JP4331578B2 - Steam reforming hydrogen production system - Google Patents

Steam reforming hydrogen production system Download PDF

Info

Publication number
JP4331578B2
JP4331578B2 JP2003407353A JP2003407353A JP4331578B2 JP 4331578 B2 JP4331578 B2 JP 4331578B2 JP 2003407353 A JP2003407353 A JP 2003407353A JP 2003407353 A JP2003407353 A JP 2003407353A JP 4331578 B2 JP4331578 B2 JP 4331578B2
Authority
JP
Japan
Prior art keywords
flow path
gas
annular
steam reforming
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003407353A
Other languages
Japanese (ja)
Other versions
JP2005162583A (en
Inventor
浩一 川本
広美 佐々木
倫三 三好
元貴 公野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2003407353A priority Critical patent/JP4331578B2/en
Publication of JP2005162583A publication Critical patent/JP2005162583A/en
Application granted granted Critical
Publication of JP4331578B2 publication Critical patent/JP4331578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように第1の改質ガス冷却用環状流路と第1の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に、第2の触媒充填環状流路と第3の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置、および、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように改質ガス冷却用環状流路を配置し、さらにその外側に触媒充填環状流路を配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置に関する。   In the present invention, a combustion space is arranged in the center, and the first reformed gas cooling annular flow path and the first catalyst-filled annular flow path are continuously arranged vertically downward so as to surround the periphery concentrically. Further, the second catalyst-filled annular flow path and the third catalyst-filled annular flow path are arranged continuously downward in the vertical direction on the outer side, and the combustion gas flow path through which the combustion gas flows is further disposed on the outer side. In addition, a steam reforming type hydrogen production apparatus in which an evaporator is disposed outside, and a combustion space is disposed in the center, and an annular flow path for cooling the reformed gas is disposed so as to surround the periphery concentrically. Furthermore, the present invention relates to a steam reforming hydrogen production apparatus in which a catalyst-filled annular flow path is further disposed on the outer side, a combustion gas flow path through which combustion gas flows is further disposed on the outer side, and an evaporator is disposed on the outer side.

一般に、燃料電池における水素極に供給する水素は、例えば、天然ガスや灯油などの原燃料と水蒸気を反応させて触媒により水素を生成する水蒸気改質型水素製造装置により形成される。   In general, the hydrogen supplied to the hydrogen electrode in the fuel cell is formed by, for example, a steam reforming type hydrogen production apparatus that reacts a raw fuel such as natural gas or kerosene with water vapor to generate hydrogen with a catalyst.

このような水蒸気改質型水素製造装置おいては、改質装置の中心に改質触媒加熱用バーナーを設け、この改質触媒加熱用バーナーの周囲を取り巻くように、内側から外側に向かって同心円状に改質触媒を充填した原燃料ガス改質用の折り返し流路を有する反応管とから構成されるのが一般的である。   In such a steam reforming type hydrogen production apparatus, a reforming catalyst heating burner is provided at the center of the reforming apparatus, and concentric circles are formed from the inside to the outside so as to surround the reforming catalyst heating burner. Generally, it is composed of a reaction tube having a folded flow path for raw fuel gas reforming that is filled with a reforming catalyst.

このような構成にすることによって、原燃料ガスと水蒸気から水素を生成するために必要な熱エネルギーを効率よく改質触媒層へ伝えることができる。   With such a configuration, it is possible to efficiently transmit thermal energy necessary for generating hydrogen from raw fuel gas and water vapor to the reforming catalyst layer.

一方、改質ガスに熱エネルギーを与え、自らは熱エネルギーを失った燃焼ガスは、なお多くの熱エネルギーを保持しており、この排熱エネルギーを有効に回収して、燃料ガスの量を減らすための工夫が施された水蒸気改質型水素製造装置が考案されている。   On the other hand, the combustion gas that gave thermal energy to the reformed gas and lost its own thermal energy still retains a lot of thermal energy, effectively recovering this exhaust heat energy and reducing the amount of fuel gas For this reason, a steam reforming type hydrogen production apparatus has been devised.

このような水蒸気改質型水素製造装置としては、バーナーの周囲を取り巻くように内側から外側に向かって同心円状に改質触媒を充填した原燃料ガス改質用の折り返し流路を有する反応管をさらに取り巻くように、改質に必要な水蒸気や、燃焼用空気を予熱する予熱管を配置した水蒸気改質型水素製造装置というものがある(例えば特許文献1参照)。
特開平02−129001号公報
As such a steam reforming type hydrogen production apparatus, a reaction tube having a folded flow path for raw fuel gas reforming that is concentrically filled from the inside to the outside so as to surround the periphery of the burner. Further, there is a steam reforming type hydrogen production apparatus in which a steam necessary for reforming and a preheating pipe for preheating combustion air are arranged (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 02-129001

ところで、上述した特許文献1に記載の水蒸気改質型水素製造装置においては、原燃料ガスの予熱機能については特に記載がないが、システムを構成する上では、なんらかの形で予熱機能を組み込む必要がある。   By the way, in the steam reforming type hydrogen production apparatus described in Patent Document 1 described above, there is no particular description about the preheating function of the raw fuel gas. However, in configuring the system, it is necessary to incorporate the preheating function in some form. is there.

そこで、例えば、固体高分子型燃料電池システムにおいて、上述した特許文献1に記載の水蒸気改質型水素製造装置を組み込んで使用する場合を考えると、予熱装置を別途設置する方法が考えられる。しかし、この場合システムを構成する機器数が増加し、システム全体として大きさが大きくなることが課題となる。   Therefore, for example, in the case of using the steam reforming type hydrogen production apparatus described in Patent Document 1 described above in a polymer electrolyte fuel cell system, a method of separately installing a preheating device can be considered. However, in this case, the number of devices constituting the system increases and the size of the entire system becomes a problem.

また、水蒸気改質型水素製造装置によって水素を製造する際に必要となる水蒸気は、従来、必要な蒸気量よりも多い量の水を蒸発器に供給して蒸発させ、気液二相流の状態で気液分離器に導き、蒸気と水を分離して蒸気量を調整してから原燃料と混合していた。しかしながら、このような固体高分子型燃料電池システムでは、気液分離器が大きくなることが多く、システム全体がコンパクト化できないことが課題であった。   In addition, the water vapor required for producing hydrogen by the steam reforming hydrogen production apparatus is conventionally supplied by evaporating an amount of water larger than the required amount of vapor to the evaporator to evaporate the gas-liquid two-phase flow. In the state, it was led to the gas-liquid separator, and after the steam and water were separated and the amount of steam was adjusted, it was mixed with the raw fuel. However, in such a polymer electrolyte fuel cell system, the gas-liquid separator is often large, and the entire system cannot be made compact.

本発明は、上述したような実情に鑑みてなされたものであり、原燃料ガスの予熱装置および水蒸気改質に必要な蒸気を発生させる蒸発器が一体となったコンパクトな水蒸気改質型水素製造装置を得ることを目的とする。   The present invention has been made in view of the above circumstances, and is a compact steam reforming type hydrogen production united with a raw fuel gas preheating device and an evaporator for generating steam necessary for steam reforming. The object is to obtain a device.

本発明は、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように第1の改質ガス冷却用環状流路と第1の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に第2の触媒充填環状流路と第3の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、上記第2の触媒充填環状流路の上に配置された原燃料の予熱用環状流路と、その予熱用環状流路の内側に隣接し、上記第1の改質ガス冷却用環状流路の垂直方向上に配置された第2の改質ガス冷却用環状流路と、前記第1の改質ガス冷却用環状流路と燃焼空間との間及び前記第2の改質ガス冷却用環状流路と前記燃焼空間での燃焼を行う燃焼用バーナの外側との間にそれぞれ配置された保温材とを備え、原燃料を上記予熱用環状流路、上記第2の触媒充填環状流路、上記第3の触媒充填環状流路、上記第1の触媒充填環状流路、上記第1の改質ガス冷却用環状流路、上記第2の改質ガス冷却用環状流路の順に流すようにしたものである。 In the present invention, a combustion space is arranged in the center, and the first reformed gas cooling annular flow path and the first catalyst-filled annular flow path are continuously arranged vertically downward so as to surround the periphery concentrically. And the second catalyst-filled annular flow path and the third catalyst-filled annular flow path are continuously arranged vertically downward on the outer side, and the combustion gas flow path through which the combustion gas flows is further disposed on the outer side. Further, in the steam reforming type hydrogen production apparatus in which an evaporator is further arranged outside, a raw fuel preheating annular passage disposed on the second catalyst-filled annular passage, and a preheating annular passage thereof And a second reformed gas cooling annular flow path disposed adjacent to the inside of the first reformed gas cooling annular flow path and in a vertical direction of the first reformed gas cooling annular flow path, and the first reformed gas cooling annular flow. Combustion is performed between the passage and the combustion space and in the second reformed gas cooling annular flow passage and the combustion space. And a heat insulating material disposed respectively between the outer shrink burner, fuel annular channel for the preheater original, the second catalyst packed annular flow path, the third catalyst packed annular flow passage, the The first catalyst-filled annular channel, the first reformed gas cooling annular channel, and the second reformed gas cooling annular channel are flowed in this order.

また、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように改質ガス冷却用環状流路を配置し、さらにその外側に触媒充填環状流路を配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、上記蒸発器は、燃焼ガスの流れる環状流路と、環状流路内部に設置される螺旋管とにより構成されるものである。   In addition, a combustion space is arranged in the center, a reformed gas cooling annular flow path is arranged so as to surround the circumference concentrically, a catalyst-filled annular flow path is arranged on the outer side, and combustion is performed on the outer side. In a steam reforming type hydrogen production apparatus in which a combustion gas flow path through which a gas flows is arranged and an evaporator is further arranged outside of the combustion gas flow path, the evaporator is installed in an annular flow path through which the combustion gas flows and inside the annular flow path. And a spiral tube.

また、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように改質ガス冷却用環状流路を配置し、さらにその外側に触媒充填環状流路を配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、上記燃焼ガス流路と上記蒸発器との間に設けた保温材を備えたものである。   In addition, a combustion space is arranged in the center, a reformed gas cooling annular flow path is arranged so as to surround the circumference concentrically, a catalyst-filled annular flow path is arranged on the outer side, and combustion is performed on the outer side. A steam reforming type hydrogen production apparatus in which a combustion gas flow path through which a gas flows is disposed and an evaporator is disposed outside thereof, and a heat insulating material provided between the combustion gas flow path and the evaporator It is.

また、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように改質ガス冷却用環状流路を配置し、さらにその外側に触媒充填環状流路を配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、上記蒸発器は、水が満たされる環状流路と、当該環状流路内部に敷設された燃焼ガスの流れる螺旋管流路とによって構成されるものである。   In addition, a combustion space is arranged in the center, a reformed gas cooling annular flow path is arranged so as to surround the circumference concentrically, a catalyst-filled annular flow path is arranged on the outer side, and combustion is performed on the outer side. In a steam reforming type hydrogen production apparatus in which a combustion gas flow path through which a gas flows is disposed and an evaporator is disposed outside the combustion gas flow path, the evaporator includes an annular flow path that is filled with water and an inside of the annular flow path And a spiral pipe flow path through which the combustion gas flows.

また、中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように改質ガス冷却用環状流路を配置し、さらにその外側に触媒充填環状流路を配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、上記蒸発器は、水が満たされる環状流路と、当該環状流路の内側に隣接して敷設され上記燃焼ガスが流れる燃焼ガス環状流路とによって構成されるものである。   In addition, a combustion space is arranged in the center, a reformed gas cooling annular flow path is arranged so as to surround the circumference concentrically, a catalyst-filled annular flow path is arranged on the outer side, and combustion is performed on the outer side. In a steam reforming hydrogen production apparatus in which a combustion gas flow path through which a gas flows is disposed and an evaporator is disposed outside the combustion gas flow path, the evaporator includes an annular flow path filled with water and an inner side of the annular flow path. It is constituted by a combustion gas annular flow path which is laid adjacently and through which the combustion gas flows.

本発明によれば、温度の低い予熱用環状流路を温度の高い第2の改質ガス冷却用環状流路の外側に配置しているので、外部への放熱を削減することができるという効果を得る。   According to the present invention, since the preheating annular flow path having a low temperature is arranged outside the second reformed gas cooling annular flow path having a high temperature, it is possible to reduce heat radiation to the outside. Get.

また、第2の改質ガス冷却用環状流路は、改質ガスを冷却したい温度レベルに近い燃焼用バーナーに隣接して設置されているので、内部からの加熱を受けにくく効果的に改質ガスを所定温度まで冷却することができる効果を得る。   Also, the second reformed gas cooling annular channel is installed adjacent to the combustion burner close to the temperature level at which the reformed gas is desired to be cooled, so that it is less susceptible to internal heating and is effectively reformed. The effect that the gas can be cooled to a predetermined temperature is obtained.

また、燃焼空間と第1の改質ガス冷却用環状流路の間に保温材が設置されているので、燃焼空間から第1の改質ガス冷却用環状流路へと流入し、改質ガス温度を下げる機能を阻害する原因となる熱エネルギーの量を削減することができるという効果も得る。   In addition, since the heat insulating material is installed between the combustion space and the first reformed gas cooling annular flow path, it flows into the first reformed gas cooling annular flow path from the combustion space, and the reformed gas There is also an effect that it is possible to reduce the amount of heat energy that causes the function of lowering the temperature to be hindered.

また、燃焼ガス流路に螺旋管を設置することにより、蒸発器を装置筺体内に一体化して設けることができ、装置を小型化することができるという効果も得る。   Further, by installing the spiral tube in the combustion gas flow path, the evaporator can be provided integrally in the apparatus housing, and the apparatus can be reduced in size.

以下、添付図面を参照しながら、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施例にかかる固体高分子型燃料電池システムを示している。   FIG. 1 shows a polymer electrolyte fuel cell system according to an embodiment of the present invention.

同図において、原燃料は、気液分離器1から排出される水蒸気と混合されたのち、燃焼用燃料と後述する固体高分子型燃料電池で使われなかった水素とを燃焼することによって得られた熱で改質され水素リッチ(高濃度水素)な改質ガスとなり、周知のシフト反応器や部分酸化反応器などから構成されるCO除去器4に送られる。また、水蒸気改質型水素製造装置3から排出される燃焼排ガスは、水蒸気発生器5へ送られる。   In the figure, the raw fuel is obtained by burning the fuel for combustion and hydrogen not used in the polymer electrolyte fuel cell described later, after being mixed with the steam discharged from the gas-liquid separator 1. The reformed gas is heated to become a hydrogen-rich (high-concentration hydrogen) reformed gas, which is sent to a CO remover 4 including a known shift reactor, partial oxidation reactor, and the like. Further, the combustion exhaust gas discharged from the steam reforming hydrogen production apparatus 3 is sent to the steam generator 5.

CO除去器4では、水蒸気改質型水素製造装置3から排出される改質ガスから、不純物である一酸化炭素が除去されたのち、固体高分子型燃料電池6へと送られ、固体高分子型燃料電池6は、CO除去器4から受け入れた水素ガスと、空気を利用して発電し、それによって得られた電力が出力される。また、固体高分子型燃料電池6のアノード排ガス(余剰水素)は、水蒸気改質型水素製造装置3へ送られて、燃焼用燃料とともに燃焼される。   In the CO remover 4, carbon monoxide, which is an impurity, is removed from the reformed gas discharged from the steam reforming hydrogen production apparatus 3, and then sent to the solid polymer fuel cell 6, where the solid polymer The fuel cell 6 generates power using the hydrogen gas received from the CO remover 4 and air, and the electric power obtained thereby is output. The anode exhaust gas (surplus hydrogen) of the polymer electrolyte fuel cell 6 is sent to the steam reforming hydrogen production apparatus 3 and combusted together with the combustion fuel.

一方、水蒸気改質型水素製造装置3を出た燃焼排ガスは、蒸発器5で水に熱を伝えたのち、システム外部へ廃棄される。また、蒸発器5で発生した蒸気は、気液二相状態で気液分離器1に送られ、この気液分離器1によって水蒸気と水に分離され、水蒸気は原燃料と混合される経路に送り出される。   On the other hand, the combustion exhaust gas exiting the steam reforming hydrogen production apparatus 3 is transferred to the water by the evaporator 5 and then discarded outside the system. In addition, the vapor generated in the evaporator 5 is sent to the gas-liquid separator 1 in a gas-liquid two-phase state, and is separated into water vapor and water by the gas-liquid separator 1, and the water vapor passes through a path where it is mixed with the raw fuel. Sent out.

ここで、CO除去器4に用いられるシフト反応器は、水蒸気改質型水素製造装置3を出たあとの水素リッチな改質ガスが含む一酸化炭素を、水蒸気と反応させて、二酸化炭素と水素に変成し、一酸化炭素濃度を低減する機能をもっている。   Here, the shift reactor used for the CO remover 4 reacts carbon monoxide contained in the hydrogen-rich reformed gas after leaving the steam reforming hydrogen production apparatus 3 with steam, It has the function of converting to hydrogen and reducing the carbon monoxide concentration.

このシフト反応器の動作温度は、用いられる触媒によって異なるが、通常150°C〜300°C程度であり600°C〜700°Cの水素リッチな改質ガスは温度を下げる必要があるため、水蒸気改質型水素製造装置は折り返し流路を有しており、改質触媒に熱を回収しつつ自らは温度を低下するための工夫がなされる。   Although the operating temperature of this shift reactor varies depending on the catalyst used, it is usually about 150 ° C to 300 ° C, and the hydrogen-rich reformed gas of 600 ° C to 700 ° C needs to lower the temperature. The steam reforming type hydrogen production apparatus has a folded flow path, and is devised to reduce the temperature itself while recovering heat in the reforming catalyst.

図2は、本発明の一実施例にかかる水蒸気改質型水素製造装置の一例を示している。この水蒸気改質型水素製造装置は、全体として円筒形状をなしており、各構成要素は、同心円的に並ぶ環状に概略形成されている。   FIG. 2 shows an example of a steam reforming hydrogen production apparatus according to an embodiment of the present invention. This steam reforming type hydrogen production apparatus has a cylindrical shape as a whole, and each component is roughly formed in a ring arranged concentrically.

この水蒸気改質型水素製造装置は、保温素材からなる略円筒形状の筺体10に収容されており、原燃料ガスと水蒸気の混合物が流れる予熱用環状流路11と、その下部に接続された原燃料ガスを水素に転換する触媒粒子が充填されている触媒充填環状流路12と、触媒充填環状流路12の下部に接続された触媒充填環状流路13と、触媒充填環状流路13に折り返し部14を介して接続される触媒充填環状流路15と、触媒充填環状流路15の上部に接続された改質ガス冷却用環状通路16と、改質ガス冷却用環状流路16の上部に接続された改質ガス冷却用環状流路17とを備えている。   This steam reforming type hydrogen production apparatus is housed in a substantially cylindrical casing 10 made of a heat retaining material, and includes a preheating annular channel 11 through which a mixture of raw fuel gas and steam flows, and a raw material connected to the lower part thereof. A catalyst-filled annular flow path 12 filled with catalyst particles for converting fuel gas into hydrogen, a catalyst-filled annular flow path 13 connected to the lower portion of the catalyst-filled annular flow path 12, and a catalyst-filled annular flow path 13 are folded back. The catalyst-filled annular flow path 15 connected via the section 14, the reformed gas cooling annular passage 16 connected to the upper part of the catalyst-filled annular flow path 15, and the reformed gas cooling annular flow path 16 And a reformed gas cooling annular flow path 17 connected thereto.

また、予熱用環状流路11の内面と改質ガス冷却用環状流路17の外面、触媒充填環状流路12の内面と改質ガス冷却用環状流路16の外面、および、触媒充填環状流路13の内面と触媒充填環状流路14の外面とが、それぞれ隔壁を隔てて隣接して設置されている。   Further, the inner surface of the preheating annular channel 11 and the outer surface of the reformed gas cooling annular channel 17, the inner surface of the catalyst-filled annular channel 12 and the outer surface of the reformed gas cooling annular channel 16, and the catalyst-filled annular flow The inner surface of the channel 13 and the outer surface of the catalyst-filled annular channel 14 are installed adjacent to each other with a partition wall therebetween.

また、改質ガス冷却用流路17の内側に配置された燃焼用バーナー18と、改質ガス冷却用環状流路16と保温材19を介して隣接する燃焼空間20と、触媒充填環状流路15と隔壁をへだてて隣接し、燃焼空間20で燃焼したガスが通流する輻射伝熱部21と、触媒充填環状流路12、および、触媒充填環状流路13の外側に隔壁を隔てて隣接し、輻射伝熱部21を通過した燃焼ガスが流れる燃焼ガス流路22が設けられている。   Further, a combustion burner 18 disposed inside the reformed gas cooling channel 17, a combustion gas space 20 adjacent to the reformed gas cooling annular channel 16 and the heat insulating material 19, and a catalyst-filled annular channel. 15 adjacent to the partition wall, and adjacent to the radiant heat transfer section 21 through which the gas combusted in the combustion space 20 flows, the catalyst-filled annular channel 12 and the catalyst-filled annular channel 13 with a partition wall therebetween. A combustion gas passage 22 through which the combustion gas that has passed through the radiant heat transfer section 21 flows is provided.

そして、燃焼ガス流路22の外側に保温材23を介して隣接する燃焼ガスが流れる環状流路24が設けられ、この環状流路24の内部には、内部に水、もしくは水と蒸気が二相流で流れる水蒸気発生器5を構成する螺旋管25が敷設されている。また、排出口26は、螺旋管25を加熱した燃焼ガスを排出するためのものである。 An annular passage 24 through which the adjacent combustion gas flows is provided outside the combustion gas passage 22 via a heat insulating material 23. Inside the annular passage 24, water or water and steam are contained inside. A spiral tube 25 constituting the water vapor generator 5 that flows in a phase flow is laid. The discharge port 26 is for discharging the combustion gas that heated the spiral tube 25.

したがって、このように構成された本実施の形態において、おおよそ100°C〜150°Cの原燃料は予熱用環状流路11で改質ガス冷却用環状流路17からの熱エネルギーを受けて、例えば400°C程度に予熱される。   Therefore, in the present embodiment configured as described above, the raw fuel of approximately 100 ° C. to 150 ° C. receives the thermal energy from the reforming gas cooling annular flow channel 17 in the preheating annular flow channel 11, For example, it is preheated to about 400 ° C.

予熱されたガスは、次に触媒充填環状流路12に流入し、改質ガス冷却用環状流路16から隔壁を通して伝わる熱エネルギーと燃焼ガス流路22から隔壁を通じて伝わる熱エネルギーとを受けて、例えば500°C程度に温度が高められるとともに、水蒸気改質反応を起こして、原燃料の一部が水素と一酸化炭素および二酸化炭素に改質され、水素濃度の高い混合ガスとなる。   The preheated gas then flows into the catalyst-filled annular channel 12 and receives thermal energy transmitted from the reformed gas cooling annular channel 16 through the partition wall and thermal energy transmitted from the combustion gas channel 22 through the partition wall, For example, the temperature is raised to about 500 ° C., and a steam reforming reaction is caused, so that a part of the raw fuel is reformed into hydrogen, carbon monoxide, and carbon dioxide to become a mixed gas having a high hydrogen concentration.

このようにして、部分的に水素濃度の高いガスに改質された燃料は、次に触媒充填環状流路13に流入し、燃焼ガス流路22からの熱エネルギーを受けて、同様の水蒸気改質反応を起こして、さらに水素濃度の高い混合ガスへと改質される。このとき、例えば600°C程度までさらに温度が高められる。   In this way, the fuel partially reformed to a gas having a high hydrogen concentration then flows into the catalyst-filled annular flow path 13 and receives the thermal energy from the combustion gas flow path 22 to receive the same steam reforming. It undergoes a quality reaction and is reformed into a gas mixture with a higher hydrogen concentration. At this time, the temperature is further increased to about 600 ° C., for example.

次に、水素濃度の高められた混合ガスは、触媒充填流路15に流入し、輻射伝熱部21からの熱エネルギーを受けて、同様の水蒸気改質反応を起こし、所定の水素濃度をもつ混合ガスへと改質される。このとき混合ガスは、例えば700°C程度まで温度が高められる。   Next, the mixed gas having an increased hydrogen concentration flows into the catalyst-filled flow path 15, receives thermal energy from the radiant heat transfer section 21, causes a similar steam reforming reaction, and has a predetermined hydrogen concentration. It is reformed to a mixed gas. At this time, the temperature of the mixed gas is increased to, for example, about 700 ° C.

そして、触媒充填環状流路15を出た水素濃度の高い混合ガスは、改質ガス冷却用環状流路16に流入し、触媒充填環状流路12に熱エネルギーを与えて、例えば450℃程度まで温度が低下する。このとき第1の改質ガス冷却用環状流路16を通過する水素濃度の高い混合ガスは、燃焼空間20から加熱されるが、保温材19が介在しているので、燃焼空間20から改質ガス冷却用環状流路16へ伝わる熱量は少なく抑えられる。 Then, the high hydrogen concentration mixed gas exiting the catalyst-filled annular flow path 15 flows into the reformed gas cooling annular flow path 16 and gives thermal energy to the catalyst-filled annular flow path 12 to, for example, about 450 ° C. The temperature drops. At this time, the mixed gas having a high hydrogen concentration that passes through the first reformed gas cooling annular flow path 16 is heated from the combustion space 20, but since the heat insulating material 19 is interposed, the reformed gas is reformed from the combustion space 20. The amount of heat transferred to the gas cooling annular channel 16 can be reduced.

改質ガス冷却用環状流路16を出た混合ガスは、改質ガス冷却用環状流路17に入り、予熱用環状流路11に熱エネルギーを与え、例えば280°Cまで温度が低下する。   The mixed gas that has exited the reformed gas cooling annular flow path 16 enters the reformed gas cooling annular flow path 17 and gives thermal energy to the preheating annular flow path 11, and the temperature drops to, for example, 280 ° C.

一方、バーナ18を通過したあとの燃焼用燃料と空気は燃焼空間20で燃焼して炎をなし、1200℃〜1300℃程度の燃焼ガスとなり、輻射伝熱部21に流れ、触媒充填環状流路15に熱エネルギーを与えて温度が低下し、例えば800℃程度の温度となって、燃焼ガス流路22へ流入する。 On the other hand, the fuel and air for combustion after passing through the burner 18 burn in the combustion space 20 to form a flame, become a combustion gas of about 1200 ° C. to 1300 ° C., flow to the radiant heat transfer section 21, and flow into the catalyst-filled annular flow path. The thermal energy is applied to 15 to lower the temperature, for example, reaches a temperature of about 800 ° C. and flows into the combustion gas passage 22.

そして、燃焼ガスは、燃焼ガス流路22を流れるうちに触媒充填環状流路13、触媒充填環状流路12へと熱エネルギーを供給し、400°C〜500°Cまで温度が低下する。   The combustion gas supplies thermal energy to the catalyst-filled annular flow path 13 and the catalyst-filled annular flow path 12 while flowing through the combustion gas flow path 22, and the temperature is lowered to 400 ° C to 500 ° C.

その後、燃焼ガスは、環状流路24に流入し、螺旋管25へ熱エネルギーを与え、100°C程度にまで冷却されて、排出口より外部へ排出される。また、螺旋管15に流入する水分は、環状流路24からの熱を受け取ってその全部もしくは一部が蒸発し、蒸気となる。   Thereafter, the combustion gas flows into the annular flow path 24, gives thermal energy to the spiral tube 25, is cooled to about 100 ° C., and is discharged to the outside through the discharge port. Further, the moisture flowing into the spiral tube 15 receives heat from the annular channel 24, and all or a part thereof evaporates to become steam.

このようにして、本実施例では、予熱用環状流路11と改質ガス冷却流路17は隣接して配置されることによって、原燃料ガスを水蒸気改質反応が起こる最低限の温度まで温度を増加させる機能と、改質ガスを冷却する機能を同時に果たすことができ、外部への放熱を削減することができる。   Thus, in this embodiment, the preheating annular channel 11 and the reformed gas cooling channel 17 are disposed adjacent to each other, so that the raw fuel gas is heated to the minimum temperature at which the steam reforming reaction occurs. The function of increasing the temperature and the function of cooling the reformed gas can be performed at the same time, and heat radiation to the outside can be reduced.

また、改質ガス冷却用環状流路17は、改質ガスを冷却したい温度レベルに近い燃焼用バーナー18に隣接して設置されているので、内部からの加熱を受けにくく効果的に改質ガスを所定温度まで冷却することができる。   Further, the reformed gas cooling annular flow path 17 is installed adjacent to the combustion burner 18 close to the temperature level at which the reformed gas is desired to be cooled, so that the reformed gas is effectively prevented from being heated from the inside. Can be cooled to a predetermined temperature.

また、改質ガス冷却用環状流路16と触媒充填環状流路12は隣接して配置されているので、原燃料ガスに水蒸気改質反応に必要な熱を供給する機能と、水蒸気改質反応を起こすために高められた改質ガス温度を下げる機能を同時に果たすことができる。   Further, since the reformed gas cooling annular channel 16 and the catalyst-filled annular channel 12 are disposed adjacent to each other, the function of supplying heat necessary for the steam reforming reaction to the raw fuel gas, and the steam reforming reaction The function of lowering the temperature of the reformed gas that has been raised to cause the failure can be performed at the same time.

また、燃焼空間20と改質ガス冷却用環状流路16の間に保温材19が設置されているので、燃焼空間20から改質ガス冷却用環状流路16へと流入し、改質ガス温度を下げる機能を阻害する原因となる熱エネルギーの量を削減することができる。   Further, since the heat insulating material 19 is installed between the combustion space 20 and the reformed gas cooling annular flow path 16, it flows into the reformed gas cooling annular flow path 16 from the combustion space 20, and the reformed gas temperature. It is possible to reduce the amount of thermal energy that causes the hindrance to the function of lowering.

また、環状流路24とその内部に設置された螺旋管流路25とによって、400°C〜500°C程度の温度の燃焼排ガスから、螺旋管15内部の水または、水と蒸気の混合物に熱エネルギーを伝えることができ、改質器と一体の機器で蒸発器としての機能を果たすことでき、蒸発器が一体となって小型の水蒸気改質型水素製造装置を提供することができる。例えば、発電出力が1Kw級の燃料電池へ水素を供給する場合、筺体10の大きさとしては、直径が200〜250(mm)で、高さが350〜400(mm)程度の大きさに収めることができる。   Further, the annular flow path 24 and the spiral pipe flow path 25 installed in the annular flow path 24 convert the combustion exhaust gas having a temperature of about 400 ° C. to 500 ° C. into water inside the spiral pipe 15 or a mixture of water and steam. Thermal energy can be transmitted, and a function as an evaporator can be achieved by an apparatus integrated with the reformer, and a small steam reforming hydrogen production apparatus can be provided by integrating the evaporator. For example, when hydrogen is supplied to a fuel cell with a power generation output of 1 Kw class, the size of the casing 10 is 200 to 250 (mm) in diameter and about 350 to 400 (mm) in height. be able to.

また、環状流路24と燃焼ガス流路22の間に保温材23が設置されているので、螺旋管25と環状流路24で構成される蒸発器の機能を有する部分へ、燃焼ガス流路12から直接伝わる熱エネルギー量を削減でき、燃焼ガス流路22から触媒充填環状流路12への伝熱を阻害することなく、蒸気を発生させることができる。   Further, since the heat insulating material 23 is installed between the annular flow path 24 and the combustion gas flow path 22, the combustion gas flow path is connected to a portion having the function of an evaporator constituted by the spiral pipe 25 and the annular flow path 24. Thus, the amount of heat energy directly transmitted from 12 can be reduced, and steam can be generated without hindering heat transfer from the combustion gas passage 22 to the catalyst-filled annular passage 12.

図3は、本発明の他の実施例にかかる水蒸気改質型水素製造装置の一例を示している。なお、同図において、図2と同一部分および相当する部分には、同一符号を付してその説明を省略する。   FIG. 3 shows an example of a steam reforming hydrogen production apparatus according to another embodiment of the present invention. In the figure, the same or corresponding parts as those in FIG.

本実施例では、燃焼ガス流路22の外側に保温材23’を介して隣接して内部に水をプールすることができる環状流路26と、環状流路26の内部に敷設され、その内部を燃焼ガス流路22を通過したあとの燃焼ガスが流れる螺旋管27を備えている。   In the present embodiment, an annular channel 26 that can pool water inside and adjacent to the outside of the combustion gas channel 22 via a heat insulating material 23 ′, and laid inside the annular channel 26. Is provided with a spiral tube 27 through which the combustion gas after passing through the combustion gas flow path 22 flows.

したがって、予熱用環状流路11と改質ガス冷却用環状流路17で燃料の予熱構造が構成され、環状流路26とその内部に敷設された螺旋管27とによって、蒸発器が構成されているので、図1に示した固体高分子型燃料電池システムにおいて、予熱器1、蒸発器5、および、気水分離器1の機能を水蒸気改質型水素製造装置3が兼ね備えることができるので、システム全体をコンパクト化することができる。   Therefore, the preheating annular flow passage 11 and the reformed gas cooling annular flow passage 17 constitute a fuel preheating structure, and the annular flow passage 26 and the spiral tube 27 laid inside thereof constitute an evaporator. Therefore, in the polymer electrolyte fuel cell system shown in FIG. 1, the steam reforming hydrogen production apparatus 3 can have the functions of the preheater 1, the evaporator 5, and the steam / water separator 1. The entire system can be made compact.

図4は、本発明のさらに他の実施例にかかる水蒸気改質型水素製造装置の一例を示している。なお、同図において、図3と同一部分および相当する部分には、同一符号を付してその説明を省略する。   FIG. 4 shows an example of a steam reforming hydrogen production apparatus according to still another embodiment of the present invention. In the figure, the same parts as those in FIG. 3 and the corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.

本実施例では、図3に示した実施例の上下を反転して設置した構造を持っている。   This embodiment has a structure in which the embodiment shown in FIG. 3 is installed upside down.

したがって、螺旋管27の内部を燃焼ガスが下から上へと流れるので、環状流路26の内にプールされた水の水位が低下した場合でも、高温のガスで水を加熱できるので、燃焼排ガスの熱を有効に蒸発のために使うことができる。   Therefore, since the combustion gas flows from the bottom to the top in the spiral tube 27, the water can be heated with the high-temperature gas even when the water level of the pooled water in the annular flow path 26 is lowered. The heat of can be used for effective evaporation.

図5は、本発明のまたさらに他の実施例にかかる水蒸気改質型水素製造装置の一例を示している。なお、同図において、図2と同一部分および相当する部分には、同一符号を付してその説明を省略する。   FIG. 5 shows an example of a steam reforming hydrogen production apparatus according to still another embodiment of the present invention. In the figure, the same or corresponding parts as those in FIG.

本実施例では、水をプールする環状流路31を、燃焼ガスが流れる燃焼ガス環状流路32に隣接して配置し、この環状流路31および燃焼ガス環状流路32により、蒸発器を構成している。   In the present embodiment, an annular channel 31 for pooling water is disposed adjacent to a combustion gas annular channel 32 through which combustion gas flows, and the annular channel 31 and the combustion gas annular channel 32 constitute an evaporator. is doing.

このような構成によっても、燃焼ガス環状流路32を流れる、400°C〜500°C程度の温度の燃焼排ガスから、環状流路31にプールされた水、または、水と蒸気の混合物に熱エネルギーを伝えることができ、改質器と一体の機器で蒸発器としての機能を果たすことでき、蒸発器が一体となって小型の水蒸気改質型水素製造装置を提供することができる。   Even with such a configuration, heat from the combustion exhaust gas flowing through the combustion gas annular passage 32 and having a temperature of about 400 ° C. to 500 ° C. is heated to water pooled in the annular passage 31 or a mixture of water and steam. Energy can be transmitted, and a function as an evaporator can be achieved by an apparatus integrated with the reformer. Thus, a small steam reforming type hydrogen production apparatus can be provided by integrating the evaporator.

本発明の一実施例にかかる固体高分子型燃料電池システムを示したブロック図。1 is a block diagram showing a polymer electrolyte fuel cell system according to an embodiment of the present invention. 本発明の一実施例にかかる水蒸気改質型水素製造装置の一例を示した概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic sectional drawing which showed an example of the steam reforming type hydrogen production apparatus concerning one Example of this invention. 本発明の他の実施例にかかる水蒸気改質型水素製造装置の一例を示した概略断面図。The schematic sectional drawing which showed an example of the steam reforming type | mold hydrogen production apparatus concerning the other Example of this invention. 本発明のさらに他の実施例にかかる水蒸気改質型水素製造装置の一例を示した概略断面図。The schematic sectional drawing which showed an example of the steam reforming type | mold hydrogen production apparatus concerning further another Example of this invention. 本発明のまたさらに他の実施例にかかる水蒸気改質型水素製造装置の一例を示した概略断面図。The schematic sectional drawing which showed an example of the steam reforming type | mold hydrogen production apparatus concerning further another Example of this invention.

符号の説明Explanation of symbols

11 予熱用環状流路
12 触媒充填環状流路
13 触媒充填環状流路
14 折り返し部
15 触媒充填環状流路
16 改質ガス冷却用環状流路
17 改質ガス冷却用環状流路
18 燃焼用バーナー
19 保温材
20 燃焼空間
21 輻射伝熱部
22 燃焼ガス流路
23 保温材
24,26,31 環状流路
25,17 螺旋管
32 燃焼ガス環状流路
DESCRIPTION OF SYMBOLS 11 Preheating annular flow path 12 Catalyst filling annular flow path 13 Catalyst filling annular flow path 14 Turn-up part 15 Catalyst filling annular flow path 16 Reforming gas cooling annular flow path 17 Reforming gas cooling annular flow path 18 Combustion burner 19 Thermal insulation material 20 Combustion space 21 Radiation heat transfer section 22 Combustion gas flow path 23 Thermal insulation materials 24, 26, 31 Annular flow path 25, 17 Spiral tube 32 Combustion gas annular flow path

Claims (7)

中心部に燃焼空間を配置し、その周囲を同心円状に取り囲むように第1の改質ガス冷却用環状流路と第1の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に第2の触媒充填環状流路と第3の触媒充填環状流路を垂直方向下に連続して配置し、さらにその外側に燃焼ガスの流れる燃焼ガス流路を配置し、さらにその外側に蒸発器を配置した水蒸気改質型水素製造装置において、
上記第2の触媒充填環状流路の上に配置された原燃料の予熱用環状流路と、
その予熱用環状流路の内側に隣接し、上記第1の改質ガス冷却用環状流路の垂直方向上に配置された第2の改質ガス冷却用環状流路と、
前記第1の改質ガス冷却用環状流路と燃焼空間との間及び前記第2の改質ガス冷却用環状流路と前記燃焼空間での燃焼を行う燃焼用バーナの外側との間にそれぞれ配置された保温材とを備え、
原燃料を上記予熱用環状流路、上記第2の触媒充填環状流路、上記第3の触媒充填環状流路、上記第1の触媒充填環状流路、上記第1の改質ガス冷却用環状流路、上記第2の改質ガス冷却用環状流路の順に流すことを特徴とする水蒸気改質型水素製造装置。
A combustion space is disposed in the center, and the first reformed gas cooling annular flow path and the first catalyst-filled annular flow path are continuously disposed vertically downward so as to surround the periphery concentrically; A second catalyst-filled annular flow path and a third catalyst-filled annular flow path are continuously arranged vertically downward on the outside, and a combustion gas flow path through which combustion gas flows is further arranged on the outside. In the steam reforming type hydrogen production apparatus in which the evaporator is arranged,
An annular flow path for preheating raw fuel disposed on the second catalyst-filled annular flow path;
A second reformed gas cooling annular channel disposed adjacent to the inner side of the preheating annular channel and disposed in a vertical direction of the first reformed gas cooling annular channel;
Between the first reformed gas cooling annular flow path and the combustion space, and between the second reformed gas cooling annular flow path and the outside of the combustion burner that performs combustion in the combustion space, respectively. With the heat insulating material arranged ,
Raw fuel is converted into the preheating annular passage, the second catalyst filling annular passage, the third catalyst filling annular passage, the first catalyst filling annular passage, and the first reformed gas cooling annular. A steam reforming type hydrogen production apparatus, characterized by flowing in the order of a flow path and the second flow path for cooling the second reformed gas.
上記燃焼ガス流路と上記蒸発器との間に保温材を設けたことを特徴とする請求項1記載の水蒸気改質型水素製造装置。 2. The steam reforming hydrogen production apparatus according to claim 1 , wherein a heat insulating material is provided between the combustion gas flow path and the evaporator. 上記蒸発器は、燃焼ガスの流れる環状流路と、この環状流路内部に設置される螺旋管とにより構成されることを特徴とする請求項1記載の水蒸気改質型水素製造装置。 The evaporator includes an annular flow path of flow of the combustion gas, steam reforming hydrogen generator according to claim 1, characterized in that it is constituted by a spiral tube that is placed inside the annular channel. 上記蒸発器は、水が満たされる環状流路と、当該環状流路内部に敷設された燃焼ガスの流れる螺旋管流路とによって構成されることを特徴とする請求項1記載の水蒸気改質型水素製造装置。 2. The steam reforming type according to claim 1 , wherein the evaporator is constituted by an annular flow path filled with water and a spiral tube flow path through which combustion gas is laid in the annular flow path. Hydrogen production equipment. 上記蒸発器は、水が満たされる環状流路と、当該環状流路の内側に隣接して敷設され上記燃焼ガスが流れる燃焼ガス環状流路とによって構成されることを特徴とする請求項1記載の水蒸気改質型水素製造装置。 The evaporator includes an annular flow passage which the water is filled, according to claim 1, wherein the formed by the combustion gas annular channel in which the combustion gas is laid adjacent to the inside of the annular channel flows steam reforming hydrogen production apparatus. 請求項1乃至請求項5の何れかに記載の水蒸気改質型水素製造装置と、この水蒸気改質型水素製造装置により生成された水素リッチな改質ガスが入力され、該改質ガスに含まれる不純物である一酸化炭素を除去するCO除去器と、このCO除去器から受け入れた水素ガスと空気を利用して発電し、その電力を出力する固体高分子型燃料電池とを備えたことを特徴とする固体高分子型燃料電池システム。The steam reforming type hydrogen production apparatus according to any one of claims 1 to 5 and the hydrogen-rich reformed gas generated by the steam reforming type hydrogen production apparatus are input and included in the reformed gas. A CO remover that removes carbon monoxide, which is an impurity, and a solid polymer fuel cell that generates power using hydrogen gas and air received from the CO remover and outputs the power. A polymer electrolyte fuel cell system. 水蒸気と原燃料とを混合して予熱する予熱器と、この予熱器で予熱された水蒸気と原燃料の混合物から水素リッチな改質ガスを生成する請求項1乃至請求項5の何れかに記載の水蒸気改質型水素製造装置と、この水蒸気改質型水素製造装置により生成された水素リッチな改質ガスが入力され、該改質ガスに含まれる不純物である一酸化炭素を除去するCO除去器と、このCO除去器から受け入れた水素ガスと空気を利用して発電し、その電力を出力する固体高分子型燃料電池と、前記水蒸気改質型水素製造装置から排出される燃焼排ガスにより水蒸気を発生させる蒸発器と、この蒸発器より流入する水蒸気を気液分離し水蒸気を前記予熱器に送出して原燃料と混合させる気液分離器とを備えたことを特徴とする固体高分子型燃料電池システム。6. A preheater that mixes and preheats steam and raw fuel, and a hydrogen-rich reformed gas is generated from a mixture of steam and raw fuel preheated by the preheater. The steam reforming type hydrogen production apparatus and the hydrogen-rich reformed gas produced by the steam reforming type hydrogen production apparatus are input, and CO removal is performed to remove carbon monoxide, which is an impurity contained in the reformed gas. , A solid polymer fuel cell that generates electric power using hydrogen gas and air received from the CO remover and outputs the electric power, and combustion exhaust gas discharged from the steam reforming hydrogen production apparatus A solid polymer type comprising: an evaporator for generating water; and a gas-liquid separator for separating water vapor flowing from the evaporator into gas and liquid and sending the water vapor to the preheater to be mixed with raw fuel Fuel cell system
JP2003407353A 2003-12-05 2003-12-05 Steam reforming hydrogen production system Expired - Lifetime JP4331578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407353A JP4331578B2 (en) 2003-12-05 2003-12-05 Steam reforming hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407353A JP4331578B2 (en) 2003-12-05 2003-12-05 Steam reforming hydrogen production system

Publications (2)

Publication Number Publication Date
JP2005162583A JP2005162583A (en) 2005-06-23
JP4331578B2 true JP4331578B2 (en) 2009-09-16

Family

ID=34729424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407353A Expired - Lifetime JP4331578B2 (en) 2003-12-05 2003-12-05 Steam reforming hydrogen production system

Country Status (1)

Country Link
JP (1) JP4331578B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922029B2 (en) * 2007-03-15 2012-04-25 東芝燃料電池システム株式会社 Hydrogen generator
KR100950363B1 (en) 2007-12-21 2010-03-29 주식회사 포스코 Apparatus and method for controlling the ratio of vapor and carbon used in molten carbonate fuel cell
JP5066472B2 (en) * 2008-03-27 2012-11-07 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
CN108467014B (en) * 2018-05-16 2024-02-09 张家港氢云新能源研究院有限公司 Reforming reactor in steam reforming hydrogen production device
CN117448856A (en) * 2023-11-27 2024-01-26 三一氢能有限公司 Pole frame assembly, electrolytic tank and hydrogen production system

Also Published As

Publication number Publication date
JP2005162583A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4161612B2 (en) Starting method of fuel reformer
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
US8038960B2 (en) Reformer
US20020004154A1 (en) Integrated module for solid oxide fuel cell systems
AU2001272281A1 (en) Integrated module for solid oxide fuel cell systems
JP2011113934A (en) Fuel cell system
JP4331578B2 (en) Steam reforming hydrogen production system
JP2008120634A (en) Reformer, reforming unit and fuel cell system
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
US20020064487A1 (en) Compact Multiple tube steam reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
KR100837679B1 (en) Fuel processor of fuel cell system
JP2010024075A (en) Combustion device and fuel reforming apparatus
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2004075435A (en) Fuel reforming device
US7887606B2 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP6436693B2 (en) Hydrogen production system for hydrogen station
US8105402B1 (en) Micro-channel steam reformer and system for extracting ultra-pure hydrogen gas from a hydrocarbon fuel
JP2008159373A (en) Hydrogen manufacturing device and fuel cell electric power generation system
JP2010030801A (en) Reformer for fuel cell
JP2007031249A (en) Reformer
JP2011121790A (en) Fuel reformer
JP2004262691A (en) Reformer for fuel
JP2024047313A (en) Fuel Cell Module
JP2005104776A (en) Reforming apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Ref document number: 4331578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term