JP4178150B2 - Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell - Google Patents

Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell Download PDF

Info

Publication number
JP4178150B2
JP4178150B2 JP2005100539A JP2005100539A JP4178150B2 JP 4178150 B2 JP4178150 B2 JP 4178150B2 JP 2005100539 A JP2005100539 A JP 2005100539A JP 2005100539 A JP2005100539 A JP 2005100539A JP 4178150 B2 JP4178150 B2 JP 4178150B2
Authority
JP
Japan
Prior art keywords
temperature
heating element
fluorine
containing polymer
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005100539A
Other languages
Japanese (ja)
Other versions
JP2006282688A (en
JP2006282688A5 (en
Inventor
勝弘 小野
Original Assignee
勝弘 小野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝弘 小野 filed Critical 勝弘 小野
Priority to JP2005100539A priority Critical patent/JP4178150B2/en
Publication of JP2006282688A publication Critical patent/JP2006282688A/en
Publication of JP2006282688A5 publication Critical patent/JP2006282688A5/ja
Application granted granted Critical
Publication of JP4178150B2 publication Critical patent/JP4178150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

この発明は、燃料電池に適した固体高分子電解質膜であって優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜及びその製造方法及び製造装置に関する。特に、含フッ素系高分子イオン交換膜の基材となる改質された含フッ素系高分子膜を工業的に安価に大量生産する方法及びその装置に関する。   The present invention relates to a fluorine-containing polymer ion exchange membrane which is a solid polymer electrolyte membrane suitable for a fuel cell and has excellent oxidation resistance and a wide range of ion exchange capacities, and a method and apparatus for producing the same. In particular, the present invention relates to a method and an apparatus for mass-producing a modified fluorine-containing polymer membrane as a base material for a fluorine-containing polymer ion exchange membrane industrially at low cost.

固体高分子イオン交換膜を使用した燃料電池においては、高分子イオン交換膜はプロトンを伝導するための電解質として作用するとともに、燃料である水素やメタノールと酸化剤である空気または酸素を直接混合させないための隔膜として作用する。このような高分子イオン交換膜としての役割から、電解質としてイオン交換容量が高いこと、水酸化ラジカル等に対する耐性つまり耐酸化性に優れていること、電気抵抗を低く保持するために膜の保水性が一定で高いこと等が求められる。一方、隔膜としての役割から、膜の力学的な強度や膜の寸法安定性に優れていること、水素ガス、メタノール又は酸素ガスに対して過剰な透過性を有しないこと等が求められる。   In a fuel cell using a solid polymer ion exchange membrane, the polymer ion exchange membrane acts as an electrolyte for conducting protons and does not directly mix hydrogen or methanol as a fuel with air or oxygen as an oxidant. Act as a diaphragm for. Due to its role as a polymer ion exchange membrane, it has a high ion exchange capacity as an electrolyte, excellent resistance to hydroxyl radicals, that is, oxidation resistance, and water retention of the membrane to keep electric resistance low. Is required to be constant and high. On the other hand, because of its role as a diaphragm, it is required that the film has excellent mechanical strength and dimensional stability, and does not have excessive permeability to hydrogen gas, methanol, or oxygen gas.

初期の高分子イオン交換膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系高分子イオン交換膜が使用された。しかし、このイオン交換膜は耐酸化性に起因する耐久性が非常に劣っていた為に実用性に乏しかった。その後はデュポン社によりこの欠点を克服して開発されたパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に使用されてきた。   Early polymer ion exchange membrane fuel cells used hydrocarbon polymer ion exchange membranes produced by copolymerization of styrene and divinylbenzene. However, this ion exchange membrane has poor practicality because of its extremely poor durability due to oxidation resistance. Thereafter, a perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont to overcome this drawback has been generally used.

しかしながら、「ナフィオン」等の従来の含フッ素系高分子イオン交換膜は、前記の耐久性や安定性には優れているが、イオン交換容量が1meq/g前後と小さいことや、保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下することや、メタノールを燃料とする場合には膜の膨潤やメタノールのクロスオーバーが起きること等の欠点を有している。また、イオン交換容量を大きくする目的でスルホン酸基を多く導入しようとすると、高分子鎖中に架橋構造がないために、膜強度が著しく低下して容易に破損するようになる。したがって、従来の含フッ素系高分子のイオン交換膜では膜強度が保持される程度にスルホン酸基の量を抑える必要があり、このためイオン交換容量が1meq/g程度のものしかできなかった。また、「ナフィオン」などの従来の含フッ素系高分子イオン交換膜は、そのモノマーの合成が困難かつ複雑であり、さらに、これを重合してポリマー膜を製造する工程も複雑であるために非常に高価である。このことは、従来のプロトン交換膜型燃料電池を自動車などへ搭載して実用化する際の大きな障害になっている。そのため、前記「ナフィオン」等に替る低コストで高性能な電解質膜を開発することが求められている。   However, conventional fluorine-containing polymer ion exchange membranes such as “Nafion” are excellent in the durability and stability, but the ion exchange capacity is as small as about 1 meq / g, and the water retention is not good. The ion exchange membrane is sufficiently dried and proton conductivity is lowered, and when methanol is used as a fuel, there are drawbacks such as membrane swelling and methanol crossover. Further, if an attempt is made to introduce a large number of sulfonic acid groups for the purpose of increasing the ion exchange capacity, since the polymer chain does not have a cross-linked structure, the membrane strength is remarkably lowered and the membrane easily breaks. Accordingly, in the conventional ion exchange membranes of fluorine-containing polymers, it is necessary to suppress the amount of sulfonic acid groups to such an extent that the membrane strength is maintained. For this reason, only an ion exchange capacity of about 1 meq / g could be achieved. In addition, conventional fluorine-containing polymer ion exchange membranes such as “Nafion” are very difficult because the synthesis of the monomers is difficult and complicated, and the process of polymerizing them to produce a polymer membrane is also very complicated. Expensive. This is a major obstacle when a conventional proton exchange membrane fuel cell is mounted on an automobile or the like for practical use. Therefore, it is required to develop a low-cost and high-performance electrolyte membrane replacing the “Nafion” or the like.

含フッ素系高分子膜基材にスルホン酸基を導入することが出来るモノマーをグラフト重合して固体高分子電解質膜を作製する放射線グラフト重合法の試みが成されている。しかし、通常の含フッ素系高分子膜基材ではグラフト反応が膜の内部まで進行せず膜表面に限られるため、電解質膜としての特性が向上しない。また、電子線やγ線などの電離放射線を照射した場合に、通常の含フッ素系高分子膜基材は主鎖切断反応が起きて劣化する。さらに、グラフトモノマーとしての炭化水素系のモノマーでは耐酸化性が低いことが問題であった。例えば、エチレンーテトラフルオロエチレン共重合体にスチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として機能することが特開平9−102322号公報に開示されているが、スチレングラフト鎖が炭化水素で構成されているため、膜に長時間電流を流すとグラフト鎖部の酸化劣化が起こり、膜のイオン交換能が大幅に低下するという欠点を有している。   Attempts have been made for a radiation graft polymerization method in which a solid polymer electrolyte membrane is produced by graft polymerization of a monomer capable of introducing a sulfonic acid group onto a fluorine-containing polymer membrane substrate. However, in a normal fluorine-containing polymer membrane substrate, the graft reaction does not proceed to the inside of the membrane and is limited to the membrane surface, so the characteristics as an electrolyte membrane are not improved. In addition, when irradiated with ionizing radiation such as an electron beam or γ-ray, a normal fluorine-containing polymer film substrate deteriorates due to a main chain scission reaction. Furthermore, the hydrocarbon-based monomer as the graft monomer has a problem of low oxidation resistance. For example, an ion exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer by a radiation graft reaction and then sulfonating functions as an ion exchange membrane for a fuel cell. Although it is disclosed in the publication, since the styrene graft chain is composed of hydrocarbons, the oxidative degradation of the graft chain occurs when a current is passed through the membrane for a long time, and the ion exchange capacity of the membrane is greatly reduced. have.

含フッ素系高分子膜基材を予め架橋しておくと、膜の耐熱性が向上しモノマーのグラフト率が向上し、さらに、グラフトのための照射による膜強度の低下を抑制することが出来るので、高温作動で高性能の燃料電池用イオン交換膜には好適であることが特開2004−51685号公報や特開2004−300360号公報に開示されている。特に、ポリテトラフルオロエチレン(PTFE)の放射線グラフト反応では架橋構造を膜基材の分子構造に導入することによって無定形部分が多くなり、未架橋のポリテトラフルオロエチレン(PTFE)ではグラフト率が低いという欠点を解決できることが特開2004−300360号公報や特開2001−348439号公報に開示されている。このように、架橋構造を有する含フッ素系高分子膜を基材として用いることにより優れた耐酸化性と広範囲なイオン交換容量を有して燃料電池に適した固体高分子電解質膜として使用できる含フッ素系高分子イオン交換膜が出来ることが知られている。   If the fluorine-containing polymer membrane substrate is previously cross-linked, the heat resistance of the membrane is improved and the grafting ratio of the monomer is improved, and further, the decrease in membrane strength due to irradiation for grafting can be suppressed. JP-A-2004-51685 and JP-A-2004-300360 disclose that it is suitable for high-temperature and high-performance ion exchange membranes for fuel cells. In particular, in the radiation grafting reaction of polytetrafluoroethylene (PTFE), an amorphous part is increased by introducing a crosslinked structure into the molecular structure of the membrane substrate, and a graft ratio is low in uncrosslinked polytetrafluoroethylene (PTFE). It is disclosed in Japanese Patent Application Laid-Open Nos. 2004-300360 and 2001-348439 that the above disadvantage can be solved. Thus, by using a fluorine-containing polymer membrane having a crosslinked structure as a substrate, it has excellent oxidation resistance and a wide range of ion exchange capacity, and can be used as a solid polymer electrolyte membrane suitable for fuel cells. It is known that a fluorine-based polymer ion exchange membrane can be formed.

一般に、含フッ素系高分子膜基材は耐熱性と耐薬品性に優れた特性を有し、産業用および民施用の樹脂として広く利用されている。しかし、含フッ素系高分子膜基材は放射線に対して感受性が高く、放射線を照射することによって分子鎖の切断が進行し、吸収線量が50kGyを超えると機械特性が低下する。そのため原子力施設や宇宙空間などの放射線環境下では利用することが出来なかった。含フッ素系高分子膜基材は放射線に対して典型的な崩壊型高分子膜であるが、従来の熱化学反応などの方法によって耐放射線性を付与することは出来なかった。含フッ素系高分子膜基材の代表であるポリテトラフルオロエチレン(PTFE)は放射線に対して極めて感受性が高く、1kGyを超える照射を受けると機械特性が低下することから、原子力施設等の放射線環境下では利用できない樹脂であった。これは、ポリテトラフルオロエチレン(PTFE)では、放射線照射により分子切断が優先的に生じ、結晶化が容易に進行してしまうことに起因する。ポリテトラフルオロエチレン(PTFE)にその結晶融点以上の温度で酸素不存在下において電離放射線を照射すると架橋が起こり、特性が大きく改善されることが特開平6−116423号公報や特開平7−118423号公報に開示されている。   In general, a fluorine-containing polymer film substrate has excellent heat resistance and chemical resistance, and is widely used as a resin for industrial and private use. However, the fluorine-containing polymer film substrate is highly sensitive to radiation, and molecular chain scission progresses when irradiated with radiation. When the absorbed dose exceeds 50 kGy, mechanical properties deteriorate. Therefore, it could not be used in a radiation environment such as a nuclear facility or outer space. Although the fluorine-containing polymer film substrate is a typical collapsible polymer film against radiation, it has not been possible to impart radiation resistance by a conventional method such as thermochemical reaction. Polytetrafluoroethylene (PTFE), which is a representative of the fluorine-containing polymer membrane substrate, is extremely sensitive to radiation, and its mechanical properties deteriorate when irradiated with radiation exceeding 1 kGy. The resin below could not be used. This is because in polytetrafluoroethylene (PTFE), molecular cutting occurs preferentially by irradiation and crystallization easily proceeds. When polytetrafluoroethylene (PTFE) is irradiated with ionizing radiation in the absence of oxygen at a temperature equal to or higher than its crystalline melting point, crosslinking occurs, and the characteristics are greatly improved, as disclosed in JP-A-6-116423 and JP-A-7-118423. It is disclosed in the gazette.

特開平6−116423号公報にはポリテトラフルオロエチレン(PTFE)を架橋する方法が開示されている。これは、酸素不在環境下、すなわち真空中または不活性ガス雰囲気中において、結晶融点(327℃)以上の温度に保った状態で電離放射線(γ線、電子線、X線、中性子線、高エネルギーイオン等)を照射する方法である。照射時のポリテトラフルオロエチレン(PTFE)膜基材の温度は340℃前後が望ましく、照射される線量は1kGyから10MGyの範囲が適当であるが、特にゴム特性を得る為には200kGyから5MGyの範囲が望ましいことが開示されている。このような条件で処理されたポリテトラフルオロエチレン(PTFE)膜は耐放射性が付与され、真空中で室温環境下において電離放射線を照射した場合と比較すると、破断伸びと降伏点強度等の材料劣化が著しく抑制されたことが記述されている。   JP-A-6-116423 discloses a method of crosslinking polytetrafluoroethylene (PTFE). This is because ionizing radiation (γ-rays, electron beams, X-rays, neutron beams, high energy) is maintained in a temperature in excess of the crystal melting point (327 ° C.) in an oxygen-free environment, that is, in a vacuum or in an inert gas atmosphere. Ion). The temperature of the polytetrafluoroethylene (PTFE) film substrate at the time of irradiation is desirably around 340 ° C., and the irradiation dose is suitably in the range of 1 kGy to 10 MGy, but in order to obtain rubber characteristics, it is particularly in the range of 200 kGy to 5 MGy. It is disclosed that a range is desirable. Polytetrafluoroethylene (PTFE) film treated under such conditions is given radiation resistance, and material degradation such as elongation at break and strength at yield point compared to when irradiated with ionizing radiation in a vacuum at room temperature. Is significantly suppressed.

特開平11−49867号公報には、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)およびテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)に同様の条件下で電離放射線を照射することによって、放射線環境下における耐熱性と機械特性が向上することが開示されている。テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)もしくはテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)に、照射時の酸化を防止するために酸素不在下すなわち真空中もしくは不活性ガス雰囲気中において、各々の結晶融点よりも約20℃低い温度から各々の結晶融点よりも約20℃高い温度の範囲内において電離放射線(γ線、電子線、X線、中性子線、高エネルギーイオン等)を照射することによってこれらの含フッ素系高分子膜基材は架橋することが開示されている。照射時の樹脂の温度は、各々の含フッ素系高分子膜基材の結晶融点を中心としてそれよりもおよそ±10℃の範囲の温度が好ましいことが開示されている。また照射線量は1kGy〜15MGyの範囲が好ましく、ゴム特性を付与する為には500kGy〜10MGyの範囲がより好ましいことが開示されている。このように処理されたこれらの含フッ素系高分子膜は耐熱性と耐薬品性が改善されており、これらの特性が求められる機器類のシール材料やパッキング材料に適している。特に、耐放射線特性が付与されているので放射線環境下での工業材料としてテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)やテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)が利用できるようになる。   In JP-A-11-49867, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) are irradiated with ionizing radiation under the same conditions. Discloses that heat resistance and mechanical properties in a radiation environment are improved. Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) in the absence of oxygen, i.e. in vacuum or in an inert gas atmosphere, to prevent oxidation during irradiation Ionizing radiation (gamma rays, electron beams, X-rays, neutron rays, high-energy ions, etc.) within a temperature range from about 20 ° C. lower than each crystal melting point to about 20 ° C. higher than each crystal melting point It is disclosed that these fluorine-containing polymer film substrates are crosslinked by irradiating with. It is disclosed that the temperature of the resin at the time of irradiation is preferably a temperature in the range of about ± 10 ° C. centering on the crystalline melting point of each fluorine-containing polymer film substrate. Further, it is disclosed that the irradiation dose is preferably in the range of 1 kGy to 15 MGy, and more preferably in the range of 500 kGy to 10 MGy in order to impart rubber characteristics. These fluorine-containing polymer films treated in this way have improved heat resistance and chemical resistance, and are suitable for equipment sealing materials and packing materials that require these characteristics. In particular, since radiation resistance is imparted, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) can be used as industrial materials in a radiation environment. It becomes like this.

また、特開平7−118423号公報には、ポリテトラフルオロエチレン(PTFE)の初期の結晶融点である327℃以上の温度で放射線照射を続けると、架橋反応に加えて熱分解反応や解重合反応が起こりモノマーがポリテトラフルオロエチレン(PTFE)の表面から飛散し、重量が減少してしまうことが開示されている。ポリテトラフルオロエチレン(PTFE)に、その結晶融点以上の温度で真空又は不活性ガス中で放射線を照射すると架橋するが、結晶融点は放射線の線量が増大すると低下してくる。そこで、照射時のポリテトラフルオロエチレン(PTFE)の温度を、照射線量にあわせて変化させ、熱分解や解重合を抑制しつつ架橋を進めると良いことが開示されている。例えば、照射初期には、327℃以上、望ましくは340℃〜350℃に昇温するが、その後、50kGy照射後では320〜330℃、100kGy照射後では290〜300℃、200kGy照射後では280〜290℃、500kGy照射後では260〜270℃、そして1MGy照射後では230〜240℃に温度を下げる例が開示されている。ポリテトラフルオロエチレン(PTFE)の温度を低下させる方法としては、液体窒素等の冷媒によって冷却したり、系内に流通せしめる不活性ガスの温度を徐々に下げたりする方法が開示されている。しかし、これらの温度低下方法では正確な温度管理が困難である。   Japanese Patent Application Laid-Open No. 7-118423 discloses a thermal decomposition reaction and a depolymerization reaction in addition to a crosslinking reaction when radiation irradiation is continued at a temperature of 327 ° C. or more which is an initial crystal melting point of polytetrafluoroethylene (PTFE). And the monomer is scattered from the surface of polytetrafluoroethylene (PTFE), and the weight is reduced. When polytetrafluoroethylene (PTFE) is irradiated with radiation in a vacuum or an inert gas at a temperature equal to or higher than its crystalline melting point, it crosslinks, but the crystalline melting point decreases as the radiation dose increases. Therefore, it is disclosed that the temperature of polytetrafluoroethylene (PTFE) at the time of irradiation may be changed in accordance with the irradiation dose to advance the crosslinking while suppressing thermal decomposition and depolymerization. For example, at the initial stage of irradiation, the temperature is raised to 327 ° C. or higher, desirably 340 ° C. to 350 ° C., but then 320 to 330 ° C. after 50 kGy irradiation, 290 to 300 ° C. after 100 kGy irradiation, and 280 to 200 kGy irradiation. Examples are disclosed in which the temperature is lowered to 260-270 ° C. after irradiation at 290 ° C. and 500 kGy, and 230-240 ° C. after irradiation at 1 MGy. As a method for lowering the temperature of polytetrafluoroethylene (PTFE), a method of cooling with a refrigerant such as liquid nitrogen or a method of gradually lowering the temperature of an inert gas circulated in the system is disclosed. However, accurate temperature management is difficult with these temperature reduction methods.

以下において、含フッ素系高分子膜基材をその結晶融点以上の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法を記した例について述べる。特開平6−116423号公報には、厚さ1mmの市販のポリテトラフルオロエチレン(PTFE)シートを真空中(0.01Torr以下)において340℃に加熱してコバルトー60から照射されたγ線を1.7kGyから20kGyまで照射した例や、厚さ0.3mmのポリテトラフルオロエチレン(PTFE)シートを真空中(0.01Torr以下)において340℃に加熱し、エネルギーが2MeVの電子線を100kGyから2MGyまで照射した例が開示されている。また、厚さ0.3mm、0.5mm、1mmのそれぞれのポリテトラフルオロエチレン(PTFE)シートを真空中で、370℃において電子線を照射したところ、照射時間が長くなるにしたがってポリテトラフルオロエチレン(PTFE)の熱分解が進行してシートの厚さが薄くなる旨の記述がある。   In the following, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer film substrate at a low oxygen partial pressure while maintaining the fluorine-containing polymer film substrate at a temperature within a predetermined set temperature range equal to or higher than its crystalline melting point. An example describing a method for producing a modified fluorine-containing polymer film by irradiation in an environment will be described. In JP-A-6-116423, a commercially available polytetrafluoroethylene (PTFE) sheet having a thickness of 1 mm is heated to 340 ° C. in a vacuum (0.01 Torr or less), and γ rays irradiated from cobalt-60 are 1 Example of irradiation from 0.7 kGy to 20 kGy, or a polytetrafluoroethylene (PTFE) sheet having a thickness of 0.3 mm is heated to 340 ° C. in a vacuum (0.01 Torr or less), and an electron beam with an energy of 2 MeV is applied from 100 kGy to 2 MGy An example of irradiation up to is disclosed. In addition, each of the polytetrafluoroethylene (PTFE) sheets having a thickness of 0.3 mm, 0.5 mm, and 1 mm was irradiated with an electron beam at 370 ° C. in a vacuum. There is a description that the thermal decomposition of (PTFE) proceeds to reduce the thickness of the sheet.

特開平11−49867号公報には、厚さが0.5mmであるテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)シートをアルゴン気流中でその結晶融点(270℃)より高い280℃に加熱して、エネルギーが2MeVの電子線を100kGy照射すると架橋して耐放射線性が付与された例が開示されている。同様に、厚さが0.5mmであるテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)シートをアルゴン気流中でその結晶融点(310℃)より高い320℃に加熱して、エネルギーが2MeVの電子線を300kGy照射すると架橋して耐放射線性が付与された例が開示されている。   In JP-A-11-49867, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) sheet having a thickness of 0.5 mm is heated to 280 ° C. higher than its crystalline melting point (270 ° C.) in an argon stream. An example is disclosed in which radiation resistance is imparted by crosslinking when an electron beam having an energy of 2 MeV is irradiated with 100 kGy. Similarly, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) sheet having a thickness of 0.5 mm is heated to 320 ° C. higher than its crystalline melting point (310 ° C.) in an argon stream, and the energy is 2 MeV. An example is disclosed in which radiation resistance is imparted by crosslinking when irradiated with 300 kGy of the electron beam.

特開2001−348439号公報には厚さが500μmで数平均分子量が1x10のポリテトラフルオロエチレン(PTFE)シートの10cmx10cmの片を加熱型の照射容器に入れ、容器内を10−3Torr程度に脱気してアルゴンガスに置換した後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)シートの温度を335〜345℃として、エネルギーが2MeVの電子線を50kGy、100kGy、300kGy、500kGy、または1MGyの線量まで照射し、照射後、容器を冷却して高温照射を終了したポリテトラフルオロエチレン(PTFE)シートを取り出したことが開示されている。 In JP 2001-348439 A, a 10 cm × 10 cm piece of a polytetrafluoroethylene (PTFE) sheet having a thickness of 500 μm and a number average molecular weight of 1 × 10 7 is placed in a heating type irradiation container, and the inside of the container is about 10 −3 Torr. After degassing and replacing with argon gas, the temperature of the polytetrafluoroethylene (PTFE) sheet is set to 335 to 345 ° C. by heating with an electric heater, and an electron beam with an energy of 2 MeV is 50 kGy, 100 kGy, 300 kGy, 500 kGy, Alternatively, it is disclosed that a polytetrafluoroethylene (PTFE) sheet that has been irradiated to a dose of 1 MGy, and after irradiation was cooled to finish high-temperature irradiation was taken out.

また、特開2002−348389号公報には、長鎖分岐型ポリテトラフルオロエチレン(PTFE)シートを得る為に以下の照射を行ったことが記されている。すなわち、厚さが50μm又は100μmで数平均分子量が1x10のポリテトラフルオロエチレン(PTFE)シートの10cmx6cm片をSUS枠で固定し、50μm厚のチタン箔からできた電子線入射用の窓が付いた加熱型のSUS製照射容器に入れ、容器内を10−3Torr程度に脱気してアルゴンガスに置換し、その後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)シートの温度を335〜340℃として、ごくわずかにアルゴンガスを流しながらエネルギーが2MeVの電子線を照射したことが開示されている。このときの電流は0.5mAで線量率は0.5kGy/秒で、線量は100kGy又は200kGyであり、照射時間はそれぞれ200秒または400秒である。照射後、容器を冷却して放射線照射を終了したポリテトラフルオロエチレン(PTFE)シートを取り出して長鎖分岐型ポリテトラフルオロエチレン(PTFE)膜を得ている。 Japanese Patent Application Laid-Open No. 2002-348389 describes that the following irradiation was performed in order to obtain a long-chain branched polytetrafluoroethylene (PTFE) sheet. That is, a 10 cm × 6 cm piece of a polytetrafluoroethylene (PTFE) sheet having a thickness of 50 μm or 100 μm and a number average molecular weight of 1 × 10 7 is fixed with a SUS frame, and has an electron beam incident window made of a 50 μm thick titanium foil. In a heated SUS irradiation container, the inside of the container is degassed to about 10 −3 Torr and replaced with argon gas, and then heated with an electric heater to adjust the temperature of the polytetrafluoroethylene (PTFE) sheet to 335 It is disclosed that an electron beam with an energy of 2 MeV was irradiated while flowing argon gas at a slight temperature of ˜340 ° C. At this time, the current is 0.5 mA, the dose rate is 0.5 kGy / second, the dose is 100 kGy or 200 kGy, and the irradiation time is 200 seconds or 400 seconds, respectively. After irradiation, the container was cooled and the polytetrafluoroethylene (PTFE) sheet after radiation irradiation was taken out to obtain a long-chain branched polytetrafluoroethylene (PTFE) film.

特開2004−51685号公報や特開2004−14436号公報や特開2003−261697号公報や特開2003−82129号公報に開示されているように、架橋したポリテトラフルオロエチレン(PTFE)つまり長鎖分岐型ポリテトラフルオロエチレン(PTFE)膜を得る為に以下の照射が行われている。厚さ50μmのポリテトラフルオロエチレン(PTFE)フィルムの10cm角をヒータ付きのSUS製オートクレーブ照射容器(内径7cmΦ、高さ30cm)に入れ、容器内を10−3Torrに脱気してアルゴンガスに置換し、その後、電気ヒータで加熱してポリテトラフルオロエチレン(PTFE)フィルムの温度を340℃(又は300℃〜365℃の温度範囲)として、コバルト−60のγ線を3kGy/時の線量率で90kGyの線量まで照射した後、容器を冷却して放射線照射を終了したポリテトラフルオロエチレン(PTFE)フィルムを取り出したことが記されている。この際の照射に必要な時間は30時間であった。 As disclosed in JP-A-2004-51685, JP-A-2004-14436, JP-A-2003-261697, and JP-A-2003-82129, crosslinked polytetrafluoroethylene (PTFE), that is, long The following irradiation is performed to obtain a chain-branched polytetrafluoroethylene (PTFE) film. A 10 cm square of polytetrafluoroethylene (PTFE) film with a thickness of 50 μm is placed in a SUS autoclave irradiation container (inner diameter 7 cmΦ, height 30 cm) equipped with a heater, and the inside of the container is degassed to 10 −3 Torr and turned into argon gas. Substitution, and then heating with an electric heater to set the temperature of the polytetrafluoroethylene (PTFE) film to 340 ° C. (or a temperature range of 300 ° C. to 365 ° C.), and the dose rate of 3 kGy / hour of cobalt-60 γ-rays After that, the polytetrafluoroethylene (PTFE) film was taken out after cooling to the dose of 90 kGy and cooling the container. The time required for irradiation at this time was 30 hours.

以上に公開された処理方法では、処理される含フッ素系高分子膜基材は10cm角程度の小片であり、小容積の容器内に入れて加熱した後に、電離放射線の照射処理を行い、その後容器を冷却して処理された含フッ素系高分子膜を取り出している。電離放射線の照射処理を行うに際して、コバルト−60のγ線を使用した例が示されているが、この場合には線量率が低い為に所定の線量を照射するためには30時間もの長時間を要している。また、エネルギーが2MeVの電子線を照射した例も開示されているが、やはり線量率があまり高くないので小片の処理のために400秒程度を要している。さらに、一般的に容器の冷却のためには長時間を要する。このような照射においては、電離放射線の線量率を高めると、電離放射線の加熱効果によって照射中に被照射膜基材の温度が上昇して熱分解が進行する不都合が生じる。以上に記した通り、含フッ素系高分子膜基材を高温放射線処理するに際して、大面積の含フッ素系高分子膜基材を処理できることや、電離放射線を照射する時に含フッ素系高分子膜基材の正確な温度管理ができることが重要である。   In the treatment method disclosed above, the fluorine-containing polymer membrane substrate to be treated is a small piece of about 10 cm square, and after being placed in a small volume container and heated, it is subjected to ionizing radiation irradiation treatment, and then The container is cooled and the treated fluorine-containing polymer film is taken out. An example of using cobalt-60 gamma rays when performing ionizing radiation irradiation treatment is shown. In this case, since the dose rate is low, it takes 30 hours to irradiate a predetermined dose. Is needed. Moreover, although the example which irradiated the electron beam whose energy is 2 MeV is also disclosed, since the dose rate is not so high, about 400 seconds are required for processing of a small piece. Furthermore, it generally takes a long time to cool the container. In such irradiation, when the dose rate of ionizing radiation is increased, the temperature of the film substrate to be irradiated rises during irradiation due to the heating effect of ionizing radiation, resulting in inconvenience that thermal decomposition proceeds. As described above, when a fluorine-containing polymer membrane substrate is subjected to high-temperature radiation treatment, it is possible to treat a large-area fluorine-containing polymer membrane substrate, or when the fluorine-containing polymer membrane substrate is irradiated with ionizing radiation. It is important to be able to accurately control the temperature of the material.

更に、架橋した含フッ素系高分子膜を工業製品として実用化するためには、処理速度を高めて低価格化するとともに処理条件の高度な管理を行って品質の均一化を達成することが必要である。電離放射線の照射処理を行うに際して線量率を高めた場合には、電離放射線による含フッ素系高分子膜基材の加熱が重畳されて含フッ素系高分子膜基材の温度が上昇するとともに、温度の分布が変わり、処理後の含フッ素系高分子膜の品質を均一化することが困難であった。特に、30cmを超える幅広で長尺の含フッ素系高分子膜基材を処理する場合には照射前後、特に照射中に於ける膜基材の温度及び温度の空間分布及び温度の時間変化の管理が困難であった。このような理由により、架橋した含フッ素系高分子膜を工業製品として実用化されるに至っていない。
特開平6−116423号公報 特開平7−118423号公報 特開平9−102322号公報 特開平11−19190号公報 特開平11−49867号公報 特開2001−348439号公報 特開2003−82129号公報 特開2003−261697号公報 特開2004−14436号公報 特開2004−51685号公報 特開2004−300360号公報
Furthermore, in order to put the cross-linked fluorine-containing polymer membrane into practical use as an industrial product, it is necessary to increase the processing speed, reduce the price, and achieve high quality by performing advanced management of processing conditions. It is. When the dose rate is increased when performing ionizing radiation treatment, the heating of the fluorine-containing polymer membrane substrate by ionizing radiation is superimposed on the temperature of the fluorine-containing polymer membrane substrate to increase the temperature. It was difficult to make the quality of the fluorine-containing polymer film after the treatment uniform. In particular, when processing a long and long fluorine-containing polymer membrane substrate exceeding 30 cm, the temperature and temperature distribution of the membrane substrate and the temporal change in temperature before and after irradiation, particularly during irradiation, are managed. It was difficult. For these reasons, the crosslinked fluorine-containing polymer film has not been put to practical use as an industrial product.
JP-A-6-116423 JP 7-118423 A JP-A-9-102322 Japanese Patent Laid-Open No. 11-19190 JP 11-49867 A JP 2001-348439 A JP 2003-82129 A JP 2003-261697 A JP 2004-14436 A JP 2004-51685 A JP 2004-300360 A

解決しようとする課題は、幅広で長尺の含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造するに際して、処理速度を高めて低価格化するとともに処理条件の高度な管理を行って品質の均一化を達成することにより、架橋した含フッ素系高分子膜を工業製品として実用化することである。さらに、安価で大面積の架橋した含フッ素系高分子膜を基材として提供して、燃料電池に適した固体高分子電解質膜として優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようにし、もって、自動車などに搭載できる安価で高寿命の燃料電池を提供することである。特に、大面積の含フッ素系高分子膜基材を照射野内の全ての位置にわたってかつ照射処理の全時間中にわたって常に予め定められた温度範囲に保った状態で電離放射線を照射することによって、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産する方法を提供することである。   The problem to be solved is that 1 kGy is applied to the fluorine-containing polymer membrane substrate while keeping the wide and long fluorine-containing polymer membrane substrate at a temperature within a predetermined set temperature range around its crystalline melting point. When producing modified fluorine-containing polymer membranes by irradiating the above ionizing radiation in a low oxygen partial pressure environment, the processing speed is increased and the price is reduced, and the processing conditions are advanced and quality is controlled. By achieving homogenization, the cross-linked fluorine-containing polymer film is put to practical use as an industrial product. In addition, a fluorine-containing polymer membrane that is inexpensive and has a large cross-section as a base material is provided as a base material, and it has excellent oxidation resistance and a wide range of ion exchange capacity as a solid polymer electrolyte membrane suitable for a fuel cell. An object of the present invention is to provide a low-cost and long-life fuel cell that can be mass-produced at a low cost and can be mounted on an automobile or the like. In particular, stable irradiation is achieved by irradiating ionizing radiation with a large area fluorine-containing polymer film substrate kept at a predetermined temperature range at all positions in the irradiation field and throughout the entire irradiation process. It is to provide a method for producing a large amount of a fluorine-containing polymer film having a cross-linked structure of a high quality in a short time and at a low cost.

本発明は、長尺の含フッ素系高分子膜基材を温度制御と電離放射線照射が行える高温放射線処理装置内を通過させ、この高温放射線処理装置の入口位置および出口位置において、含フッ素系高分子膜基材の長手方向の一部分を常温に保って機械的に保持するとともに走行機能を付与させ、前記高温放射線処理装置内においては発熱体を設け、この発熱体は含フッ素系高分子膜基材の長手方向および幅方向に沿って多数の発熱体要素に分割して配列しておき、これらの発熱体要素の表面温度を空間的および/又は時間的に適正に制御して、照射中および照射前後を問わず、照射野内の所望範囲内に於ける含フッ素系高分子膜基材の全ての位置の温度を一様とし、所定の処理が進行すれば長尺の改質された含フッ素系高分子膜の出口部分を部分的に冷却して高温放射線処理装置外に送り出すことによって短時間に多量の処理ができるようになっている。   The present invention allows a long fluorine-containing polymer membrane substrate to pass through a high-temperature radiation processing apparatus capable of temperature control and ionizing radiation irradiation, and the fluorine-containing high polymer film at the inlet position and the outlet position of the high-temperature radiation processing apparatus. A part of the molecular film substrate in the longitudinal direction is kept mechanically at room temperature and is given a running function. A heating element is provided in the high-temperature radiation processing apparatus, and the heating element is a fluorine-containing polymer film base. A plurality of heating element elements are divided and arranged along the longitudinal direction and the width direction of the material, and the surface temperature of these heating element elements is appropriately controlled spatially and / or temporally, during irradiation and Regardless of before or after irradiation, the temperature of all positions of the fluorine-containing polymer film substrate within the desired range in the irradiation field is made uniform, and if a predetermined treatment proceeds, a long and modified fluorine-containing fluorine The exit of the polymer membrane It cooled and has to be a large amount of processing in a short time by sending out a high temperature radiation treatment apparatus.

前記高温放射線処理装置内において、電離放射線を照射しない位置、または電離放射線を照射しないタイミングでは、前記発熱体要素の表面温度を照射中心から離れるにつれてステップ状に高く設定することにより、照射野内およびその周辺位置に存する前記含フッ素系高分子膜基材の部位の温度を一様に短時間に結晶融点前後の予め定められた温度範囲まで高める。電離放射線を照射する位置、および電離放射線を照射するタイミングでは、照射野内の近傍に位置する前記発熱体要素の表面温度を低下させて含フッ素系高分子膜基材の温度を、照射野を中心として、蒲鉾状に分布して低下させるように放熱させ、この放熱を打ち消す熱量を有する電離放射線を照射することによって結果として照射中のどのタイミングでも含フッ素系高分子膜基材の温度が変化しないようにしている。また、前記の放出される熱量の空間分布も時間変化も電離放射線によって与えられる熱量の分布と経時変化とにそれぞれ一致しており、結果として空間的および時間的に一様な温度分布となった状態で短時間に必要な線量を与えることができるようになっている。本発明においては、いずれの場合も、冷媒を局部的に吹き付けるなどの局部的な冷却を必要としていないので温度分布の安定な管理が行える。また、不活性ガスの自然対流を利用して冷却している為に温度管理が容易になっている。多くの場合、前記所望範囲は前記照射野と一致するが、処理後に切除する等で不使用となる部分は前記所望範囲から除外しても良い。これは、本発明のいずれの場合にも共通している。前記設定温度範囲は、前記含フッ素系高分子膜基材の結晶融点を中心として±20℃の温度範囲に設定することが許容される場合もあるが、前記含フッ素系高分子膜基材の結晶融点を超える特定の温度を中心として±5℃程度の温度範囲に設定することが好ましい。   In the high-temperature radiation processing apparatus, at a position where no ionizing radiation is irradiated, or at a timing where no ionizing radiation is irradiated, the surface temperature of the heating element is set higher stepwise as the distance from the irradiation center increases. The temperature of the portion of the fluorine-containing polymer film substrate existing at the peripheral position is uniformly increased to a predetermined temperature range around the crystal melting point in a short time. At the position to irradiate ionizing radiation and the timing to irradiate ionizing radiation, the surface temperature of the heating element located in the vicinity of the irradiation field is lowered so that the temperature of the fluorine-containing polymer film substrate is focused on the irradiation field. As a result, the temperature of the fluorine-containing polymer film substrate does not change at any timing during irradiation by irradiating with ionizing radiation having a heat quantity that cancels this heat dissipation by radiating heat so that it is distributed in a bowl-like manner I am doing so. In addition, the spatial distribution and temporal change of the amount of released heat coincided with the distribution of the amount of heat given by the ionizing radiation and the temporal change, respectively, resulting in a uniform temperature distribution in space and time. The necessary dose can be given in a short time in the state. In the present invention, in any case, since local cooling such as blowing the refrigerant locally is not required, stable management of the temperature distribution can be performed. In addition, since the cooling is performed by using natural convection of an inert gas, temperature management is facilitated. In many cases, the desired range coincides with the irradiation field, but a portion that is not used due to excision after processing may be excluded from the desired range. This is common in any case of the present invention. The set temperature range may be allowed to be set within a temperature range of ± 20 ° C. around the crystal melting point of the fluorine-containing polymer membrane substrate. It is preferable to set a temperature range of about ± 5 ° C. around a specific temperature exceeding the crystalline melting point.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、前記含フッ素系高分子膜基材の当該所望範囲内の全ての部位は前記発熱体によって前記設定温度範囲内の温度まで加熱された後に、所定の冷却率を有して冷却されるとともに所定の強度分布を有する前記電離放射線によって所定の加熱率を有して加熱され、前記電離放射線の強度分布又は/及び前記発熱体の発熱量の分布が、前記冷却率と前記加熱率とを前記所望範囲内の全ての部位において照射時間中にわたって常に実質的に一致させるように設定され又は制御されことを特徴とする方法である。ここで、冷却率とは、特定部位に於ける、単位時間内に低下する温度を表しており、熱伝導や熱輻射や対流による特定部位の温度低下速度を総称した値である。同様に、加熱率とは、特定部位に於ける、単位時間内で上昇する温度を表している。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記照射野内の大部分を占める所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で改質処理ができる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In the method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, a heating element having a calorific value distributed in the longitudinal direction and the width direction , In the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction, the heating element is provided in a non-contact manner facing the surface of the fluorine-containing polymer film substrate , and the heating elements are aligned in the width direction. A first heating element group and a second heating element group each including a plurality of heating element elements, and the first heating element group and the second heating element group are aligned in the longitudinal direction. and is, the fluorine-containing polymer The substrate includes a desired size range which matches with said irradiation field and substantially all of the sites within the desired range of the fluorine-containing polymer membrane substrate, the set temperature by the heating element after being heated to a temperature in the range, by the ionizing radiation with a predetermined intensity distribution while being cooled with a predetermined cooling rate is heated with a predetermined heating rate, the intensity of the ionizing radiation distribution or / and the calorific value of the distribution of the heating element, that the said cooling rate and the heating rate Ru is always set so as to substantially match or control over in the irradiation time at all sites within the desired range It is a characteristic method. Here, the cooling rate represents the temperature at which the specific portion decreases within a unit time, and is a generic value of the temperature decrease rate at the specific portion due to heat conduction, heat radiation, or convection. Similarly, the heating rate represents the temperature rising within a unit time at a specific part. When the present invention is adopted, the temperature of the fluorine-containing polymer film substrate at all positions within a desired range that occupies most of the irradiation field from immediately before the start of the irradiation of the ionizing radiation to immediately after the end of the irradiation is the set temperature. The fluorine-containing polymer membrane substrate having a large area can be modified under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、前記含フッ素系高分子膜基材の当該所望範囲内の全ての部位は、前記発熱体によって前記設定温度範囲内の温度まで加熱された後に、前記電離放射線を照射する位置では、前記照射野内の近傍に位置する前記発熱体要素の表面温度を低下させて前記含フッ素系高分子膜基材の温度を、前記照射野を中心として、蒲鉾状に分布して低下させるように放熱され冷却されて第1の熱量を単位体積当りに放出するとともに、所定の強度分布を有する前記電離放射線の照射を受けて第2の熱量を単位体積当りに受領し、前記電離放射線の強度分布又は/及びその時間変化又は/及び前記発熱体の発熱量の分布は、前記第1の熱量の特定照射時間内における積算値と前記第2の熱量の前記照射時間と同一時間内における積算値とを実質的に一致させるように設定され、又は制御されことを特徴とする方法である。前記発熱体の発熱量の分布を設定するには、前記発熱体を多数の発熱体要素に分割し、これらの発熱体要素要素の発熱量を独立に設定するとよい。前記電離放射線の強度分布の設定は、前記電離放射線の線源と前記含フッ素系高分子膜基材との間に適当な透過率を有するフィルタを挿入すること等で実現できる。前記電離放射線強度の時間変化の設定は、前記電離放射線の線源の発生強度を電気的に制御することによって行える。本発明を採用すると、前記電離放射線の照射の開始直前から照射の終了直後まで前記所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で改質処理できる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In the method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, a heating element having a calorific value distributed in the longitudinal direction and the width direction , In the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction, the heating element is provided in a non-contact manner facing the surface of the fluorine-containing polymer film substrate , and the heating elements are aligned in the width direction. A first heating element group and a second heating element group each including a plurality of heating element elements, and the first heating element group and the second heating element group are aligned in the longitudinal direction. and is, the fluorine-containing polymer The substrate includes a desired size range which matches with said irradiation field and substantially all of the sites within the desired range of the fluorine-containing polymer membrane substrate, the set temperature by the heating element After being heated to a temperature within the range, at the position where the ionizing radiation is irradiated, the surface temperature of the heating element located in the vicinity of the irradiation field is lowered to reduce the temperature of the fluorine-containing polymer film substrate. Radiating and cooling so as to be distributed and reduced in a bowl-like shape with the irradiation field as the center , releasing the first amount of heat per unit volume , and receiving the ionizing radiation having a predetermined intensity distribution The second heat quantity is received per unit volume, and the intensity distribution of the ionizing radiation or / and its change over time or / and the calorific value distribution of the heating element are integrated values within the specific irradiation time of the first heat quantity. And the second heat Set of the integrated value within the irradiation time and the same time so as to substantially match, or a method characterized by that are controlled. In order to set the distribution of the heat generation amount of the heat generating element, the heat generating element may be divided into a large number of heat generating element elements, and the heat generation amounts of these heat generating element elements may be set independently. The setting of the ionizing radiation intensity distribution can be realized by inserting a filter having an appropriate transmittance between the ionizing radiation source and the fluorine-containing polymer film substrate. The time change of the ionizing radiation intensity can be set by electrically controlling the generation intensity of the ionizing radiation source. By adopting the present invention, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of irradiation with the ionizing radiation to immediately after the end of irradiation can be kept within the set temperature range. The fluorine-containing polymer membrane substrate having a large area can be modified under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、前記発熱体の発熱量又は/及びその分布は予め定められた時間関数に従って設定されまたは制御され、当該時間関数は、前記発熱体が前記所望範囲内の全ての部位を前記設定温度範囲内の温度まで加熱する第1のタイミングと、前記所望範囲内の全ての部位において前記電離放射線の照射による温度上昇と前記含フッ素系高分子膜基材の冷却による温度低下とを実質的に互いに打ち消し合う第2のタイミングとを含んでおり、この第2のタイミングでは、前記照射野内の近傍に位置する前記発熱体要素の表面温度を低下させて前記含フッ素系高分子膜基材の温度を、前記照射野を中心として、蒲鉾状に分布して低下させるように放熱させることを特徴とする方法である。前記電離放射線の照射を開始する前に前記含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めるタイミングを設けているので、前記電離放射線の照射開始直後において低温状態下で照射する危険を回避できる。この加熱するタイミングでは、前記発熱体を多数の発熱体要素に分割して、これら発熱体要素のそれぞれの発熱量を適正に空間分布させることによって前記含フッ素系高分子膜基材の温度を適正値で均一に保っている。前記打ち消しあうタイミングでは、前記発熱体要素の発熱量及びその空間分布を適正に再設定することによって前記含フッ素系高分子膜基材の温度を適正値で均一に保っている。本発明を採用すると、前記電離放射線の照射の開始直前から照射の直後まで前記所望範囲内の全ての位置における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、大きな面積の含フッ素系高分子膜基材を正確な温度管理下で改質処理できる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In the method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, a heating element having a calorific value distributed in the longitudinal direction and the width direction , In the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction, the heating element is provided in a non-contact manner facing the surface of the fluorine-containing polymer film substrate , and the heating elements are aligned in the width direction. A first heating element group and a second heating element group each including a plurality of heating element elements, and the first heating element group and the second heating element group are aligned in the longitudinal direction. and is, the fluorine-containing polymer The substrate wherein radiation field and includes a substantially magnitude of desired scope consistent, calorific value and / or its distribution of the heating element is or are controlled set according to a predetermined time function, the time function The first timing when the heating element heats all the sites within the desired range to a temperature within the set temperature range, the temperature rise due to irradiation of the ionizing radiation at all the sites within the desired range, and the And a second timing that substantially cancels the temperature drop due to cooling of the fluorine-containing polymer film substrate, and at this second timing, the heating element located in the vicinity of the irradiation field the lowering of the surface temperature of the temperature of the fluorine-containing polymer membrane substrate, about said irradiation field, is the method comprising Rukoto is radiating to lower distributed semi-cylindrical Since the timing for keeping the temperature of the fluorine-containing polymer film substrate within the set temperature range is provided before starting the irradiation of the ionizing radiation, the irradiation is performed at a low temperature immediately after the start of the irradiation of the ionizing radiation. You can avoid danger. At this heating timing, the heating element is divided into a large number of heating element elements, and the respective calorific values of these heating element elements are appropriately distributed in space so that the temperature of the fluorine-containing polymer film substrate is set appropriately. The value is kept uniform. At the timing of the cancellation, the temperature of the fluorine-containing polymer film substrate is kept uniform at an appropriate value by appropriately resetting the heat generation amount and the spatial distribution of the heating element. When the present invention is adopted, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of irradiation of the ionizing radiation to immediately after the irradiation can be kept within the set temperature range. The fluorine-containing polymer membrane substrate having a large area can be modified under accurate temperature control.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記長手方向及び前記幅方向に分布した所定の発熱量を有する発熱体が前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、前記含フッ素系高分子膜基材は、前記設定温度範囲より低い温度に保たれて保持された第1の基材領域と、前記発熱体によって前記設定温度範囲内又はその近くの温度に加熱された第2の基材領域と、前記電離放射線の照射を受けて前記設定温度範囲内の温度に保たれた第3の基材領域とを含んでおり、当該第3の基材領域は前記所望範囲を含んでおり、当該所望範囲内のあらゆる部分では、前記発熱体の加熱に起因する温度が低下しようとすると前記電離放射線の照射に起因する温度が上昇して、前記電離放射線の照射を受ける時間中においてその温度が前記設定温度範囲内に保たれるように、前記発熱体の発熱量及び/又はその分布及び/又は前記電離放射線の強度が設定され、又は制御されことを特徴とする方法である。前記第1の基材領域では好ましくは常温に保たれており、前記含フッ素系高分子膜基材の保持が容易に行えるとともにその走行作用を付与できるので、照射処理が連続的に行える。前記第1の基材領域を前記第3の基材領域を挟んで両側に設けることによって照射処理が終了した含フッ素系高分子膜を直後に取り出すことができ、処理速度が大きくなる。前記第2の基材領域では、前記電離放射線の照射を受けない状態で前記設定温度範囲内又はその近くの温度まで加熱されているので、低温状態下で前記電離放射線を照射する危険が回避できる。前記第2の基材領域及び第3領域では、これらの近傍に設けられた前記発熱体を多数の発熱体要素に分割して、これら発熱体要素のそれぞれの発熱量を適正に空間分布させることによって、その温度を適正値で均一に保つようになっている。本発明を採用すると、能率よく正確に大量の照射処理を行うことができる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In a method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, a heating element having a predetermined calorific value distributed in the longitudinal direction and the width direction Is provided in a non-contact manner in the vicinity of the irradiation field of the ionizing radiation so as to face the surface of the fluorine-containing polymer film substrate , and each of the heating elements includes a plurality of heating element elements aligned in the width direction. A first heat generating element group and a second heat generating element group, the first heat generating element group and the second heat generating element group are aligned in the longitudinal direction, and the fluorine-containing system the radiation field and substantially the polymer membrane substrate It includes the size of the desired range that matches, the fluorine-containing polymer membrane substrate has a first substrate region held is maintained at a temperature lower than the set temperature range, by the heating element A second substrate region heated to a temperature within or near the set temperature range; and a third substrate region maintained at a temperature within the set temperature range by being irradiated with the ionizing radiation. and de, the third base region contains the desired range, in every part of the said desired range, the temperature due to the heating of the heating element is due to illumination of it when Then the ionizing radiation to decrease The amount of heat generated by the heating element and / or its distribution and / or the intensity of the ionizing radiation so that the temperature rises and the temperature is maintained within the set temperature range during the time of receiving the ionizing radiation. Is set or controlled A method characterized by that. The first base material region is preferably kept at room temperature, and the fluorine-containing polymer film base material can be easily held and its running action can be imparted, so that the irradiation treatment can be performed continuously. By providing the first base material region on both sides of the third base material region, the fluorine-containing polymer film after the irradiation treatment can be taken out immediately, and the processing speed is increased. Since the second base material region is heated to the temperature within or near the set temperature range without being irradiated with the ionizing radiation, the risk of irradiating the ionizing radiation under a low temperature state can be avoided. . In the second base material region and the third region, the heating element provided in the vicinity thereof is divided into a number of heating element elements, and the respective heat generation amounts of these heating element elements are appropriately distributed in space. Therefore, the temperature is kept uniform at an appropriate value. When the present invention is employed, a large amount of irradiation processing can be performed efficiently and accurately.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記含フッ素系高分子膜基材は前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、当該所望範囲内の部分は前記電離放射線の照射を受ける処理装置内を通過し、当該処理装置は、前記含フッ素系高分子膜基材の表面に対向して非接触に設けられた発熱体を含んでおり、前記含フッ素系高分子膜基材の一部を前記設定温度範囲より低い温度に保つとともに機械的に保持する第1の装置領域と、前記発熱体によって前記所望範囲内の部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲内の部分前記電離放射線を照射して所定の線量を与える第3の装置領域とを順に有しており、前記発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、前記所望範囲内の部分前記第3の装置領域に位置する場合においては、前記所望範囲の部分が冷却されて温度が低下しようとすると当該温度低下を補うように前記電離放射線の照射に起因する温度を上昇させて前記所望範囲内のあらゆる部位の温度を前記設定温度範囲内に保つように、前記電離放射線の強度分布又は/及び前記発熱体の発熱量の分布が設定され又は制御されるようになっていることを特徴とする方法である。前記含フッ素系高分子膜基材は、好ましくは常温に保たれた前記第1の装置領域と、前記電離放射線の照射を受けない状態で前記設定温度範囲内又はその近くの温度まで均一に加熱される前記第2の装置領域と、前記電離放射線の照射を受ける前記第3の装置領域とを順次通過するようになっている。従って、前記電離放射線の照射の開始直前から照射の直後まで前記所望範囲内の全ての位置における含フッ素系高分子膜基材の温度を前記設定温度範囲内に収めることができ、正確な温度管理下で短時間に多量の改質処理ができる。 One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In the method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, the fluorine-containing polymer film substrate is substantially the same as the irradiation field of the ionizing radiation. And a portion within the desired range passes through the processing apparatus that is irradiated with the ionizing radiation, and the processing apparatus includes the fluorine-containing polymer film substrate . A first device that includes a heating element provided in a non-contact manner facing the surface , and that mechanically holds a part of the fluorine-containing polymer film substrate at a temperature lower than the set temperature range Area and front by said heating element Third device area to which the second device region for heating the portion of the desired range to the set temperature within or close to the temperature thereof, and irradiating the ionizing radiation to a portion within the desired range predetermined dose The heating element includes a first heating element group and a second heating element group each including a plurality of heating element elements aligned in the width direction, and the first heating element and the body element group and the second heating element group aligned in the longitudinal direction, when the portion in the desired range is located in the third device region part in said desired range is cooled so as to keep the temperature of any site within the desired range within the set temperature range temperature Te is the temperature raised due to the irradiation of the ionizing radiation to compensate for it when Then the temperature drop to drop, the ionizing radiation Intensity distribution of and / or said A method characterized in that calorific value of the distribution of the thermal body is adapted to be set or controlled. The fluorine-containing polymer film substrate is preferably heated uniformly to a temperature within or near the set temperature range without being irradiated with the ionizing radiation, and the first device region maintained at room temperature. The second device region and the third device region that receives the ionizing radiation are sequentially passed. Accordingly, the temperature of the fluorine-containing polymer film substrate at all positions within the desired range from immediately before the start of the ionizing radiation irradiation to immediately after the irradiation can be kept within the set temperature range, and accurate temperature management is possible. A large amount of reforming treatment can be performed in a short time under.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材は第4の基材領域を含んでおり、当該第4の基材領域は、前記第1の基材領域と前記第2の基材領域の間に位置する基材領域であり、又は前記第1の装置領域と前記第2の装置領域の間に位置する前記含フッ素系高分子膜基材の基材領域であり、前記第4の基材領域において前記含フッ素系高分子膜基材の温度は前記それれの他の基材領域に向う方向の距離に対する第1の変化率を有して分布しており、前記第2の基材領域又は前記第3の基材領域において、又は前記第2の装置領域又は前記第3の装置領域にそれぞれ位置する前記含フッ素系高分子膜基材の基材領域において前記含フッ素系高分子膜基材の温度は前記それれの他の基材領域に向う方向の距離に対する第2の変化率を有して分布しており、前記第1の変化率の大きさ前記各材領域内のいたる所で当該第2の変化率の大きさよりも実質的に大きくなっていることを特徴とする方法である。本発明を採用すると、前記第4の基材領域において狭い範囲で大きな温度勾配を保って加熱されるので前記含フッ素系高分子膜基材の保持が容易であるとともに、処理の為の装置が小型になり、低価格化できる。高温部分を、前記照射野を含む比較的に狭い範囲に限定できるので、処理中における被処理部位の位置決めが容易であり、処理の正確化と高速化ができるようになる。 One of the present invention is the above invention, wherein the fluorine-containing polymer film substrate includes a fourth substrate region, and the fourth substrate region is the first substrate. a base region located between the region and the second base region, or the fluorine-containing polymer membrane substrate located between the first device region and said second device region a base material region, in the fourth base region temperature of the fluorine-containing polymer film substrate have a first rate of change with respect to the distance in the direction towards the other substrate regions of the their respective The fluorine-containing polymer film bases that are distributed in the second substrate region or the third substrate region, or are located in the second device region or the third device region, respectively. in the substrate region of the timber, the direction the temperature of the fluorine-containing polymer film substrate toward the other substrate regions of the their respective Distance and a second rate of change and distribution for the magnitude of the first rate of change, the everywhere within each substrate region substantially than the magnitude of the second rate of change It is a method characterized by the fact that it is larger. When the present invention is adopted, the fourth substrate region is heated while maintaining a large temperature gradient in a narrow range, so that the fluorine-containing polymer film substrate can be easily held and an apparatus for processing can be provided. Smaller and lower price. Since the high-temperature portion can be limited to a relatively narrow range including the irradiation field, it is easy to position the portion to be processed during processing, and the processing can be accurately and speeded up.

本発明の一つは、含フッ素系高分子膜基材又はその他の長手方向と幅方向とに延びた長尺被照射体を予め定められた設定温度範囲内の温度に保ちながら当該長尺被照射体に所定の線量の電離放射線を照射する処理装置であって、前記長尺被照射体は当該処理装置内で位置決め保持される保持部分と前記設定温度範囲内又はその近くの温度に加熱される加熱範囲と前記電離放射線の照射野と実質的に一致する大きさの所望範囲とを含んでおり、前記処理装置は、前記保持部分を保持可能な低い温度に保つとともに前記保持部分を機械的に保持する第1の装置領域と、前記照射野の近傍において前記長尺被照射体の表面に対向して非接触に前記幅方向に並んで設けられた複数の発熱体要素を含んでなる発熱体によって前記加熱範囲内の部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲内の部分前記電離放射線の照射に起因する発熱を与えて前記所望範囲内の部分を前記設定温度範囲内の温度に保つ第3の装置領域とを含んでおり、当該第3の装置領域においては、前記発熱体要素の発熱量の分布が前記第2の装置領域における前記発熱体要素の発熱量の分布とは異なって設定されており、前記発熱体によって加熱された前記所望範囲内の部分の温度が低下しようとすると当該温度低下を補うように分布した強度の前記電離放射線の照射に起因して前記所望範囲内の部分の温度が上昇するようにして、前記電離放射線の照射を受ける時間中において、前記所望範囲内のあらゆる部分を前記設定温度範囲内の温度に保ちながら前記所望範囲内の部分に所定の線量を与えるようにしたことを特徴とする装置である。前記第1の装置領域では前記含フッ素系高分子膜基材又はその他の長尺の被照射体の温度を常温に保つようになっていることが好ましい。前記第3の装置領域では、前記発熱体によって加熱された温度が低下する時刻に於ける温度分布が適正化されるように前記長手方向又は/及び前記幅方向に分布する前記発熱体要素の発熱量の分布を設定又は制御することが好ましい。また、前記時刻において前記電離放射線の強度分布を適正化する場合には、温度の応答速度が高いのでより正確な制御ができる。本発明の装置を採用すると、前記電離放射線の照射中における含フッ素系高分子膜基材又はその他の長尺の被照射体の温度を前記設定温度範囲内の温度に管理しながら容易に照射することができる。 One of the invention, the said long while keeping the temperature within the preset temperature range set the fluorine-containing polymer membrane substrate, or other longitudinal direction and elongated irradiated body extending in the width direction in advance a processing apparatus for irradiating an ionizing radiation of a predetermined dose of irradiation, the long irradiation object includes a holding portion which is positioned and held in the processing unit, in the set temperature range or near the temperature a heating range to be heated, the includes a size of the desired scope consistent radiation field and substantially of ionizing radiation, wherein the processing unit, the retaining portion with keeping the holding portion to a lower temperature can be maintained and a first device region for mechanically holding, a plurality of heating element disposed in line in the width direction to be opposed to the surface of the elongated object to be irradiated in a non-contact in the vicinity of the irradiation field portion within the heating range by the heating element consisting of And a second device region is heated to the set temperature within or close to the temperature thereof, the portion the set temperature range within the desired range to give a heat generation due to irradiation of the ionizing radiation to a portion within the desired range includes a third device region to keep the temperature of the inner, the in the third device region, the calorific value of the distribution of the heating element is heating value of the heating element in the second device region The distribution is set differently, and when the temperature of the portion within the desired range heated by the heating element is about to decrease, due to the irradiation of the ionizing radiation with the intensity distributed to compensate for the temperature decrease the temperature of a portion within a desired range so as to increase, during the period for receiving the irradiation of the ionizing radiation, the desired range while maintaining any part within the desired range to a temperature within the set temperature range Is a device which is characterized in that so as to provide a predetermined dose portion of the inner. In the first apparatus region, it is preferable that the temperature of the fluorine-containing polymer film substrate or other long object to be irradiated is kept at room temperature. In the third device region, each of the heating element elements distributed in the longitudinal direction and / or the width direction so that the temperature distribution at the time when the temperature heated by the heating element decreases is optimized. It is preferable to set or control the calorific value distribution. In addition, when the intensity distribution of the ionizing radiation is optimized at the time, since the temperature response speed is high, more accurate control can be performed. When the apparatus of the present invention is employed, the irradiation of the fluorine-containing polymer film substrate or other long object to be irradiated during the irradiation of the ionizing radiation is easily performed while managing the temperature within the set temperature range. be able to.

本発明の一つは、上記いずれかの発明において、前記所望範囲内のあらゆる部位において前記長尺被照射体の温度の距離に対する変化率が予め定められた値よりも常に小さくなるように前記発熱体の発熱量の分布を経時的に制御するようにしたことを特徴とする装置である。前記発熱体を多数の発熱体要素に分割し、これら其々の発熱体要素の発熱量を空間的、時間的に制御することによって、前記発熱体の発熱量の分布を経時的に制御することができる。特に、前記電離放射線の照射開始前と照射における温度分布均一になるように前記発熱量を制御することが有効である。前記予め定められた変化率の値は前記所望範囲内のあらゆる部位の温度が設定温度範囲内に収まるように定められている。本発明を採用すると、前記電離放射線の照射中における前記含フッ素系高分子膜基材又はその他の長尺被照射体の温度分布の管理が容易になり、処理時間が長くなっても必要な全ての部位において正確に管理された温度において照射処理を行うことができる。特に、照射処理の開始直後や終了直前における温度分布の管理が正確に行えるようになる。 One of the present invention, in any one of the above invention, the heating so that the change rate relative to the distance the temperature of the long object to be irradiated at any site within the desired range is always smaller than a predetermined value The apparatus is characterized in that the distribution of the calorific value of the body is controlled over time. Dividing the heating element into a number of heating element elements and controlling the heating value distribution of the heating elements over time by controlling the heating value of each heating element spatially and temporally. Can do. In particular, it is effective to control the calorific value so that the temperature distribution is uniform before and during the irradiation of the ionizing radiation. The predetermined rate of change value is determined so that the temperature of every part within the desired range falls within the set temperature range. By adopting the present invention, it becomes easy to manage the temperature distribution of the fluorine-containing polymer film substrate or other long irradiated object during the irradiation of the ionizing radiation, and all necessary even if the processing time is long Irradiation treatment can be performed at a precisely controlled temperature in the region. In particular, it becomes possible to accurately manage the temperature distribution immediately after the start and end of the irradiation process.

本発明の一つは、長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、当該発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び当該第2の発熱体要素群が前記長手方向に整列しており、前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、前記第1の発熱体要素群又は前記第2の発熱体要素群のいずれかは、前記照射野内の中央部において前記含フッ素系高分子膜基材の表面に対向して設けられた第1の発熱体要素と、前記幅方向においてより端部に位置して前記含フッ素系高分子膜基材の表面に対向して設けられた第2の発熱体要素とを含んでおり、当該第2の発熱体要素の表面温度を前記第1の発熱体要素の表面温度よりも高く設定することにより前記所望範囲内のあらゆる部分の温度を前記設定温度範囲内に保つことを特徴とする方法である。本発明を採用して前記各発熱体要素の発熱量を適正化することにより前記所望範囲内の部分を前記設定範囲内の温度に容易に且つ正確に保つことができる。
本発明の一つは、上記いずれかの発明において、前記第1の発熱体要素群又は前記第2の発熱体要素群のいずれかに含まれる前記複数の発熱体要素前記照射野内の中央部において前記含フッ素系高分子膜基材の表面に対向して設けられた第1の発熱体要素と、前記幅方向においてより端部に位置して前記含フッ素系高分子膜基材の表面に対向して設けられた第2の発熱体要素とまれており、当該第2の発熱体要素の表面温度は前記第1の発熱体要素の表面温度よりも高く設定されたことを特徴とする方法である。前記含フッ素系高分子膜基材表面に対向して設けられた一様な表面温度を有する発熱体によって前記含フッ素系高分子膜基材加熱する場合には、その周辺部位の温度が中央部位の温度よりも低くなる。この状況は、前記電離放射線を照射しない時も、均一に強度が分布する前記電離放射線を照射している時も変わらない。前記電離放射線の強度分布のみを複雑に制御することによって照射中における前記含フッ素系高分子膜基材温度分布を均一化できるが、照射直後の温度を前記設定温度範囲内に収めるのが困難であるばかりでなく吸収線量が不均一に分布することになり好ましくない。しかるに、本発明を採用すると、前記発熱体による加熱に際して前記含フッ素系高分子膜基材温度分布が前記照射野内で均一な温度分布を実現しやすく、且つ前記電離放射線の吸収線量を均一に保つことが容易である。また、簡単な装置を用いて照射中における前記含フッ素系高分子膜基材温度管理が行える。
One aspect of the present invention is that the fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction is maintained at a temperature within a predetermined set temperature range around the crystal melting point. In the method for producing a modified fluorine-containing polymer film by irradiating ionizing radiation of 1 kGy or more in a low oxygen partial pressure environment, a heating element having a calorific value distributed in the longitudinal direction and the width direction, In the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction, it is provided in a non-contact manner facing the surface of the fluorine-containing polymer film substrate, and the heating elements are aligned in the width direction. A first heating element group and a second heating element group each including a plurality of heating element elements, and the first heating element group and the second heating element group are arranged in the longitudinal direction. Fluorine-containing high The sub-film substrate includes a desired range of a size that substantially matches the irradiation field, and either the first heating element group or the second heating element group is within the irradiation field. A first heating element provided opposite to the surface of the fluorine-containing polymer membrane substrate in the center, and a position of the fluorine-containing polymer membrane substrate located at the end in the width direction. A second heat generating element provided opposite to the surface, and the surface temperature of the second heat generating element is set higher than the surface temperature of the first heat generating element. It is a method characterized by maintaining the temperature of every part within the range within the set temperature range. By adopting the present invention and optimizing the amount of heat generated by each heating element, the portion within the desired range can be easily and accurately maintained at the temperature within the set range.
One of the present invention, in any one of the above invention, wherein the plurality of heat generating element contained in either the first heating element group or said second heating element group of the illumination within the field a first heating element provided opposite to the surface of the fluorine-containing polymer membrane substrate at the center, of the fluorine-containing polymer membrane substrate positioned more ends in the width direction opposite to the surface a second heating element and the cage containing Marete provided in, that the surface temperature of the second heating element is set higher than the surface temperature of the first heating element It is a characteristic method . When the fluorine-containing polymer film substrate is heated by a heating element having a uniform surface temperature provided opposite to the surface of the fluorine-containing polymer film substrate , It becomes lower than the temperature of the central part. This situation does not change when the ionizing radiation is not irradiated, or when the ionizing radiation is uniformly distributed in intensity. The temperature distribution of the fluorine-containing polymer film substrate during irradiation can be made uniform by controlling only the intensity distribution of the ionizing radiation in a complicated manner, but it is difficult to keep the temperature immediately after irradiation within the set temperature range. This is not preferable because the absorbed dose is unevenly distributed. However, when the present invention is adopted, the temperature distribution of the fluorine-containing polymer film substrate during heating by the heating element can easily achieve a uniform temperature distribution in the irradiation field, and the absorbed dose of the ionizing radiation can be made uniform. Easy to keep. Further, the temperature of the fluorine-containing polymer film substrate during irradiation can be controlled using a simple apparatus.

本発明の一つは、上記いずれかの発明において、前記第2の発熱体要素の表面温度と前記第1の発熱体要素の表面温度との異差は前記含フッ素系高分子膜基材移動速度に対応して変えられることを特徴とする方法である。本発明を採用すると、前記含フッ素系高分子膜基材移動速度が変化した場合に、前記含フッ素系高分子膜基材移動方向で前記第2の発熱体要素の表面温度と前記第1の発熱体要素の表面温度との異差が変えられるので、前記含フッ素系高分子膜基材温度をその移動速度に関係なく前記設定温度範囲に収められる。 One aspect of the present invention is that in any one of the above inventions, the difference between the surface temperature of the second heating element and the surface temperature of the first heating element is the difference between the surface temperature of the fluorine-containing polymer film substrate . The method is characterized in that it can be changed according to the moving speed. When the present invention is adopted, when the moving speed of the fluorine-containing polymer film substrate changes, the surface temperature of the second heating element and the first temperature in the moving direction of the fluorine-containing polymer film substrate are changed. since different difference between the surface temperature of the first heating element is changed, it is contained in the set temperature range regardless of the temperature of the fluorine-containing polymer membrane substrate in its moving speed.

本発明の一つは、上記いずれかの発明において、前記発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、これら発熱体要素の表面温度は前記含フッ素系高分子膜基材の前記幅方向において、より端部に位置する前記発熱体要素の表面の温度がより高くなっていることを特徴とする方法である。本発明を採用すると、簡単な構造の発熱体を用いて照射中における前記含フッ素系高分子膜基材の温度管理が容易に行える。特に、前記含フッ素系高分子膜基材の幅方向温度分布を一様に保った状態で長手方向の温度分布を制御し易いので、前記幅方向に整列した発熱体要素群を同じ時間関数で制御できることになり、前記電離放射線の照射中における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内の温度に管理しながら容易に照射することができる。 One of the present invention, in any one of the above invention, the heating element has a first heating element group and the second heat generating element groups each comprising a plurality of heating element aligned in the width direction The first heat generating element group and the second heat generating element group are aligned in the longitudinal direction, and the surface temperature of these heat generating element elements is in the width direction of the fluorine-containing polymer film substrate, The method is characterized in that the temperature of the surface of the heating element located at the end is higher . When the present invention is adopted, temperature control of the fluorine-containing polymer film substrate during irradiation can be easily performed using a heating element having a simple structure. In particular, since the temperature distribution in the longitudinal direction can be easily controlled in a state where the temperature distribution in the width direction of the fluorine-containing polymer film substrate is kept uniform, the heating element elements aligned in the width direction can be controlled with the same time function. will be controllable, it can be easily irradiated while controlling the temperature of the fluorine-containing polymer membrane substrate during irradiation of the ionizing radiation at a temperature within the preset temperature range.

本発明の一つは、上記いずれかの発明において、前記幅方向に整列した同一の前記発熱体要素群に含まれる、前記各発熱体要素は同一の時間関数に従ってそれらの発熱量が制御されることを特徴とする方法である。本発明を採用すると、簡単な制御装置を用いて前記電離放射線の照射中における前記含フッ素系高分子膜基材の温度を前記設定温度範囲内の温度に管理しながら正確に照射することができる。特に、前記電離放射線の照射開始前と照射開始後とを問わず、前記含フッ素系高分子膜基材の温度を前記設定温度範囲内の温度に保つことが容易になる。 One of the present invention, in any one of the invention, aligned in the width direction, the same of the contained in the heat-generating element group, wherein each heating element is heating value thereof is controlled according to the same time function It is the method characterized by this. By adopting the present invention, it is possible to accurately irradiate while controlling the temperature of the fluorine-containing polymer film substrate during the irradiation of the ionizing radiation to a temperature within the set temperature range using a simple control device. . In particular, it becomes easy to keep the temperature of the fluorine-containing polymer film substrate at a temperature within the set temperature range before and after the start of irradiation with the ionizing radiation.

本発明の一つは、上記いずれかの発明において、前記長尺被照射体特定の部分における前記設定温度範囲は、前記長尺被照射体の前記特定部分において過去に吸収された前記電離放射線の吸収線量の積算値に対応して予め定められた関係を保って低下することを特徴とする装置である。本発明を採用すると、前記長尺被照射体に吸収された前記電離放射線の吸収線量の積算値が増加するにしたがってその結晶融点が低下した場合にも、吸収線量の積算値と前記設定温度範囲との関係を予め決められた最良の関係に常に保つことができて最適温度条件にて高温放射線処理を行うことができる。 One of the present invention, in any one of the invention, the set temperature range at a particular portion of the long irradiation object, the ionizing radiation absorbed in the past at the specified portion of the elongated object to be irradiated It is an apparatus characterized in that it decreases while maintaining a predetermined relationship corresponding to the integrated value of the absorbed dose. When the present invention is adopted, even when the integrated value of the absorbed dose of the ionizing radiation absorbed by the long object is increased, the integrated value of the absorbed dose and the set temperature range even when the crystalline melting point is lowered. The high temperature radiation treatment can be carried out under the optimum temperature condition.

本発明の一つは、上記いずれかの発明において、前記含フッ素系高分子膜基材はポリテトラフルオロエチレン膜、又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体膜、又はテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体膜のいずれかであることを特徴とする方法である。本発明を採用すると、放射線環境下で使用できなかった大面積のポリテトラフルオロエチレン(PTFE)膜を放射線環境下でも使用できるように改質して工業製品として安価に提供できる。更に、改質したポリテトラフルオロエチレン(PTFE)膜を基材として使用することにより、優れた耐酸化性と広範囲なイオン交換容量を有する改質されたポリテトラフルオロエチレンイオン交換膜を安価に大量生産できるようになる。更に、これを用いると安価で耐久性がある燃料電池を提供できる。 One of the present invention is the above invention, wherein the fluorine-containing polymer film substrate is a polytetrafluoroethylene film, a tetrafluoroethylene-hexafluoropropylene copolymer film, or a tetrafluoroethylene-perfluoro. It is a method characterized by being one of alkyl vinyl ether copolymer films. When the present invention is adopted, a polytetrafluoroethylene (PTFE) film having a large area that could not be used in a radiation environment can be modified so that it can be used in a radiation environment, and can be provided at low cost as an industrial product. In addition, by using a modified polytetrafluoroethylene (PTFE) membrane as a base material, a large amount of modified polytetrafluoroethylene ion exchange membranes having excellent oxidation resistance and a wide range of ion exchange capacities at low cost It becomes possible to produce. Furthermore, if this is used, a cheap and durable fuel cell can be provided.

本発明の一つは、上記いずれかの発明の方法によって又は装置を用いて製造された改質含フッ素系高分子膜である。本発明を採用すると、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになる。また、放射線環境下でも使用できるように改質された含フッ素系高分子膜が安価となり、且つ大量に供給できるようになり工業製品として有用である。 One of the present invention, by the method of any one of the invention, or a modified fluorine-containing polymer film produced using the apparatus. By employing the present invention, it becomes possible to mass-produce a fluorine-containing polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange capacity at a low cost. In addition, the fluorine-containing polymer film modified so that it can be used even in a radiation environment is inexpensive and can be supplied in large quantities, and is useful as an industrial product.

本発明の一つは、上記いずれかの発明の方法によって又は装置を用いて製造された改質含フッ素系高分子膜を用いて製造された燃料電池である。本発明を採用すると、燃料電池の寿命と性能を高める為に最も重要な構成要素であるイオン交換膜が優れた耐酸化性と広範囲なイオン交換容量を有するとともに、これを安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に大量生産できるようになる。   One aspect of the present invention is a fuel cell manufactured by using the modified fluorine-containing polymer membrane manufactured by any of the above-described methods or using an apparatus. By adopting the present invention, the ion exchange membrane, which is the most important component for enhancing the life and performance of the fuel cell, has excellent oxidation resistance and a wide range of ion exchange capacity, and can be mass-produced at low cost. As a result, it becomes possible to mass-produce long-lived fuel cells that have high performance and stable operation at low cost.

本発明を採用すると、含フッ素系高分子膜基材を酸素不在下において高温度で電離放射線を照射して架橋するに際して、大面積の含フッ素系高分子膜基材の温度を照射野内の全ての部位にわたってかつ処理の全時間中にわたって予め定められた温度範囲に常に保った状態で電離放射線を照射することができ、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産することができる。本発明を採用して生産された安価で高品質の架橋構造を有する含フッ素系高分子膜を基材として用いると、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになり、結果として高性能で安定な動作をする長寿命の燃料電池を安価に生産できるようになる。また、本発明によって得られた改質含フッ素系高分子膜は耐放射線性を付与されるために放射線環境下で使用できるその他の工業材料としてまたは放射線滅菌が可能な医療用具素材として有用となる。   When the present invention is adopted, when the fluorine-containing polymer membrane substrate is cross-linked by irradiating with ionizing radiation at a high temperature in the absence of oxygen, the temperature of the large-area fluorine-containing polymer membrane substrate is set within the irradiation field. A large amount of fluorine-containing polymer film having a stable quality cross-linked structure can be irradiated in a short period of time with ionizing radiation in a state where it is always kept within a predetermined temperature range over the entire region of the treatment. And can be produced inexpensively. Fluorine-containing polymer ions having excellent oxidation resistance and a wide range of ion exchange capacities when using a fluorine-containing polymer membrane having a crosslinked structure of high quality produced by employing the present invention as a base material The exchange membrane can be mass-produced at low cost, and as a result, a long-life fuel cell that operates stably at high performance can be produced at low cost. In addition, the modified fluorine-containing polymer film obtained by the present invention is useful as other industrial material that can be used in a radiation environment or as a medical device material that can be sterilized by radiation because it is given radiation resistance. .

本発明に係わる高分子膜基材の放射線処理方法では、長尺の含フッ素系高分子膜基材を温度制御と電子線照射が行える高温電子線処理装置内を通過させる。この高温電子線処理装置の入口位置および出口位置において、前記含フッ素系高分子膜基材の長手方向の一部分を常温に保って機械的に保持するとともに走行機能を付与させる。前記高温電子線処理装置内においては発熱体を設け、この発熱体を前記含フッ素系高分子膜基材の長手方向および幅方向に沿って多数の発熱体要素に分割して構成しておき、これらの発熱体要素の表面温度を空間的および/又は時間的に適正に制御して、照射中および照射前後を問わず、前記含フッ素系高分子膜基材の照射野内に位置する全ての部位の温度を実質的に一様とし、所定の処理が進行すれば長尺の改質された含フッ素系高分子膜の出口部分を部分的に冷却して高温電子線処理装置外に送り出すことによって短時間に多量の処理ができるようになっている。   In the radiation treatment method for a polymer film substrate according to the present invention, a long fluorine-containing polymer film substrate is passed through a high temperature electron beam processing apparatus capable of temperature control and electron beam irradiation. At the entrance position and exit position of the high temperature electron beam processing apparatus, a part of the longitudinal direction of the fluorine-containing polymer film substrate is mechanically held at room temperature and a running function is given. A heating element is provided in the high-temperature electron beam processing apparatus, and the heating element is divided into a large number of heating element elements along the longitudinal direction and the width direction of the fluorine-containing polymer film substrate, By appropriately controlling the surface temperature of these heating element elements spatially and / or temporally, all the parts located in the irradiation field of the fluorine-containing polymer film substrate during irradiation and before and after irradiation By substantially cooling the exit temperature of the elongate fluorine-containing polymer film and feeding it out of the high-temperature electron beam processing apparatus, when the predetermined process proceeds, A large amount of processing can be performed in a short time.

前記高温電子線処理装置内において、電子線を照射しない位置、または電子線を照射しないタイミングでは、前記発熱体要素の表面温度を照射野の中心から離れるにつれてステップ状に高く設定することにより、前記含フッ素系高分子膜基材の照射野内およびその周辺位置に位置する部位の温度を一様に保ちながら短時間に結晶融点前後の予め定めた設定温度範囲内の温度まで高める。電子線を照射する位置、および電子線を照射するタイミングでは、照射野内の近傍に位置する前記発熱体要素の温度を低下させて前記含フッ素系高分子膜基材の温度を、照射野を中心として、蒲鉾状に分布した状態で低下させるように放熱させ、この放熱を打ち消す熱量を有する電子線を照射することによって加熱し、結果として照射中のどのタイミングでも前記含フッ素系高分子膜基材の温度が変化しないようにしている。また、前記の放出される熱量の空間分布および時間変化は、照射野内においては、電子線によって与えられる熱量の空間分布および経時変化とそれぞれ一致しており、結果として照射野内においては空間的および時間的に一様な温度分布となる。   In the high temperature electron beam processing apparatus, at the position where the electron beam is not irradiated, or at the timing where the electron beam is not irradiated, by setting the surface temperature of the heating element higher in a stepped manner as the distance from the center of the irradiation field increases, While keeping the temperature of the portion located in the irradiation field of the fluorine-containing polymer film substrate and its peripheral position uniform, the temperature is raised in a short time to a temperature within a predetermined set temperature range around the crystal melting point. At the electron beam irradiation position and the electron beam irradiation timing, the temperature of the heating element located in the vicinity of the irradiation field is lowered so that the temperature of the fluorine-containing polymer film substrate is centered on the irradiation field. As a result, the fluorine-containing polymer film substrate is heated by irradiating with an electron beam having a quantity of heat that cancels this heat dissipation, and as a result, the fluorine-containing polymer film substrate is heated at any timing during irradiation. The temperature is kept from changing. In addition, the spatial distribution and temporal change of the amount of released heat coincide with the spatial distribution and temporal change of the amount of heat given by the electron beam in the irradiation field, and as a result, spatial and temporal changes in the irradiation field. The temperature distribution is uniform.

また、吸収線量の増加とともに結晶融点が低下し、したがって最適温度範囲が吸収線量とともに低下するので、前記発熱体要素の表面温度を吸収線量の積算値に応じて変化させて常に最適な温度で最適な架橋処理を行えるようになっている。このように吸収線量の積算値によって照射時の温度を変化させる場合には前記含フッ素系高分子膜基材を静止させた状態で前記発熱体要素の表面温度を吸収線量の積算値に応じて制御し、既定の吸収線量値に達した後に電子線の照射を休止して照射野の幅に相当する距離だけ前記含フッ素系高分子膜基材を長手方向に移動させるとともに、前記の各発熱体要素の温度設定を初期化して前記含フッ素系高分子膜基材の温度を照射開始時の設定値に戻した後、前記の照射を繰り返す。この際、前記含フッ素系高分子膜基材はステップ状に自動的に移動される。   Also, as the absorbed dose increases, the crystalline melting point decreases, and therefore the optimum temperature range decreases with the absorbed dose. Therefore, the surface temperature of the heating element is changed according to the integrated value of the absorbed dose, and is always optimal at the optimum temperature. Can be cross-linked. Thus, when the temperature at the time of irradiation is changed by the integrated value of the absorbed dose, the surface temperature of the heating element according to the integrated value of the absorbed dose with the fluorine-containing polymer film substrate stationary. Control, after reaching a predetermined absorbed dose value, stop the irradiation of the electron beam and move the fluorine-containing polymer film substrate in the longitudinal direction by a distance corresponding to the width of the irradiation field. The temperature setting of the body element is initialized to return the temperature of the fluorine-containing polymer film substrate to the set value at the start of irradiation, and then the irradiation is repeated. At this time, the fluorine-containing polymer film substrate is automatically moved stepwise.

電子線照射時の許容温度範囲を狭く設定する場合には、前記含フッ素系高分子膜基材の長手方向に沿って電子線の強度分布を適当に変調することによって、照射野の周辺部囲の温度を他の部位の温度と同一にすることができる。この場合には、照射線量率が照射野の周辺と照射野の中央部と異なる為に前記含フッ素系高分子膜基材を静止して照射すると吸収線量が位置的に一様でなくなる。これを改善する為には照射中に前記含フッ素系高分子膜基材を適当な速さで移動させればよい。また、前記の各発熱体要素を前記長手方向に沿ってより細分化してより高精度に発熱量を制御することによって前記含フッ素系高分子膜基材の長手方向の温度分布を適正化すると前記の電子線の強度分布の変調は不必要にできる。   When the allowable temperature range at the time of electron beam irradiation is set to be narrow, the periphery of the irradiation field is surrounded by appropriately modulating the electron beam intensity distribution along the longitudinal direction of the fluorine-containing polymer film substrate. The temperature of can be the same as the temperature of other parts. In this case, since the irradiation dose rate is different between the periphery of the irradiation field and the central part of the irradiation field, the absorbed dose becomes non-uniform in position when the fluorine-containing polymer film substrate is irradiated stationary. In order to improve this, the fluorine-containing polymer film substrate may be moved at an appropriate speed during irradiation. Further, when the temperature distribution in the longitudinal direction of the fluorine-containing polymer film substrate is optimized by subdividing each of the heating element elements along the longitudinal direction and controlling the heat generation amount with higher accuracy, The modulation of the electron beam intensity distribution can be made unnecessary.

照射する線量が多くない場合には、最適温度範囲を一定値にプリセットできるので、この場合には前記発熱体要素の温度設定を一定として前記含フッ素系高分子膜基材を一定速度で移動させながら架橋処理を行うことができる。この場合でも、不活性ガスの流量を増す等によって前記含フッ素系高分子膜基材の冷却率を大きくしておくと、放熱に釣り合う電子線の発熱量を増加できるのでより大きな線量率で短時間に多量の線量を照射できる。   When the irradiation dose is not large, the optimum temperature range can be preset to a constant value. In this case, the temperature of the heating element is kept constant and the fluorine-containing polymer film substrate is moved at a constant speed. The cross-linking treatment can be performed. Even in this case, if the cooling rate of the fluorine-containing polymer film substrate is increased by increasing the flow rate of the inert gas, etc., the amount of heat generated by the electron beam in proportion to the heat radiation can be increased. A large dose can be irradiated in time.

以上に述べたように、前記高温電子線処理装置内において前記含フッ素系高分子膜基材の保持部分を常温に保ったままで照射野およびその近傍部分を急速に加熱した後に、大きな照射線量率で照射しながら温度を一定に保った状態で前記含フッ素系高分子膜基材に多量の線量を短時間に照射し、照射が終了すると前記含フッ素系高分子膜基材の前記高温電子線処理装置出口に位置する部位を部分的に急速に冷却して前記高温電子線処理装置の外部に取り出される。このようにして、大面積の前記含フッ素系高分子膜基材を高速度で多量に自動的に架橋処理できるようになっている。以下に、実施例を用いて本発明の実施形態及び作用についてより具体的且つ詳細に説明する。   As described above, after rapidly heating the irradiation field and its vicinity while keeping the holding part of the fluorine-containing polymer film substrate at room temperature in the high-temperature electron beam processing apparatus, a large irradiation dose rate The fluorine-containing polymer film substrate is irradiated with a large amount of dose in a short time in a state where the temperature is kept constant while irradiating with, and when the irradiation is completed, the high-temperature electron beam of the fluorine-containing polymer film substrate A portion located at the processing apparatus outlet is partially cooled rapidly and taken out of the high temperature electron beam processing apparatus. In this way, the fluorine-containing polymer film substrate having a large area can be automatically crosslinked in a large amount at a high speed. Hereinafter, the embodiment and operation of the present invention will be described more specifically and in detail using examples.

図1、図2、図3を参照して本発明の含フッ素系高分子膜基材の放射線処理方法について説明する。これらの図において、同じ部分は同じ番号を付して表している。図1及び図2は、本発明に係わる含フッ素系高分子膜基材の高温電子線処理装置の例を示している。図1は縦断面図であり、図2は横断面図である。図1において、1は長尺で幅広に形成された含フッ素系高分子膜基材であり、本実施例では、厚さが100μmで幅が30cmで長さが10mのポリテトラフルオロエチレン(PTFE)膜を用いている。これは、リール2に巻き取られた状態からリール3に巻き取られるように移動する。含フッ素系高分子膜基材1はプーリー4によって位置決めされて高温電子線処理装置10内に導かれて、340℃程度に加熱された後に温度を340±5℃の範囲内に保った状態を維持しつつ電子線を照射される。高温電子線処理装置10の入口部分及び出口部分には冷却用プーリー5及び6が設けられており、これらは含フッ素系高分子膜基材1を機械的に保持してこの部分を常時常温に保つとともに含フッ素系高分子膜基材1の位置決め及び走行を促すように作動する。高温電子線処理装置10の出口部分にはプーリー7及び8が設けられている。プーリー7は位置が固定されており、含フッ素系高分子膜基材1の位置決めを行う。プーリー8には移動可能になっており、予め定められた力F1を常時含フッ素系高分子膜基材1に付与するようになっており、高温電子線処理装置10内の部分に適切な張力を与えるようになっている。プーリー8を通過した含フッ素系高分子膜基材1はリール3によって巻き取られる。 The radiation treatment method for the fluorine-containing polymer film substrate of the present invention will be described with reference to FIGS. In these drawings, the same parts are denoted by the same reference numerals. 1 and 2 show an example of a high-temperature electron beam processing apparatus for a fluorine-containing polymer film substrate according to the present invention. 1 is a longitudinal sectional view, and FIG. 2 is a transverse sectional view. In FIG. 1, reference numeral 1 denotes a long and wide fluorine-containing polymer membrane substrate. In this example, polytetrafluoroethylene (PTFE) having a thickness of 100 μm, a width of 30 cm, and a length of 10 m is used. ) A membrane is used. This moves so as to be wound around the reel 3 from the state wound around the reel 2. The fluorine-containing polymer film substrate 1 is positioned by the pulley 4 and guided into the high-temperature electron beam processing apparatus 10 and heated to about 340 ° C., and then the temperature is kept within the range of 340 ± 5 ° C. The electron beam is irradiated while maintaining. Cooling pulleys 5 and 6 are provided at an inlet portion and an outlet portion of the high-temperature electron beam processing apparatus 10 , which mechanically hold the fluorine-containing polymer film substrate 1 and keep this portion at a normal temperature. It operates so as to promote the positioning and running of the fluorine-containing polymer film substrate 1 while maintaining it. Pulleys 7 and 8 are provided at the exit of the high temperature electron beam processing apparatus 10 . The position of the pulley 7 is fixed, and the fluorine-containing polymer film substrate 1 is positioned. The pulley 8 is movable, and a predetermined force F1 is always applied to the fluorine-containing polymer film substrate 1, and an appropriate tension is applied to a portion in the high-temperature electron beam processing apparatus 10 . Is supposed to give. The fluorine-containing polymer film substrate 1 that has passed through the pulley 8 is taken up by the reel 3.

高温電子線処理装置10には放射線防護機能と気体封じ込め機能を有する処理容器11が設けられており、内部はアルゴンや窒素等の不活性ガスで満たされている。高温電子線処理装置10には強度が面状に分布した電子線Eを照射する所謂面照射型の電子線照射装置12が設けられている。電子線照射装置12は例えば特開平11−19190号公報に開示された構造の装置で、電子線透過窓13を透過して平面状に分布した300keV程度のエネルギーと10mA程度の電流とを有する電子線を照射できるようになっている。高温電子線処理装置10内には含フッ素系高分子膜基材1が通過するようになっており、含フッ素系高分子膜基材1に対して電子線照射装置12と反対側に発熱体である加熱用ヒータ群30が設けられている。加熱用ヒータ群30と処理容器11の壁との間には熱遮蔽板14が設けられており、処理容器11の過熱を防止している。加熱用ヒータ群30は図示しない熱絶縁体を介して熱遮蔽板14に機械的に支持されている。熱遮蔽板14は必要により水冷等によって冷却されている。処理容器11内で含フッ素系高分子膜基材1と電子線透過窓13との間には第2の電子線透過窓15及びこれを冷却するとともに機械的に支持する隔壁16が設けられている。電子線透過窓13と第2の電子線透過窓15とは、ノズル17から導かれてノズル18から流出する不活性ガスがこれらの間を高速で流れることにより冷却される。 The high-temperature electron beam processing apparatus 10 is provided with a processing container 11 having a radiation protection function and a gas containment function, and the inside is filled with an inert gas such as argon or nitrogen. The high temperature electron beam processing apparatus 10 is provided with a so-called surface irradiation type electron beam irradiation apparatus 12 that irradiates an electron beam E whose intensity is distributed in a planar shape. The electron beam irradiation apparatus 12 is an apparatus having a structure disclosed in, for example, Japanese Patent Application Laid-Open No. 11-19190, and is an electron having an energy of about 300 keV and a current of about 10 mA distributed in a plane through the electron beam transmission window 13. Can be irradiated with a line. The fluorine-containing polymer film substrate 1 passes through the high-temperature electron beam processing apparatus 10 , and a heating element on the opposite side of the electron beam irradiation apparatus 12 with respect to the fluorine-containing polymer film substrate 1. A heater group 30 for heating is provided. A heat shielding plate 14 is provided between the heater group 30 for heating and the wall of the processing container 11 to prevent the processing container 11 from being overheated. The heating heater group 30 is mechanically supported by the heat shielding plate 14 via a thermal insulator (not shown). The heat shielding plate 14 is cooled by water cooling or the like as necessary. A second electron beam transmission window 15 and a partition wall 16 for cooling and mechanically supporting the second electron beam transmission window 15 are provided between the fluorine-containing polymer film substrate 1 and the electron beam transmission window 13 in the processing container 11. Yes. The electron beam transmission window 13 and the second electron beam transmission window 15 are cooled by the inert gas that is guided from the nozzle 17 and flows out of the nozzle 18 flowing between them at a high speed.

高温電子線処理装置10の入口部位及び出口部位では熱遮蔽板14と隔壁16とが含フッ素系高分子膜基材1を挟んで非接触に近接している。これらの位置で、含フッ素系高分子膜基材1の図示上下両面に向って不活性ガスを吹きかけるノズル群19及び20が設けられており、この不活性ガスの流動により含フッ素系高分子膜基材1の機械的接触を防止して保持するとともに含フッ素系高分子膜基材1を冷却している。隔壁16には図示しない非接触温度計が設けられており、矢印21,22で示す方向における含フッ素系高分子膜基材1の表面位置の温度を検出できるようになっている。図1及び図2に示すように、電子線Eの中心軸をZ軸とし、含フッ素系高分子膜基材1とZ軸との交点を原点Oとし、原点Oを通り、高温電子線処理装置10の入口部分から出口部分に向う方向をX軸とし、原点Oを通り、X軸及びZ軸に直角な方向をY軸とする。高温電子線処理装置10内では含フッ素系高分子膜基材1の長手方向はX軸に平行であり、含フッ素系高分子膜基材1の幅方向はY軸に平行である。 At the entrance part and the exit part of the high-temperature electron beam processing apparatus 10 , the heat shielding plate 14 and the partition 16 are close to each other in a non-contact manner with the fluorine-containing polymer film substrate 1 interposed therebetween. At these positions, nozzle groups 19 and 20 for spraying an inert gas toward the upper and lower surfaces of the fluorine-containing polymer film substrate 1 shown in the figure are provided, and the fluorine-containing polymer film is flowed by the flow of the inert gas. The fluorine-containing polymer film substrate 1 is cooled while the mechanical contact of the substrate 1 is prevented and held. The partition wall 16 is provided with a non-contact thermometer (not shown) so that the temperature of the surface position of the fluorine-containing polymer film substrate 1 in the directions indicated by arrows 21 and 22 can be detected. As shown in FIGS. 1 and 2, the central axis of the electron beam E is the Z-axis, the intersection of the fluorine-containing polymer film substrate 1 and the Z-axis is the origin O, and the high-temperature electron beam treatment passes through the origin O. A direction from the inlet portion to the outlet portion of the apparatus 10 is defined as an X axis, and a direction passing through the origin O and perpendicular to the X axis and the Z axis is defined as a Y axis. In the high-temperature electron beam processing apparatus 10 , the longitudinal direction of the fluorine-containing polymer film substrate 1 is parallel to the X axis, and the width direction of the fluorine-containing polymer film substrate 1 is parallel to the Y axis.

図3(a)は、正のZ座標値を有する高温電子線処理装置10の部分を取り除いてZ軸の方向から含フッ素系高分子膜基材1及び加熱用ヒータ群30を見た平面図を表している。図3(b)は図3(a)のYZ平面での断面図を表している。図3(a)の斜線部分は電子線Eの照射野Fiを表しており、照射野幅はFWであり、照射野長はFLである。本実施例においては前記所望範囲は照射野Fiに完全に一致している。図4(a)及び図4(b)は加熱用ヒータ群30の平面図及び側断面図をそれぞれ表している。図4(a)に示しているように、加熱用ヒータ群30はXY平面に平行な複数のヒータ要素とXZ平面に平行な複数のヒータ要素を含んでおり、これらはいずれも含フッ素系高分子膜基材1から一定の距離Z1、例えば2.5cm、を保って並べられている。これらのヒータ要素は前記発熱体要素の1つの具体例である。加熱用ヒータ群30には、X座標がそれぞれ−X2、−X1、0、X1、X2で、Y座標がそれぞれ−Y3、−Y2、−Y1、0、Y1、Y2、Y3の位置に表面の中心を有する35個のヒータ要素に分割されており、これらは小さな距離、例えば2mm、離れて互いに隣接して並べられている。ここで、X1は5.8cm、X2は13.8cm、Y1は10.8cm、Y2は15.1cm、Y3は17.5cmである。このヒータはY軸方向に整列した7個のヒータ要素を含むヒータ要素群、つまり前記発熱体要素群、がX軸方向に5個整列して構成されている。これらのヒータ要素をそれぞれH(i,j)で表す。ここで、iはヒータ要素表面の中心座標を表すX軸方向の上記サフィックスを表し、−2、−1、0、1、2が含まれており、jはヒータ要素の表面の中心座標を表すY軸方向の上記サフィックスを表し、−3、−2、−1、0、1、2、3が含まれる。

FIG. 3A is a plan view of the fluorine-containing polymer film substrate 1 and the heater group 30 as viewed from the Z-axis direction by removing a portion of the high-temperature electron beam processing apparatus 10 having a positive Z coordinate value. Represents. FIG. 3B shows a cross-sectional view in the YZ plane of FIG. The shaded portion in FIG. 3A represents the irradiation field Fi of the electron beam E, the irradiation field width is FW, and the irradiation field length is FL. In the present embodiment, the desired range completely coincides with the irradiation field Fi. 4A and 4B respectively show a plan view and a side sectional view of the heater group 30 for heating. As shown in FIG. 4A, the heating heater group 30 includes a plurality of heater elements parallel to the XY plane and a plurality of heater elements parallel to the XZ plane. They are arranged with a certain distance Z1 from the molecular film substrate 1, for example, 2.5 cm. These heater elements are one specific example of the heating element. The heater group 30 has a surface with X coordinates of -X2, -X1, 0, X1, and X2 and Y coordinates of -Y3, -Y2, -Y1, 0, Y1, Y2, and Y3, respectively. It is divided into 35 heater elements with a center, which are arranged adjacent to each other at a small distance, for example 2 mm. Here, X1 is 5.8 cm, X2 is 13.8 cm, Y1 is 10.8 cm, Y2 is 15.1 cm, and Y3 is 17.5 cm. This heater group is composed of five heater element groups including seven heater elements aligned in the Y-axis direction, that is, five heating element groups aligned in the X-axis direction. Each of these heater elements is represented by H (i, j). Here, i represents the suffix in the X-axis direction representing the center coordinate of the heater element surface, -2, -1, 0, 1 and 2 are included, and j represents the center coordinate of the heater element surface. The suffix in the Y-axis direction is represented, and -3, -2, -1, 0, 1, 2, 3 are included.

ヒータ要素H(i,j)、i = ±2、±1、0、j = ±2、±1,0、はZ座標が−2.5cmで、含フッ素系高分子膜基材1から2.5cm離れた位置で含フッ素系高分子膜基材1に平行に対面している。ヒータ要素H(i,j)、i = ±2、±1、0、j = ±3、は照射野中心からY方向にそれぞれ−Y3、Y3だけ離れた位置でZ方向に座標が0から−Z1まで広がってXZ平面に平行に配列されている。後者は、含フッ素系高分子膜基材1のY軸方向の温度分布を均一化するのに役立っている。これらの全てのヒータ要素はそれぞれ熱的、電気的に分割されており、独立して制御されるようになっている。   The heater element H (i, j), i = ± 2, ± 1, 0, j = ± 2, ± 1,0, has a Z coordinate of −2.5 cm, and the fluorine-containing polymer film substrates 1 to 2 It faces the fluorine-containing polymer film substrate 1 in parallel at a position 5 cm away. The heater element H (i, j), i = ± 2, ± 1, 0, j = ± 3, is located in the Y direction from the irradiation field center by −Y3 and Y3, respectively, and the coordinates in the Z direction are from 0 to − It extends to Z1 and is arranged parallel to the XZ plane. The latter serves to make the temperature distribution in the Y-axis direction of the fluorine-containing polymer film substrate 1 uniform. All these heater elements are each thermally and electrically divided and are controlled independently.

これらの各ヒータ要素は、3種のタイミングで異なった様態に制御される。このタイミングは、含フッ素系高分子膜基材1を初期温度、例えば室温、から規定温度、例えば340℃、まで急速に加熱する為の急加熱タイミングT1と、含フッ素系高分子膜基材1を規定温度、例えば340℃、に保温する為の保温タイミングT2、T4と、含フッ素系高分子膜基材1の一部分における温度を低下させる部分冷却タイミングT3と電子ビームEを含フッ素系高分子膜基材1に照射するビーム照射タイミングT5とを含んでいる。急加熱タイミングT1に於ける各ヒータ要素の発熱量の分布を図5に示している。図5においては発熱量は面積密度で表している。図5(a)はヒータ要素H(0、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(0、j)、j = −3、−2、−1、0、1、2、3、であり、図5(b)はヒータ要素H(±1、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±1、j)、j = −3、−2、−1、0、1、2、3、であり、図5(c)はヒータ要素H(±2、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±2、j)、j = −3、−2、−1、0、1、2、3、であり、図5(d)はヒータ要素H(i、0)、i = −2、−1、0、1、2、の発熱量Q(i、0)、i = −2、−1、0、1、2、であり、図5(e)はヒータ要素H(i、±1)、i = −2、−1、0、1、2、の発熱量Q(i、±1)、i = −2、−1、0、1、2、であり、図5(f)はヒータ要素H(i、±2)、i = −2、−1、0、1、2、の発熱量Q(i、±2)、i = −2、−1、0、1、2、であり、図5(g)はヒータ要素H(i、±3)、i = −2、−1、0、1、2、の発熱量Q(i、±3)、i = −2、−1、0、1、2、である。   Each of these heater elements is controlled in a different manner at three timings. This timing includes rapid heating timing T1 for rapidly heating the fluorine-containing polymer film substrate 1 from an initial temperature, for example, room temperature, to a specified temperature, for example, 340 ° C., and the fluorine-containing polymer film substrate 1 Temperature maintaining timings T2 and T4 for maintaining the temperature at a specified temperature, for example, 340 ° C., a partial cooling timing T3 for lowering the temperature in a part of the fluorine-containing polymer film substrate 1, and an electron beam E. And a beam irradiation timing T5 for irradiating the film substrate 1. FIG. 5 shows the distribution of the amount of heat generated by each heater element at the rapid heating timing T1. In FIG. 5, the heat generation amount is represented by area density. FIG. 5A shows the heating value Q (0, j), j = −3, − of the heater element H (0, j), j = −3, −2, −1, 0, 1, 2, 3. 2, -1, 0, 1, 2, 3, and FIG. 5B shows the heater element H (± 1, j), j = −3, −2, −1, 0, 1, 2, 3 , Q = ± 1, j, j = −3, −2, −1, 0, 1, 2, 3, and FIG. 5C shows the heater element H (± 2, j), With heat generation amount Q (± 2, j) of j = −3, −2, −1, 0, 1, 2, 3, j = −3, −2, −1, 0, 1, 2, 3, Yes, FIG. 5 (d) shows the heater element H (i, 0), i = −2, −1, 0, 1, 2, and the calorific value Q (i, 0), i = −2, −1, 0. 5 (e) shows the heater element H (i, ± 1), the heat value Q (i, ± 1) of i = −2, −1, 0, 1, 2, = −2, −1, 0, 1, 2, and FIG. 5 (f) shows the heating value Q of the heater element H (i, ± 2), i = −2, −1, 0, 1, 2. (I, ± 2), i = −2, −1, 0, 1, 2, and FIG. 5G shows the heater element H (i, ± 3), i = −2, −1, 0, The calorific values Q (i, ± 3) of 1, 2 are i = −2, −1, 0, 1, 2, and so on.

同様に、保温タイミングT2,T4に於ける各ヒータ要素の発熱量を図6に示している。図6においては発熱量は面積密度で表している。図6(a)はヒータ要素H(0、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(0、j)、j = −3、−2、−1、0、1、2、3、であり、図6(b)はヒータ要素H(±1、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±1、j)、j = −3、−2、−1、0、1、2、3、であり、図6(c)はヒータ要素H(±2、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±2、j)、j = −3、−2、−1、0、1、2、3であり、図6(d)はヒータ要素H(i、0)、i = −2、−1,0,1,2の発熱量Q(i、0)、i = −2、−1、0、1、2、であり、図6(e)はヒータ要素H(i、±1)、i = −2、−1、0、1、2、の発熱量Q(i、±1)、i = −2、−1、0、1、2、であり、図6(f)はヒータ要素H(i、±2)、i = −2、−1、0、1、2、の発熱量Q(i、±2)、i = −2、−1、0、1、2、であり、図6(g)はヒータ要素H(i、±3)、i = −2、−1、0、1、2、の発熱量Q(i、±3)、i = −2、−1、0、1、2、である。   Similarly, the amount of heat generated by each heater element at the heat retention timings T2 and T4 is shown in FIG. In FIG. 6, the calorific value is represented by area density. FIG. 6A shows the heating value Q (0, j), j = −3, − of the heater element H (0, j), j = −3, −2, −1, 0, 1, 2, 3. 2, -1, 0, 1, 2, 3, and FIG. 6B shows the heater element H (± 1, j), j = −3, −2, −1, 0, 1, 2, 3 , J = −3, −2, −1, 0, 1, 2, 3, and FIG. 6C shows the heater element H (± 2, j), The calorific value Q (± 2, j) of j = −3, −2, −1, 0, 1, 2, 3, and j = −3, −2, −1, 0, 1, 2, 3 FIG. 6D shows the heater element H (i, 0), i = −2, −1, 0, 1, 2, and the heat generation amount Q (i, 0), i = −2, −1, 0, 1 6 (e) shows the heater element H (i, ± 1), i = −2, −1, 0, 1, 2, and the calorific value Q (i, ± 1), i. −2, −1, 0, 1, 2, and FIG. 6F shows the heating value Q (() of the heater element H (i, ± 2), i = −2, −1, 0, 1, 2). i, ± 2), i = −2, −1, 0, 1, 2, and FIG. 6G shows the heater element H (i, ± 3), i = −2, −1, 0, 1 2, the calorific value Q (i, ± 3), i = −2, −1, 0, 1, 2, and so on.

同様に、部分冷却タイミングT3に於ける各ヒータ要素の発熱量を図7に示している。図7においては発熱量は面積密度で表している。図7(a)はヒータ要素H(0、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(0、j)、j = −3、−2、−1、0、1、2、3、であり、図7(b)はヒータ要素H(±1、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±1、j)、j = −3、−2、−1、0、1、2、3、であり、図7(c)はヒータ要素H(±2、j)、j = −3、−2、−1、0、1、2、3、の発熱量Q(±2、j)、j = −3、−2、−1、0、1、2、3、であり、図7(d)はヒータ要素H(i、0)、i = −2、−1、0、1、2、の発熱量Q(i、0)、i = −2、−1、0、1、2、であり、図7(e)はヒータ要素H(i、±1)、i = −2、−1、0、1、2、の発熱量Q(i、±1)、i = −2、−1、0、1、2、であり、図7(f)はヒータ要素H(i、±2)、i = −2、−1、0、1、2、の発熱量Q(i、±2)、i = −2、−1、0、1、2、であり、図7(g)はヒータ要素H(i、±3)、i = −2、−1、0、1、2、の発熱量Q(i、±3)、i = −2、−1、0、1、2、である。   Similarly, the amount of heat generated by each heater element at the partial cooling timing T3 is shown in FIG. In FIG. 7, the calorific value is represented by area density. FIG. 7A shows the heating value Q (0, j), j = −3, − of the heater element H (0, j), j = −3, −2, −1, 0, 1, 2, 3. 2, -1, 0, 1, 2, 3, and FIG. 7B shows the heater element H (± 1, j), j = −3, −2, −1, 0, 1, 2, 3 , J = −3, −2, −1, 0, 1, 2, 3, and FIG. 7C shows the heater element H (± 2, j), With heat generation amount Q (± 2, j) of j = −3, −2, −1, 0, 1, 2, 3, j = −3, −2, −1, 0, 1, 2, 3, Yes, FIG. 7D shows the heating value Q (i, 0) of the heater element H (i, 0), i = −2, −1, 0, 1, 2, i = −2, −1, 0. 7 (e) shows the heater element H (i, ± 1), the heat value Q (i, ± 1) of i = −2, −1, 0, 1, 2, = −2, −1, 0, 1, 2, and FIG. 7 (f) shows the heating value Q of the heater element H (i, ± 2), i = −2, −1, 0, 1, 2. (I, ± 2), i = −2, −1, 0, 1, 2, and FIG. 7G shows the heater element H (i, ± 3), i = −2, −1, 0, The calorific values Q (i, ± 3) of 1, 2 are i = −2, −1, 0, 1, 2, and so on.

上記の各ヒータ要素H(i,j)の発熱量を制御する時間関数及び電子ビーム照射線量を制御する時間関数を図8に示している。図8(a)は電子ビーム照射線量を制御する加熱時間tの関数Fb(t)であり、図8(b)はヒータ要素H(0,j)、j = −1、0、1、の発熱量Q(0,j)、j = −1、0、1、を制御する加熱時間tの関数Fh1(t)であり、図8(c)はヒータ要素H(0,j)、j = ±3、±2、の発熱量Q(0,j)、j = ±3、±2、を制御する加熱時間tの関数Fh2(t)であり、図8(d)はヒータ要素H(±1,j)、j = ±3、±2、±1、0、の発熱量Q(±1,j)、j = ±3、±2、±1、0、を制御する加熱時間tの関数Fh3(t)であり、図8(e)はヒータ要素H(±2,j)、j = ±3、±2、±1、0、の発熱量Q(±2,j)、j = ±3、±2、±1、0、を制御する加熱時間tの関数Fh4(t)である。これらの関数値は含フッ素系高分子膜基材1の冷却率等が変わると異なった値に適正化される。時間関数Fh4(t)は時間関数Fh3(t)と一致する場合もある。これらの図において、急加熱タイミングT1は加熱時間tが0から12.0秒の間に相当する。同様に、保温タイミングT2は加熱時間tが12.0秒から22.5秒の間、及び、保温タイミングT4は加熱時間tが41.3秒から63.8秒の間、及び82.6秒から105.1秒の間、及び123.9秒から146.4秒の間に相当する。同様に、部分冷却タイミングT3は加熱時間tが22.5秒から41.3秒の間、及び、63.8秒から82.6秒の間、及び105.1秒から123.9秒の間に相当する。同様に、ビーム照射タイミングT5は加熱時間tが24.0秒から44.5秒の間、及び65.3秒から85.8秒の間、及び106.6秒から127.1秒の間に相当する。   FIG. 8 shows a time function for controlling the amount of heat generated by each heater element H (i, j) and a time function for controlling the electron beam irradiation dose. FIG. 8A shows a function Fb (t) of the heating time t for controlling the electron beam irradiation dose. FIG. 8B shows the heater element H (0, j), j = −1, 0, 1, FIG. 8C is a function Fh1 (t) of the heating time t for controlling the calorific value Q (0, j), j = −1, 0, 1. FIG. 8C shows the heater element H (0, j), j = FIG. 8D is a function Fh2 (t) of the heating time t for controlling the calorific value Q (0, j), j = ± 3, ± 2 of ± 3, ± 2, and FIG. 1, j), a function of the heating time t for controlling the calorific value Q (± 1, j), j = ± 3, ± 2, ± 1, 0, where j = ± 3, ± 2, ± 1, 0 Fh3 (t), FIG. 8 (e) shows heater element H (± 2, j), j = ± 3, ± 2, ± 1, 0, calorific value Q (± 2, j), j = ± A function Fh4 of the heating time t for controlling 3, ± 2, ± 1, 0 ( ) It is. These function values are optimized to different values as the cooling rate of the fluorine-containing polymer film substrate 1 changes. The time function Fh4 (t) may coincide with the time function Fh3 (t). In these figures, the rapid heating timing T1 corresponds to a heating time t between 0 and 12.0 seconds. Similarly, the heat retention timing T2 has a heating time t of 12.0 seconds to 22.5 seconds, and the heat retention timing T4 has a heating time t of 41.3 seconds to 63.8 seconds, and 82.6 seconds. Corresponds to between 10 to 105.1 seconds and 123.9 to 146.4 seconds. Similarly, the partial cooling timing T3 includes heating times t between 22.5 seconds and 41.3 seconds, between 63.8 seconds and 82.6 seconds, and between 105.1 seconds and 123.9 seconds. It corresponds to. Similarly, the beam irradiation timing T5 is between the heating time t between 24.0 seconds and 44.5 seconds, between 65.3 seconds and 85.8 seconds, and between 106.6 seconds and 127.1 seconds. Equivalent to.

上記のように各ヒータ要素H(i,j)の発熱量Q(i,j)を制御した場合に於ける各ヒータ要素H(i,j)の表面の加熱時間tにおける温度Th(i,j、t)を図9に表している。図9(a)はヒータ要素H(0,j)、j = ±3、±2、±1、0、の表面の温度Th(0、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(b)はヒータ要素H(±1,j)、j = ±3、±2、±1、0、の表面の温度Th(±1、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(c)はヒータ要素H(2,j)、j = ±3、±2、±1、0、の表面の温度Th(2、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。図9(d)はヒータ要素H(−2,j)、j = ±3、±2、±1、0、の表面の温度Th(−2、j、t)、j = ±3、±2、±1、0、t = 0〜145秒、を表している。含フッ素系高分子膜基材1が静止している場合にはTh(−2、j、t)はTh(2、j、t)に一致する。   When the heating value Q (i, j) of each heater element H (i, j) is controlled as described above, the temperature Th (i, j) at the heating time t of the surface of each heater element H (i, j) is controlled. j, t) are represented in FIG. FIG. 9A shows the surface temperature Th (0, j, t) of the heater element H (0, j), j = ± 3, ± 2, ± 1, 0, j = ± 3, ± 2, ± 1, 0, t = 0 to 145 seconds. FIG. 9B shows the surface temperature Th (± 1, j, t) of the heater element H (± 1, j), j = ± 3, ± 2, ± 1, 0, j = ± 3, ± 2. , ± 1, 0, t = 0 to 145 seconds. FIG. 9C shows the surface temperature Th (2, j, t) of the heater element H (2, j), j = ± 3, ± 2, ± 1, 0, j = ± 3, ± 2, ± 1, 0, t = 0 to 145 seconds. FIG. 9D shows the surface temperature Th (−2, j, t) of the heater element H (−2, j), j = ± 3, ± 2, ± 1, 0, j = ± 3, ± 2. , ± 1, 0, t = 0 to 145 seconds. When the fluorine-containing polymer film substrate 1 is stationary, Th (−2, j, t) matches Th (2, j, t).

図9に示した代表的な加熱時間t = 11.5秒、21.9秒、24.3秒、29.9秒に於ける各ヒータ要素H(i,j)の表面温度の空間分布を図10に表している。図10の縦軸の値はセ氏温度を表している。図10(a)はヒータ要素H(0、j)、j = ±3、±2、±1、0、の表面の温度Th(0、j、t)を示している。図10(b)はヒータ要素H(±1、j)、j = ±3、±2、±1、0、の表面の温度Th(±1、j、t)を示している。図10(c)はヒータ要素H(±2、j)、j = ±3、±2、±1、0、の表面の温度Th(±2、j、t)を示している。図10(d)はヒータ要素H(i、0)、i = ±2、±1、0、の表面の温度Th(i,0、t)を示している。図10(e)はヒータ要素H(i、±1)、i = ±2、±1、0、の表面の温度Th(i,±1、t)を示している。図10(f)はヒータ要素H(i、±2)、i = ±2、±1、0、の表面の温度Th(i,±2、t)を示している。図10(g)はヒータ要素H(i、±3)、i = ±2、±1、0、の表面の温度Th(i,±3、t)を示している。これらの図から分かるように、各ヒータ要素の同一表面内における温度はほぼ均一に分布する。   The spatial distribution of the surface temperature of each heater element H (i, j) at the representative heating times t = 11.5 seconds, 21.9 seconds, 24.3 seconds, 29.9 seconds shown in FIG. This is shown in FIG. The value on the vertical axis in FIG. 10 represents the Celsius temperature. FIG. 10A shows the surface temperature Th (0, j, t) of the heater element H (0, j), j = ± 3, ± 2, ± 1, 0. FIG. 10B shows the surface temperature Th (± 1, j, t) of the heater element H (± 1, j), j = ± 3, ± 2, ± 1, 0. FIG. 10C shows the surface temperature Th (± 2, j, t) of the heater element H (± 2, j), j = ± 3, ± 2, ± 1, 0. FIG. 10D shows the surface temperature Th (i, 0, t) of the heater element H (i, 0), i = ± 2, ± 1, 0. FIG. 10E shows the surface temperature Th (i, ± 1, t) of the heater element H (i, ± 1), i = ± 2, ± 1,0. FIG. 10F shows the surface temperature Th (i, ± 2, t) of the heater element H (i, ± 2), i = ± 2, ± 1,0. FIG. 10G shows the surface temperature Th (i, ± 3, t) of the heater element H (i, ± 3), i = ± 2, ± 1, 0. As can be seen from these figures, the temperature in the same surface of each heater element is distributed almost uniformly.

図9及び図10に示すようにヒータ要素の表面温度Th(i,j,t)は含フッ素系高分子膜基材1の幅方向において、より端部に位置する表面の温度がより高くなっており、これらのヒータ要素で含フッ素系高分子膜基材1を熱輻射によって加熱した場合の含フッ素系高分子膜基材1の表面温度をTp(x、y、t)とする。ここで、xはX軸方向位置を、yはY軸方向位置を、tは加熱開始後の時間つまり加熱時間を表している。ヒータ要素の表面温度Th(i,j,t)は、含フッ素系高分子膜基材1の温度Tp(x、y、t)が照射野幅FW内のX方向位置x及び加熱時間tに関係せず、幅方向つまりY方向に一様な温度分布となるように定められている。図1(a)及び図2(a)に示すように、冷却用プーリー5及び6の近傍では含フッ素系高分子膜基材1の温度は常温に保たれている。図8及び図9で示した部分冷却タイミングT3が無く、急加熱タイミングT1に続いて保温タイミングT2、T4が継続するように各ヒータ要素H(i,j)を制御した場合には、含フッ素系高分子膜基材1の照射野Fiに位置する部分は340±5℃まで加熱されて空間的にも時間的にもこの温度範囲に保たれる。   As shown in FIGS. 9 and 10, the surface temperature Th (i, j, t) of the heater element is higher at the surface located at the end in the width direction of the fluorine-containing polymer film substrate 1. The surface temperature of the fluorine-containing polymer film substrate 1 when the fluorine-containing polymer film substrate 1 is heated by thermal radiation with these heater elements is Tp (x, y, t). Here, x represents the position in the X-axis direction, y represents the position in the Y-axis direction, and t represents the time after the start of heating, that is, the heating time. The surface temperature Th (i, j, t) of the heater element is such that the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is the X-direction position x and the heating time t within the irradiation field width FW. Regardless of the relationship, the temperature distribution is determined to be uniform in the width direction, that is, the Y direction. As shown in FIGS. 1 (a) and 2 (a), the temperature of the fluorine-containing polymer film substrate 1 is maintained at room temperature in the vicinity of the cooling pulleys 5 and 6. When there is no partial cooling timing T3 shown in FIGS. 8 and 9 and each heater element H (i, j) is controlled so that the heat retaining timings T2 and T4 continue following the rapid heating timing T1, The portion located in the irradiation field Fi of the system polymer film substrate 1 is heated to 340 ± 5 ° C. and kept in this temperature range both spatially and temporally.

このように含フッ素系高分子膜基材1の表面温度Tp(x、y、t)を照射野Fi内で空間的にも時間的にも340±5℃の範囲で一様に保った状態で、X軸方向の強度分布を図11(a)に示すような照射野Fi内で一様に分布する強度(300keV、0.24mA)を有する電子線Eを照射した場合には、含フッ素系高分子膜基材1の温度Tp(x、y、t)のX軸方向分布は図11(b)に示すようになり、Y軸方向には一様に分布する。図11(b)に示すように、電子線Eの照射直前の加熱時間t = 21.9秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp(0、0、21.9)は343.9℃であり、照射直後の加熱時間t = 24.3秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp(0、0、24.3)は350.1℃であり、照射開始後5.9秒を経過した加熱時間t = 29.9秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp(0、0、29.9)は395.0℃であり、照射開始後18.7秒を経過した加熱時間t = 42.7秒において含フッ素系高分子膜基材1の照射野中心に於ける温度Tp(0、0、42.7)は440.7℃である。つまり、照射中に含フッ素系高分子膜基材1の温度Tp(x、y、t)が高温度になり過ぎて含フッ素系高分子膜基材1の熱分解が進行する。この場合の吸収線量は210kGyに相当する。   In this way, the surface temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is kept uniformly within the range of 340 ± 5 ° C. both spatially and temporally within the irradiation field Fi. When the electron beam E having an intensity (300 keV, 0.24 mA) uniformly distributed in the irradiation field Fi as shown in FIG. The X-axis direction distribution of the temperature Tp (x, y, t) of the polymer-based polymer film substrate 1 is as shown in FIG. 11B, and is uniformly distributed in the Y-axis direction. As shown in FIG. 11B, the temperature Tp (0, 0, 21 at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 21.9 seconds immediately before the electron beam E irradiation. .9) is 343.9 ° C., and the temperature Tp (0, 0, 24.3) at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 24.3 seconds immediately after irradiation. Is 350.1 ° C., and the temperature Tp (0, 0, 0) at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 29.9 seconds after 5.9 seconds from the start of irradiation. 29.9) is 395.0 ° C., and the temperature Tp (at the center of the irradiation field of the fluorine-containing polymer film substrate 1 at the heating time t = 42.7 seconds after the passage of 18.7 seconds from the start of irradiation) 0, 0, 42.7) is 440.7 ° C. That is, the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 becomes too high during irradiation, and thermal decomposition of the fluorine-containing polymer film substrate 1 proceeds. The absorbed dose in this case corresponds to 210 kGy.

電子線Eの照射野Fi内におけるのX軸方向分布を図12(a)に示すように変更した場合の含フッ素系高分子膜基材1の温度Tp(x、y、t)のX軸方向分布は図12(b)に示すようになり、照射野Fiの幅FW内でなだらかに変化する。この場合の照射野中心に於ける含フッ素系高分子膜基材1の温度Tp(0、0、t)の時間変化は図15(b)に示している。この場合でも含フッ素系高分子膜基材1の温度Tp(x、y、t)はY軸方向には一様に分布する。このように、電子線Eの照射野Fi内におけるのX軸方向分布を変調することによって含フッ素系高分子膜基材1の温度Tp(x、y、t)のX軸方向分布を任意に変更することが出来る。電子線Eの照射野Fi内におけるのX軸方向分布の調整は電子線Eの通路内に適当なフィルタを設けること等によって達成できる。   X-axis of temperature Tp (x, y, t) of fluorine-containing polymer film substrate 1 when the X-axis direction distribution in irradiation field Fi of electron beam E is changed as shown in FIG. The direction distribution is as shown in FIG. 12B, and changes gently within the width FW of the irradiation field Fi. The time change of the temperature Tp (0, 0, t) of the fluorine-containing polymer film substrate 1 at the irradiation field center in this case is shown in FIG. Even in this case, the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly distributed in the Y-axis direction. Thus, by modulating the X-axis direction distribution in the irradiation field Fi of the electron beam E, the X-axis direction distribution of the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 can be arbitrarily set. Can be changed. Adjustment of the X-axis direction distribution in the irradiation field Fi of the electron beam E can be achieved by providing an appropriate filter in the passage of the electron beam E.

一方、図8及び図9に示したように部分冷却タイミングT3が生じるように各ヒータ要素H(i、j)を制御した状態で電子ビームEを照射しない場合における含フッ素系高分子膜基材1の温度Tp(x、y、t)を図13に示している。図13(a)は含フッ素系高分子膜基材1の温度Tp(x、y、t)のY軸方向分布であり、図13(b)は含フッ素系高分子膜基材1の温度Tp(x、y、t)のX軸方向分布である。これらの図は部分冷却タイミングT3において電子線Eの照射野Fiの照射野幅FW内において部分的に加熱時間tとともに低下していることを表している。この場合の照射野中心に於ける含フッ素系高分子膜基材1の温度Tp(0、0、t)の時間変化は図15(c)に示している。   On the other hand, as shown in FIGS. 8 and 9, the fluorine-containing polymer film substrate in the case where the electron beam E is not irradiated in a state where each heater element H (i, j) is controlled so that the partial cooling timing T3 occurs. A temperature Tp (x, y, t) of 1 is shown in FIG. FIG. 13A shows the Y-axis direction distribution of the temperature Tp (x, y, t) of the fluorine-containing polymer membrane substrate 1, and FIG. 13B shows the temperature of the fluorine-containing polymer membrane substrate 1. This is a distribution in the X-axis direction of Tp (x, y, t). These figures show that the temperature is partially decreased with the heating time t within the irradiation field width FW of the irradiation field Fi of the electron beam E at the partial cooling timing T3. The time change of the temperature Tp (0, 0, t) of the fluorine-containing polymer film substrate 1 at the center of the irradiation field in this case is shown in FIG.

図8(a)に示すような、部分冷却タイミングT3に概略一致したビーム照射タイミングT5において、図12(a)に示す強度分布をした電子線を照射した場合には、含フッ素系高分子膜基材1の温度Tp(x、y、t)のY軸方向分布Tp(0、y、t)は図14(a)に示すように、X軸方向分布Tp(x、0、t)は図14(b)に示すように、照射野中心に於ける含フッ素系高分子膜基材1の温度Tp(0、0、t)の時間変化は図15(a)のようになる。これらの図が示すように、照射野Fi内の如何なる位置においても如何なる時点においても含フッ素系高分子膜基材1の温度は340±5℃の範囲に収まっている。図14(a)に示すように、X軸方向分布Tp(x,0,t)は照射野Fi内では340±5℃の範囲に収まっており、照射幅FWの外部直近に位置する部分では照射時間が長くなると含フッ素系高分子膜基材1の温度がやや低下している。これは、図12(b)と図13(b)の照射野幅FWの外側に於ける温度分布の違いに起因している。この部分では含フッ素系高分子膜基材1が電子線Eの照射を受けないので何ら問題とならない。   When the electron beam having the intensity distribution shown in FIG. 12 (a) is irradiated at the beam irradiation timing T5 which roughly matches the partial cooling timing T3 as shown in FIG. 8 (a), the fluorine-containing polymer film The Y-axis direction distribution Tp (0, y, t) of the temperature Tp (x, y, t) of the substrate 1 is as shown in FIG. 14A, and the X-axis direction distribution Tp (x, 0, t) is As shown in FIG. 14B, the time change of the temperature Tp (0, 0, t) of the fluorine-containing polymer film substrate 1 at the center of the irradiation field is as shown in FIG. As shown in these figures, the temperature of the fluorine-containing polymer film substrate 1 is within the range of 340 ± 5 ° C. at any position in the irradiation field Fi at any time. As shown in FIG. 14A, the X-axis direction distribution Tp (x, 0, t) is within a range of 340 ± 5 ° C. within the irradiation field Fi, and in a portion located in the immediate vicinity of the irradiation width FW. As the irradiation time becomes longer, the temperature of the fluorine-containing polymer film substrate 1 is slightly lowered. This is due to the difference in temperature distribution outside the irradiation field width FW in FIGS. 12B and 13B. In this part, since the fluorine-containing polymer film substrate 1 is not irradiated with the electron beam E, there is no problem.

含フッ素系高分子膜基材1の温度Tp(x、y、t)の経時変化を少なくする為に、電子ビームEの強度を図8(a)で示すように時間的に変化させている。この場合にも電子ビームEの強度の空間分布は前述のように一定に保たれている。電子ビームEの強度の時間変化は、図1(a)の矢印16で示している方向の温度を非接触温度計で測定して電子線照射装置12に帰還制御することによって自動的に制御できる。上述した20.5秒間の一回の照射で含フッ素系高分子膜基材1に与えられる線量は236kGyに相当し、繰り返して照射することにより、任意に線量を増加することができる。 In order to reduce the change over time of the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1, the intensity of the electron beam E is changed with time as shown in FIG. . Also in this case, the spatial distribution of the intensity of the electron beam E is kept constant as described above. The time change of the intensity of the electron beam E can be automatically controlled by measuring the temperature in the direction indicated by the arrow 16 in FIG. 1A with a non-contact thermometer and performing feedback control to the electron beam irradiation device 12. . The dose given to the fluorine-containing polymer film substrate 1 by one irradiation for 20.5 seconds described above corresponds to 236 kGy, and the dose can be arbitrarily increased by repeatedly irradiating.

以上に述べたように、電子線Eを照射する前後に照射野Fiの範囲内において含フッ素系高分子膜基材1の温度Tp(x、y、t)をY軸方向に一様に340±5℃の範囲に保つことはヒータ要素H(i,j)の表面温度をY軸方向に原点から離れるに従って適正化して高めることによって達成しており、含フッ素系高分子膜基材1の温度Tp(x、y、t)をX軸方向に一様に340±5℃の範囲に保つことはヒータ要素H(i,j)の表面温度をX軸方向に原点から離れるに従って適正化して高めることによって達成している。電子線Eを照射する間に照射野Fiの範囲内において含フッ素系高分子膜基材1の温度Tp(x、y、t)をY軸方向およびX軸方向に一様に340±5℃の範囲に保つことは照射野Fiの中心に近接するヒータ要素H(i,j)の表面温度を部分的に低下させるとともに、含フッ素系高分子膜基材1の表面を熱輻射及び自然対流によって冷却し、この冷却によって放出される熱量に相当する熱量を有する電子線Eを照射することによって達成している。この際、電子線Eの照射時間が長くなった場合にも含フッ素系高分子膜基材1の温度Tp(x、y、t)をX軸方向に一様に340±5℃の範囲に保つことは、電子線EのX軸方向における照射野幅FWの端部における強度を適正に分布させて電子線Eによって加熱される温度上昇のX軸方向分布を、ヒータ要素H(i,j)の発熱量Q(i,j)によって低下する含フッ素系高分子膜基材1の温度低下のX軸方向分布に一致させることによって達成している。照射野幅FWの範囲内において含フッ素系高分子膜基材1の温度Tp(x、y、t)を経時的に常に340±5℃の範囲に保つことは、電子線Eの照射開始直後及び照射終了直前における電子線強度を適正に設定することによって達成している。これは、含フッ素系高分子膜基材1の表面温度をフィードバックして電子ビームEの強度を経時的に自動制御する事がより好ましい。   As described above, the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly 340 in the Y-axis direction within the range of the irradiation field Fi before and after irradiation with the electron beam E. Maintaining the temperature in the range of ± 5 ° C. is achieved by optimizing and increasing the surface temperature of the heater element H (i, j) in the Y-axis direction as the distance from the origin increases. Maintaining the temperature Tp (x, y, t) uniformly in the range of 340 ± 5 ° C. in the X-axis direction optimizes the surface temperature of the heater element H (i, j) as the distance from the origin in the X-axis direction increases. Achieved by increasing. During irradiation with the electron beam E, the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly 340 ± 5 ° C. in the Y-axis direction and the X-axis direction within the range of the irradiation field Fi. Is to partially reduce the surface temperature of the heater element H (i, j) in the vicinity of the center of the irradiation field Fi, and the surface of the fluorine-containing polymer film substrate 1 is subjected to thermal radiation and natural convection. This is achieved by irradiating the electron beam E having a heat quantity corresponding to the heat quantity released by this cooling. At this time, even when the irradiation time of the electron beam E becomes long, the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly in the range of 340 ± 5 ° C. in the X-axis direction. Maintaining the X-axis direction distribution of the temperature rise heated by the electron beam E by appropriately distributing the intensity at the end of the irradiation field width FW in the X-axis direction of the electron beam E, the heater element H (i, j This is achieved by matching the temperature decrease of the fluorine-containing polymer film substrate 1 that is decreased by the calorific value Q (i, j) of X) in the X-axis direction. The temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is always kept within the range of 340 ± 5 ° C. over time within the range of the irradiation field width FW immediately after the start of irradiation with the electron beam E. This is achieved by appropriately setting the electron beam intensity immediately before the end of irradiation. More preferably, the surface temperature of the fluorine-containing polymer film substrate 1 is fed back to automatically control the intensity of the electron beam E over time.

以上において、含フッ素系高分子膜基材1を静止した状態で電子線Eを照射する場合について述べたが、この場合に、電子線強度のX軸方向分布が図12(a)に示すように変調されているので照射される線量がX軸方向に均一でない部分が生じる。この照射線量のX軸方向不均一が許容されない場合には、電子線強度のX軸方向分布を図11(a)に示すように均一にして、ヒータ要素H(i,j)をX軸方向により細分化して部分冷却タイミングT3におけるX軸方向の温度分布を適正化することによって改善できる。若しくは、電子線Eの照射中に含フッ素系高分子膜基材1をX軸方向に適当な速さで移動することによって吸収線量を一様化できる。更に、含フッ素系高分子膜基材1の移動速度を電子線Eの強度に連動して制御して単位距離あたりの吸収線量を均一化することによって達成できる。前記のビーム照射タイミングT5で含フッ素系高分子膜基材1をX軸方向に移動させ、前記の保温タイミングT4で含フッ素系高分子膜基材1を静止させ、ヒータ要素H(i,j)によって含フッ素系高分子膜基材1の温度を均一に戻しており、これらを交互に繰り返すことによってテープ状の長い含フッ素系高分子膜基材1を均一温度で任意の均一な線量の電子線照射を行うことが出来るようになっている。単位面積あたりの吸収線量はビーム照射タイミングT5の時間を長くすることによって任意に決めることが出来る。   The case where the electron beam E is irradiated while the fluorine-containing polymer film substrate 1 is stationary has been described above. In this case, the X-axis direction distribution of the electron beam intensity is as shown in FIG. Therefore, there is a portion where the irradiated dose is not uniform in the X-axis direction. If this non-uniformity in the X-axis direction of the irradiation dose is not allowed, the X-axis direction distribution of the electron beam intensity is made uniform as shown in FIG. 11A, and the heater element H (i, j) is moved in the X-axis direction. And can be improved by optimizing the temperature distribution in the X-axis direction at the partial cooling timing T3. Alternatively, the absorbed dose can be made uniform by moving the fluorine-containing polymer film substrate 1 in the X-axis direction at an appropriate speed during irradiation with the electron beam E. Furthermore, this can be achieved by controlling the moving speed of the fluorine-containing polymer film substrate 1 in conjunction with the intensity of the electron beam E to make the absorbed dose per unit distance uniform. The fluorine-containing polymer film substrate 1 is moved in the X-axis direction at the beam irradiation timing T5, the fluorine-containing polymer film substrate 1 is stopped at the heat retention timing T4, and the heater element H (i, j ) To return the temperature of the fluorine-containing polymer film substrate 1 uniformly, and by repeating these alternately, the tape-like long fluorine-containing polymer film substrate 1 can be subjected to an arbitrary uniform dose at a uniform temperature. Electron beam irradiation can be performed. The absorbed dose per unit area can be arbitrarily determined by lengthening the beam irradiation timing T5.

以上において、各ヒータ要素H(i,j)の空間分布を一定に保って発熱量Q(i,j)を制御する時間関数を変化させて急加熱タイミングT1と保温タイミングT2,T4と部分冷却タイミングT3において各ヒータ要素H(i,j)の表面温度Th(i,j)を変化させている実施例を示したが、各ヒータ要素H(i,j)の表面温度Th(i,j)をX軸の方向に空間的に異なる設定にして、急加熱空間と保温空間と部分冷却空間とを順に設け、これらの空間に於けるヒータ要素の表面温度Th(i,j)の相対関係を適正化しておき、含フッ素系高分子膜基材1の移動速度を適正化することによって含フッ素系高分子膜基材1の温度Tp(x、y、t)を一様に340±5℃の範囲に保つことが出来る。更に、ビーム照射空間を設け、これは前記の部分冷却空間と概略一致させる。この場合の各ヒータ要素H(i,j)の温度の空間分布を図16(a)に、各ヒータ要素H(i,j)によって加熱される含フッ素系高分子膜基材1の温度の空間分布を図16(b)に、電子ビーム照射によって加熱される含フッ素系高分子膜基材1の温度の空間分布を図16(c)に、各ヒータ要素H(i,j)による加熱と電子ビーム照射による加熱が重畳された場合の含フッ素系高分子膜基材1の温度の空間分布を図16(d)にそれぞれ示している。この実施例でも、部分冷却空間において含フッ素系高分子膜基材1から単位時間内に放出させる熱量と単位時間内に電子ビームEによって与えられる熱量とは、含フッ素系高分子膜基材1の照射野Fi内のどの位置においても、常に一致している。
In the above, the rapid heating timing T1, the warming timings T2 and T4, and the partial cooling are performed by changing the time function for controlling the calorific value Q (i, j) while keeping the spatial distribution of each heater element H (i, j) constant. In the embodiment, the surface temperature Th (i, j) of each heater element H (i, j) is changed at the timing T3. However, the surface temperature Th (i, j) of each heater element H (i, j) is shown. ) Are set spatially different in the direction of the X axis, a rapid heating space, a heat retaining space, and a partial cooling space are provided in this order, and the relative relationship of the surface temperature Th (i, j) of the heater element in these spaces And the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 is uniformly set to 340 ± 5 by adjusting the moving speed of the fluorine-containing polymer film substrate 1. It can be kept in the range of ° C. Further, a beam irradiation space is provided, which is approximately coincident with the partial cooling space. The spatial distribution of the temperature of each heater element H (i, j) in this case is shown in FIG. 16A as the temperature of the fluorine-containing polymer film substrate 1 heated by each heater element H (i, j). FIG. 16 (b) shows the spatial distribution, FIG. 16 (c) shows the spatial distribution of the temperature of the fluorine-containing polymer film substrate 1 heated by electron beam irradiation, and heating by each heater element H (i, j). FIG. 16D shows the spatial distribution of the temperature of the fluorine-containing polymer film substrate 1 when heating by electron beam irradiation is superimposed. Also in this embodiment, the amount of heat released from the fluorine-containing polymer film substrate 1 within the unit time in the partial cooling space and the amount of heat given by the electron beam E within the unit time are the fluorine-containing polymer film substrate 1. It always coincides at any position within the irradiation field Fi.

前記各空間のX軸方向長さXsと含フッ素系高分子膜基材1の移動速度vと時間tとの関係をt=Xs/vとすることによって実施例1と同様な含フッ素系高分子膜基材1の温度Tp(x、y、t)を実現することが出来る。この実施例では含フッ素系高分子膜基材1の移動速度vを変更しても含フッ素系高分子膜基材1の温度Tp(x、y、t)を一定範囲内に保てるので照射線量を変更するには移動速度vを変更すればよい。部分冷却空間に於けるヒータ要素H(i、j)の表面温度の設定を変えることによって電子ビームEの照射線量率を適正化することが出来る。   The relationship between the X-axis direction length Xs of each space, the moving speed v of the fluorine-containing polymer membrane substrate 1 and the time t is set to t = Xs / v, so that the fluorine-containing high height similar to that in Example 1 is obtained. The temperature Tp (x, y, t) of the molecular film substrate 1 can be realized. In this embodiment, since the temperature Tp (x, y, t) of the fluorine-containing polymer film substrate 1 can be kept within a certain range even if the moving speed v of the fluorine-containing polymer film substrate 1 is changed, the irradiation dose In order to change, the moving speed v may be changed. The irradiation dose rate of the electron beam E can be optimized by changing the setting of the surface temperature of the heater element H (i, j) in the partial cooling space.

本発明を実施形態及び実施例に関連して説明したが、本発明は、ここに例示した実施形態及び実施例に限定されるものではなく、本発明の精神及び範囲から逸脱することなく、いろいろな実施形態が可能であり、いろいろな変更及び改変を加えることができることを理解されたい。例えば、上記の実施例では、各ヒータ要素H(i,j)の温度を空間的又は時間的にプリセットしている場合を示しているが、コンピュータ等を使用して自動制御することも出来る。図8に示した時間関数を吸収線量の積算値に応じて変化させることにより、含フッ素系高分子膜基材1が受けた積算線量に応じて照射時の設定温度範囲を変化させることによって照射時の温度を経時的に最適化できる。本発明においては、高温放射線処理されていない含フッ素系高分子膜は処理後の膜と区別する為に原則的に含フッ素系高分子膜基材と称しており、照射野は前記含フッ素系高分子膜基材が前記電離放射線の照射を受ける空間範囲を意味しており、前記電離放射線が前記含フッ素系高分子膜をはみ出している部分は含んでいない。また、本発明においては、冷却とは輻射や対流による放熱の他に熱伝導によって特定の部位にける熱量が減少する場合も含めて表現している。電子線強度は吸収された電子線のパワーを意味しており、エネルギーが一定である場合には電流に比例した値となる。   Although the invention has been described with reference to embodiments and examples, the invention is not limited to the embodiments and examples illustrated herein, and various modifications can be made without departing from the spirit and scope of the invention. It should be understood that various embodiments are possible and that various changes and modifications can be made. For example, in the above embodiment, the case where the temperature of each heater element H (i, j) is preset spatially or temporally is shown, but it can also be automatically controlled using a computer or the like. Irradiation is performed by changing the set temperature range during irradiation according to the accumulated dose received by the fluorine-containing polymer film substrate 1 by changing the time function shown in FIG. 8 according to the accumulated value of the absorbed dose. The temperature of the hour can be optimized over time. In the present invention, a fluorine-containing polymer film that has not been subjected to high-temperature radiation treatment is basically referred to as a fluorine-containing polymer film substrate in order to distinguish it from the film after treatment, and the irradiation field is the fluorine-containing polymer film. It means a spatial range where the polymer film substrate is irradiated with the ionizing radiation, and does not include a portion where the ionizing radiation protrudes from the fluorine-containing polymer film. Further, in the present invention, the cooling is expressed including the case where the amount of heat in a specific part is reduced by heat conduction in addition to radiation by radiation or convection. The electron beam intensity means the power of the absorbed electron beam, and takes a value proportional to the current when the energy is constant.

本発明を採用すると、含フッ素系高分子膜基材を酸素不在環境下において高温度で電離放射線を照射して架橋するに際して、大面積の含フッ素系高分子膜基材を照射野内の全ての位置にわたってかつ処理の全時間中にわたって常に予め定められた温度範囲に保った状態で電離放射線を照射することができ、安定した品質の架橋構造を有する含フッ素系高分子膜を短時間に大量に且つ安価に生産することができる。本発明を採用して生産された安価で高品質の架橋構造を有する含フッ素系高分子膜を基材として用いると、優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜を安価に大量生産できるようになり、結果として高性能で安定動作をする長寿命の燃料電池を安価に生産できるようになるので産業上の利用価値は極めて高い。また、本発明によって得られた改質含フッ素系高分子膜は耐放射線性を付与されるために放射線環境下での工業材料としてまたは放射線滅菌が可能な医療用具素材として産業上の利用価値は極めて高い。   When the present invention is employed, when a fluorine-containing polymer membrane substrate is cross-linked by irradiating with ionizing radiation at a high temperature in an oxygen-free environment, a large-area fluorine-containing polymer membrane substrate is applied to all the irradiation fields. It is possible to irradiate ionizing radiation in a state that is always kept within a predetermined temperature range over a position and throughout the entire processing time, and in a short time a large amount of fluorine-containing polymer film having a stable quality cross-linked structure Moreover, it can be produced at low cost. Fluorine-containing polymer ions having excellent oxidation resistance and a wide range of ion exchange capacities when using a fluorine-containing polymer membrane having a crosslinked structure of high quality produced by employing the present invention as a base material Since the exchange membrane can be mass-produced at a low cost, and as a result, a long-life fuel cell having high performance and stable operation can be produced at a low cost, the industrial utility value is extremely high. Further, since the modified fluorine-containing polymer film obtained by the present invention is imparted with radiation resistance, the industrial utility value as an industrial material in a radiation environment or a medical device material capable of radiation sterilization is Extremely expensive.

本発明に係わる高温電子線処理装置を縦断面図で表した図である。It is the figure which represented the high temperature electron beam processing apparatus concerning this invention with the longitudinal cross-sectional view. 本発明に係わる高温電子線処理装置を横断面図で表した図である。It is the figure which represented the high temperature electron beam processing apparatus concerning this invention with the cross-sectional view. 本発明に係わる高温電子線処理装置を構成する加熱用ヒータ群を表した平面図及び断面図である。It is the top view and sectional drawing showing the heater group for a heating which comprises the high temperature electron beam processing apparatus concerning this invention. 本発明に係わる加熱用ヒータ群の平面図及び側断面図を表した図である。It is the figure showing the top view and sectional side view of the heater group for a heating concerning this invention. 本発明に係わる作用を説明する図であり、急加熱タイミングT1に於ける各ヒータ要素の発熱量を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the emitted-heat amount of each heater element in the rapid heating timing T1. 本発明に係わる作用を説明する図であり、保温タイミングT2,T4に於ける各ヒータ要素の発熱量を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the emitted-heat amount of each heater element in heat retention timing T2, T4. 本発明に係わる作用を説明する図であり、部分冷却タイミングT3に於ける各ヒータ要素の発熱量を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the emitted-heat amount of each heater element in the partial cooling timing T3. 本発明に係わる作用を説明する図であり、各ヒータ要素の発熱量を制御する時間関数及び電子ビーム照射線量を制御する時間関数を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the time function which controls the emitted-heat amount of each heater element, and the time function which controls an electron beam irradiation dose. 本発明に係わる作用を説明する図であり、各ヒータ要素の表面の温度変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the temperature change of the surface of each heater element. 本発明に係わる作用を説明する図であり、各ヒータ要素の表面温度の空間分布を表す図である。It is a figure explaining the effect | action concerning this invention, and is a figure showing the spatial distribution of the surface temperature of each heater element. 本発明に係わる作用を説明する図であり、電子線強度及びこれを照射した場合の含フッ素系高分子膜基材の温度のX軸方向分布を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows X-axis direction distribution of the electron beam intensity and the temperature of a fluorine-containing polymer film base material at the time of irradiating this. 本発明に係わる作用を説明する図であり、電子線強度及びこれを照射した場合の含フッ素系高分子膜基材の温度のX軸方向分布を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows X-axis direction distribution of the electron beam intensity and the temperature of a fluorine-containing polymer film base material at the time of irradiating this. 本発明に係わる作用を説明する図であり、部分冷却タイミングT3が生じるように各ヒータ要素を制御した状態で電子ビームEを照射しない場合における含フッ素系高分子膜基材1の温度分布を示す図である。It is a figure explaining the effect | action concerning this invention, and shows the temperature distribution of the fluorine-containing polymer film | membrane base material 1 when not irradiating the electron beam E in the state which controlled each heater element so that the partial cooling timing T3 may arise. FIG. 本発明に係わる作用を説明する図であり、電子線の照射中における含フッ素系高分子膜基材の温度の空間分布及びその時間変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the spatial distribution of the temperature of a fluorine-containing polymer membrane base material during an electron beam irradiation, and its time change. 本発明に係わる作用を説明する図であり、含フッ素系高分子膜基材の温度の時間変化を示す図である。It is a figure explaining the effect | action concerning this invention, and is a figure which shows the time change of the temperature of a fluorine-containing polymer membrane base material. 本発明に係わる他の実施例を表す図であり、各ヒータ要素の表面温度の空間分布と含フッ素系高分子膜基材の温度の空間分布を示す図である。It is a figure showing the other Example concerning this invention, and is a figure which shows the spatial distribution of the surface temperature of each heater element, and the spatial distribution of the temperature of a fluorine-containing polymer film | membrane base material.

符号の説明Explanation of symbols

1 含フッ素系高分子膜基材
2 リール
3 リール
4 プーリー
5 冷却用プーリー
6 冷却用プーリー
7 プーリー
8 プーリー
10 高温電子線処理装置
11 処理容器
12 電子線照射装置
13 電子線透過窓
14 熱遮蔽板
15 電子線透過窓
16 隔壁
17 ノズル
18 ノズル
19 ノズル群
20 ノズル群
21 温度検出方向を示す矢印
22 温度検出方向を示す矢印
30 加熱用ヒータ群
E 電子線
Fi 照射野
FL 照射野長
FW 照射野幅
T1 急加熱タイミング
T2 保温タイミング
T3 部分冷却タイミング
T4 保温タイミング
T5 ビーム照射タイミング
DESCRIPTION OF SYMBOLS 1 Fluorine-containing polymer film base material 2 Reel 3 Reel 4 Pulley 5 Cooling pulley 6 Cooling pulley 7 Pulley 8 Pulley
10 High-temperature electron beam processing equipment 11 Processing container
DESCRIPTION OF SYMBOLS 12 Electron beam irradiation apparatus 13 Electron beam transmission window 14 Heat shielding board 15 Electron beam transmission window 16 Bulkhead 17 Nozzle 18 Nozzle 19 Nozzle group 20 Nozzle group 21 Arrow which shows temperature detection direction 22 Arrow which shows temperature detection direction
30 Heater group E Electron beam Fi Irradiation field FL Irradiation field length FW Irradiation field width T1 Rapid heating timing T2 Thermal insulation timing T3 Partial cooling timing T4 Thermal insulation timing T5 Beam irradiation timing

Claims (12)

長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、
前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、
この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、
前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、
前記含フッ素系高分子膜基材の当該所望範囲内の全ての部位は前記発熱体によって前記設定温度範囲内の温度まで加熱された後に、
所定の冷却率を有して冷却されるとともに所定の強度分布を有する前記電離放射線によって所定の加熱率を有して加熱され、
前記電離放射線の強度分布又は/及び前記発熱体の発熱量の分布が、前記冷却率と前記加熱率とを前記所望範囲内の全ての部位において照射時間中にわたって常に実質的に一致させるように設定され又は制御されことを特徴とする方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range around its crystalline melting point, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate. In a method for producing a modified fluorine-containing polymer film by irradiation in a low oxygen partial pressure environment,
A heating element having a calorific value distributed in the longitudinal direction and the width direction is opposed to the surface of the fluorine-containing polymer film substrate in the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction. Is provided in a non-contact manner,
The heating element has a first heating element group and a second heating element group each including a plurality of heating element elements aligned in the width direction, and the first heating element group and the second heating element group. Body elements are aligned in the longitudinal direction;
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field,
All parts of the body within the desired range of the fluorine-containing polymer film substrate, after being heated to a temperature within the preset temperature range by the heating element,
By the ionizing radiation with a predetermined intensity distribution while being cooled with a predetermined cooling rate is heated with a predetermined heating rate,
Intensity distribution and / or the calorific value of the distribution of the heating element of the ionizing radiation is always set so as to substantially match over in the irradiation time and the heating rate and the cooling rate at all sites within the desired range method characterized by that Ru is by or controlled.
長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、
前記長手方向及び前記幅方向に分布した所定の発熱量を有する発熱体が前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、
この発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、
前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、
前記含フッ素系高分子膜基材は、前記設定温度範囲より低い温度に保たれて保持された第1の基材領域と、前記発熱体によって前記設定温度範囲内又はその近くの温度に加熱された第2の基材領域と、前記電離放射線の照射を受けて前記設定温度範囲内の温度に保たれた第3の基材領域とを含んでおり、
当該第3の基材領域は前記所望範囲を含んでおり、
当該所望範囲内のあらゆる部分では、前記発熱体の加熱に起因する温度が低下しようとすると前記電離放射線の照射に起因する温度が上昇して、前記電離放射線の照射を受ける時間中においてその温度が前記設定温度範囲内に保たれるように、前記発熱体の発熱量及び/又はその分布及び/又は前記電離放射線の強度が設定され、又は制御されことを特徴とする方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range around its crystalline melting point, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate. In a method for producing a modified fluorine-containing polymer film by irradiation in a low oxygen partial pressure environment,
A heating element having a predetermined calorific value distributed in the longitudinal direction and the width direction is provided in contact with the surface of the fluorine-containing polymer film substrate in the vicinity of the irradiation field of the ionizing radiation. ,
The heating element has a first heating element group and a second heating element group each including a plurality of heating element elements aligned in the width direction, and the first heating element group and the second heating element group. Body elements are aligned in the longitudinal direction;
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field,
The fluorine-containing polymer film substrate is heated to a temperature within or near the set temperature range by the first substrate region maintained at a temperature lower than the set temperature range and the heating element. A second base material region, and a third base material region that is irradiated with the ionizing radiation and maintained at a temperature within the set temperature range,
The third base material region includes the desired range,
In any part within the desired range, when the temperature due to heating of the heating element is going to decrease, the temperature due to irradiation with the ionizing radiation rises, and during the time of receiving the irradiation with ionizing radiation, the temperature is increased. as kept within the preset temperature range, wherein the amount of heat generation and / or distribution and / or the intensity of the ionizing radiation that of the heating element is set, or that are controlled.
長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、
前記含フッ素系高分子膜基材は前記電離放射線の照射野と実質的に一致する大きさの所望範囲を含んでおり、
当該所望範囲内の部分は前記電離放射線の照射を受ける処理装置内を通過し、
当該処理装置は、前記含フッ素系高分子膜基材の表面に対向して非接触に設けられた発熱体を含んでおり、前記含フッ素系高分子膜基材の一部を前記設定温度範囲より低い温度に保つとともに機械的に保持する第1の装置領域と、前記発熱体によって前記所望範囲内の部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲内の部分前記電離放射線を照射して所定の線量を与える第3の装置領域とを順に有しており、
前記発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、
前記所望範囲内の部分前記第3の装置領域に位置する場合においては、前記所望範囲の部分が冷却されて温度が低下しようとすると当該温度低下を補うように前記電離放射線の照射に起因する温度を上昇させて前記所望範囲内のあらゆる部位の温度を前記設定温度範囲内に保つように、前記電離放射線の強度分布又は/及び前記発熱体の発熱量の分布が設定され又は制御されるようになっていることを特徴とする方法。
While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range around its crystalline melting point, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate. In a method for producing a modified fluorine-containing polymer film by irradiation in a low oxygen partial pressure environment,
The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field of the ionizing radiation,
The portion within the desired range passes through the processing apparatus that receives the ionizing radiation,
The processing apparatus includes a heating element provided in a non-contact manner so as to face the surface of the fluorine-containing polymer film substrate, and a part of the fluorine-containing polymer film substrate is placed in the set temperature range. A first device region that is maintained at a lower temperature and mechanically held; a second device region that heats a portion within the desired range to a temperature within or near the set temperature range by the heating element; and a third device area to which a predetermined dose in order to irradiate the ionizing radiation to a portion of the desired range,
The heating element includes a first heating element group and a second heating element group each including a plurality of heating element elements arranged in the width direction, and the first heating element group and the second heating element. Body elements are aligned in the longitudinal direction;
Wherein when the portion in the desired range is positioned at the third device area, due to the irradiation of the ionizing radiation as part is cooled temperature within the desired range supplement the try when Then the temperature drop decreases The intensity distribution of the ionizing radiation and / or the calorific value distribution of the heating element is set or controlled so that the temperature of any part within the desired range is kept within the set temperature range by increasing the temperature of the heating element. A method characterized by that.
含フッ素系高分子膜基材又はその他の長手方向と幅方向とに延びた長尺被照射体を予め定められた設定温度範囲内の温度に保ちながら当該長尺被照射体に所定の線量の電離放射線を照射する処理装置であって、
前記長尺被照射体は当該処理装置内で位置決め保持される保持部分と前記設定温度範囲内又はその近くの温度に加熱される加熱範囲と前記電離放射線の照射野と実質的に一致する大きさの所望範囲とを含んでおり、
前記処理装置は、前記保持部分を保持可能な低い温度に保つとともに前記保持部分を機械的に保持する第1の装置領域と、前記照射野の近傍において前記長尺被照射体の表面に対向して非接触に前記幅方向に並んで設けられた複数の発熱体要素を含んでなる発熱体によって前記加熱範囲内の部分を前記設定温度範囲内又はその近くの温度まで加熱する第2の装置領域と、前記所望範囲内の部分前記電離放射線の照射に起因する発熱を与えて前記所望範囲内の部分を前記設定温度範囲内の温度に保つ第3の装置領域とを含んでおり、
当該第3の装置領域においては、前記発熱体要素の発熱量の分布が前記第2の装置領域における前記発熱体要素の発熱量の分布とは異なって設定されており、前記発熱体によって加熱された前記所望範囲内の部分の温度が低下しようとすると当該温度低下を補うように分布した強度の前記電離放射線の照射に起因して前記所望範囲内の部分の温度が上昇するようにして、前記電離放射線の照射を受ける時間中において、前記所望範囲内のあらゆる部分を前記設定温度範囲内の温度に保ちながら前記所望範囲内の部分に所定の線量を与えるようにしたことを特徴とする装置。
Fluorine-containing polymer membrane substrate, or other longitudinal direction and the width direction and in the long irradiation object in the predetermined dose while keeping the temperature within a predetermined set temperature range elongate irradiated body extending A processing apparatus for irradiating ionizing radiation,
Said elongate the irradiated body, and a holding portion which is positioned and held in the processor, the set temperature range or heating range to be heated to near the temperature, radiation field substantially coincides with the ionizing radiation And a desired range of sizes to be
The processing apparatus includes a first device region for mechanically holding said retaining portion with keeping the holding portion to a lower temperature can be held to face the surface of the elongated object to be irradiated in the vicinity of the irradiation field And a second device region that heats a portion within the heating range to a temperature within or near the set temperature range by a heating element including a plurality of heating element elements arranged in a non-contact manner in the width direction. If, it includes a third device region to keep the part in the desired range to give a heat generation due to irradiation of the ionizing radiation to a portion within the desired range to a temperature within the preset temperature range,
In the third device region, the distribution of the amount of heat generated by the heating element is set differently from the distribution of the amount of heat generated by the heating element in the second device region, and is heated by the heating element. wherein the temperature at the portion within the desired range due to the irradiation of the ionizing radiation distributed intensity such that the temperature did compensate for trying the result the temperature drop decreases in portions in the desired range increases with the An apparatus characterized in that a predetermined dose is given to a portion within the desired range while maintaining all portions within the desired range at a temperature within the set temperature range during a period of receiving ionizing radiation.
前記所望範囲内のあらゆる部位において前記長尺被照射体の温度の距離に対する変化率が予め定められた値よりも常に小さくなるように前記発熱体の発熱量の分布を経時的に制御するようにしたことを特徴とする請求項に記載した装置As time control the heating value of the distribution of the elongated object to be irradiated the heating element such that the change rate relative to the distance the temperature is always smaller than a predetermined value of at any site within the desired range The apparatus according to claim 4 , wherein: 長手方向と幅方向を有する含フッ素系高分子膜基材をその結晶融点前後の予め定められた設定温度範囲内の温度に保ちながら当該含フッ素系高分子膜基材に1kGy以上の電離放射線を低い酸素分圧環境下において照射することにより改質含フッ素系高分子膜を製造する方法において、While maintaining a fluorine-containing polymer membrane substrate having a longitudinal direction and a width direction at a temperature within a predetermined set temperature range around its crystalline melting point, ionizing radiation of 1 kGy or more is applied to the fluorine-containing polymer membrane substrate. In a method for producing a modified fluorine-containing polymer film by irradiation in a low oxygen partial pressure environment,
前記長手方向及び前記幅方向に分布した発熱量を有する発熱体が、前記幅方向に伸びて設けられた前記電離放射線の照射野の近傍において前記含フッ素系高分子膜基材の表面に対向して非接触に設けられており、A heating element having a calorific value distributed in the longitudinal direction and the width direction is opposed to the surface of the fluorine-containing polymer film substrate in the vicinity of the irradiation field of the ionizing radiation provided extending in the width direction. Is provided in a non-contact manner,
当該発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び当該第2の発熱体要素群が前記長手方向に整列しており、The heating element includes a first heating element group and a second heating element group each including a plurality of heating element elements aligned in the width direction, and the first heating element group and the second heating element group The heating element groups are aligned in the longitudinal direction;
前記含フッ素系高分子膜基材は前記照射野と実質的に一致する大きさの所望範囲を含んでおり、The fluorine-containing polymer film substrate includes a desired range having a size substantially corresponding to the irradiation field,
前記第1の発熱体要素群又は前記第2の発熱体要素群のいずれかは、前記照射野内の中央部において前記含フッ素系高分子膜基材の表面に対向して設けられた第1の発熱体要素と、前記幅方向においてより端部に位置して前記含フッ素系高分子膜基材の表面に対向して設けられた第2の発熱体要素とを含んでおり、Either the first heat generating element group or the second heat generating element group is provided in a central portion within the irradiation field so as to face the surface of the fluorine-containing polymer film substrate. A heating element, and a second heating element disposed opposite to the surface of the fluorine-containing polymer film substrate at a more end in the width direction,
当該第2の発熱体要素の表面温度を前記第1の発熱体要素の表面温度よりも高く設定することにより前記所望範囲内のあらゆる部分の温度を前記設定温度範囲内に保つことを特徴とする方法。By setting the surface temperature of the second heat generating element higher than the surface temperature of the first heat generating element, the temperature of every part within the desired range is maintained within the set temperature range. Method.
前記第1の発熱体要素群又は前記第2の発熱体要素群のいずれかに含まれる前記複数の発熱体要素前記照射野内の中央部において前記含フッ素系高分子膜基材の表面に対向して設けられた第1の発熱体要素と、前記幅方向においてより端部に位置して前記含フッ素系高分子膜基材の表面に対向して設けられた第2の発熱体要素とまれており、
当該第2の発熱体要素の表面温度は前記第1の発熱体要素の表面温度よりも高く設定されたことを特徴とする請求項1乃至請求項のいずれか1項に記載した方法
Wherein the plurality of heat generating element contained in either the first heating element group or said second heating element group, the surface of the fluorine-containing polymer membrane substrate at the center portion of the irradiation cortex And a second heat generating element provided opposite to the surface of the fluorine-containing polymer film substrate located at the end in the width direction. door is cage containing Marete,
Method according to any one of claims 1 to 3 surface temperature of the second heating element is characterized in that it has been set higher than the surface temperature of the first heating element.
前記第2の発熱体要素の表面温度と前記第1の発熱体要素の表面温度との異差は前記含フッ素系高分子膜基材移動速度に対応して変えられることを特徴とする請求項6乃至請求項7のいずれか1項に記載した方法The difference between the surface temperature of the second heating element and the surface temperature of the first heating element can be changed in accordance with the moving speed of the fluorine-containing polymer film substrate. The method according to any one of claims 6 to 7 . 前記発熱体は前記幅方向に整列した複数の発熱体要素をそれぞれ含む第1の発熱体要素群及び第2の発熱体要素群を有し、当該第1の発熱体要素群及び第2の発熱体要素群が前記長手方向に整列しており、これら発熱体要素の表面温度は、前記含フッ素系高分子膜基材の前記幅方向において、より端部に位置する前記発熱体要素の表面の温度がより高くなっていることを特徴とする請求項1乃至請求項3、又は、請求項6乃至請求項8のいずれか1項に記載した方法 The heating element has a first heating element group and the second heat generating element groups each comprising a plurality of heating element aligned in the width direction, the first heat generating element group and the second heating The body element groups are aligned in the longitudinal direction, and the surface temperature of these heating element elements is the surface temperature of the heating element elements located at the ends in the width direction of the fluorine-containing polymer film substrate. claims 1 to 3, characterized in that the temperature becomes higher, or the method described in any one of claims 6 to 8. 前記幅方向に整列した同一の前記発熱体要素群に含まれる、前記各発熱体要素は同一の時間関数に従ってそれらの発熱量が制御されることを特徴とする請求項1乃至請求項3、又は、請求項6乃至請求項9のいずれか1項に記載した方法The aligned in the width direction, it included in the same said heat generating element groups, wherein each heating element is claims 1 to 3, characterized in that the heating value thereof in accordance with the same time function is controlled, Alternatively, the method according to any one of claims 6 to 9 . 前記長尺被照射体特定の部分における前記設定温度範囲は、前記長尺被照射体の前記特定部分において過去に吸収された前記電離放射線の吸収線量の積算値に対応して予め定められた関係を保って低下することを特徴とする請求項乃至請求項のいずれか1項に記載した装置 The set temperature range in a specific portion of the long irradiated body is determined in advance corresponding to an integrated value of the absorbed dose of the ionizing radiation absorbed in the past in the specific portion of the long irradiated body . 6. A device according to any one of claims 4 to 5 , characterized in that it drops while maintaining a relationship. 前記含フッ素系高分子膜基材はポリテトラフルオロエチレン膜、又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体膜、又はテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体膜のいずれかであることを特徴とする請求項1乃至請求項3、又は請求項6乃至請求項10のいずれか1項に記載した方法The fluorine-containing polymer film substrate is a polytetrafluoroethylene film, a tetrafluoroethylene-hexafluoropropylene copolymer film, or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer film. method according to any one of claims 1 to 3, or claims 6 to 10 and.
JP2005100539A 2005-03-31 2005-03-31 Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell Expired - Fee Related JP4178150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100539A JP4178150B2 (en) 2005-03-31 2005-03-31 Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100539A JP4178150B2 (en) 2005-03-31 2005-03-31 Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell

Publications (3)

Publication Number Publication Date
JP2006282688A JP2006282688A (en) 2006-10-19
JP2006282688A5 JP2006282688A5 (en) 2008-02-07
JP4178150B2 true JP4178150B2 (en) 2008-11-12

Family

ID=37404945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100539A Expired - Fee Related JP4178150B2 (en) 2005-03-31 2005-03-31 Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell

Country Status (1)

Country Link
JP (1) JP4178150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928939B2 (en) * 2012-02-16 2016-06-01 住友電工ファインポリマー株式会社 Ionizing radiation irradiation apparatus and ionizing radiation irradiation method

Also Published As

Publication number Publication date
JP2006282688A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
Zhou et al. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells
Nasef et al. Preparation of crosslinked cation exchange membranes by radiation grafting of styrene/divinylbenzene mixtures onto PFA films
US20200295394A1 (en) Ionic liquid conductive membrane and methods of fabricating same
JP2009104967A (en) Method for manufacturing polymer electrolyte membrane, polymer electrolyte membrane and membrane-electrode assembly, and polymer electrolyte type fuel cell
EP2940764B1 (en) Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
Al Lafi et al. The crosslinking of poly (ether ether ketone): Thermally and by irradiation
Nasef et al. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly (ethylene-co-tetraflouroethene) using response surface method
JP4178150B2 (en) Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell
JP3836255B2 (en) Method for producing modified fluororesin
Sasuga et al. High energy ion irradiation effects on polymer materials–Changes in mechanical properties of PE, PSF and PES
Mazzei et al. Radiation grafting of NIPAAm on PVDF nuclear track membranes
Li et al. Fuel Cell Application of High Temperature Polymer Electrolyte Membranes Obtained by Graft Copolymerization of Acrylic Acid and 2‐Hydroxyethylmethacrylate on ETFE Backbone Material
JP6863264B2 (en) Fuel cell manufacturing method
JP4335844B2 (en) Radiation treatment method for polymer membrane and fluorine-containing polymer ion exchange membrane
Al Lafi Structural development in ion‐irradiated poly (ether ether ketone) as studied by dielectric relaxation spectroscopy
Mazzei et al. Radiation grafting studies of acrylic acid onto cellulose triacetate membranes
JPH07118423A (en) Production of modified polytetrafluoroethylene
Kizewski et al. An empirical study into the effect of long term storage (− 36±2 C) of electron-beamed ETFE on the properties of radiation-grafted alkaline anion-exchange membranes
US20130115543A1 (en) Thermostable polymer electrolyte membrane and process for producing the same
JP2014084349A (en) Anion conductive polymer electrolyte membrane and method for producing the same, as well as membrane electrode assembly and fuel cell using the same
Nasef et al. Modeling, prediction, and multifactorial optimization of radiation‐induced grafting of 4‐vinylpyridine onto poly (vinylidene fluoride) films using statistical simulator
Kimura et al. Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films
JP3781023B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
Takahashi et al. Characterizations of heavy ion irradiated PET membranes
JP2006019028A (en) Solid polymer electrolyte film for fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees