JP4331921B2 - Organic semiconductor device - Google Patents

Organic semiconductor device Download PDF

Info

Publication number
JP4331921B2
JP4331921B2 JP2002205635A JP2002205635A JP4331921B2 JP 4331921 B2 JP4331921 B2 JP 4331921B2 JP 2002205635 A JP2002205635 A JP 2002205635A JP 2002205635 A JP2002205635 A JP 2002205635A JP 4331921 B2 JP4331921 B2 JP 4331921B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
semiconductor layer
type organic
gate electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002205635A
Other languages
Japanese (ja)
Other versions
JP2004047882A (en
Inventor
淳志 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002205635A priority Critical patent/JP4331921B2/en
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to EP03741311A priority patent/EP1536484A4/en
Priority to KR1020057000613A priority patent/KR20050028020A/en
Priority to CNA03816762XA priority patent/CN1669156A/en
Priority to US10/521,442 priority patent/US20060208251A1/en
Priority to PCT/JP2003/008761 priority patent/WO2004008545A1/en
Priority to AU2003281009A priority patent/AU2003281009A1/en
Publication of JP2004047882A publication Critical patent/JP2004047882A/en
Application granted granted Critical
Publication of JP4331921B2 publication Critical patent/JP4331921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、キャリア移動性の有機化合物からなる有機半導体層を備えた有機半導体素子に関する。
【0002】
【従来の技術】
有機半導体層に電圧を加えると有機半導体層に電荷密度が増加するので、有機半導体層上に1対の電極を設けその間に電流を流すことが可能になる。例えば、縦型構造のSIT(静電誘導形トランジスタ)構造の有機トランジスタなどの有機半導体素子においては、有機半導体層を挟むソース電極及びドレイン電極の間のゲート電極で有機半導体層の厚さ方向に電圧を印加し、有機半導体層の厚さ方向の電流をスイッチングできる。
【0003】
SITは、図1に示すように、有機半導体層13を1対のソース電極11及びドレイン電極15で挟み、有機半導体層の厚さ方向の途中にゲート電極14を形成した3端子構造を有する。そのゲート電極に電圧を印加し、有機半導体層にできる空乏層DpLによってソース電極及びドレイン電極間の電流を制御することができる。
【0004】
【発明が解決しようとする課題】
SIT構造の有機トランジスタでは、例えば、正電荷を印加したゲート電極14の複数の短冊形枝部の周りに生じる有機半導体層の複数の空乏層DpLによって、ソース電極及びドレイン電極間の膜厚方向のキャリア移動を阻止する。
しかしながら、空乏層DpL各々の拡がりが不十分であると、図2に示すゲート電極14の短冊形枝部の間隔Wを空乏層DpLで埋めることができず、漏れ電流が増加する。すなわち、キャリア移動を阻止し漏れ電流減少のためにゲート電極の短冊形枝部の間隔を狭めるには、微細構造のマスクを用いたゲート電極の形成が必要となる。
【0005】
一般に、SIT構造の有機トランジスタにおける有機半導体層の膜厚は数百nmであり、ソース電極及びドレイン電極の間に形成されるべきゲート電極も50〜100nmといった厚さとなる。そうすると有機半導体層、ゲート電極、有機半導体層と順次成膜した際、有機トランジスタは、ゲート電極の複数の短冊形枝部が、そのまま、その後工程で積層される有機半導体層やドレイン電極に転写され、表面に凹凸が残ってしまい、漏れ電流の増加に影響する。
【0006】
本発明の解決しようとする課題には、電極間の漏れ電流の発生を抑制した有機半導体素子を提供することが一例として挙げられる。
【0007】
【課題を解決するための手段】
請求項1記載の有機半導体素子は、ソース電極及びドレイン電極間に挟持されたp型有機半導体層を備えた有機半導体素子であって、前記p型有機半導体層の中間に介在されたn型有機半導体層と、前記n型有機半導体層に包埋されたゲート電極と、を備えたことを特徴とする。
【0008】
請求項4記載の有機半導体素子は、ソース電極及びドレイン電極間に挟持されたn型有機半導体層を備えた有機半導体素子であって、前記n型有機半導体層の中間に介在されたp型有機半導体層と、前記p型有機半導体層に包埋されたゲート電極と、を備えたことを特徴とする有機半導体素子。
【0009】
【発明の実施の形態】
本発明による有機半導体素子の実施形態例として有機トランジスタを図面を参照しつつ説明する。
図3は、実施形態のSIT構造の有機トランジスタの断面を示す。有機トランジスタにおいて、基板10上のソース電極上に、第1p型有機半導体層13p1、第1n型有機半導体層13n1、ゲート電極14、第2n型有機半導体層13n2、第2p型有機半導体層13p2及びドレイン電極15が順に積層されている。これら有機半導体層はキャリア移動性を有しており、第1p型有機半導体層13p1及び第2p型有機半導体層13p2はp型有機半導体材料(正孔輸送性)からなり、第1n型有機半導体層13n1及び第2n型有機半導体層13n2はn型材料(電子輸送性)からなる。かかる素子はpnpの接合を備え、それぞれがソース電極11、ゲート電極14及びドレイン電極15に接続されている。よって、実施形態の有機トランジスタは、全体として、ソース電極11及びドレイン電極15間に挟持されたp型有機半導体層を備えた有機半導体素子であって、このp型有機半導体層(第1p型有機半導体層13p1及び第2p型有機半導体層13p2)の間に介在されたn型有機半導体層(第1n型有機半導体層13n1及び第2n型有機半導体層13n2)によって、キャリアの移動が制御される。かかるn型有機半導体層へ制御用の電圧を一様に印加するため、ゲート電極14がn型有機半導体層に包埋されている。
【0010】
図4に示すように、ゲート電極14はソース電極11及びドレイン電極15のどちら側から見ても、これら電極を覆うように、形成されている。
この実施形態の有機トランジスタは、例えば、次のように製造される。
まず、図5に示すように、基板10上にソース電極11を形成する。例えばスパッタ法によりインジウム錫酸化物(ITO)又はクロム(Cr)からなるソース電極11を膜厚50nmで成膜する。なお、ソース電極に限らず各電極形成には蒸着、スパッタ、CVDなどの方法を用いることができる。
【0011】
次に、図6に示すように、ソース電極11上に、第1p型有機半導体層13p1として、4,4’ビス[N−(1−ナフチル)−N−フェニルアミノ]−ビフェニル(いわゆる、α−NPD)を膜厚25nmで抵抗加熱蒸着により成膜する。
次に、図7に示すように、第1p型有機半導体層13p1上に、第1n型有機半導体層13n1として、銅フタロシアニン(いわゆる、CuPc)などのポルフィリン化合物又はトリス(8−ヒドロキシキノリン)アルミニウム錯体(いわゆる、Alq3)などのキノリン誘導体を膜厚25nmで抵抗加熱蒸着により成膜する。
【0012】
次に、図8に示すように、Alをゲート電極14として膜厚50nmで抵抗加熱蒸着法により平板状に形成する。なお、ゲート電極14全体を例えばLiO2などの電子注入層の数nm膜厚で被覆するようにも構成できる。
次に、図9に示すように、ゲート電極14上に、第2n型有機半導体層13n2として、第1n型有機半導体層と同じCuPc又はAlq3を膜厚25nmで抵抗加熱蒸着により成膜する。
【0013】
次に、図10に示すように、第2n型有機半導体層13n2上に、第2p型有機半導体層13p2として第1p型有機半導体層と同じα−NPDを膜厚25nmで成膜する。
最後に、図11に示すように、第2p型有機半導体層13p2上に、ドレイン電極15としてAlを膜厚200nmで抵抗加熱蒸着法で成膜して有機トランジスタが作製できる。
【0014】
得られた有機トランジスタの動作は、図12に示すように、例えばドレイン電極15接地して、ソース電極11の電位を+10Vとした状態で、ゲート電極14の電位を+20Vとすると障壁が高くなりオフ状態となる。一方、図13に示すように、同じくドレイン電極15接地でソース電極11の電位を+10Vとした状態で、ゲート電極14を開放すると有機半導体層同士の接合だけとなるのでオン状態となり、電流が流れる。
【0015】
なお、上記実施形態では、pnp接合の例を示したが、npn接合でも構成できる。この場合の素子は、図14に示すように、基板10上のソース電極上に、第1n型有機半導体層13n1、第1p型有機半導体層13p1、ゲート電極14、第2p型有機半導体層13p2、第2n型有機半導体層13n2及びドレイン電極15が順に積層される。よって、有機トランジスタは、ソース電極11及びドレイン電極15間に挟持された第1及び第2n型有機半導体層13n1及び13n2のn型有機半導体層に挟持された第1p型有機半導体層13p1及び第2p型有機半導体層13p2のp型有機半導体層を備え、かつ、第1p型有機半導体層13p1及び第2p型有機半導体層13p2に包埋されたゲート電極14を有するように、構成することもできる。
【0016】
また、上記実施形態では、ゲート電極14は平板状に成膜しているが、この他に、図15に示すように、ゲート電極14は複数の短冊形枝部とした櫛状又は簾状で形成され得る。この場合、ゲート電極は接触する有機半導体層にほぼ一様に電圧を印加できる形状であればよい。
さらに、図16に示すように、上記SIT構造の有機トランジスタの構造において、第1p型有機半導体層13p1及び第2p型有機半導体層13p2を正孔輸送層としてソース電極11及び第1p型有機半導体層13p1間に電子輸送性の有機発光層16を設けることによって、有機トランジスタ一体型有機エレクトロルミネッセンス素子を構成できる。これにより、電流の注入によって発光するエレクトロルミネッセンス(以下、ELともいう)を呈する有機化合物材料の少なくとも1つの薄膜からなる有機発光層を含む有機材料層を各々がアクティブ素子を備えた複数の有機EL素子を、マトリクスなどの所定パターンにて表示パネル基板上に形成できる。
【0017】
有機EL素子は、光を取り出す側を透明材料で構成して基板上の1対の電極層間に、有機材料層を順次積層されて構成される。例えば、トップエミッション構成の場合には、図16に示すものとは、逆に、ドレイン電極15と第2p型有機半導体層13p2との間に有機発光層16を設けることもできる。
【図面の簡単な説明】
【図1】有機トランジスタを示す断面図。
【図2】図1の線AAにおける断面図。
【図3】本発明による実施形態の有機トランジスタの断面図。
【図4】図3の線AAにおける断面図。
【図5】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図6】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図7】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図8】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図9】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図10】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図11】本発明による実施形態の有機トランジスタの製造工程の一部を示す断面図。
【図12】本発明による実施形態の有機トランジスタの動作説明図。
【図13】本発明による実施形態の有機トランジスタの動作説明図。
【図14】本発明による他の実施形態の有機トランジスタの断面図。
【図15】本発明による他の実施形態の有機トランジスタの断面図。
【図16】本発明による他の実施形態の有機トランジスタ一体型有機エレクトロルミネッセンス素子を示す断面図。
【符号の説明】
10 基板
11 ソース電極
13 第1有機半導体層
14 ゲート電極
15 ドレイン電極
16 有機発光層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic semiconductor element including an organic semiconductor layer made of an organic compound having carrier mobility.
[0002]
[Prior art]
When a voltage is applied to the organic semiconductor layer, the charge density increases in the organic semiconductor layer, so that a pair of electrodes can be provided on the organic semiconductor layer, and a current can flow between them. For example, in an organic semiconductor element such as an organic transistor having an SIT (electrostatic induction transistor) structure having a vertical structure, the gate electrode between the source electrode and the drain electrode sandwiching the organic semiconductor layer is arranged in the thickness direction of the organic semiconductor layer. A voltage can be applied to switch the current in the thickness direction of the organic semiconductor layer.
[0003]
As shown in FIG. 1, the SIT has a three-terminal structure in which an organic semiconductor layer 13 is sandwiched between a pair of a source electrode 11 and a drain electrode 15 and a gate electrode 14 is formed in the middle of the thickness direction of the organic semiconductor layer. A voltage is applied to the gate electrode, and the current between the source electrode and the drain electrode can be controlled by a depletion layer DpL formed as an organic semiconductor layer.
[0004]
[Problems to be solved by the invention]
In the organic transistor having the SIT structure, for example, a plurality of depletion layers DpL of the organic semiconductor layer generated around the plurality of strip-shaped branches of the gate electrode 14 to which a positive charge is applied, in the film thickness direction between the source electrode and the drain electrode. Prevent carrier movement.
However, if the expansion of each depletion layer DpL is insufficient, the interval W between the strip-shaped branches of the gate electrode 14 shown in FIG. 2 cannot be filled with the depletion layer DpL, and the leakage current increases. In other words, in order to prevent carrier movement and reduce the gap between the strip-shaped branch portions of the gate electrode in order to reduce the leakage current, it is necessary to form the gate electrode using a fine structure mask.
[0005]
In general, the thickness of the organic semiconductor layer in the organic transistor having the SIT structure is several hundred nm, and the gate electrode to be formed between the source electrode and the drain electrode has a thickness of 50 to 100 nm. Then, when the organic semiconductor layer, the gate electrode, and the organic semiconductor layer are sequentially formed, the organic transistor is transferred as it is to the organic semiconductor layer and the drain electrode that are stacked in the subsequent process. Unevenness remains on the surface, which affects the increase in leakage current.
[0006]
An example of the problem to be solved by the present invention is to provide an organic semiconductor element that suppresses the occurrence of leakage current between electrodes.
[0007]
[Means for Solving the Problems]
The organic semiconductor device according to claim 1 is an organic semiconductor device including a p-type organic semiconductor layer sandwiched between a source electrode and a drain electrode, and an n-type organic material interposed between the p-type organic semiconductor layers. The semiconductor device includes a semiconductor layer and a gate electrode embedded in the n-type organic semiconductor layer.
[0008]
5. The organic semiconductor device according to claim 4, wherein the organic semiconductor device includes an n-type organic semiconductor layer sandwiched between a source electrode and a drain electrode, and the p-type organic material is interposed between the n-type organic semiconductor layers. An organic semiconductor device comprising: a semiconductor layer; and a gate electrode embedded in the p-type organic semiconductor layer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An organic transistor will be described with reference to the drawings as an embodiment of an organic semiconductor device according to the present invention.
FIG. 3 shows a cross section of the organic transistor having the SIT structure of the embodiment. In the organic transistor, a first p-type organic semiconductor layer 13p1, a first n-type organic semiconductor layer 13n1, a gate electrode 14, a second n-type organic semiconductor layer 13n2, a second p-type organic semiconductor layer 13p2, and a drain are formed on the source electrode on the substrate 10. The electrodes 15 are laminated in order. These organic semiconductor layers have carrier mobility, and the first p-type organic semiconductor layer 13p1 and the second p-type organic semiconductor layer 13p2 are made of a p-type organic semiconductor material (hole transportability), and the first n-type organic semiconductor layer 13n1 and the second n-type organic semiconductor layer 13n2 are made of an n-type material (electron transport property). Such an element has a pnp junction, and each is connected to a source electrode 11, a gate electrode 14, and a drain electrode 15. Therefore, the organic transistor of the embodiment as a whole is an organic semiconductor element including a p-type organic semiconductor layer sandwiched between the source electrode 11 and the drain electrode 15, and this p-type organic semiconductor layer (first p-type organic semiconductor). Carrier movement is controlled by the n-type organic semiconductor layers (the first n-type organic semiconductor layer 13n1 and the second n-type organic semiconductor layer 13n2) interposed between the semiconductor layer 13p1 and the second p-type organic semiconductor layer 13p2). In order to uniformly apply a control voltage to the n-type organic semiconductor layer, the gate electrode 14 is embedded in the n-type organic semiconductor layer.
[0010]
As shown in FIG. 4, the gate electrode 14 is formed so as to cover the source electrode 11 and the drain electrode 15 when viewed from either side.
The organic transistor of this embodiment is manufactured as follows, for example.
First, as shown in FIG. 5, the source electrode 11 is formed on the substrate 10. For example, the source electrode 11 made of indium tin oxide (ITO) or chromium (Cr) is formed with a film thickness of 50 nm by sputtering. In addition to the source electrode, each electrode can be formed by vapor deposition, sputtering, CVD, or the like.
[0011]
Next, as shown in FIG. 6, as the first p-type organic semiconductor layer 13 p 1, 4,4′bis [N- (1-naphthyl) -N-phenylamino] -biphenyl (so-called α) is formed on the source electrode 11. -NPD) is deposited by resistance heating vapor deposition with a film thickness of 25 nm.
Next, as shown in FIG. 7, a porphyrin compound such as copper phthalocyanine (so-called CuPc) or a tris (8-hydroxyquinoline) aluminum complex is formed on the first p-type organic semiconductor layer 13p1 as the first n-type organic semiconductor layer 13n1. A quinoline derivative such as (so-called Alq3) is formed by resistance heating vapor deposition with a film thickness of 25 nm.
[0012]
Next, as shown in FIG. 8, Al is used as the gate electrode 14 to form a flat plate with a thickness of 50 nm by resistance heating vapor deposition. Note that the entire gate electrode 14 may be covered with a thickness of several nm of an electron injection layer such as LiO 2 .
Next, as shown in FIG. 9, on the gate electrode 14, as the second n-type organic semiconductor layer 13n2, CuPc or Alq3, which is the same as the first n-type organic semiconductor layer, is formed by resistance heating vapor deposition with a film thickness of 25 nm.
[0013]
Next, as shown in FIG. 10, on the second n-type organic semiconductor layer 13n2, the same α-NPD as the first p-type organic semiconductor layer is formed as a second p-type organic semiconductor layer 13p2 with a film thickness of 25 nm.
Finally, as shown in FIG. 11, an organic transistor can be manufactured by depositing Al as a drain electrode 15 with a thickness of 200 nm on the second p-type organic semiconductor layer 13p2 by a resistance heating vapor deposition method.
[0014]
As shown in FIG. 12, for example, when the drain electrode 15 is grounded and the potential of the source electrode 11 is set to + 10V and the potential of the gate electrode 14 is set to + 20V, the operation of the obtained organic transistor is increased. It becomes a state. On the other hand, as shown in FIG. 13, when the gate electrode 14 is opened with the drain electrode 15 grounded and the potential of the source electrode 11 set to + 10V, only the organic semiconductor layers are joined to each other, so that the ON state is established and current flows. .
[0015]
In the above embodiment, an example of a pnp junction is shown, but an npn junction can also be configured. As shown in FIG. 14, the element in this case includes a first n-type organic semiconductor layer 13n1, a first p-type organic semiconductor layer 13p1, a gate electrode 14, a second p-type organic semiconductor layer 13p2, The second n-type organic semiconductor layer 13n2 and the drain electrode 15 are sequentially stacked. Accordingly, the organic transistor includes the first p-type organic semiconductor layer 13p1 and the second p-type sandwiched between the n-type organic semiconductor layers of the first and second n-type organic semiconductor layers 13n1 and 13n2 sandwiched between the source electrode 11 and the drain electrode 15. The p-type organic semiconductor layer 13p2 may include a gate electrode 14 embedded in the first p-type organic semiconductor layer 13p1 and the second p-type organic semiconductor layer 13p2.
[0016]
In the above embodiment, the gate electrode 14 is formed in a flat plate shape. In addition, as shown in FIG. 15, the gate electrode 14 has a plurality of strip-shaped branch portions in a comb shape or a bowl shape. Can be formed. In this case, the gate electrode may have any shape that can apply a voltage to the organic semiconductor layer that is in contact with the gate electrode substantially uniformly.
Further, as shown in FIG. 16, in the structure of the organic transistor having the SIT structure, the source electrode 11 and the first p-type organic semiconductor layer using the first p-type organic semiconductor layer 13p1 and the second p-type organic semiconductor layer 13p2 as a hole transport layer. By providing the organic light-emitting layer 16 having an electron transport property between 13p1, an organic transistor integrated organic electroluminescence element can be configured. Thus, a plurality of organic EL layers each including an active element including an organic light emitting layer made of at least one thin film of an organic compound material that exhibits electroluminescence (hereinafter also referred to as EL) that emits light by current injection. The elements can be formed on the display panel substrate in a predetermined pattern such as a matrix.
[0017]
An organic EL element is configured by sequentially forming an organic material layer between a pair of electrode layers on a substrate by forming a light extraction side with a transparent material. For example, in the case of the top emission configuration, the organic light emitting layer 16 can be provided between the drain electrode 15 and the second p-type organic semiconductor layer 13p2 in the opposite manner to that shown in FIG.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an organic transistor.
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view of an organic transistor according to an embodiment of the present invention.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is a cross-sectional view showing a part of a manufacturing process of an organic transistor according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a part of the manufacturing process of the organic transistor of the embodiment according to the present invention.
FIG. 7 is a cross-sectional view showing a part of the manufacturing process of the organic transistor of the embodiment according to the present invention.
FIG. 8 is a cross-sectional view showing a part of a manufacturing process of an organic transistor according to an embodiment of the present invention.
FIG. 9 is a cross-sectional view showing a part of the manufacturing process of the organic transistor of the embodiment according to the present invention.
FIG. 10 is a cross-sectional view showing a part of the manufacturing process of the organic transistor of the embodiment according to the present invention.
FIG. 11 is a cross-sectional view showing a part of the manufacturing process of the organic transistor of the embodiment according to the present invention.
FIG. 12 is an operation explanatory view of an organic transistor according to an embodiment of the present invention.
FIG. 13 is an operation explanatory diagram of an organic transistor according to an embodiment of the present invention.
FIG. 14 is a cross-sectional view of an organic transistor according to another embodiment of the present invention.
FIG. 15 is a sectional view of an organic transistor according to another embodiment of the present invention.
FIG. 16 is a cross-sectional view showing an organic electroluminescence element integrated with an organic transistor according to another embodiment of the present invention.
[Explanation of symbols]
10 substrate 11 source electrode 13 first organic semiconductor layer 14 gate electrode 15 drain electrode 16 organic light emitting layer

Claims (6)

ソース電極及びドレイン電極間に挟持されたp型有機半導体層を備えた有機半導体素子であって、前記p型有機半導体層の中間に介在されたn型有機半導体層と、前記n型有機半導体層に包埋されたゲート電極と、を備えたことを特徴とする有機半導体素子。An organic semiconductor element comprising a p-type organic semiconductor layer sandwiched between a source electrode and a drain electrode, wherein the n-type organic semiconductor layer is interposed between the p-type organic semiconductor layers and the n-type organic semiconductor layer An organic semiconductor device comprising: a gate electrode embedded in the substrate. 前記ゲート電極は平板状であることを特徴とする請求項1記載の有機半導体素子。The organic semiconductor device according to claim 1, wherein the gate electrode has a flat plate shape. 前記ゲート電極は櫛状又は簾状であることを特徴とする請求項1記載の有機半導体素子。The organic semiconductor device according to claim 1, wherein the gate electrode has a comb shape or a bowl shape. ソース電極及びドレイン電極間に挟持されたn型有機半導体層を備えた有機半導体素子であって、前記n型有機半導体層の中間に介在されたp型有機半導体層と、前記p型有機半導体層に包埋されたゲート電極と、を備えたことを特徴とする有機半導体素子。An organic semiconductor device comprising an n-type organic semiconductor layer sandwiched between a source electrode and a drain electrode, wherein the p-type organic semiconductor layer is interposed between the n-type organic semiconductor layer and the p-type organic semiconductor layer An organic semiconductor device comprising: a gate electrode embedded in the substrate. 前記ゲート電極は平板状であることを特徴とする請求項4記載の有機半導体素子。The organic semiconductor device according to claim 4, wherein the gate electrode has a flat plate shape. 前記ゲート電極は櫛状又は簾状であることを特徴とする請求項4記載の有機半導体素子。The organic semiconductor device according to claim 4, wherein the gate electrode has a comb shape or a bowl shape.
JP2002205635A 2002-07-15 2002-07-15 Organic semiconductor device Expired - Fee Related JP4331921B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002205635A JP4331921B2 (en) 2002-07-15 2002-07-15 Organic semiconductor device
KR1020057000613A KR20050028020A (en) 2002-07-15 2003-07-10 Organic semiconductor device and method for manufacturing same
CNA03816762XA CN1669156A (en) 2002-07-15 2003-07-10 Organic semiconductor device and method for manufacturing same
US10/521,442 US20060208251A1 (en) 2002-07-15 2003-07-10 Organic semiconductor device and producing method therefor
EP03741311A EP1536484A4 (en) 2002-07-15 2003-07-10 Organic semiconductor device and method for manufacturing same
PCT/JP2003/008761 WO2004008545A1 (en) 2002-07-15 2003-07-10 Organic semiconductor device and method for manufacturing same
AU2003281009A AU2003281009A1 (en) 2002-07-15 2003-07-10 Organic semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205635A JP4331921B2 (en) 2002-07-15 2002-07-15 Organic semiconductor device

Publications (2)

Publication Number Publication Date
JP2004047882A JP2004047882A (en) 2004-02-12
JP4331921B2 true JP4331921B2 (en) 2009-09-16

Family

ID=31710885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205635A Expired - Fee Related JP4331921B2 (en) 2002-07-15 2002-07-15 Organic semiconductor device

Country Status (1)

Country Link
JP (1) JP4331921B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041331A1 (en) 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Charge carrier modulation for color and brightness tuning in organic light-emitting diodes

Also Published As

Publication number Publication date
JP2004047882A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
TW589919B (en) Method for vapor deposition and method for making display device
JP4934774B2 (en) Organic light emitting transistor and display device
US7492096B2 (en) Flat panel display device capable of reducing or preventing a voltage drop and method of fabricating the same
KR100661439B1 (en) Display device and method of manufacturing the same
US20090135105A1 (en) Light-emitting element and display apparatus using the same
KR20050052487A (en) Organic electroluminescence display and manufacturing method
EP1536484A1 (en) Organic semiconductor device and method for manufacturing same
US7049636B2 (en) Device including OLED controlled by n-type transistor
KR101808533B1 (en) Oganic electro-luminesence display and manufactucring method of the same
TW201017877A (en) Organic light emitting diode display device and manufacturing method thereof
KR100774961B1 (en) Light Emitting Diodes and Method for Manufacturing the same
JPWO2007043704A1 (en) Light emitting element and display device
JP5063294B2 (en) Light emitting device and manufacturing method thereof
JP2001100655A (en) El display device
WO2006090809A1 (en) Organic semiconductor light-emitting device and display
US9960382B2 (en) Organic electroluminescence element, display panel, and method for manufacturing organic electroluminescence element
JP2007109564A (en) Light emitting element and display device
JP4331921B2 (en) Organic semiconductor device
WO2006098420A1 (en) Light-emitting device and display
WO2020124774A1 (en) Tft array substrate and method of manufacturing same, and oled display panel
JP2003258267A (en) Organic thin film semiconductor element and its manufacturing method
JP2004047881A (en) Organic semiconductor device and its manufacturing method
KR102037487B1 (en) Method for fabricating Organic Electroluminescence Device and the Organic Electroluminescence Device fabricated by the method
JP2006203073A (en) Organic electroluminescence display apparatus
WO2009017339A2 (en) Organic light-emitting transistors and method of the same, and active matrix organic light-emitting displays and method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R150 Certificate of patent or registration of utility model

Ref document number: 4331921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees