JP4330840B2 - Three-phase reactor device - Google Patents

Three-phase reactor device Download PDF

Info

Publication number
JP4330840B2
JP4330840B2 JP2002025194A JP2002025194A JP4330840B2 JP 4330840 B2 JP4330840 B2 JP 4330840B2 JP 2002025194 A JP2002025194 A JP 2002025194A JP 2002025194 A JP2002025194 A JP 2002025194A JP 4330840 B2 JP4330840 B2 JP 4330840B2
Authority
JP
Japan
Prior art keywords
control
phase
winding
iron core
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025194A
Other languages
Japanese (ja)
Other versions
JP2003229315A (en
Inventor
博道 佐藤
大日向  敬
重昭 赤塚
智之 葵木
峰夫 川上
彰 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitashiba Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002025194A priority Critical patent/JP4330840B2/en
Publication of JP2003229315A publication Critical patent/JP2003229315A/en
Application granted granted Critical
Publication of JP4330840B2 publication Critical patent/JP4330840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主巻線のインダクタンスを可変する機能を付加した三相リアクトル装置に関するものである。
【0002】
【従来の技術】
一般に、可変インダクタンスの機能を有するリアクトルは鉄心内部にギャップを設け、そのギャップの大きさを機械的に変えることでインダクタンスを変化させていた。例えば可変インダクタンス機能を有するリアクトルは図に示すように、下部鉄心1の上に上部鉄心2を配置し、脚鉄心3a ,3b,3cに各相の交流主巻線4R,4S,4Tを巻回し、上部鉄心2を機械的に上下させることで、下部鉄心1と上部鉄心2の間のギャップ、5a ,5b,5cの大きさを変化させる構造となっている。
【0003】
しかしながら、従来の可動式の鉄心構造では上部磁心2を可動させるため構造が複雑で、重量が重くなり、しかも可動部分があるため故障し易く、電磁振動による騒音が大きい問題がある。更に機械的に動作させるため、応答速度が遅く瞬時にインダクタンスの調整ができないなどの問題がある。
【0004】
また、電力系統の電圧は、電圧を一定に保持するため無効電力の発生と、吸収のバランスを取る無効電力制御装置が設けられている。この無効電力制御装置は図に示すように力率改善用コンデンサ6と並列に分路リアクトル7を設け、この分路リアクトル7と直列にサイリスタなどの半導体デバイス8を接続し、半導体デバイス8のスイッチングにより分路リアクトル7の電流を制御するようになっている。
【0005】
一般の電力系統では、負荷の増加に伴い遅れ無効電力が増加するので、この無効電力制御装置では、重負荷時には力率改善用コンデンサ6により力率を改善している。一方、軽負荷時には負荷による遅れ無効電力が減少するので、分路リアクトル7により、受電端の電圧上昇を抑えて電力系統の電圧の安定化を図るようになっている。
【0006】
しかしながらサイリスタなどの半導体デバイス8は高速なスイッチングを行うための制御機器が必要な上、過電流、過電圧に対する強度が低い欠点がある。このため図に示す分路リアクトル7として図の可動式の鉄心構造を有するリアクトルを使用してインダクタンスを調整することにより、半導体デバイス8を省くことも考えられる。しかしながら可動式の鉄心構造を有するリアクトルを用いると、前述のような問題があるため、無効電力制御装置としては利用されていなかった。
【0007】
【発明が解決しようとする課題】
本発明は上記問題を改善し、機械的動作が不要で装置の小型化が図れると共に、応答性に優れ、過電流、過電圧に対する強度も高く、無効電力制御装置として好適な三相リアクトル装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明の請求項1記載の三相リアクトル装置は、単相外鉄型磁心の、主巻線を巻回する中央の内脚鉄心が直列になるように3個一体に接続した鉄心構造をなし、3個の中央の内脚鉄心に各相の交流主巻線を巻回すると共に、各相の側脚鉄心からなる外側の枠状鉄心に制御巻線を巻回して、交流主磁束により誘起される電圧が互いに打消し合うよう制御巻線を接続し、外側の枠状鉄心に一方向に循環する直流制御磁束を発生させ、前記主磁束と直流制御磁束の共通磁路の磁気抵抗を制御し、主巻線のインダクタンスを可変することを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の一形態を、図1を参照して詳細に説明する。図1は三相リアクトル装置9を示すもので、装置を構成する鉄心10は、第1相については中央の内脚鉄心11aの左右に側脚鉄心12xa,12yaを配置した単相外鉄型鉄心からなり、第2相、第3相も同様にそれぞれ11b,12xb,12ybと11c,12xc,12ycから構成され、全体として中央の内脚鉄心11a,11b,11cが直列になるように3個一体に接続した格子状構造をなしている。
【0010】
この鉄心10の直列に配置された中央の内脚鉄心11a,11b,11cに、それぞれ各相の交流主巻線4R,4S,4Tが巻回され、枠状鉄心13を構成する側脚鉄心12xa,12ya,12xb,12yb,12xc,12ycに制御巻線14xa,14ya,14xb,14yb,14xc,14ycをそれぞれ巻回し、この制御巻線14xa,14ya,14xb,14yb,14xc,14ycに直流電流を通電するようになっている。
【0011】
交流主巻線4R,4S,4Tは、中央の内脚鉄心11a,11b,11cからなる共通磁路に対し同一方向の磁束が発生するよう極性を揃える。また制御巻線14xa,14ya,14xb,14yb,14xc,14ycは交流磁束により交流電圧が誘起されるため、第1相を例に説明すると制御巻線14xa,14yaで交流磁束により発生する誘起電圧が互いに打消し合う向きに直列に接続するようにし、第2相の14xb,14yb、第3相の14xc,14ycについても同様に接続する。このとき制御巻線14xa,14ya,14xb,14yb,14xc,14ycは枠状鉄心13において一方向に循環する直流制御磁束を発生させることとなる。
【0012】
上記構成の三相リアクトル装置は、制御電流を流さない状態では、交流主巻線4R,4S,4Tより発生する各相各々の交流磁束(φr,φs,φt)が各相の側脚鉄心12xa,12ya,12xb,12yb,12xc,12ycに流れ、各相部分の鉄心を単独で循環するために、各相毎に独立したインダクタンス装置として動作する。
【0013】
この状態で制御巻線14xa,14ya,14xb,14yb,14xc,14ycに直流電流を流すと直流制御磁束φdcが枠状鉄心13を一方向に循環するように流れる。この結果、枠状磁心13では磁束密度の増加に伴い透磁率が低下するため、交流磁束(φr,φs,φt)は枠状鉄心13に流れにくくなり、中央の内脚鉄心11a,11b,11c上で互いに打消し合うように作用して、交流主巻線4R,4S,4Tのインダクタンスが減少する。
【0014】
上記構成の三相リアクトル装置9の特性を調べた結果、図2に示すように制御電流を増加させていくと、インダクタンスが次第に減少していくことが確認された。この三相リアクトル装置9を図3に示すように無効電力制御装置に組込み、制御電流による遅れ無効電流の変化を測定したところ、図4に示すように制御電流の増加に伴って遅れ無効電流がほぼ線形に増加して、連続的に可変できることが確認された。
【0015】
なお、制御巻線14xa,14ya,14xb,14yb,14xc,14ycの結線については、全ての制御巻線を直列に接続した上で制御用の直流電流回路に接続する方法のほか、「14xa,14ya」,「14xb,14yb」,「14xc,14yc」のように各相毎に組合せ、制御用の直流電流回路に並列に接続する方法や、「14xa,14xb,14xc」,「14ya,14yb,14yc」のように組合せ、制御用の直流電流回路に並列に接続する方法がある。つまり交流磁束により制御巻線に誘起される電圧が打消され、枠状鉄心13に一方向に循環する直流制御磁束を発生できれば制御巻線の構成は問わない。
【0016】
【発明の効果】
以上説明した如く本発明に係る三相リアクトル装置によれば、外側の枠状鉄心に制御巻線を設けて、ここに直流電流を流すことによりインダクタンスを調整することができるので、機械的な可動部分がなく、応答性が速く、連続的に可変することができると共に、装置を小型化できる上、騒音も少なく、信頼性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による三相リアクトル装置の正面図である。
【図2】図1の三相リアクトル装置の制御電流とインダクタンスとの関係を示すグラフである。
【図3】図1の三相リアクトル装置を組込んだ無効電力制御装置を示す説明図である。
【図4】三相リアクトル装置を組込んだ無効電力制御装置における制御電流と遅れ無効電流の関係を示すグラフである。
【図5】従来の可動式インダクタンス装置を示す正面図である。
【図6】従来の半導体デバイスを組込んだ無効電力制御装置を示す説明図である
【符号の説明】
1 下部鉄心
2 上部鉄心
3a ,3b,3c 脚鉄心
4R,4S,4T 交流主巻線
5a ,5b,5c ギャップ
6 力率改善用コンデンサ
7 分路リアクトル
8 半導体デバイス
三相リアクトル装置
10 鉄心
11a,11b,11c 内脚鉄心
2xa,12ya,12xb,12yb,12xc,12yc 側脚鉄心
13 枠状鉄心
4xa,14ya,14xb,14yb,14xc,14yc 制御巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-phase reactor device to which a function of changing the inductance of a main winding is added .
[0002]
[Prior art]
Generally, lapis lazuli Akutoru which have a function of a variable inductance is provided a gap inside the core, it was changing the inductance mechanically altering the size of the gap. For example, in a reactor having a variable inductance function, as shown in FIG. 5 , an upper iron core 2 is disposed on a lower iron core 1, and AC main windings 4R, 4S, 4T of respective phases are wound around leg iron cores 3a, 3b, 3c. The structure is such that the size of the gaps 5a, 5b, 5c between the lower iron core 1 and the upper iron core 2 is changed by turning and moving the upper iron core 2 up and down mechanically.
[0003]
However, in the conventional movable iron core structure, the upper magnetic core 2 is movable, so that the structure is complicated, the weight is heavy, and there are movable parts, so that there is a problem that noise is easily caused due to electromagnetic vibration. Furthermore, since it is mechanically operated, there is a problem that the response speed is slow and the inductance cannot be adjusted instantaneously.
[0004]
In addition, a reactive power control device that balances the generation and absorption of reactive power is provided to keep the voltage of the power system constant. As shown in FIG. 6 , the reactive power control apparatus includes a shunt reactor 7 in parallel with the power factor improving capacitor 6, and a semiconductor device 8 such as a thyristor is connected in series with the shunt reactor 7. The current of the shunt reactor 7 is controlled by switching.
[0005]
In a general power system, delayed reactive power increases with an increase in load. Therefore, in this reactive power control device, the power factor is improved by the power factor improving capacitor 6 at heavy load. On the other hand, since the delayed reactive power due to the load decreases at light loads, the shunt reactor 7 suppresses the voltage increase at the power receiving end and stabilizes the voltage of the power system.
[0006]
However, the semiconductor device 8 such as a thyristor requires a control device for performing high-speed switching, and has a drawback of low strength against overcurrent and overvoltage. By adjusting the order using a reactor having a core structure of movable FIG as a shunt reactor 7 shown in FIG. 6 inductance is also conceivable to omit the semiconductor device 8. However, when a reactor having a movable iron core structure is used, it has not been used as a reactive power control device because of the problems described above.
[0007]
[Problems to be solved by the invention]
The present invention improves the above-mentioned problems, provides a three-phase reactor device that is suitable as a reactive power control device because it can reduce the size of the device without requiring mechanical operation, has excellent responsiveness, and has high strength against overcurrent and overvoltage. To do.
[0008]
[Means for Solving the Problems]
The three-phase reactor device according to claim 1 of the present invention has a core structure in which three core inner core legs around which a main winding is wound are connected integrally so that a single-phase outer iron core is in series. The main AC winding of each phase is wound around three central inner cores, and the control winding is wound around the outer frame-shaped core consisting of the side leg cores of each phase. connect the control winding so that the voltage cancel each other being, to generate a DC control flux circulation in one direction on the outside of the frame-shaped iron core, the magnetic resistance of the common magnetic path of the main magnetic flux and the DC control flux It is characterized by controlling and varying the inductance of the main winding .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 shows a three-phase reactor device 9. An iron core 10 constituting the device is a single-phase outer iron core in which side leg iron cores 12xa and 12ya are arranged on the left and right sides of a central inner leg iron core 11a for the first phase. Similarly, the second phase and the third phase are respectively composed of 11b, 12xb, 12yb and 11c, 12xc, 12yc, and the three inner cores 11a, 11b, 11c in the center are integrated as a whole. It has a lattice structure connected to.
[0010]
The AC main windings 4R, 4S, 4T of the respective phases are wound around the central inner leg cores 11a, 11b, 11c arranged in series with the iron core 10, respectively, and the side leg cores 12xa constituting the frame-shaped iron core 13 are wound. , 12ya, 12xb, 12yb, 12xc, 12yc are wound with control windings 14xa, 14ya, 14xb, 14yb, 14xc, 14yc, respectively, and a DC current is passed through the control windings 14xa, 14ya, 14xb, 14yb, 14xc, 14yc. It is supposed to do.
[0011]
The AC main windings 4R, 4S, and 4T have the same polarity so that magnetic fluxes in the same direction are generated with respect to the common magnetic path composed of the central inner cores 11a, 11b, and 11c. In addition, since the control windings 14xa, 14ya, 14xb, 14yb, 14xc, and 14yc are induced with an AC voltage by an AC magnetic flux, when the first phase is described as an example, an induced voltage generated by the AC magnetic flux at the control windings 14xa and 14ya is The two phases 14xb and 14yb and the third phase 14xc and 14yc are connected in the same manner in such a manner that they are connected in series so as to cancel each other. At this time, the control windings 14xa, 14ya, 14xb, 14yb, 14xc, and 14yc generate a DC control magnetic flux that circulates in one direction in the frame-shaped iron core 13.
[0012]
In the three-phase reactor device configured as described above, in a state where no control current is passed, the AC magnetic flux (φr, φs, φt) generated from each AC main winding 4R, 4S, 4T is the side leg core 12xa of each phase. , 12ya, 12xb, 12yb, 12xc, and 12yc, and circulates the iron core of each phase portion independently, it operates as an independent inductance device for each phase.
[0013]
In this state, when a direct current is passed through the control windings 14xa, 14ya, 14xb, 14yb, 14xc, and 14yc, the direct current control magnetic flux φdc flows so as to circulate in the frame-shaped iron core 13 in one direction. As a result, the magnetic permeability of the frame-shaped magnetic core 13 decreases as the magnetic flux density increases, so that the alternating magnetic flux (φr, φs, φt) is less likely to flow through the frame-shaped iron core 13 and the central inner leg cores 11a, 11b, 11c. By acting so as to cancel each other, the inductance of the AC main windings 4R, 4S, 4T is reduced.
[0014]
As a result of examining the characteristics of the three-phase reactor device 9 having the above configuration, it was confirmed that the inductance gradually decreased as the control current was increased as shown in FIG. When this three-phase reactor device 9 is incorporated in the reactive power control device as shown in FIG. 3 and the change in the delayed reactive current due to the control current is measured, the delayed reactive current increases as the control current increases as shown in FIG. It was confirmed that it increased almost linearly and could be continuously varied.
[0015]
As for the connection of the control windings 14xa, 14ya, 14xb, 14yb, 14xc, 14yc, all the control windings are connected in series and then connected to a control DC current circuit, as well as “14xa, 14ya”. ”,“ 14xb, 14yb ”,“ 14xc, 14yc ”for each phase and connected in parallel to the control DC current circuit,“ 14xa, 14xb, 14xc ”,“ 14ya, 14yb, 14yc ” And a method of connecting in parallel to a direct current circuit for control. That is, the configuration of the control winding is not limited as long as the voltage induced in the control winding by the AC magnetic flux is canceled and the DC control magnetic flux circulating in one direction can be generated in the frame-shaped iron core 13.
[0016]
【The invention's effect】
As described above, according to the three-phase reactor device according to the present invention, the control winding is provided on the outer frame-shaped iron core, and the inductance can be adjusted by flowing a direct current therethrough. There is no part, the responsiveness is fast, it can be continuously varied, the apparatus can be miniaturized, the noise is small, and the reliability can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a front view of a three-phase reactor device according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between control current and inductance of the three-phase reactor device of FIG. 1;
FIG. 3 is an explanatory view showing a reactive power control device incorporating the three-phase reactor device of FIG. 1;
FIG. 4 is a graph showing a relationship between a control current and a delayed reactive current in a reactive power control device incorporating a three-phase reactor device .
FIG. 5 is a front view showing a conventional movable inductance device.
FIG. 6 is an explanatory diagram showing a reactive power control apparatus incorporating a conventional semiconductor device .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lower iron core 2 Upper iron core 3a, 3b, 3c Leg iron core 4R, 4S, 4T AC main winding 5a, 5b, 5c Gap 6 Power factor improvement capacitor 7 Shunt reactor 8 Semiconductor device 9 Three-phase reactor device 10 Iron core 11a, 11b, 11c Inner leg iron core
1 2xa, 12ya, 12xb, 12yb, 12xc, 12yc Side leg core 13 Frame-shaped iron core
1 4xa, 14ya, 14xb, 14yb, 14xc, 14yc Control winding

Claims (1)

単相外鉄型磁心の、主巻線を巻回する中央の内脚鉄心が直列になるように3個一体に接続した鉄心構造をなし、3個の中央の内脚鉄心に各相の交流主巻線を巻回すると共に、各相の側脚鉄心からなる外側の枠状鉄心に制御巻線を巻回して、交流主磁束により誘起される電圧が互いに打消し合うよう制御巻線を接続し、ここに直流制御電流を通電して、外側の枠状鉄心に一方向に循環する直流制御磁束を発生させ、前記主磁束と直流制御磁束の共通磁路の磁気抵抗を制御し、主巻線のインダクタンスを可変することを特徴とする三相リアクトル装置A single-phase outer iron-type magnetic core has a core structure in which three central inner cores around which the main winding is wound are connected in series so that they are connected in series. Along with winding the main winding, the control winding is wound around the outer frame-shaped core consisting of the side leg cores of each phase so that the voltages induced by the AC main magnetic flux cancel each other out. A DC control current is applied to the outer frame-shaped iron core to generate a DC control magnetic flux that circulates in one direction, and a magnetic resistance of a common magnetic path of the main magnetic flux and the DC control magnetic flux is controlled. A three-phase reactor device characterized by varying the inductance of the winding.
JP2002025194A 2002-02-01 2002-02-01 Three-phase reactor device Expired - Fee Related JP4330840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025194A JP4330840B2 (en) 2002-02-01 2002-02-01 Three-phase reactor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025194A JP4330840B2 (en) 2002-02-01 2002-02-01 Three-phase reactor device

Publications (2)

Publication Number Publication Date
JP2003229315A JP2003229315A (en) 2003-08-15
JP4330840B2 true JP4330840B2 (en) 2009-09-16

Family

ID=27747424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025194A Expired - Fee Related JP4330840B2 (en) 2002-02-01 2002-02-01 Three-phase reactor device

Country Status (1)

Country Link
JP (1) JP4330840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919153B (en) * 2007-10-31 2012-10-03 H·R·培根 An apparatus and a method for starting and stopping an AC induction motor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101090B2 (en) * 2006-11-28 2012-12-19 三菱電機株式会社 Switch control device
JP4646327B2 (en) * 2007-01-22 2011-03-09 国立大学法人東北大学 Three-phase electromagnetic equipment
JP5951322B2 (en) * 2012-03-30 2016-07-13 富士電機株式会社 Voltage fluctuation suppressing device and voltage fluctuation suppressing method
JP6318874B2 (en) * 2014-06-03 2018-05-09 株式会社デンソー Reactor
CN104201903B (en) * 2014-09-11 2016-08-31 山东大学 A kind of Multifunction transformer
JP6577545B2 (en) 2017-09-15 2019-09-18 ファナック株式会社 Three-phase transformer
JP6734328B2 (en) * 2018-08-06 2020-08-05 株式会社京三製作所 Reactor
CN110085406B (en) * 2019-06-10 2024-03-08 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Three-phase orthogonal iron core type hybrid magnetic control reactor
JP6856707B2 (en) * 2019-06-21 2021-04-07 ファナック株式会社 Three-phase transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919153B (en) * 2007-10-31 2012-10-03 H·R·培根 An apparatus and a method for starting and stopping an AC induction motor

Also Published As

Publication number Publication date
JP2003229315A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US5363035A (en) Phase controlled transformer
JP2889700B2 (en) Electrically controllable inductor
JP6523591B1 (en) Power converter
JP4646327B2 (en) Three-phase electromagnetic equipment
WO2017081971A1 (en) Magnetic component assembly and power conversion device using same magnetic component assembly
JP4330840B2 (en) Three-phase reactor device
US7132812B1 (en) Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
JP6636179B2 (en) Power converter
JP2013529393A (en) Integrated magnetic device for low-harmonic three-phase front-end equipment
EP2973966A1 (en) Autotransformer system reducing total harmonic distortion
JP6745911B2 (en) Power converter
US20160062386A1 (en) Stationary Induction Electric Apparatus
CN113241952A (en) Isolated bidirectional converter and control method thereof
WO2004040600A1 (en) Transformer
JP5257938B2 (en) Three-phase single-phase conversion voltage regulator
JP3986809B2 (en) Three-phase electromagnetic equipment
JP2011146526A (en) Magnetic flux control type variable transformer
JP3938903B2 (en) Single-phase three-wire voltage regulator
US10424435B2 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
WO2017020709A1 (en) Improved multifunctional transformer
JP6717874B2 (en) Polyphase transformers and polyphase transformer assemblies
GB2487574A (en) Fault Current Limiter
SU1148507A1 (en) Controllable transformer
Muetze et al. Simplified design of common-mode chokes for reduction of motor ground currents in inverter drives
JP2527866B2 (en) Exciter for synchronous generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees