate. In this example, polytetrafluoroethylene (PTFE) having a thickness of 100 μm, a width of 30 cm, and a length of 10 m is used. ) A membrane is used. This is initially wound on the reel 2 and moves to a state wound on the reel 3 as the process proceeds. The fluorine-containing polymer film substrate 1 is positioned by the pulley 4 and guided into the constant temperature electron beam processing apparatus 10 , heated to about 340 ° C., and maintained in a temperature range of 340 ± 5 ° C. The electron beam E is irradiated while maintaining. Cooling pulleys 5 and 6 are provided at an inlet portion and an outlet portion of the constant temperature electron beam processing apparatus 10 , and these portions are always kept at room temperature while mechanically holding the fluorine-containing polymer film substrate 1. It operates so as to promote the positioning and running of the fluorine-containing polymer film substrate 1 while maintaining it. Pulleys 7 and 8 are provided outside the exit portion of the constant temperature electron beam processing apparatus 10 . The position of the pulley 7 is fixed, and the fluorine-containing polymer film substrate 1 is positioned. The pulley 8 is movable, and always applies a predetermined tension F1 to the fluorine-containing polymer film substrate 1, and the fluorine-containing high molecular weight located in the constant temperature electron beam processing apparatus 10 is provided. Appropriate tension is always applied to the part of the molecular film substrate 1. The fluorine-containing polymer film substrate 1 that has passed through the pulley 8 is taken up by the reel 3.

恒温電子線処理装置10には放射線防護機能と気体封じ込め機能を有する処理容器11が設けられており、内部はアルゴンや窒素等の不活性ガスで満たされている。恒温電子線処理装置10には強度が平坦に分布した電子線Eを照射する所謂面照射型の電子線照射装置12が設けられている。電子線照射装置12は例えば特開平11−19190号公報に開示された構造の装置で、第1の電子線透過窓13を透過して300keV程度のエネルギーと10mA程度の電流とを有する平坦に分布した電子線を照射できるようになっている。恒温電子線処理装置10内には含フッ素系高分子膜基材1が通過するようになっており、含フッ素系高分子膜基材1に対して電子線照射装置12と反対側に発熱体である加熱用ヒータ群30が設けられている。加熱用ヒータ群30と処理容器11の壁との間には熱遮蔽板14が設けられており、処理容器11の過熱を防止している。加熱用ヒータ群30は図示しない熱絶縁体を介して熱遮蔽板14に機械的に保持されている。熱遮蔽板14は必要により水冷等によって冷却されている。処理容器11内で含フッ素系高分子膜基材1と電子線透過窓13との間には第2の電子線透過窓15及びこれを冷却するとともに機械的に支持する隔壁16が設けられている。第1の電子線透過窓13と第2の電子線透過窓15とは、ノズル17から導かれてノズル18から流出する不活性ガスがこれらの間を高速で流れることにより冷却される。 The constant temperature electron beam processing apparatus 10 is provided with a processing container 11 having a radiation protection function and a gas containment function, and the inside is filled with an inert gas such as argon or nitrogen. The constant temperature electron beam processing apparatus 10 is provided with a so-called surface irradiation type electron beam irradiation apparatus 12 that irradiates an electron beam E having a flatly distributed intensity. The electron beam irradiation device 12 is a device having a structure disclosed in, for example, Japanese Patent Application Laid-Open No. 11-19190, and is flatly distributed through the first electron beam transmission window 13 and having an energy of about 300 keV and a current of about 10 mA. Can be irradiated with the electron beam. The fluorine-containing polymer film substrate 1 passes through the constant temperature electron beam processing apparatus 10 , and a heating element on the opposite side of the electron beam irradiation apparatus 12 with respect to the fluorine-containing polymer film substrate 1. A heater group 30 for heating is provided. A heat shielding plate 14 is provided between the heater group 30 for heating and the wall of the processing container 11 to prevent the processing container 11 from being overheated. The heating heater group 30 is mechanically held on the heat shield plate 14 via a thermal insulator (not shown). The heat shielding plate 14 is cooled by water cooling or the like as necessary. A second electron beam transmission window 15 and a partition wall 16 for cooling and mechanically supporting the second electron beam transmission window 15 are provided between the fluorine-containing polymer film substrate 1 and the electron beam transmission window 13 in the processing container 11. Yes. The first electron beam transmission window 13 and the second electron beam transmission window 15 are cooled by the inert gas that is guided from the nozzle 17 and flows out of the nozzle 18 flowing between them at a high speed.

恒温電子線処理装置10の入口部位及び出口部位では熱遮蔽板14と隔壁16とが含フッ素系高分子膜基材1を挟んで非接触に近接している。これらの位置で、含フッ素系高分子膜基材1の図示上下両面に向って不活性ガスを吹きかけるノズル群19及び20が設けられており、この不活性ガスの流動により含フッ素系高分子膜基材1の機械的接触を防止して保持するとともに含フッ素系高分子膜基材1を冷却している。隔壁16には非接触温度計群21,22が設けられており、矢印23,24で示す方向における含フッ素系高分子膜基材1の表面位置の温度を検出できるようになっている。図1及び図2に示すように、電子線Eの中心軸をZ軸とし、含フッ素系高分子膜基材1とZ軸との交点を原点Oとし、原点Oを通り、恒温電子線処理装置10の入口部分から出口部分に向う方向をX軸とし、原点Oを通り、X軸及びZ軸に直角な方向をY軸とする。恒温電子線処理装置10内では含フッ素系高分子膜基材1の長手方向はX軸に平行であり、含フッ素系高分子膜基材1の幅方向はY軸に平行である。電子線Eの照射野FiはX軸方向の幅がFWであり、Y軸方向の長さがFLである。 At the entrance part and the exit part of the constant temperature electron beam processing apparatus 10 , the heat shielding plate 14 and the partition wall 16 are close to each other in a non-contact manner with the fluorine-containing polymer film substrate 1 interposed therebetween. At these positions, nozzle groups 19 and 20 for spraying an inert gas toward the upper and lower surfaces of the fluorine-containing polymer film substrate 1 shown in the figure are provided, and the fluorine-containing polymer film is flowed by the flow of the inert gas. The fluorine-containing polymer film substrate 1 is cooled while the mechanical contact of the substrate 1 is prevented and held. The partition wall 16 is provided with non-contact thermometer groups 21 and 22 so that the temperature of the surface position of the fluorine-containing polymer film substrate 1 in the directions indicated by the arrows 23 and 24 can be detected. As shown in FIGS. 1 and 2, the central axis of the electron beam E is the Z axis, the intersection of the fluorine-containing polymer film substrate 1 and the Z axis is the origin O, and the constant temperature electron beam processing is performed through the origin O. A direction from the inlet portion to the outlet portion of the apparatus 10 is defined as an X axis, and a direction passing through the origin O and perpendicular to the X axis and the Z axis is defined as a Y axis. In the constant temperature electron beam processing apparatus 10 , the longitudinal direction of the fluorine-containing polymer film substrate 1 is parallel to the X axis, and the width direction of the fluorine-containing polymer film substrate 1 is parallel to the Y axis. The irradiation field Fi of the electron beam E has a width in the X-axis direction of FW and a length in the Y-axis direction of FL.

含フッ素系高分子膜基材1に近接して対向しており、且つ含フッ素系高分子膜基材1に対して第2の電子線透過窓15及び隔壁16と同じ側に位置して且つ含フッ素系高分子膜基材1に平行に近接して仕切板25が設けられている。仕切板25の構造は図4に示している。Z軸を中心としてX軸方向の幅がFW1でY軸方向の幅がFLの切抜穴Winが開いている。幅FW1は照射野Fiの幅FWに近い値である。仕切板25に対して含フッ素系高分子膜基材1と反対側に冷媒通路26,27が仕切板25に平行に設けられている。冷媒通路26,27にはそれぞれ多数の冷媒噴出口26−1、27−1が取付けられている。冷媒通路26,27及び多数の冷媒噴出口26−1、27−1は電子線Eが照射野Fiの範囲で含フッ素系高分子膜基材1に照射されるのを妨げないように偏在して設けられている。冷媒通路26,27には窒素等の不活性ガスが導入されており、当該不活性ガスは電子線Eが照射されるタイミングに多数の冷媒噴出口26−1、27−1から含フッ素系高分子膜基材1に向って吹き付けられて照射野Fi内に位置する含フッ素系高分子膜基材1の部分を一様に冷却する。不活性ガスが含フッ素系高分子膜基材1に吹き付けられる空間的な範囲は切抜穴Winの大きさによって制限されている。不活性ガスの空間的分布は多数の冷媒噴出口26−1、27−1の取付位置や穴の大きさの空間的分布等を調整することによって適正化されている。吹き付けられる不活性ガスの量及びその分布は照射野Fi内に位置する含フッ素系高分子膜基材1の部分の温度が電子線Eの照射によって変化しないような冷却効果を有するように電子線の強度に応じて制御されている。吹き付けられる不活性ガスの温度は一定となっているが、適切に制御されても良い。   It is close to and opposed to the fluorine-containing polymer film substrate 1 and is located on the same side as the second electron beam transmission window 15 and the partition wall 16 with respect to the fluorine-containing polymer film substrate 1 and A partition plate 25 is provided adjacent to the fluorine-containing polymer film substrate 1 in parallel. The structure of the partition plate 25 is shown in FIG. A cut-out hole Win having a width FW1 in the X-axis direction and a width FL in the Y-axis direction with respect to the Z axis is opened. The width FW1 is a value close to the width FW of the irradiation field Fi. Refrigerant passages 26 and 27 are provided in parallel to the partition plate 25 on the side opposite to the fluorine-containing polymer film substrate 1 with respect to the partition plate 25. A large number of refrigerant outlets 26-1 and 27-1 are attached to the refrigerant passages 26 and 27, respectively. The refrigerant passages 26 and 27 and the large number of refrigerant outlets 26-1 and 27-1 are unevenly distributed so as not to prevent the electron beam E from being irradiated on the fluorine-containing polymer film substrate 1 in the range of the irradiation field Fi. Is provided. An inert gas such as nitrogen is introduced into the refrigerant passages 26 and 27, and the inert gas passes through a large number of refrigerant outlets 26-1 and 27-1 at the timing when the electron beam E is irradiated. The portion of the fluorine-containing polymer film substrate 1 that is sprayed toward the molecular film substrate 1 and located in the irradiation field Fi is uniformly cooled. The spatial range in which the inert gas is sprayed onto the fluorine-containing polymer film substrate 1 is limited by the size of the cutout hole Win. The spatial distribution of the inert gas is optimized by adjusting the mounting positions of the large number of refrigerant jets 26-1 and 27-1, the spatial distribution of the hole sizes, and the like. The amount of inert gas blown and the distribution thereof are electron beams so that the temperature of the portion of the fluorine-containing polymer film substrate 1 located in the irradiation field Fi has a cooling effect that does not change by irradiation with the electron beam E. Is controlled according to the strength of the. The temperature of the inert gas sprayed is constant, but may be appropriately controlled.

図3(a)は、恒温電子線処理装置10の正のZ座標値を有する一部分を取り除いてZ軸の正の方向から冷媒通路26,27、仕切板25、含フッ素系高分子膜基材1及び加熱用ヒータ群30を見た平面図を表している。図3(b)は図3(a)に対応したYZ平面での断面図の一部を表している。図3(c)は図3(a)に対応したXZ平面での断面図の一部を表している。図3(a)の斜線部分は電子線Eの照射野Fiを表しており、照射野幅はFWであり、照射野長はFLである。本実施例においては、前記所望範囲は照射野Fiに完全に一致している。図5(a)及び図5(b)は加熱用ヒータ群30の平面図及び側断面図をそれぞれ表している。図5(a)に示しているように、加熱用ヒータ群30はXY平面に平行に配列された複数のヒータ要素とXZ平面に平行に配列された複数のヒータ要素を含んでおり、これらはいずれも含フッ素系高分子膜基材1から一定の距離、例えば2.5cm、を保って並べられている。これらのヒータ要素は前記発熱体要素の1つの具体例である。加熱用ヒータ群30には、X座標がそれぞれ−X2,−X1,0、X1,X2で,Y座標がそれぞれ−Y3,−Y2,−Y1,0、Y1,Y2,Y3の位置に表面の中心を有する35個のヒータ要素に分割されており、これらは小さな距離、例えば2mm、離れて互いに隣接して並べられている。ここで、X1は5.8cm、X2は13.8cm、Y1は10.8cm、Y2は15.1cm、Y3は17.5cmである。これらのヒータ要素はY軸方向に整列した7個のヒータ要素を含むヒータ要素群、つまり前記発熱体要素群、がX軸方向に5個整列して構成されている。これらのヒータ要素をそれぞれH(i,j)で表す。ここで、iはヒータ要素表面の中心座標を表す、X軸方向の上記サフィックスを表し、−2、−1、0、1、2が含まれており、jはヒータ要素の表面の中心座標を表す、Y軸方向の上記サフィックスを表し、−3、−2、−1、0、1、2、3が含まれる。 FIG. 3 (a) shows the refrigerant passages 26, 27, the partition plate 25, the fluorine-containing polymer membrane substrate from the positive direction of the Z-axis by removing a part of the constant temperature electron beam processing apparatus 10 having a positive Z coordinate value. 1 and a plan view of the heater group 30 for heating. FIG. 3B shows a part of a sectional view on the YZ plane corresponding to FIG. FIG. 3C shows a part of a sectional view on the XZ plane corresponding to FIG. The shaded portion in FIG. 3A represents the irradiation field Fi of the electron beam E, the irradiation field width is FW, and the irradiation field length is FL. In the present embodiment, the desired range completely coincides with the irradiation field Fi. 5A and 5B respectively show a plan view and a side sectional view of the heater group 30 for heating. As shown in FIG. 5A, the heater group 30 for heating includes a plurality of heater elements arranged in parallel to the XY plane and a plurality of heater elements arranged in parallel to the XZ plane. All of them are arranged at a certain distance from the fluorine-containing polymer film substrate 1, for example, 2.5 cm. These heater elements are one specific example of the heating element. The heating heater group 30 has X-coordinates of -X2, -X1,0, X1, X2 and Y-coordinates of -Y3, -Y2, -Y1,0, Y1, Y2, Y3, respectively. It is divided into 35 heater elements with a center, which are arranged adjacent to each other at a small distance, for example 2 mm. Here, X1 is 5.8 cm, X2 is 13.8 cm, Y1 is 10.8 cm, Y2 is 15.1 cm, and Y3 is 17.5 cm. These heater elements are composed of five heater element groups including seven heater elements aligned in the Y-axis direction, that is, five heating element groups aligned in the X-axis direction. Each of these heater elements is represented by H (i, j). Here, i represents the above-mentioned suffix in the X-axis direction that represents the center coordinate of the heater element surface, and includes -2, -1, 0, 1, and 2, and j represents the center coordinate of the surface of the heater element. Represents the suffix in the Y-axis direction, and includes -3, -2, -1, 0, 1, 2, 3.

ヒータ要素H(i,j)、i = ±2、±1、0、j = ±2、±1、0、はZ座標が−2.5cmで、含フッ素系高分子膜基材1から2.5cm離れた位置で含フッ素系高分子膜基材1に平行に対面している。ヒータ要素H(i,j)、i = ±2、±1、0、j = ±3、は照射野中心からY方向にそれぞれ−Y3、Y3だけ離れた位置でZ軸方向に座標が0から−Z1まで広がってXZ平面に平行に配列されている。後者は、含フッ素系高分子膜基材1のY軸方向の温度分布を均一化するのに役立っている。これらの全てのヒータ要素はそれぞれ熱的、電気的に分割されており、独立して制御できるようになっている。   The heater element H (i, j), i = ± 2, ± 1, 0, j = ± 2, ± 1, 0 has a Z-coordinate of −2.5 cm, and the fluorine-containing polymer membrane substrates 1 to 2 It faces the fluorine-containing polymer film substrate 1 in parallel at a position 5 cm away. The heater element H (i, j), i = ± 2, ± 1, 0, j = ± 3, is at a position away from the center of the irradiation field by −Y3 and Y3 in the Y direction, respectively, and the coordinates in the Z-axis direction are from 0 It extends to -Z1 and is arranged parallel to the XZ plane. The latter serves to make the temperature distribution in the Y-axis direction of the fluorine-containing polymer film substrate 1 uniform. All of these heater elements are divided thermally and electrically so that they can be controlled independently.

これらの各ヒータ要素H(i,j)は、2種のタイミングで異なった様態に制御される。このタイミングは、含フッ素系高分子膜基材1を初期温度、例えば室温、から規定温度、例えば340℃、まで急速に加熱する為の急加熱タイミングT1と、含フッ素系高分子膜基材1を規定温度、例えば340℃、に保温する為の保温タイミングT2とである。急加熱タイミングT1に於ける各ヒータ要素H(i,j)の発熱量Q(i,j)の分布例を図6に示している。図6においては発熱量は面積密度で表している。図6(a)はヒータ要素H(0、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(0、j)、j = −3、−2、−1、0、1、2、3、であり、図6(b)はヒータ要素H(±1、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±1、j)、j = −3、−2、−1、0、1、2、3、であり、図6(c)はヒータ要素H(±2、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±2、j)、j = −3、−2、−1、0、1、2、3、であり、図6(d)はヒータ要素H(i、0)、i = −2、−1、0、1、2、の発熱量Q(i、0)、i = −2、−1、0、1、2、であり、図6(e)はヒータ要素H(i、±1)、i = −2、−1、0、1、2、の発熱量Q(i、±1)、i = −2、−1、0、1、2、であり、図6(f)はヒータ要素H(i、±2)、i = −2、−1、0、1、2、の発熱量Q(i、±2)、i = −2、−1、0、1、2、であり、図6(g)はヒータ要素H(i、±3)、i = −2、−1、0、1、2、の発熱量Q(i、±3)、i = −2、−1、0、1、2、である。   Each of these heater elements H (i, j) is controlled in different manners at two timings. This timing includes rapid heating timing T1 for rapidly heating the fluorine-containing polymer film substrate 1 from an initial temperature, for example, room temperature, to a specified temperature, for example, 340 ° C., and the fluorine-containing polymer film substrate 1 Is a temperature keeping timing T2 for keeping the temperature at a specified temperature, for example, 340 ° C. FIG. 6 shows a distribution example of the calorific value Q (i, j) of each heater element H (i, j) at the rapid heating timing T1. In FIG. 6, the calorific value is represented by area density. FIG. 6A shows the heating value Q (0, j), j = −3, − of the heater element H (0, j), j = −3, −2, −1, 0, 1, 2, 3. 2, -1, 0, 1, 2, 3, and FIG. 6B shows the heater element H (± 1, j), j = −3, −2, −1, 0, 1, 2, 3 , J = −3, −2, −1, 0, 1, 2, 3, and FIG. 6C shows the heater element H (± 2, j), With heat generation amount Q (± 2, j) of j = −3, −2, −1, 0, 1, 2, 3, j = −3, −2, −1, 0, 1, 2, 3, FIG. 6D shows the heater element H (i, 0), i = −2, −1, 0, 1, 2, and the calorific value Q (i, 0), i = −2, −1, 0. 6 (e) shows the heater element H (i, ± 1), the heat value Q (i, ± 1) of i = −2, −1, 0, 1, 2, = −2, −1, 0, 1, 2, and FIG. 6F shows the heating value Q of the heater element H (i, ± 2), i = −2, −1, 0, 1, 2 (I, ± 2), i = −2, −1, 0, 1, 2, and FIG. 6G shows the heater element H (i, ± 3), i = −2, −1, 0, The calorific values Q (i, ± 3) of 1, 2 are i = −2, −1, 0, 1, 2, and so on.

同様に、保温タイミングT2に於ける各ヒータ要素H(i,j)の発熱量Q(i,j)を図7に示している。図7においては発熱量は面積密度で表している。図7(a)はヒータ要素H(0、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(0、j)、j = −3、−2、−1、0、1、2、3、であり、図7(b)はヒータ要素H(±1、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±1、j)、j = −3、−2、−1、0、1、2、3、であり、図7(c)はヒータ要素H(±2、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±2、j)、j = −3、−2、−1、0、1、2、3であり、図7(d)はヒータ要素H(i、0)、i = −2、−1、0、1、2の発熱量Q(i、0)、i = −2、−1、0、1、2、であり、図7(e)はヒータ要素H(i、±1)、i = −2、−1、0、1、2、の発熱量Q(i、±1)、i = −2、−1、0、1、2、であり、図7(f)はヒータ要素H(i、±2)、i = −2、−1、0、1、2、の発熱量Q(i、±2)、i = −2、−1、0、1、2、であり、図7(g)はヒータ要素H(i、±3)、i = −2、−1、0、1、2、の発熱量Q(i、±3)、i = −2、−1、0、1、2、である。   Similarly, FIG. 7 shows the heat generation amount Q (i, j) of each heater element H (i, j) at the heat retention timing T2. In FIG. 7, the calorific value is represented by area density. FIG. 7A shows the heating value Q (0, j), j = −3, − of the heater element H (0, j), j = −3, −2, −1, 0, 1, 2, 3. 2, -1, 0, 1, 2, 3, and FIG. 7B shows the heater element H (± 1, j), j = −3, −2, −1, 0, 1, 2, 3 , J = −3, −2, −1, 0, 1, 2, 3, and FIG. 7C shows the heater element H (± 2, j), The calorific value Q (± 2, j) of j = −3, −2, −1, 0, 1, 2, 3, and j = −3, −2, −1, 0, 1, 2, 3 FIG. 7 (d) shows the heater element H (i, 0), i = −2, −1, 0, 1, 2 heat generation amount Q (i, 0), i = −2, −1, 0, 1 FIG. 7E shows the heater element H (i, ± 1), i = −2, −1, 0, 1, 2, and the calorific value Q (i, ± 1), i. -F, -1, 0, 1, 2, and FIG. 7 (f) shows the heating value Q (() of the heater element H (i, ± 2), i = -2, -1, 0, 1, 2. i, ± 2), i = −2, −1, 0, 1, 2, and FIG. 7G shows the heater element H (i, ± 3), i = −2, −1, 0, 1 2, the calorific value Q (i, ± 3), i = −2, −1, 0, 1, 2, and so on.

上記の各ヒータ要素H(i,j)の発熱量Q(i,j)を制御する時間関数及び電子線強度を制御する時間関数を図8に示している。図8(a)は電子線強度を制御する加熱時間tの正規化して表した関数Fb(t)であり、図8(b)はヒータ要素H(i,j)、i=−2〜+2、j=−3〜+3を制御する加熱時間tの正規化して表した関数Fh(t)である。これらの図において、急加熱タイミングT1は加熱時間tが0から12.0秒の間に相当し、保温タイミングT2は加熱時間tが12.0秒以降に相当し、ビーム照射タイミングT3は加熱時間tが24.0秒から44.5秒の間、及び65.3秒から85.8秒の間、及び106.6秒から127.1秒の間に相当する。   FIG. 8 shows a time function for controlling the calorific value Q (i, j) of each heater element H (i, j) and a time function for controlling the electron beam intensity. FIG. 8A shows a function Fb (t) expressed by normalizing the heating time t for controlling the electron beam intensity, and FIG. 8B shows the heater element H (i, j), i = −2 to +2. , J = −3 to +3 is a function Fh (t) expressed by normalizing the heating time t. In these figures, the rapid heating timing T1 corresponds to the heating time t between 0 and 12.0 seconds, the heat retention timing T2 corresponds to the heating time t after 12.0 seconds, and the beam irradiation timing T3 corresponds to the heating time. t corresponds to between 24.0 and 44.5 seconds, and between 65.3 and 85.8 seconds, and between 106.6 and 127.1 seconds.

上記のように各ヒータ要素H(i,j)の発熱量Q(i,j)を制御した場合に於ける各ヒータ要素H(i,j)の表面温度Th(i,j、t)を図9に表している。ここで、tは加熱時間であり、縦軸の値はセ氏温度で表している。図9(a)はヒータ要素H(0,j)、j = ±3、±2、±1、0、の表面温度Th(0、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(b)はヒータ要素H(±1,j)、j = ±3、±2、±1、0、の表面温度Th(±1、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(c)はヒータ要素H(−2,j)、j = ±3、±2、±1、0、の表面温度Th(−2、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(d)はヒータ要素H(2,j)、j = ±3、±2、±1、0、の表面温度Th(2、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。含フッ素系高分子膜基材1が静止している場合にはTh(−2、j、t)はTh(2、j、t)に一致する。   As described above, the surface temperature Th (i, j, t) of each heater element H (i, j) when the heating value Q (i, j) of each heater element H (i, j) is controlled is determined. This is shown in FIG. Here, t is the heating time, and the value on the vertical axis is expressed in Celsius temperature. FIG. 9A shows the heater element H (0, j), j = ± 3, ± 2, ± 1, 0, surface temperature Th (0, j, t), j = ± 3, ± 2, ± 1. , 0, t = 0 to 145 seconds. FIG. 9B shows a heater element H (± 1, j), j = ± 3, ± 2, ± 1, 0, surface temperature Th (± 1, j, t), j = ± 3, ± 2, ± 1, 0, t = 0 to 145 seconds. FIG. 9C shows a heater element H (−2, j), j = ± 3, ± 2, ± 1, 0, surface temperature Th (−2, j, t), j = ± 3, ± 2, ± 1, 0, t = 0 to 145 seconds. FIG. 9D shows the heater element H (2, j), j = ± 3, ± 2, ± 1,0, surface temperature Th (2, j, t), j = ± 3, ± 2, ± 1 , 0, t = 0 to 145 seconds. When the fluorine-containing polymer film substrate 1 is stationary, Th (−2, j, t) matches Th (2, j, t).

図9に示した、代表的な加熱時間t = 11.5秒、21.9秒、24.3秒、29.9秒に於ける各ヒータ要素H(i,j)の表面温度の空間分布を図10に表している。図10の縦軸の値はセ氏温度を表している。図10(a)はヒータ要素H(0、j)、j = ±3、±2、±1、0、の表面温度Th(0、j、t)を示している。図10(b)はヒータ要素H(±1、j)、j = ±3、±2、±1、0、の表面温度Th(±1、j、t)を示している。図10(c)はヒータ要素H(±2、j)、j = ±3、±2、±1、0、の表面温度Th(±2、j、t)を示している。図10(d)はヒータ要素H(i、0)、i = ±2、±1、0、の表面温度Th(i,0、t)を示している。図10(e)はヒータ要素H(i、±1)、i = ±2、±1、0、の表面温度Th(i,±1、t)を示している。図10(f)はヒータ要素H(i、±2)、i = ±2、±1、0、の表面温度Th(i,±2、t)を示している。図10(g)はヒータ要素H(i、±3)、i = ±2、±1、0、の表面温度Th(i,±3、t)を示している。これらの図から分かるように、各ヒータ要素の同一表面内における温度はほぼ均一に分布する。   The spatial distribution of the surface temperature of each heater element H (i, j) at typical heating times t = 11.5 seconds, 21.9 seconds, 24.3 seconds, 29.9 seconds shown in FIG. Is shown in FIG. The value on the vertical axis in FIG. 10 represents the Celsius temperature. FIG. 10A shows the surface temperature Th (0, j, t) of the heater element H (0, j), j = ± 3, ± 2, ± 1, 0. FIG. 10B shows the surface temperature Th (± 1, j, t) of the heater element H (± 1, j), j = ± 3, ± 2, ± 1, 0. FIG. 10C shows the surface temperature Th (± 2, j, t) of the heater element H (± 2, j), j = ± 3, ± 2, ± 1, 0. FIG. 10D shows the surface temperature Th (i, 0, t) of the heater element H (i, 0), i = ± 2, ± 1, 0. FIG. 10E shows the surface temperature Th (i, ± 1, t) of the heater element H (i, ± 1), i = ± 2, ± 1,0. FIG. 10F shows the surface temperature Th (i, ± 2, t) of the heater element H (i, ± 2), i = ± 2, ± 1, 0. FIG. 10G shows the surface temperature Th (i, ± 3, t) of the heater element H (i, ± 3), i = ± 2, ± 1, 0. As can be seen from these figures, the temperature in the same surface of each heater element is distributed almost uniformly.

図9及び図10に示すようにヒータ要素H(i,j)の表面温度Th(i,j,t)は含フッ素系高分子膜基材1の幅方向において、より端部に位置する表面の温度がより高くなっている。これらのヒータ要素H(i,j)で含フッ素系高分子膜基材1を熱輻射によって加熱した場合の含フッ素系高分子膜基材1の表面温度をTp1(x、y、t)とする。ここで、xはX軸方向位置を、yはY軸方向位置を、tは加熱開始後の時間つまり加熱時間を表している。ヒータ要素H(i,j)の表面温度Th(i,j,t)は、含フッ素系高分子膜基材1の温度Tp1(x、y、t)が照射野幅FW内においてX方向位置x及び加熱時間tに関係せず、幅方向つまりY方向に一様な温度分布となるように定められている。図1(a)及び図2(a)に示すように、冷却用プーリー5及び6の近傍では含フッ素系高分子膜基材1の温度は常温に保たれている。含フッ素系高分子膜基材1の照射野Fi内に位置する部分は340±5℃まで加熱されて空間的にも時間的にもこの温度範囲に保たれる。   As shown in FIGS. 9 and 10, the surface temperature Th (i, j, t) of the heater element H (i, j) is the surface located at the end in the width direction of the fluorine-containing polymer film substrate 1. The temperature is getting higher. The surface temperature of the fluorine-containing polymer film substrate 1 when the fluorine-containing polymer film substrate 1 is heated by thermal radiation with these heater elements H (i, j) is expressed as Tp1 (x, y, t). To do. Here, x represents the position in the X-axis direction, y represents the position in the Y-axis direction, and t represents the time after the start of heating, that is, the heating time. The surface temperature Th (i, j, t) of the heater element H (i, j) is the position in the X direction when the temperature Tp1 (x, y, t) of the fluorine-containing polymer film substrate 1 is within the irradiation field width FW. Regardless of x and heating time t, it is determined to have a uniform temperature distribution in the width direction, that is, the Y direction. As shown in FIGS. 1 (a) and 2 (a), the temperature of the fluorine-containing polymer film substrate 1 is maintained at room temperature in the vicinity of the cooling pulleys 5 and 6. The portion located in the irradiation field Fi of the fluorine-containing polymer film substrate 1 is heated to 340 ± 5 ° C. and is maintained in this temperature range both spatially and temporally.

このように含フッ素系高分子膜基材1の表面温度Tp1(x、y、t)を照射野Fi内で空間的にも時間的にも340±5℃の範囲で一様に保った状態で、X軸方向の強度分布を図11(a)に示すような、照射野Fi内でX軸方向及びY軸方向に一様に分布する強度(300keV、0.24mA)の電子線Eを照射した場合には、含フッ素系高分子膜基材1の温度Tp2(x、y、t)のX軸方向分布は図11(b)に示すようになり、Y軸方向には一様に分布する。図11(b)に示すように、電子線Eの照射直前の加熱時間t = 21.9秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp2(0、0、21.9)は343.9℃であり、照射開始直後の加熱時間t = 24.3秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp2(0、0、24.3)は350.1℃であり、照射開始後5.9秒を経過した加熱時間t = 29.9秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp2(0、0、29.9)は395.0℃であり、照射開始後18.7秒を経過した加熱時間t = 42.7秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp2(0、0、42.7)は440.7℃である。つまり、照射中に含フッ素系高分子膜基材1の温度Tp2(x、y、t)が高温度になり過ぎて含フッ素系高分子膜基材1の熱分解が進行する。この場合の吸収線量は210kGyに相当する。   In this way, the surface temperature Tp1 (x, y, t) of the fluorine-containing polymer film substrate 1 is kept uniformly in the range of 340 ± 5 ° C. both spatially and temporally within the irradiation field Fi. As shown in FIG. 11A, the intensity distribution in the X-axis direction is an electron beam E having an intensity (300 keV, 0.24 mA) uniformly distributed in the X-axis direction and the Y-axis direction in the irradiation field Fi. When irradiated, the X-axis direction distribution of the temperature Tp2 (x, y, t) of the fluorine-containing polymer film substrate 1 is as shown in FIG. 11B, and is uniform in the Y-axis direction. Distributed. As shown in FIG. 11B, the temperature Tp2 (0, 0, 21 at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 21.9 seconds immediately before the irradiation with the electron beam E is obtained. .9) is 343.9 ° C., and the temperature Tp2 (0, 0, 24.3 at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 24.3 seconds immediately after the start of irradiation is shown. ) Is 350.1 ° C., and the temperature Tp2 (0, 0) at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 29.9 seconds after 5.9 seconds from the start of irradiation. 29.9) is 395.0 ° C., and the temperature Tp2 at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at a heating time t = 42.7 seconds after 18.7 seconds has elapsed since the start of irradiation. (0, 0, 42.7) is 440.7 ° C. That is, the temperature Tp2 (x, y, t) of the fluorine-containing polymer film substrate 1 becomes too high during irradiation, and the pyrolysis of the fluorine-containing polymer film substrate 1 proceeds. The absorbed dose in this case corresponds to 210 kGy.

一方、図1〜図3に示す冷媒通路26,27に取付けられた多数の冷媒噴出口26−1、27−1から窒素ガス等の不活性ガスが放出されて仕切板25の切抜穴Winを通過して含フッ素系高分子膜基材1の一部を冷却した状態で電子線Eを照射しない場合における含フッ素系高分子膜基材1の温度Tp3(x、y、t)を図12に示している。この場合、不活性ガスと含フッ素系高分子膜基材1との間の熱伝達係数は0.0009W/(cm*deg)と成っている。図12(a)は含フッ素系高分子膜基材1の温度Tp3(x、y、t)のY軸方向分布であり、図12(b)は含フッ素系高分子膜基材1の温度Tp3(x、y、t)のX軸方向分布である。これらの図はビーム照射タイミングT3において電子線Eの照射野Fiの照射野幅FW内において端部位置よりも中央部位置においてより低くなるように分布して部分的に経時的に低下していることを表している。この場合の照射野中心に於ける含フッ素系高分子膜基材1の温度Tp3(0、0、t)の時間変化は図14(c)に示している。
On the other hand, an inert gas such as nitrogen gas is discharged from a number of refrigerant jets 26-1 and 27-1 attached to the refrigerant passages 26 and 27 shown in FIGS. FIG. 12 shows the temperature Tp3 (x, y, t) of the fluorine-containing polymer film substrate 1 when the electron beam E is not irradiated in a state where a part of the fluorine-containing polymer film substrate 1 is cooled and passed. It shows. In this case, the heat transfer coefficient between the inert gas and the fluorine-containing polymer film substrate 1 is 0.0009 W / (cm 2 * deg). 12A shows the Y-axis direction distribution of the temperature Tp3 (x, y, t) of the fluorine-containing polymer membrane substrate 1, and FIG. 12B shows the temperature of the fluorine-containing polymer membrane substrate 1. This is a distribution in the X-axis direction of Tp3 (x, y, t). These figures are distributed so as to be lower at the center position than at the end position within the irradiation field width FW of the irradiation field Fi of the electron beam E at the beam irradiation timing T3 and partially decrease with time. Represents that. The time change of the temperature Tp3 (0, 0, t) of the fluorine-containing polymer film substrate 1 at the irradiation field center in this case is shown in FIG.

上述のように含フッ素系高分子膜基材1を部分的に冷却した状態で、図8(a)に示すようなビーム照射タイミングT3において、図11(a)に示すようなX軸方向及びY軸方向に一様な強度分布の電子線Eを照射した場合には、含フッ素系高分子膜基材1の温度Tp0(x、y、t)のY軸方向分布Tp0(0、y、t)は図13(a)に示すように、X軸方向分布Tp0(x、0、t)は図13(b)に示すように、照射野中心に於ける含フッ素系高分子膜基材1の温度Tp0(0、0、t)の時間変化は図14(a)のようになる。これらの図が示すように、照射野Fi内の如何なる位置においても如何なる時点においても含フッ素系高分子膜基材1の温度は340±5℃の範囲に収まっている。   In the state where the fluorine-containing polymer film substrate 1 is partially cooled as described above, at the beam irradiation timing T3 as shown in FIG. 8A, the X-axis direction as shown in FIG. When the electron beam E having a uniform intensity distribution in the Y-axis direction is irradiated, the Y-axis direction distribution Tp0 (0, y, t) of the temperature Tp0 (x, y, t) of the fluorine-containing polymer film substrate 1 is obtained. As shown in FIG. 13 (a), the X-axis direction distribution Tp0 (x, 0, t) is shown in FIG. 13 (b), and the fluorine-containing polymer film substrate at the center of the irradiation field is shown in FIG. The time change of the temperature Tp0 (0, 0, t) of 1 is as shown in FIG. As shown in these figures, the temperature of the fluorine-containing polymer film substrate 1 is within the range of 340 ± 5 ° C. at any position in the irradiation field Fi at any time.

電子線Eの強度が定められた場合において、多数の冷媒噴出口26−1、27−1から含フッ素系高分子膜基材1に吹き当てられる不活性ガスの温度及び/又は流量及び/又は流速は、図1(a)の矢印23,24で示している方向の温度を非接触温度計21,22で測定して温度分布が適正になるように図示しないガス供給制御装置に帰還して自動的に制御される。また、上述の場合には20.5秒間の一回の照射で含フッ素系高分子膜基材1に与えられる線量は210kGyに相当する。電子線Eの強度を増すとともに、多数の冷媒噴出口26−1、27−1から含フッ素系高分子膜基材1に吹き当てられる不活性ガスによる含フッ素系高分子膜基材1の冷却を増加させることによって温度を変化させること無く、含フッ素系高分子膜基材1に与える線量率を任意に増加することができる。この場合、照射野Fi内での含フッ素系高分子膜基材1への熱の流入と流出が等しくなるように電子線の強度と不活性ガスによる冷却の少なくとも一方が制御される。   When the intensity of the electron beam E is determined, the temperature and / or flow rate and / or the flow rate of the inert gas blown to the fluorine-containing polymer film substrate 1 from the large number of refrigerant outlets 26-1, 27-1. The flow velocity is returned to a gas supply control device (not shown) so that the temperature distribution in the direction indicated by the arrows 23 and 24 in FIG. Automatically controlled. In the above-described case, the dose given to the fluorine-containing polymer film substrate 1 by one irradiation for 20.5 seconds corresponds to 210 kGy. While increasing the intensity of the electron beam E, the fluorine-containing polymer film substrate 1 is cooled by an inert gas blown to the fluorine-containing polymer film substrate 1 from a large number of refrigerant jets 26-1 and 27-1. The dose rate given to the fluorine-containing polymer film substrate 1 can be arbitrarily increased without increasing the temperature by increasing the. In this case, at least one of the intensity of the electron beam and the cooling by the inert gas is controlled so that the inflow and outflow of heat to the fluorine-containing polymer film substrate 1 in the irradiation field Fi are equal.

照射野Fi内における含フッ素系高分子膜基材1の温度Tp0(x、y、t)を予め定めたれた設定温度に保つ為の、電子線Eの線量率Rと、多数の冷媒噴出口26−1、27−1から含フッ素系高分子膜基材1に吹き当てられる不活性ガスと含フッ素系高分子膜基材1との間の熱伝達係数Kとの関係を図15に示している。図15において、曲線(1)は含フッ素系高分子膜基材1の照射野Fi内に位置する部分の温度Tp0(x、y、t)を340℃に保つ場合を、曲線(2)は含フッ素系高分子膜基材1の照射野Fi内に位置する部分の温度Tp0(x、y、t)を200℃に保つ場合を、曲線(3)は含フッ素系高分子膜基材1の照射野Fi内に位置する部分の温度Tp0(x、y、t)を124℃に保つ場合を示している。曲線(2)及び曲線(3)の場合には、加熱用ヒータ群30の温度制御は図6から図10に示した値とは異なったそれぞれの適正値に再設定しなければならない。これらの曲線から分かるように、熱伝達係数Kを大きくすることによって、含フッ素系高分子膜基材1の照射野Fi内に位置する部分の温度Tp0(x、y、t)を予め定められた設定温度範囲に収めた状態で、大きな線量率Rで電子線Eを短時間に照射することができる。例えば、含フッ素系高分子膜基材1の温度Tp0(x、y、t)を340℃に保つ場合に、熱伝達係数Kを0.016W/(cm*deg)に設定すると適切な電子線Eの線量率Rは200kGy/秒となる。この場合、200kGyの照射を行うのに1秒間で終了することになり、照射野幅FWを10cmとすると、1時間に360mの含フッ素系高分子膜基材1の照射処理が終了する。 The dose rate R of the electron beam E and a number of refrigerant jets for maintaining the temperature Tp0 (x, y, t) of the fluorine-containing polymer film substrate 1 in the irradiation field Fi at a predetermined set temperature. The relationship between the inert gas blown from 26-1 and 27-1 to the fluorine-containing polymer film substrate 1 and the heat transfer coefficient K between the fluorine-containing polymer film substrate 1 is shown in FIG. ing. In FIG. 15, curve (1) shows the case where the temperature Tp0 (x, y, t) of the portion located in the irradiation field Fi of the fluorine-containing polymer film substrate 1 is kept at 340 ° C., and curve (2) shows When the temperature Tp0 (x, y, t) of the portion located in the irradiation field Fi of the fluorine-containing polymer film substrate 1 is kept at 200 ° C., the curve (3) shows the fluorine-containing polymer film substrate 1 The temperature Tp0 (x, y, t) of the part located in the irradiation field Fi of FIG. In the case of the curves (2) and (3), the temperature control of the heater group 30 must be reset to appropriate values different from those shown in FIGS. As can be seen from these curves, by increasing the heat transfer coefficient K, the temperature Tp0 (x, y, t) of the portion located in the irradiation field Fi of the fluorine-containing polymer film substrate 1 can be determined in advance. The electron beam E can be irradiated in a short time with a large dose rate R in a state where the temperature is within the set temperature range. For example, when the temperature Tp0 (x, y, t) of the fluorine-containing polymer film substrate 1 is maintained at 340 ° C., an appropriate electron can be obtained by setting the heat transfer coefficient K to 0.016 W / (cm 2 * deg). The dose rate R of line E is 200 kGy / sec. In this case, the irradiation of 200 kGy is completed in one second. When the irradiation field width FW is 10 cm, the irradiation treatment of the fluorine-containing polymer film substrate 1 of 360 m is completed in one hour.

以上に述べたように、電子線Eを照射する前後に照射野Fiの範囲内において含フッ素系高分子膜基材1の温度Tp1(x、y、t)をY軸方向に一様に340±5℃の範囲に保つことは、ヒータ要素H(i,j)の表面温度Th(i,j,t)をY軸方向に原点から離れるに従って適正化して高めることによって達成している。電子線Eを照射する間に照射野Fiの範囲内において含フッ素系高分子膜基材1の温度Tp0(x、y、t)をY軸方向およびX軸方向に一様に340±5℃の範囲に保つことは、照射野Fiの中心に近接するヒータ要素H(i,j)の表面温度を適正に保つとともに、含フッ素系高分子膜基材1の照射野Fiに位置する部分の表面を不活性ガスの強制対流によって冷却し、この冷却によって放出される熱量に相当する熱量を有する電子線Eを同じ場所に照射することによって達成している。この際、電子線Eによって加熱される温度上昇率のX軸方向分布及びY軸方向分布を、不活性ガスの吹き付けによって低下する含フッ素系高分子膜基材1の温度低下率のX軸方向分布及びY軸方向分布にそれぞれ一致させることによって、電子線Eの照射時間が長くなった場合にも、含フッ素系高分子膜基材1の温度Tp0(x、y、t)をX軸方向及びY軸方向に一様に340±5℃の範囲に保てるようになっている。含フッ素系高分子膜基材1の表面温度をフィードバックして電子線Eの強度と不活性ガスの吹き付け量との関係を経時的に自動制御する事がより好ましい。   As described above, the temperature Tp1 (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly 340 in the Y-axis direction within the range of the irradiation field Fi before and after irradiation with the electron beam E. Maintaining the temperature in the range of ± 5 ° C. is achieved by optimizing and increasing the surface temperature Th (i, j, t) of the heater element H (i, j) as the distance from the origin increases in the Y-axis direction. During irradiation with the electron beam E, the temperature Tp0 (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly 340 ± 5 ° C. in the Y-axis direction and the X-axis direction within the range of the irradiation field Fi. Is to keep the surface temperature of the heater element H (i, j) close to the center of the irradiation field Fi at an appropriate level, and the portion of the fluorine-containing polymer film substrate 1 located in the irradiation field Fi. This is achieved by cooling the surface by forced convection of an inert gas and irradiating the same place with an electron beam E having a heat quantity corresponding to the heat quantity released by this cooling. At this time, the X-axis direction of the temperature decrease rate of the fluorinated polymer film substrate 1 that decreases the X-axis direction distribution and the Y-axis direction distribution of the temperature increase rate heated by the electron beam E by blowing an inert gas. Even if the irradiation time of the electron beam E becomes longer by making the distribution and the Y-axis direction distribution match, the temperature Tp0 (x, y, t) of the fluorine-containing polymer film substrate 1 is changed in the X-axis direction. In addition, it can be kept in the range of 340 ± 5 ° C. uniformly in the Y-axis direction. More preferably, the surface temperature of the fluorine-containing polymer film substrate 1 is fed back to automatically control the relationship between the intensity of the electron beam E and the amount of inert gas sprayed over time.

本発明を実施形態及び実施例に関連して説明したが、本発明は、ここに例示した実施形態及び実施例に限定されるものではなく、本発明の精神及び範囲から逸脱することなく、いろいろな実施形態が可能であり、いろいろな変更及び改変を加えることができることを理解されたい。例えば、上記の実施例では、各ヒータ要素H(i,j)の温度を空間的又は時間的にプリセットしている場合を示しているが、コンピュータ等を使用して自動制御することも出来る。図8(b)に示した時間関数を吸収線量の積算値に応じて変化させることにより、含フッ素系高分子膜基材1が受けた吸収線量の積算値に応じて照射時の設定温度範囲を変化させ電離放射線を照射する時の温度を経時的に最適化できる。本発明は、含フッ素系高分子膜に放射線照射によって種々のモノマーをグラフと重合させる場合にも適用されることは当然である。本発明においては、高温放射線処理されていない含フッ素系高分子膜は、処理後の膜と区別する為に原則的に含フッ素系高分子膜基材と称しており、前記照射野は前記含フッ素系高分子膜基材が前記電離放射線の照射を受ける空間範囲を意味しており、前記電離放射線が前記含フッ素系高分子膜をはみ出している部分は含んでいない。電子線強度は吸収された電子線のパワーを意味しており、エネルギーが一定である場合には電流に比例した値となる。ここに例示した実施形態及び実施例では電子線を照射する場合について記しているが、これに限定されているわけではなく、他の電離放射線の照射を行う場合も含むことは当然である。   Although the invention has been described with reference to embodiments and examples, the invention is not limited to the embodiments and examples illustrated herein, and various modifications can be made without departing from the spirit and scope of the invention. It should be understood that various embodiments are possible and that various changes and modifications can be made. For example, in the above embodiment, the case where the temperature of each heater element H (i, j) is preset spatially or temporally is shown, but it can also be automatically controlled using a computer or the like. By changing the time function shown in FIG. 8B according to the integrated value of the absorbed dose, the set temperature range during irradiation according to the integrated value of the absorbed dose received by the fluorine-containing polymer film substrate 1 The temperature at the time of irradiation with ionizing radiation can be optimized over time. The present invention is naturally applicable to the case where various monomers are polymerized with the graph by irradiation of the fluorine-containing polymer film. In the present invention, a fluorine-containing polymer film that has not been subjected to high-temperature radiation treatment is basically referred to as a fluorine-containing polymer film substrate in order to distinguish it from the film after treatment, and the irradiation field includes the above-mentioned irradiation field. This means a spatial range in which the fluoropolymer membrane substrate is irradiated with the ionizing radiation, and does not include a portion where the ionizing radiation protrudes from the fluorine-containing polymer membrane. The electron beam intensity means the power of the absorbed electron beam, and takes a value proportional to the current when the energy is constant. In the embodiments and examples illustrated here, the case of irradiating with an electron beam is described. However, the present invention is not limited to this, and it is a matter of course that the case of irradiating with other ionizing radiation is included.

本発明を採用すると、大面積の含フッ素系高分子膜基材を照射野内の実質的に全ての範囲にわたってかつ処理の全時間中にわたって常に最適に定められた設定温度範囲内の温度に保った状態で酸素不在環境下において電離放射線を大きな線量率で照射することができ、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産することができる。本発明を採用して生産された安価で高品質の架橋構造を有する含フッ素系高分子膜を基材として用いることにより、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に生産できるようになるので産業上の利用価値は極めて高い。また、本発明によって得られた改質含フッ素系高分子膜は耐放射線性を付与されるために放射線環境下での工業材料としてまたは放射線滅菌が可能な医療用具素材として産業上の利用価値は極めて高い。   When the present invention is adopted, the large-area fluorine-containing polymer membrane substrate is always kept at a temperature within the set temperature range that is optimally determined over substantially the entire range in the irradiation field and throughout the entire processing time. In this state, ionizing radiation can be irradiated at a large dose rate in an oxygen-free environment, and a fluorine-containing polymer film having a stable quality cross-linked structure can be produced in a large amount and at a low cost in a short time. Fluorine-containing polymer having excellent oxidation resistance and a wide range of ion exchange capacity by using as a substrate a low-cost and high-quality fluorine-containing polymer membrane produced by adopting the present invention The ion exchange membrane can be mass-produced at low cost, and as a result, a long-life fuel cell having high performance and stable operation can be produced at low cost, so that the industrial utility value is extremely high. Further, since the modified fluorine-containing polymer film obtained by the present invention is imparted with radiation resistance, the industrial utility value as an industrial material in a radiation environment or a medical device material capable of radiation sterilization is Extremely high.

本発明に係わる恒温電子線処理装置を縦断面図で表した図である。It is the figure which represented the constant temperature electron beam processing apparatus concerning this invention with the longitudinal cross-sectional view. 本発明に係わる恒温電子線処理装置を横断面図で表した図である。It is the figure which represented the constant temperature electron beam processing apparatus concerning this invention with the cross-sectional view. 本発明に係わる恒温電子線処理装置の要部を表した平面図及び縦断面図及び横断面図である。It is the top view, the longitudinal cross-sectional view, and the cross-sectional view showing the principal part of the constant temperature electron beam processing apparatus concerning this invention. 本発明に係わる恒温電子線処理装置の要部の一部である仕切板の構造を表した図である。It is a figure showing the structure of the partition plate which is a part of principal part of the constant temperature electron beam processing apparatus concerning this invention. 本発明に係わる恒温電子線処理装置の要部の一部である加熱用ヒータ群の平面図及び側断面図を表した図である。It is the figure showing the top view and side sectional view of the heater group which are a part of the principal part of the constant temperature electron beam processing apparatus concerning this invention. 本発明に係わる作用を説明する図であり、急加熱タイミングT1に於ける各ヒータ要素の発熱量を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the emitted-heat amount of each heater element in the rapid heating timing T1. 本発明に係わる作用を説明する図であり、保温タイミングT2に於ける各ヒータ要素の発熱量を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the emitted-heat amount of each heater element in the heat retention timing T2. 本発明に係わる作用を説明する図であり、電子線の強度を制御する正規化した時間関数及び各ヒータ要素の発熱量を制御する正規化した時間関数を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the normalized time function which controls the emitted-heat amount of each heater element, and the normalized time function which controls the intensity | strength of an electron beam. 本発明に係わる作用を説明する図であり、各ヒータ要素の表面の温度変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the temperature change of the surface of each heater element. 本発明に係わる作用を説明する図であり、各ヒータ要素の表面温度の空間分布を表す図である。It is a figure explaining the effect | action concerning this invention, and is a figure showing the spatial distribution of the surface temperature of each heater element. 本発明に係わる作用を説明する図であり、電子線強度分布及びこの電子線を照射した場合における含フッ素系高分子膜基材の長手方向における温度分布を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows temperature distribution in the longitudinal direction of an electron beam intensity distribution and a fluorine-containing polymer film base material at the time of irradiating this electron beam. 本発明に係わる作用を説明する図であり、照射野に不活性ガスを吹き付けた状態で電子線Eを照射しない場合における含フッ素系高分子膜基材の温度分布を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the temperature distribution of a fluorine-containing polymer film | membrane base material when not irradiating the electron beam E in the state which sprayed the inert gas to the irradiation field. 本発明に係わる作用を説明する図であり、照射野に不活性ガスを吹き付けた状態で電子線を照射した場合における含フッ素系高分子膜基材の温度の空間分布及びその時間変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the spatial distribution of the temperature of a fluorine-containing polymer film base material, and its time change at the time of irradiating an electron beam in the state which sprayed the inert gas to the irradiation field It is. 本発明に係わる作用を説明する図であり、含フッ素系高分子膜基材の温度の時間変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the time change of the temperature of a fluorine-containing polymer membrane base material. 本発明に係わる作用、効果を説明する図であり、含フッ素系高分子膜基材の温度を予め定めた温度に保つ場合における、電子線の線量率と、照射野内における不活性ガスと含フッ素系高分子膜基材表面との間の熱伝達係数との関係を表した図である。It is a figure explaining the operation | movement concerning this invention, an effect, and when maintaining the temperature of a fluorine-containing polymer film base material at the predetermined temperature, the dose rate of an electron beam, the inert gas in a radiation field, and a fluorine-containing It is a figure showing the relationship with the heat transfer coefficient between the system polymer film base materials.

符号の説明Explanation of symbols

1 含フッ素系高分子膜基材
2 リール
3 リール
4 プーリー
5 冷却用プーリー
6 冷却用プーリー
7 プーリー
8 プーリー
10 恒温電子線処理装置
11 処理容器
12 電子線照射装置
13 電子線透過窓
14 熱遮蔽板
15 電子線透過窓
16 隔壁
17 ノズル
18 ノズル
19 ノズル群
20 ノズル群
21 温度検出器
22 温度検出器
23 温度検出方向を示す矢印
24 温度検出方向を示す矢印
25 仕切板
26 冷媒通路
26−1 冷媒噴出口
27 冷媒通路
27−1 冷媒噴出口
30 加熱用ヒータ群
E 電子線
Fi 照射野
FL 照射野長
FW 照射野幅
T1 急加熱タイミング
T2 保温タイミング
T3 ビーム照射タイミング
Win 切抜穴
DESCRIPTION OF SYMBOLS 1 Fluorine-containing polymer film base material 2 Reel 3 Reel 4 Pulley 5 Cooling pulley 6 Cooling pulley 7 Pulley 8 Pulley
10 constant temperature electron beam processing equipment 11 processing container
DESCRIPTION OF SYMBOLS 12 Electron beam irradiation apparatus 13 Electron beam transmission window 14 Heat shielding board 15 Electron beam transmission window 16 Bulkhead 17 Nozzle 18 Nozzle 19 Nozzle group 20 Nozzle group 21 Temperature detector 22 Temperature detector 23 Arrow indicating temperature detection direction 24 Temperature detection direction 25 Partition plate 26 Refrigerant passage 26-1 Refrigerant outlet 27 Refrigerant passage 27-1 Refrigerant outlet
30 Heater Group E Electron Fi Fi Irradiation Field FL Irradiation Field Length FW Irradiation Field Width T1 Rapid Heating Timing T2 Insulation Timing T3 Beam Irradiation Timing Win Cutout Hole

Claims (12)

長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、
前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、
前記含フッ素系高分子膜基材は前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、
前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、
所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を所定の加熱率を有して加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を所定の冷却率を有して冷却する第2の工程とを含み、
前記第1の工程における加熱は前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によってなされ、
前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において端部位置よりも中央部位置においてより低くなるように分布して部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記冷却率と前記加熱率とを前記含フッ素系高分子膜基材の前記所望範囲内における全ての部位において照射時間中にわたって実質的に一致させるように設定され又は制御されることを特徴とする製造方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate in a low oxygen partial pressure environment. In the manufacturing method of a modified fluorine-containing polymer film including an irradiation step of irradiating under,
The irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction and an irradiation field length in the width direction,
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field of the ionizing radiation,
The irradiation step includes a first step of heating the desired range of the fluorine-containing polymer film substrate to a temperature within the set temperature range;
By irradiating the portion occupying the desired range with the ionizing radiation having a predetermined intensity distribution, the portion is heated with a predetermined heating rate, and the portion occupying the desired range during the irradiation time of the ionizing radiation A second step of cooling the part with a predetermined cooling rate by blowing an inert gas on the
The heating in the first step is performed by a heating element having a distributed heating value provided in a non-contact manner facing the fluorine-containing polymer film substrate,
The blowing of the inert gas in the second step is such that the temperature of the fluorine-containing polymer film substrate becomes lower at the center position than at the end position within the irradiation field width of the irradiation field. distributed partly over time by the heat radiation so as to reduce, by irradiating the ionizing radiation to provide the heat distributed to counteract this heat dissipation, the inert gas blowing intensity distribution and the ionizing radiation At least one of the intensity distributions is set so that the cooling rate and the heating rate are substantially matched over the irradiation time in all the sites in the desired range of the fluorine-containing polymer film substrate or A manufacturing method characterized by being controlled.
長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、
前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、
前記含フッ素系高分子膜基材は前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、
前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、
所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を冷却する第2の工程とを含み、
前記第1の工程における加熱は前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によってなされ、
前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において端部位置よりも中央部位置においてより低くなるように分布して部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記含フッ素系高分子膜基材の前記所望範囲内の実質的に全ての部分の温度が前記設定温度範囲内に収まるように照射時間中にわたって他方に関連して設定され又は制御されることを特徴とする製造方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate in a low oxygen partial pressure environment. In the manufacturing method of a modified fluorine-containing polymer film including an irradiation step of irradiating under,
The irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction and an irradiation field length in the width direction,
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field of the ionizing radiation,
The irradiation step includes a first step of heating the desired range of the fluorine-containing polymer film substrate to a temperature within the set temperature range;
By irradiating the portion occupying the desired range with the ionizing radiation having a predetermined intensity distribution and heating the portion, and blowing an inert gas onto the portion occupying the desired range during the irradiation time of the ionizing radiation A second step of cooling the part,
The heating in the first step is performed by a heating element having a distributed heating value provided in a non-contact manner facing the fluorine-containing polymer film substrate,
The blowing of the inert gas in the second step is such that the temperature of the fluorine-containing polymer film substrate becomes lower at the center position than at the end position within the irradiation field width of the irradiation field. distributed partly over time by the heat radiation so as to reduce, by irradiating the ionizing radiation to provide the heat distributed to counteract this heat dissipation, the inert gas blowing intensity distribution and the ionizing radiation At least one of the intensity distributions is related to the other over the irradiation time so that the temperature of substantially all of the fluorine-containing polymer film substrate within the desired range falls within the set temperature range. A manufacturing method characterized by being set or controlled.
長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射する照射工程を含んだ改質された含フッ素系高分子膜の製造方法において、
前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、
前記含フッ素系高分子膜基材は前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、
前記照射工程は、前記含フッ素系高分子膜基材の前記所望範囲を前記設定温度範囲内の温度まで加熱する第1の工程と、
前記含フッ素系高分子膜基材に対向して非接触に設けられた分布した発熱量を有する発熱体によって前記所望範囲を占める部分を加熱するとともに、所定の強度分布を有する前記電離放射線を前記所望範囲を占める部分に照射することによって当該部分を加熱するとともに、当該電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分を冷却する第2の工程とを含み、
前記第1の工程における加熱は前記発熱体によってなされ、
前記第2の工程における前記不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において端部位置よりも中央部位置においてより低くなるように分布して部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布と前記発熱体の発熱量分布との少なくとも一方は、前記含フッ素系高分子膜基材の前記所望範囲内の実質的に全ての部分の温度が前記設定温度範囲内に収まるように照射時間中にわたって他方に関連して設定され又は制御されることを特徴とする製造方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate in a low oxygen partial pressure environment. In the manufacturing method of a modified fluorine-containing polymer film including an irradiation step of irradiating under,
The irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction and an irradiation field length in the width direction,
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field of the ionizing radiation,
The irradiation step includes a first step of heating the desired range of the fluorine-containing polymer film substrate to a temperature within the set temperature range;
The portion occupying the desired range is heated by a heating element having a distributed calorific value provided in a non-contact manner facing the fluorine-containing polymer film substrate, and the ionizing radiation having a predetermined intensity distribution is heated A second step of heating the portion by irradiating the portion occupying the desired range and cooling the portion by blowing an inert gas to the portion occupying the desired range during the irradiation time of the ionizing radiation. Including
The heating in the first step is performed by the heating element,
The blowing of the inert gas in the second step is such that the temperature of the fluorine-containing polymer film substrate becomes lower at the center position than at the end position within the irradiation field width of the irradiation field. distributed partly over time by the heat radiation so as to reduce, by irradiating the ionizing radiation to provide the heat distributed to counteract this heat dissipation, the inert gas blowing intensity distribution and the ionizing radiation At least one of the intensity distribution and the calorific value distribution of the heating element is irradiated so that the temperature of substantially all of the desired range of the fluorine-containing polymer film substrate falls within the set temperature range. Manufacturing method characterized in that it is set or controlled in relation to the other over time.
前記含フッ素系高分子膜基材は、前記設定温度範囲より低い温度に保たれて機械的に保持された第1の基材領域と、前記発熱体によって加熱された第2の基材領域と、前記電離放射線の照射を受けて前記設定温度範囲内の温度に保たれた第3の基材領域とを含んでおり、当該第3の基材領域は前記所望範囲を含んでいることを特徴とする請求項1乃至請求項のいずれか1項に記載した方法。 The fluorine-containing polymer film substrate includes a first substrate region mechanically held at a temperature lower than the set temperature range, and a second substrate region heated by the heating element. And a third base material region that has been irradiated with the ionizing radiation and maintained at a temperature within the set temperature range, and the third base material region includes the desired range. The method according to any one of claims 1 to 3 . 前記所望範囲は前記電離放射線の照射を受ける恒温放射線処理装置内を通過し、
当該恒温放射線処理装置は、前記発熱体を含んでおり、前記含フッ素系高分子膜基材の一部を前記設定温度範囲より低い温度に保つとともに機械的に保持する第1の装置領域と、
前記発熱体によって前記所望範囲を占める部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、
前記所望範囲を占める部分に電離放射線を照射して所定の線量を与える第3の装置領域とを順に有していることを特徴とする請求項1乃至請求項のいずれか1項に記載した方法。
The desired range passes through the isothermal radiation processing apparatus that receives the ionizing radiation,
The constant temperature radiation processing apparatus includes the heating element, and a first apparatus region that mechanically holds a part of the fluorine-containing polymer film substrate at a temperature lower than the set temperature range, and
A second device region for heating a portion occupying the desired range by the heating element to a temperature within or near the set temperature range;
Described in any one of claims 1 to 4, characterized in that a third device region provide a predetermined dose by irradiating ionizing radiation to the part occupying the desired range in order Method.
長手方向と幅方向を有する含フッ素系高分子膜基材を予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に所定の線量の電離放射線を照射する恒温放射線処理装置であって、
前記電離放射線の照射野は、前記長手方向に照射野幅を、前記幅方向に照射野長を有しており、
前記含フッ素系高分子膜基材は前記恒温放射線処理装置内で位置決め保持される被保持部分と前記設定温度範囲内又はその近くの温度に加熱される被加熱範囲と前記電離放射線の照射野と実質的に一致する大きさの所望範囲とを含んでおり、
前記恒温放射線処理装置は、前記被保持部分を保持可能な低い温度に保つとともに当該被保持部分を機械的に保持する第1の装置領域と、
前記照射野の近傍において前記含フッ素系高分子膜基材に対向して非接触に設けられた複数の発熱体要素を含んで成る発熱体によって前記被加熱範囲を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、
前記所望範囲に前記電離放射線を照射して所定の加熱率を有して加熱して、前記所望範囲を占める部分を前記設定温度範囲内の温度に保つ第3の装置領域とを含んでおり、
当該第3の装置領域においては、前記電離放射線の照射時間中において前記所望範囲を占める部分に不活性ガスを吹き付けることによって当該部分は所定の冷却率を有して冷却され、
当該不活性ガスの吹付けは、前記含フッ素系高分子膜基材の温度を前記照射野の前記照射野幅内において端部位置よりも中央部位置においてより低くなるように分布して部分的に経時的に低下させるように放熱させ、この放熱を打ち消すように分布した熱量を与える前記電離放射線を照射することによって、
前記不活性ガスの吹き付け強度分布と前記電離放射線の強度分布との少なくとも一方は、前記電離放射線の照射を受ける時間中において、前記所望範囲内のあらゆる部分を前記設定温度範囲内の温度に保つように他方に関連して設定され又は制御されるようにしたことを特徴とする装置。
Isothermal radiation for irradiating the fluorine-containing polymer film substrate with a predetermined dose of ionizing radiation while maintaining the fluorine-containing polymer film substrate having a longitudinal direction and a width direction at a temperature within a predetermined temperature range. A processing device comprising:
The irradiation field of the ionizing radiation has an irradiation field width in the longitudinal direction and an irradiation field length in the width direction,
The fluorine-containing polymer film substrate and the radiation field of the ionizing radiation and the heated range heated in or near the temperature the set temperature range and the holding portion to be positioned and held within the isothermal radiation treatment apparatus And a desired range of substantially matching sizes,
The constant-temperature radiation processing apparatus maintains a low temperature at which the held part can be held and mechanically holds the held part,
In the vicinity of the irradiation field, the heating range is set within or near the set temperature range by a heating element including a plurality of heating element elements provided in a non-contact manner facing the fluorine-containing polymer film substrate. A second device region for heating to a temperature of
A third device region that irradiates the ionizing radiation to the desired range and heats it with a predetermined heating rate, and maintains a portion occupying the desired range at a temperature within the set temperature range; and
In the third device region, the part is cooled with a predetermined cooling rate by spraying an inert gas on the part occupying the desired range during the irradiation time of the ionizing radiation,
The inert gas spray is partially distributed in such a manner that the temperature of the fluorine-containing polymer film substrate is lower at the center position than at the end position within the irradiation field width of the irradiation field. By radiating the ionizing radiation to give a heat quantity distributed so as to counteract this heat radiation,
At least one of the blowing intensity distribution of the inert gas and the intensity distribution of the ionizing radiation is such that any part within the desired range is maintained at a temperature within the set temperature range during the time of irradiation with the ionizing radiation. A device characterized in that it is set or controlled in relation to the other.
前記発熱体は空間的に分割させた複数の発熱体要素を含んでおり、当該発熱体要素は前記照射野内の中央部において前記含フッ素系高分子膜基材に対向して設けられた第1の発熱体要素と、前記幅方向に前記照射野の中心から離れた位置において前記含フッ素系高分子膜基材に対向して設けられた第2の発熱体要素とを含んでおり、
当該第2の発熱体要素の表面温度は前記第1の発熱体要素の表面温度よりも高く設定されたことを特徴とする請求項1乃至請求項のいずれか1項に記載した方法。
The heating element includes a plurality of heating element elements that are spatially divided, and the heating element is provided in a central portion within the irradiation field so as to face the fluorine-containing polymer film substrate. And a second heating element provided to face the fluorine-containing polymer film substrate at a position away from the center of the irradiation field in the width direction,
The method according to any one of claims 1 to 5 , wherein the surface temperature of the second heating element is set higher than the surface temperature of the first heating element.
前記含フッ素系高分子膜基材は長手方向と幅方向とを有し、前記発熱体は当該幅方向に整列した複数の発熱体要素を含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列していることを特徴とする請求項1乃至請求項のいずれか1項に記載した方法。 The fluorine-containing polymer film substrate has a longitudinal direction and a width direction, and the heating element includes a first heating element group and a second heating element including a plurality of heating element elements aligned in the width direction. has element group, according to any one of claims 1 to 5 said first heating element group and the second heating element group, characterized in that aligned with the longitudinal direction How. 前記幅方向に整列した同一の発熱体要素群に含まれる各発熱体要素は同一の時間関数に従ってそれらの発熱量が制御されることを特徴とする請求項に記載した方法。 9. The method according to claim 8 , wherein the heat generation amount of each heat generating element included in the same heat generating element group aligned in the width direction is controlled according to the same time function. 前記含フッ素系高分子膜基材の任意の部分における前記設定温度範囲は、前記含フッ素系高分子膜基材の同一の前記任意部分において過去に吸収された前記電離放射線の吸収線量の積算値に対応して予め定められた関係を保って低下するように定められることを特徴とする請求項1乃至請求項の、又は請求項乃至請求項のいずれか1項に記載した方法。 The set temperature range in an arbitrary part of the fluorine-containing polymer film substrate is an integrated value of the absorbed dose of the ionizing radiation absorbed in the past in the same arbitrary part of the fluorine-containing polymer film substrate. the method as claimed in any one of claims 1 to claim 5, or claims 7 to 9, characterized in that it is determined to decrease while maintaining the predetermined relationship in response to. 前記含フッ素系高分子膜基材はポリテトラフルオロエチレン膜、又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体膜、又はテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体膜のいずれかであることを特徴とする請求項1乃至請求項の、又は請求項乃至請求項10のいずれか1項に記載した方法。 The fluorine-containing polymer film substrate is a polytetrafluoroethylene film, a tetrafluoroethylene-hexafluoropropylene copolymer film, or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer film. The method according to any one of claims 1 to 5 or claims 7 to 10 . 請求項1乃至請求項11のいずれか1項に記載した方法によって又は装置を用いて、前記所望範囲内の実質的に全ての部分を、機械的接触を防止した状態で、前記設定温度範囲内の温度に保ちながら、前記電離放射線を低い酸素分圧環境下において照射して、製造されたことを特徴とする架橋構造を有する含フッ素系高分子膜。 A method or apparatus according to any one of claims 1 to 11 , wherein substantially all of the desired range is within the set temperature range with mechanical contact prevented. A fluorine-containing polymer film having a crosslinked structure, which is produced by irradiating the ionizing radiation in a low oxygen partial pressure environment while maintaining the temperature.
JP2005150557A 2005-05-24 2005-05-24 Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane Expired - Fee Related JP4335844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150557A JP4335844B2 (en) 2005-05-24 2005-05-24 Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150557A JP4335844B2 (en) 2005-05-24 2005-05-24 Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane

Publications (3)

Publication Number Publication Date
JP2006328130A JP2006328130A (en) 2006-12-07
JP2006328130A5 JP2006328130A5 (en) 2008-07-03
JP4335844B2 true JP4335844B2 (en) 2009-09-30

Family

ID=37550175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150557A Expired - Fee Related JP4335844B2 (en) 2005-05-24 2005-05-24 Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane

Country Status (1)

Country Link
JP (1) JP4335844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057364B2 (en) * 2007-03-09 2012-10-24 行政院原子能委員会核能研究所 Proton exchange membrane production method with methanol inhibition and high selectivity

Also Published As

Publication number Publication date
JP2006328130A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4915099B2 (en) Mixed solution containing polymer electrolyte, polymer electrolyte composition containing polymer having crosslinked structure, and polymer electrolyte membrane
Nasef et al. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly (ethylene-co-tetraflouroethene) using response surface method
Al Lafi et al. The crosslinking of poly (ether ether ketone): Thermally and by irradiation
JP5314148B2 (en) Method for producing radiation grafted polymer
JP4335844B2 (en) Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane
JP3836255B2 (en) Method for producing modified fluororesin
JP2002313364A (en) Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP4178150B2 (en) Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell
JP6863264B2 (en) Fuel cell manufacturing method
Sasuga et al. High energy ion irradiation effects on polymer materials–Changes in mechanical properties of PE, PSF and PES
Gürsel et al. Thermal properties of proton‐conducting radiation‐grafted membranes
Al Lafi Structural development in ion‐irradiated poly (ether ether ketone) as studied by dielectric relaxation spectroscopy
JP2014084349A (en) Anion conductive polymer electrolyte membrane and method for producing the same, as well as membrane electrode assembly and fuel cell using the same
JP2006066174A (en) Electrolyte film for fuel cell with excellent acid resistance
Nasef et al. Modeling, prediction, and multifactorial optimization of radiation‐induced grafting of 4‐vinylpyridine onto poly (vinylidene fluoride) films using statistical simulator
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP2002327067A (en) Production method of crosslinked fluororesin
JP2006328130A5 (en)
JP2003165853A (en) Method for producing modified fluororesin and member using the same
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP3781023B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2018168254A (en) Heating temperature-retaining device, radiation irradiation system and radiation irradiation method
JP2005113116A (en) Tetrafluoroethylene polymer alloy and method for producing the same
JP2009206019A (en) Method of manufacturing polymer electrolyte membrane for fuel cell, electrolyte membrane manufactured thereby and membrane electrode assembly for fuel cell using the membrane
JP4013428B2 (en) Irradiation crosslinking method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees