JP6856707B2 - Three-phase transformer - Google Patents

Three-phase transformer Download PDF

Info

Publication number
JP6856707B2
JP6856707B2 JP2019115741A JP2019115741A JP6856707B2 JP 6856707 B2 JP6856707 B2 JP 6856707B2 JP 2019115741 A JP2019115741 A JP 2019115741A JP 2019115741 A JP2019115741 A JP 2019115741A JP 6856707 B2 JP6856707 B2 JP 6856707B2
Authority
JP
Japan
Prior art keywords
iron core
plate
shaped
columnar
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115741A
Other languages
Japanese (ja)
Other versions
JP2019179929A (en
Inventor
鈔 支
鈔 支
前田 拓也
拓也 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2019115741A priority Critical patent/JP6856707B2/en
Publication of JP2019179929A publication Critical patent/JP2019179929A/en
Application granted granted Critical
Publication of JP6856707B2 publication Critical patent/JP6856707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、三相変圧器に関する。 The present invention relates to a three-phase transformer.

これまでに複数の巻線が直線上に配置された静止誘導電器が報告されている(例えば、特許文献1)。特許文献1に記載の静止誘導電器は、N相N脚の主磁路(但し、Nは3以上)と、各主脚に巻き回した主巻線を有するとともに、N個の主脚の交点部位でN相の主磁束の何れとも概略直交する方向に大きさが可変な制御磁束を発生させる制御磁束発生手段を設け、当該発生手段により制御磁束の大きさを制御することによりN相リアクタンスを可変する。特許文献1に記載の静止誘導電器は、リアクタンスを可変にする静止誘導電器であるが、三相鉄心の形状が非対称形状で、3つの相の磁路の長さを構造的に同じにすることができず、磁束密度など各種値が完全には均等にならないという問題がある。三相が不平衡なため、通常の発熱以外の発熱や、漏れ磁束が発生すると考えられ、結合係数は約0.3程度となっていると考えられている。一般的な変圧器も同様な鉄心構造をしており、漏れ磁束はノイズの源にもなり、例えば、大型の変圧器においては、カバーで囲われているだけでなく、基本的には近づけないようにフェンスなどの囲いをして、人の立入を禁止している。さらに、変圧器には、今般、地球環境のため効率を高めることが強く求められ、そのためには不必要な漏れ磁束を少なくすることが求められている。 So far, static induction electric appliances in which a plurality of windings are arranged in a straight line have been reported (for example, Patent Document 1). The static induction electric device described in Patent Document 1 has an N-phase N-leg main magnetic path (where N is 3 or more) and a main winding wound around each main leg, and is an intersection of N main legs. A control magnetic flux generating means for generating a control magnetic flux having a variable magnitude in a direction substantially orthogonal to any of the N-phase main magnetic fluxes is provided at the site, and the N-phase reactance is controlled by controlling the magnitude of the control magnetic flux by the generating means. Variable. The static induction electric device described in Patent Document 1 is a static induction electric device having a variable reactance, but the shape of the three-phase iron core is asymmetrical, and the lengths of the magnetic paths of the three phases are structurally the same. There is a problem that various values such as magnetic flux density are not completely equalized. Since the three phases are unbalanced, it is considered that heat generation other than normal heat generation and leakage flux are generated, and the coupling coefficient is considered to be about 0.3. A general transformer has a similar iron core structure, and the leakage flux also becomes a source of noise. For example, in a large transformer, it is not only surrounded by a cover, but basically cannot be approached. People are prohibited from entering by enclosing fences and the like. Furthermore, transformers are now strongly required to improve efficiency due to the global environment, and for that purpose, it is required to reduce unnecessary leakage flux.

また、三相のコイルが円周上に配置された電力変換器も報告されている(例えば、特許文献2)。特許文献2に記載の電力変換器は、2つの対向するヨーク鉄心と、コイルを巻回させ、ギャップ調整手段が設けられている3本の磁脚鉄心と、コイルを巻回させていない3本の零相用磁脚鉄心と、を備え、2つの対向するヨーク鉄心同士を、3本の磁脚鉄心と、3本の零相用磁脚鉄心とで接続し、3本の磁脚鉄心は、ヨーク鉄心の同心軸を基準として、所定の角度をもって円周上に配置され、3本の零相用磁脚鉄心は、ヨーク鉄心の同心軸を基準として、3本の磁脚鉄心の間に円周上に配置されている。また、3本の零相用磁脚鉄心があり、零相用磁脚鉄心に磁束が流れ、他の相への磁束の流れが少なくなるため、相互インダクタンスが低くなる。そのため、相互インダクタンスの利用に関しては、適した構造ではない。一般的な変圧器においても、相互インダクタンス分の磁束を利用する形であるので、適した構造ではない。 Further, a power converter in which a three-phase coil is arranged on the circumference has also been reported (for example, Patent Document 2). The power converter described in Patent Document 2 includes two opposing yoke iron cores, three magnetic leg iron cores in which a coil is wound and a gap adjusting means is provided, and three pieces in which the coil is not wound. The two opposing yoke cores are connected by three magnetic leg cores and three zero-phase magnetic leg cores, and the three magnetic leg cores are , The three zero-phase magnetic leg cores are arranged on the circumference at a predetermined angle with respect to the concentric axis of the yoke core, and are between the three magnetic leg cores with reference to the concentric axis of the yoke core. It is arranged on the circumference. Further, there are three zero-phase magnetic leg iron cores, and magnetic flux flows through the zero-phase magnetic leg iron core, and the flow of magnetic flux to other phases is reduced, so that the mutual inductance becomes low. Therefore, the structure is not suitable for the use of mutual inductance. Even in a general transformer, the structure is not suitable because the magnetic flux corresponding to the mutual inductance is used.

また、特許文献2に記載の電力変換器においては、鉄心は薄板をロール状に巻いた構造を備えており、磁束はロール状に流れやすい。そのため、鉄心において、磁束の流れる経路が最短ではなく、相互インダクタンス及び自己インダクタンスが小さくなりやすい。また、製造上、穴やタップの加工等には適していないという製造上及び組立上の問題がある。そのため、例えば、インダクタンス調整機構(ネジなど)を使用することは難しいという問題がある。さらに、コイルから発生する磁束が外部に漏れるのを防ぐことが難しいという問題がある。すなわち、変圧器は磁気抵抗が小さく、磁束が漏れないことが非常に望まれ、方向性電磁鋼板の使用や鉄心の組立て方など、鉄心においても、様々な工夫がなされている。 Further, in the power converter described in Patent Document 2, the iron core has a structure in which a thin plate is wound in a roll shape, and the magnetic flux easily flows in the roll shape. Therefore, in the iron core, the path through which the magnetic flux flows is not the shortest, and the mutual inductance and self-inductance tend to be small. In addition, there is a problem in manufacturing and assembly that it is not suitable for processing holes and taps in manufacturing. Therefore, for example, there is a problem that it is difficult to use an inductance adjusting mechanism (screw or the like). Further, there is a problem that it is difficult to prevent the magnetic flux generated from the coil from leaking to the outside. That is, it is highly desired that the transformer has a small magnetic resistance and does not leak magnetic flux, and various measures have been taken in the iron core such as the use of grain-oriented electrical steel sheets and the method of assembling the iron core.

特開2016−048741号公報Japanese Unexamined Patent Publication No. 2016-048741 国際公開第2012/157053号International Publication No. 2012/157053

本発明は、三相が平衡で漏れ磁束が少なく、効率が高い三相変圧器を提供することを目的とする。 An object of the present invention is to provide a highly efficient three-phase transformer in which the three phases are in equilibrium and the leakage flux is small.

実施例に係る三相変圧器は、互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、第1板状鉄心及び第2板状鉄心の間に、第1板状鉄心又は第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び2次コイルを含むコイルと、を有する。 The three-phase transformer according to the embodiment has a first plate shape between the first plate-shaped iron core and the second plate-shaped iron core arranged so as to face each other and the first plate-shaped iron core and the second plate-shaped iron core. A plurality of columnar iron cores that are multiples of 3 arranged so as to connect to the iron core or the second plate-shaped iron core, and at positions that are rotationally symmetric with respect to an axis equidistant from the central axes of the plurality of columnar iron cores. It has a plurality of columnar iron cores arranged and a coil including a plurality of primary coils and secondary coils that are multiples of 3 individually wound around the plurality of columnar iron cores.

実施例に係る三相変圧器によれば、三相が平衡で漏れ磁束が少なく、効率が高い三相変圧器が得られる。 According to the three-phase transformer according to the embodiment, a three-phase transformer in which the three phases are in equilibrium, the leakage flux is small, and the efficiency is high can be obtained.

実施例1に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on Example 1. FIG. 実施例1に係る三相変圧器の平面図である。It is a top view of the three-phase transformer which concerns on Example 1. FIG. 実施例1に係る三相変圧器の第1板状鉄心における磁気解析結果を示す図である。It is a figure which shows the magnetic analysis result in the 1st plate-shaped iron core of the three-phase transformer which concerns on Example 1. FIG. 実施例1に係る三相変圧器の鉄心コイルの磁束線図である。It is a magnetic flux diagram of the iron core coil of the three-phase transformer which concerns on Example 1. FIG. 実施例2に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on Example 2. FIG. 実施例2に係る三相変圧器の第2板状鉄心並びに第2板状鉄心に設けられた柱状鉄心及びコイルの斜視図である。It is a perspective view of the 2nd plate-shaped iron core of the three-phase transformer which concerns on Example 2, and the columnar iron core and the coil provided in the 2nd plate-shaped iron core. 実施例2に係る三相変圧器において第1板状鉄心を回転させた後の斜視図である。It is a perspective view after rotating the 1st plate-shaped iron core in the three-phase transformer which concerns on Example 2. FIG. 実施例2に係る三相変圧器において、1次コイルが2次コイルAと組み合わされた場合の三相変圧器の等価回路である。In the three-phase transformer according to the second embodiment, it is an equivalent circuit of the three-phase transformer when the primary coil is combined with the secondary coil A. 実施例2に係る三相変圧器において、1次コイルが2次コイルBと組み合わされた場合の三相変圧器の等価回路である。In the three-phase transformer according to the second embodiment, it is an equivalent circuit of the three-phase transformer when the primary coil is combined with the secondary coil B. 実施例3に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on Example 3. FIG. 実施例3に係る三相変圧器のカバーを構成する基材の斜視図である。It is a perspective view of the base material which constitutes the cover of the three-phase transformer which concerns on Example 3. FIG. 実施例3に係る三相変圧器のカバーの斜視図である。It is a perspective view of the cover of the three-phase transformer which concerns on Example 3. FIG. 実施例4に係る三相変圧器の断面図である。It is sectional drawing of the three-phase transformer which concerns on Example 4. FIG. 実施例5に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on Example 5. FIG. 実施例5に係る三相変圧器の側面図である。It is a side view of the three-phase transformer which concerns on Example 5. FIG. 実施例5の変形例に係る三相変圧器を構成する第1板状鉄心の斜視図である。It is a perspective view of the 1st plate-shaped iron core which comprises the three-phase transformer which concerns on the modification of Example 5. FIG. 実施例5の変形例に係る三相変圧器の斜視図であって、インダクタンスが大きい状態を示す図である。It is a perspective view of the three-phase transformer which concerns on the modification of Example 5, and is the figure which shows the state which the inductance is large. 実施例5の変形例に係る三相変圧器の斜視図であって、インダクタンスが小さい状態を示す図である。It is a perspective view of the three-phase transformer which concerns on the modification of Example 5, and is the figure which shows the state which the inductance is small. 実施例7に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on Example 7. FIG. 実施例7の変形例に係る三相変圧器の斜視図である。It is a perspective view of the three-phase transformer which concerns on the modification of Example 7.

以下、図面を参照して、本発明に係る三相変圧器について説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。 Hereinafter, the three-phase transformer according to the present invention will be described with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to those embodiments and extends to the inventions described in the claims and their equivalents.

まず、実施例1に係る三相変圧器について説明する。図1に実施例1に係る三相変圧器の斜視図を示す。実施例1に係る三相変圧器101は、第1板状鉄心1及び第2板状鉄心2と、複数の柱状鉄心(31,32,33)と、複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)を含むコイルと、を有する。1次コイル41a及び2次コイル41bをU相用コイル、1次コイル42a及び2次コイル42bをV相用コイル、1次コイル43a及び2次コイル43bをW相用コイルとして三相変圧器を構成することができる。 First, the three-phase transformer according to the first embodiment will be described. FIG. 1 shows a perspective view of the three-phase transformer according to the first embodiment. In the three-phase transformer 101 according to the first embodiment, the first plate-shaped iron core 1 and the second plate-shaped iron core 2, a plurality of columnar iron cores (31, 32, 33), and a plurality of primary coils (41a, 42a, It has a coil including 43a) and a plurality of secondary coils (41b, 42b, 43b). A three-phase transformer with the primary coil 41a and the secondary coil 41b as the U-phase coil, the primary coil 42a and the secondary coil 42b as the V-phase coil, and the primary coil 43a and the secondary coil 43b as the W-phase coil. Can be configured.

第1板状鉄心1及び第2板状鉄心2は、互いに対向するように配置された鉄心である。図1に示した例では第1板状鉄心1及び第2板状鉄心2の形状を円盤状としているが、このような例には限られず、楕円盤状や多角形状でもよい。第1板状鉄心1及び第2板状鉄心2は磁性体から構成されることが好ましい。第1板状鉄心1及び第2板状鉄心2には、後述するギャップ調整機構に用いるネジ穴(1a,1b,1c,2a(図示せず),2b,2c)が設けられている。 The first plate-shaped iron core 1 and the second plate-shaped iron core 2 are iron cores arranged so as to face each other. In the example shown in FIG. 1, the shapes of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 are disk-shaped, but the shape is not limited to such an example, and an elliptical disc-shaped or polygonal shape may be used. The first plate-shaped iron core 1 and the second plate-shaped iron core 2 are preferably composed of a magnetic material. The first plate-shaped iron core 1 and the second plate-shaped iron core 2 are provided with screw holes (1a, 1b, 1c, 2a (not shown), 2b, 2c) used for a gap adjusting mechanism described later.

複数の柱状鉄心(31,32,33)は、第1板状鉄心1及び第2板状鉄心2の間に、少なくとも第1板状鉄心1及び第2板状鉄心2の一方と接続するように配置された3の倍数の複数の柱状鉄心である。複数の柱状鉄心(31,32,33)は、複数の柱状鉄心の中心軸(31y,32y,33y)から等距離にある軸を中心として回転対称となる位置に配置されている。 The plurality of columnar cores (31, 32, 33) are connected between the first plate-shaped core 1 and the second plate-shaped core 2 with at least one of the first plate-shaped core 1 and the second plate-shaped core 2. It is a plurality of columnar iron cores arranged in multiples of 3. The plurality of columnar iron cores (31, 32, 33) are arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axes (31y, 32y, 33y) of the plurality of columnar iron cores.

複数の1次コイル(41a,42a,43a)及び2次コイル(41b,42b,43b)は、複数の柱状鉄心(31,32,33)に個々に巻回された3の倍数のコイルである。1次コイルの電圧をV1、巻数をN1とし、2次コイルの電圧をV2、巻数をN2とすると、変圧比αは以下の式で求められる。
α=V1/V2=k×N1/N2
ただし、kは1次コイルと2次コイルの結合係数で理想的には1である。
The plurality of primary coils (41a, 42a, 43a) and secondary coils (41b, 42b, 43b) are coils that are multiples of 3 individually wound around the plurality of columnar iron cores (31, 32, 33). .. Assuming that the voltage of the primary coil is V 1 , the number of turns is N 1 , the voltage of the secondary coil is V 2 , and the number of turns is N 2 , the transformation ratio α is calculated by the following equation.
α = V 1 / V 2 = k × N 1 / N 2
However, k is the coupling coefficient of the primary coil and the secondary coil and is ideally 1.

図1に示した例では柱状鉄心の数を3個としたが、このような例には限られない。例えば、柱状鉄心を6本、線対称に配置し、直列または並列に結線し、1つの変圧器としてもよいし、そのまま、6本の配線を設け、2つの変圧器としてもよい。また、単相の場合は柱状鉄心の数を2つとしてもよい。複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)は、対向するように配置された第1板状鉄心1及び第2板状鉄心2の端部より内側に配置されていることが好ましい。 In the example shown in FIG. 1, the number of columnar iron cores is set to 3, but the number is not limited to such an example. For example, six columnar iron cores may be arranged line-symmetrically and connected in series or in parallel to form one transformer, or six wirings may be provided as they are to form two transformers. Further, in the case of a single phase, the number of columnar iron cores may be two. The plurality of primary coils (41a, 42a, 43a) and the plurality of secondary coils (41b, 42b, 43b) are arranged so as to face each other at the ends of the first plate-shaped iron core 1 and the second plate-shaped iron core 2. It is preferably arranged more inside.

図1に示した例では複数の柱状鉄心(31,32,33)の形状を円柱状としたが、楕円柱状または多角柱状としてもよい。 In the example shown in FIG. 1, the shape of the plurality of columnar iron cores (31, 32, 33) is cylindrical, but it may be elliptical or polygonal.

図2に実施例1に係る三相変圧器の平面図を示す。図2は図1に示した三相変圧器を第1板状鉄心1側から見た平面図を示している。複数の柱状鉄心(31,32,33)は、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸を回転軸C1として回転対称となる位置に配置されている。図2に示すように、柱状鉄心が3つの場合は、柱状鉄心(31,32,33)は、それぞれの中心軸(31y,32y,33y)が120度ずつずれた位置に回転軸C1に対して回転対称となるように配置される。このような構成とすることにより、三相における非平衡状態をなくすことができる。即ち、三相変圧器に負荷電流を流した場合、1次コイルの磁束と2次コイルの磁束は理想的には打ち消し合うが、三相変圧器が対称形状を有していないとアンバランスや磁束漏れが生じる。本実施例のように三相変圧器を対称形状にすることにより、アンバランスがなくなり、漏れ磁束も少なくなり、効率が良くなる。 FIG. 2 shows a plan view of the three-phase transformer according to the first embodiment. FIG. 2 shows a plan view of the three-phase transformer shown in FIG. 1 as viewed from the first plate-shaped iron core 1 side. The plurality of columnar iron cores (31, 32, 33) are rotationally symmetric with the axes equidistant from the central axes (31y, 32y, 33y) of the plurality of columnar iron cores (31, 32, 33) as the rotation axis C 1. It is placed in position. As shown in FIG. 2, if the columnar iron core of the three columnar cores (31, 32, 33), each central axis (31y, 32y, 33y) to the rotation axis C 1 at a position shifted by 120 degrees On the other hand, they are arranged so as to be rotationally symmetric. With such a configuration, the non-equilibrium state in the three phases can be eliminated. That is, when a load current is passed through a three-phase transformer, the magnetic flux of the primary coil and the magnetic flux of the secondary coil ideally cancel each other out, but if the three-phase transformer does not have a symmetrical shape, it may become unbalanced. Magnetic flux leakage occurs. By making the three-phase transformer symmetrical as in this embodiment, imbalance is eliminated, leakage flux is reduced, and efficiency is improved.

また、回転軸C1が第1板状鉄心1または第2板状鉄心2の中心軸と一致していてもよい。 Further, the rotation shaft C 1 may coincide with the central axis of the first plate-shaped iron core 1 or the second plate-shaped iron core 2.

図3に実施例1に係る三相変圧器の第1板状鉄心における三相交流のある位相の磁気解析結果を示す。柱状鉄心31に巻かれた1次コイル41aに最大電流が流れ、柱状鉄心32及び33には、向きが逆で最大電流の半分の電流が流れる位相である。そのため、磁束は柱状鉄心31から、柱状鉄心32及び33へ向かう。柱状鉄心31の周辺で磁束密度が高く、柱状鉄心31から離れるにしたがって磁束密度が低くなっている。第一板状鉄心全体を広く無駄なく利用しており、磁気飽和が緩和され、インダクタンスが下がりにくい。柱状鉄心(31,32,33)には、通常の三相の磁束が発生するため、ある柱状鉄心の磁束は別の柱状鉄心も通ることになり、自己インダクタンスだけでなく、相互インダクタンスも積極的に利用している。従って、インダクタンスは次式によって算出される。
インダクタンス=自己インダクタンス+相互インダクタンス
その結果、相互インダクタンスの磁束を有効に活用することができる。
FIG. 3 shows the results of magnetic analysis of the phase with three-phase alternating current in the first plate-shaped iron core of the three-phase transformer according to the first embodiment. The phase is such that the maximum current flows through the primary coil 41a wound around the columnar iron core 31, and half of the maximum current flows through the columnar iron cores 32 and 33 in opposite directions. Therefore, the magnetic flux goes from the columnar iron core 31 to the columnar iron cores 32 and 33. The magnetic flux density is high around the columnar iron core 31, and the magnetic flux density decreases as the distance from the columnar iron core 31 increases. The entire first plate-shaped iron core is widely used without waste, magnetic saturation is relaxed, and inductance does not easily decrease. Since a normal three-phase magnetic flux is generated in the columnar iron cores (31, 32, 33), the magnetic flux of one columnar iron core also passes through another columnar iron core, and not only self-inductance but also mutual inductance is positive. I am using it for. Therefore, the inductance is calculated by the following equation.
Inductance = self-inductance + mutual inductance As a result, the magnetic flux of mutual inductance can be effectively utilized.

また、図3に示すように、第1板状鉄心1の中心部も磁束が通るような構成とすることにより、柱状鉄心31から第1板状鉄心1に達した磁束は直線的に他の柱状鉄心(32,33)に流れ、磁束の流れる効率が良く、相互インダクタンスの向上にも繋がる。 Further, as shown in FIG. 3, the central portion of the first plate-shaped iron core 1 is also configured so that the magnetic flux passes through the central portion, so that the magnetic flux reaching the first plate-shaped iron core 1 from the columnar iron core 31 is linearly different from that of the other. It flows through the columnar iron cores (32, 33), and the efficiency with which the magnetic flux flows is good, leading to an improvement in mutual inductance.

図4に柱状鉄心コイルの磁束線図を示す。図4には1次コイル41aが巻回された柱状鉄心31から生じる磁束線61が示されている。図4から、1次コイル(41a,42a,43a)の上部に第1板状鉄心1を配置し、通常、コイル上部から漏れる磁束をどのコイルに対しても拾うことにより、自己インダクタンスだけではなく相互インダクタンスの向上に繋げられることがわかる。また、2次コイル(41b,42b,43b)を設けた第2板状鉄心2に関しても同様である。さらに、磁束漏れを後述するカバーで遮断することができる。 FIG. 4 shows a magnetic flux diagram of the columnar iron core coil. FIG. 4 shows a magnetic flux line 61 generated from a columnar iron core 31 around which the primary coil 41a is wound. From FIG. 4, by arranging the first plate-shaped iron core 1 on the upper part of the primary coil (41a, 42a, 43a) and usually picking up the magnetic flux leaking from the upper part of the coil for any coil, not only the self-inductance but also the self-inductance It can be seen that this leads to an improvement in mutual inductance. The same applies to the second plate-shaped iron core 2 provided with the secondary coils (41b, 42b, 43b). Further, magnetic flux leakage can be blocked by a cover described later.

また、図3の磁気解析結果から、柱状鉄心(31,32,33)の周りの磁束や、柱状鉄心間における膨らむような磁束の流れから、柱状鉄心が二つの単相でも、第1板状鉄心1を介して相互インダクタンスを増加させることができることがわかる。 Further, from the magnetic analysis result of FIG. 3, the magnetic flux around the columnar iron cores (31, 32, 33) and the flow of the swelling magnetic flux between the columnar iron cores show that even if the columnar iron cores are two single phases, the first plate shape is formed. It can be seen that the mutual inductance can be increased through the iron core 1.

さらに、後述するギャップ調整機構に用いるネジ穴(1a,1b,1c)やタップ穴などは、図3から分かるように、磁束に影響のない位置に設ければ、インダクタンスを小さくすることはない。 Further, as can be seen from FIG. 3, if the screw holes (1a, 1b, 1c) and tap holes used in the gap adjusting mechanism described later are provided at positions that do not affect the magnetic flux, the inductance will not be reduced.

また、図3からわかるように、第1板状鉄心1及び第2板状鉄心2は柱状鉄心(31,32,33)の軸方向に電磁鋼板を積層することにより、巻鉄心を使用する場合に比べて磁束が流れやすい構成とすることができる。 Further, as can be seen from FIG. 3, when the first plate-shaped iron core 1 and the second plate-shaped iron core 2 are wound iron cores by laminating electromagnetic steel sheets in the axial direction of the columnar iron cores (31, 32, 33). It is possible to make the configuration in which the magnetic flux easily flows as compared with the above.

第1板状鉄心1及び第2板状鉄心2と柱状鉄心(31,32,33)との結合方法には、本発明の構造では以下の方法が考えられる。
(1)第1板状鉄心1または第2板状鉄心2に凹部を設け柱状鉄心を差込む嵌め合い
(2)柱状鉄心にネジ穴を設け、第1板状鉄心1または第2板状鉄心2に貫通穴を設けるネジ止め
(3)第1板状鉄心1または第2板状鉄心2及び柱状鉄心に穴を設け、ピンを圧入する方法等
例えば、第1板状鉄心1及び第2板状鉄心2に柱状鉄心(31,32,33)を嵌め合わせるための穴を設けておき、この穴に柱状鉄心(31,32,33)を嵌め合わせるようにしてもよい。ただし、用途による変圧器の大きさも鑑み、他の方法により結合させるようにしてもよい。例えば、第1板状鉄心1及び第2板状鉄心2をネジで固定するようにしてもよい。
As a method for connecting the first plate-shaped iron core 1 and the second plate-shaped iron core 2 to the columnar iron core (31, 32, 33), the following method can be considered in the structure of the present invention.
(1) A recess is provided in the first plate-shaped iron core 1 or the second plate-shaped iron core 2 to insert a columnar iron core. (2) A screw hole is provided in the columnar iron core, and the first plate-shaped iron core 1 or the second plate-shaped iron core is provided. Screwing to provide a through hole in 2 (3) A method of providing a hole in the first plate-shaped iron core 1 or the second plate-shaped iron core 2 and the columnar iron core and press-fitting a pin, etc. For example, the first plate-shaped iron core 1 and the second plate A hole for fitting the columnar iron core (31, 32, 33) may be provided in the shaped iron core 2, and the columnar iron core (31, 32, 33) may be fitted into this hole. However, in consideration of the size of the transformer depending on the application, it may be combined by another method. For example, the first plate-shaped iron core 1 and the second plate-shaped iron core 2 may be fixed with screws.

以上の説明においては、第1板状鉄心1及び第2板状鉄心2に穴が設けられていない構成について説明したが、第1板状鉄心1及び第2板状鉄心2の少なくとも一方の中心部には穴が設けられている構成としてもよい。 In the above description, the configuration in which the first plate-shaped iron core 1 and the second plate-shaped iron core 2 are not provided with holes has been described, but at least one center of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 has been described. A hole may be provided in the portion.

また、以上の説明においては、複数の柱状鉄心(31,32,33)にギャップが形成されていない構成について説明したが、複数の柱状鉄心(31,32,33)の少なくとも1つには、第1ギャップを設けて、空気によるギャップにより、インダクタンスを発生させた構成としてもよい。空気は比透磁率が1であり、鉄心の比透磁率と大きく異なることで、一定のインダクタンスを得るために積極的に利用する場合がある。ここで、「第1ギャップ」とは、柱状鉄心を複数の柱状鉄心部分に分離した際に、対向する柱状鉄心部分に形成されるギャップをいう。第1ギャップは、複数の柱状鉄心(31,32,33)の長手方向と直交する面で対向するようにして設けることができる。また、第1ギャップは、複数の柱状鉄心(31,32,33)のそれぞれの1次コイル(41a,42a,43a)が巻回された領域と2次コイル(41b,42b,43b)が巻回された領域の間に設けることが好ましい。また、磁気抵抗は磁路の長さ/透磁率/断面積で求まり、柱状鉄心の透磁率が空気の1000倍程度であるため、ギャップ付き鉄心型変圧器とギャップなし鉄心型変圧器では、前者がギャップを形成する空気層が主たる磁気抵抗となり、鉄心部の磁気抵抗は無視できるのに対して後者は鉄心部の磁気抵抗が主体となる。このようにギャップに空気層を設けるだけでも、透磁率の差により、磁束の流れ方の物性が大きく異なってくることにより、用途が異なってくる。また、鉄心が飽和する時の電流も大きく異なり、ギャップの有無で変圧器としての用途は異なってくる。 Further, in the above description, the configuration in which the gap is not formed in the plurality of columnar iron cores (31, 32, 33) has been described, but at least one of the plurality of columnar iron cores (31, 32, 33) has been described. A first gap may be provided and an inductance may be generated by a gap due to air. Air has a relative magnetic permeability of 1, which is significantly different from the relative magnetic permeability of an iron core, and may be actively used to obtain a constant inductance. Here, the "first gap" refers to a gap formed in the opposite columnar iron core portions when the columnar iron core is separated into a plurality of columnar iron core portions. The first gap can be provided so as to face the plurality of columnar iron cores (31, 32, 33) in a plane orthogonal to the longitudinal direction. Further, in the first gap, the region around which the primary coils (41a, 42a, 43a) of the plurality of columnar iron cores (31, 32, 33) are wound and the secondary coils (41b, 42b, 43b) are wound. It is preferably provided between the turned regions. In addition, the reluctance is obtained by the length of the magnetic path / magnetic permeability / cross-sectional area, and the magnetic permeability of the columnar iron core is about 1000 times that of air. The air layer forming the gap is the main magnetic resistance, and the magnetic resistance of the iron core is negligible, while the latter is mainly the magnetic resistance of the iron core. Even if the air layer is provided in the gap in this way, the application will be different because the physical characteristics of the flow of magnetic flux will be greatly different due to the difference in magnetic permeability. In addition, the current when the iron core is saturated also differs greatly, and the application as a transformer differs depending on the presence or absence of a gap.

変圧器においては、磁束が打ち消し合わない状況が少しでもあると、変圧比だけでなく、電磁波、効率など、さまざまな影響が生じるため、三相交流電流と同様、磁束も3つ足し合わせると常に0になることが求められる。実施例1に係る三相変圧器によれば、柱状鉄心の配置と第1板状鉄心1及び第2板状鉄心2の形状により、3相の磁気抵抗を等しく、かつ小さくでき、三相分、同時に共通に磁束が走る第1板状鉄心1及び第2板状鉄心2において、磁束の合計は0である。また、励磁電流が1次コイルに流れる時は、柱状鉄心に磁束が流れ、漏れ磁束を少なくすることができ、三相分、同時に共通に磁束が走る第1板状鉄心1及び第2板状鉄心2において、磁束の合計は0である。 In a transformer, if there is even a slight situation where the magnetic fluxes do not cancel each other out, not only the transformation ratio but also electromagnetic waves, efficiency, etc. will be affected. It is required to be 0. According to the three-phase transformer according to the first embodiment, the magnetic resistance of the three phases can be made equal and small by the arrangement of the columnar iron cores and the shapes of the first plate-shaped iron core 1 and the second plate-shaped iron core 2, and the three-phase components can be obtained. At the same time, the total magnetic flux is 0 in the first plate-shaped iron core 1 and the second plate-shaped iron core 2 in which the magnetic flux runs in common. Further, when the exciting current flows through the primary coil, the magnetic flux flows through the columnar iron core, and the leakage flux can be reduced. In the iron core 2, the total magnetic flux is 0.

次に、実施例2に係る三相変圧器について説明する。図5に実施例2に係る三相変圧器の斜視図を示す。図6に実施例2に係る三相変圧器の第2板状鉄心並びに第2板状鉄心に設けられた柱状鉄心及びコイルの斜視図を示す。実施例2に係る三相変圧器102が、実施例1に係る三相変圧器101と異なっている点は、複数の柱状鉄心のそれぞれは、1次コイル(41a,42a,43a)が巻回された第1柱状鉄心部分(31a,32a,33a)及び2次コイルA(41c,42c,43c)が巻回された第2柱状鉄心部分(31b,32b,33b)に分離可能に構成され、第2板状鉄心2は、複数の第3柱状鉄心部分(34,35,36)及び該複数の第3柱状鉄心部分に個々に巻回された、2次コイルAとは巻数が異なる複数の2次コイルB(44,45,46)を有し、第1板状鉄心1または第2板状鉄心2は、回転軸を中心にして回転可能に構成され、1次コイル(41a,42a,43a)と2次コイルA(41c,42c,43c)との組み合わせ及び1次コイル(41a,42a,43a)と2次コイルB(44,45,46)との組み合わせが選択的に変更可能となるように構成されている点である。実施例2に係る三相変圧器102におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the second embodiment will be described. FIG. 5 shows a perspective view of the three-phase transformer according to the second embodiment. FIG. 6 shows a perspective view of the second plate-shaped iron core of the three-phase transformer according to the second embodiment and the columnar iron core and the coil provided in the second plate-shaped iron core. The difference between the three-phase transformer 102 according to the second embodiment and the three-phase transformer 101 according to the first embodiment is that the primary coils (41a, 42a, 43a) are wound around each of the plurality of columnar iron cores. The first columnar core portion (31a, 32a, 33a) and the secondary coil A (41c, 42c, 43c) were wound into the second columnar core portion (31b, 32b, 33b) so as to be separable. The second plate-shaped iron core 2 has a plurality of third columnar core portions (34, 35, 36) and a plurality of turns having a different number of turns from the secondary coil A individually wound around the plurality of third columnar core portions. It has a secondary coil B (44, 45, 46), and the first plate-shaped iron core 1 or the second plate-shaped iron core 2 is configured to be rotatable about a rotation axis, and the primary coil (41a, 42a, The combination of the secondary coil A (41c, 42c, 43c) and the combination of the primary coil (41a, 42a, 43a) and the secondary coil B (44, 45, 46) can be selectively changed. It is a point that is configured to be. Since the other configurations of the three-phase transformer 102 according to the second embodiment are the same as the configurations of the three-phase transformer 101 according to the first embodiment, detailed description thereof will be omitted.

図5に示すように、複数の1次コイル(41a,42a,43a)が巻回された複数の第1柱状鉄心部分(31a,32a,33a)は、複数の2次コイルA(41c,42c,43c)が巻回された複数の第2柱状鉄心部分(31b,32b,33b)とは分離可能に構成されている。複数の第1柱状鉄心部分(31a,32a,33a)は、第1板状鉄心1に固定されている。一方、図6に示すように、複数の第2柱状鉄心部分(31b,32b,33b)及び複数の2次コイルB(44,45,46)が巻回された複数の第3柱状鉄心部分(34,35,36)は第2板状鉄心2に固定されている。 As shown in FIG. 5, the plurality of first columnar iron core portions (31a, 32a, 33a) around which the plurality of primary coils (41a, 42a, 43a) are wound are the plurality of secondary coils A (41c, 42c). , 43c) are wound so as to be separable from the plurality of second columnar iron core portions (31b, 32b, 33b). The plurality of first columnar iron core portions (31a, 32a, 33a) are fixed to the first plate-shaped iron core 1. On the other hand, as shown in FIG. 6, a plurality of second columnar core portions (31b, 32b, 33b) and a plurality of third columnar core portions (44, 45, 46) around which a plurality of secondary coils B (44, 45, 46) are wound ( 34, 35, 36) are fixed to the second plate-shaped iron core 2.

複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第1柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5及び図7に示した例では、複数の第1柱状鉄心部分(31a,32a,33a)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。 The plurality of first columnar iron core portions (31a, 32a, 33a) are arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axis of the plurality of first columnar iron core portions. In the examples shown in FIGS. 5 and 7, the plurality of first columnar iron core portions (31a, 32a, 33a) are rotationally symmetric with respect to the rotation axis at positions where their central axes are displaced by 120 degrees. Have been placed.

同様に、複数の第2柱状鉄心部分(31b,32b,33b)は、複数の第2柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5〜図7に示した例では、複数の第2柱状鉄心部分(31b,32b,33b)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。ここで、図5に示すように、第1板状鉄心1を所定の位置に配置させたとき、複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第2柱状鉄心部分(31b,32b,33b)と重なるように配置される。 Similarly, the plurality of second columnar core portions (31b, 32b, 33b) are arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axis of the plurality of second columnar core portions. In the example shown in FIGS. 5 to 7, the plurality of second columnar iron core portions (31b, 32b, 33b) are rotationally symmetric with respect to the rotation axis at positions where their central axes are displaced by 120 degrees. Have been placed. Here, as shown in FIG. 5, when the first plate-shaped iron core 1 is arranged at a predetermined position, the plurality of first columnar iron core portions (31a, 32a, 33a) are formed by the plurality of second columnar iron core portions (31a, 32a, 33a). It is arranged so as to overlap with 31b, 32b, 33b).

さらに、複数の第3柱状鉄心部分(34,35,36)は、複数の第3柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5〜図7に示した例では、複数の第3柱状鉄心部分(34,35,36)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。ここで、図7に示すように、第1板状鉄心1を回転させて他の所定の位置に配置させたとき、複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第3柱状鉄心部分(34,35,36)と重なるように配置されることが好ましい。例えば、複数の第3柱状鉄心部分(34,35,36)は、複数の第2柱状鉄心部分(31b,32b,33b)を60度回転させた位置に配置する。 Further, the plurality of third columnar iron core portions (34, 35, 36) are arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axis of the plurality of third columnar iron core portions. In the example shown in FIGS. 5 to 7, the plurality of third columnar iron core portions (34, 35, 36) are rotationally symmetric with respect to the rotation axis at positions where their central axes are displaced by 120 degrees. Have been placed. Here, as shown in FIG. 7, when the first plate-shaped iron core 1 is rotated and arranged at another predetermined position, the plurality of first columnar iron core portions (31a, 32a, 33a) have a plurality of first columnar iron core portions (31a, 32a, 33a). It is preferable that the three columnar iron core portions (34, 35, 36) are arranged so as to overlap with each other. For example, the plurality of third columnar core portions (34, 35, 36) are arranged at positions where the plurality of second columnar core portions (31b, 32b, 33b) are rotated by 60 degrees.

複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第2柱状鉄心部分(31b,32b,33b)とは分離可能に構成されているため、第1板状鉄心1は第2板状鉄心2に対して回転させることができる。また、第1板状鉄心1は、ネジ穴(1a,1b,1c)を介してネジ等によりカバー52に固定することができる。第1板状鉄心1は、回転させた後に新たな位置でネジ等によりカバー52に固定することができる。 Since the plurality of first columnar core portions (31a, 32a, 33a) are configured to be separable from the plurality of second columnar core portions (31b, 32b, 33b), the first plate-shaped iron core 1 is the second. It can be rotated with respect to the plate-shaped iron core 2. Further, the first plate-shaped iron core 1 can be fixed to the cover 52 with screws or the like via screw holes (1a, 1b, 1c). The first plate-shaped iron core 1 can be fixed to the cover 52 with screws or the like at a new position after being rotated.

第1板状鉄心1を、回転軸を中心にして回転させることにより、1次コイル(41a,42a,43a)と2次コイルA(41c,42c,43c)との組み合わせ、及び1次コイル(41a,42a,43a)と2次コイルB(44,45,46)との組み合わせが選択的に変更可能となり、変圧比を変えることができる。図5に示した例では、1次コイル(41a,42a,43a)が2次コイルA(41c,42c,43c)と組み合わされている。この時、1次コイルの鉄心と2次コイルAの鉄心は接触した状態である。1次コイルの電圧をV1、巻数をN1とし、2次コイルAの電圧をV2、巻数をN2とすると、変圧比αは、以下の式で求められる。
α=V1/V2=k×N1/N2
ただし、kは1次コイルと2次コイルAの結合係数で理想的には1である。
By rotating the first plate-shaped iron core 1 about the rotation axis, the combination of the primary coil (41a, 42a, 43a) and the secondary coil A (41c, 42c, 43c) and the primary coil ( The combination of 41a, 42a, 43a) and the secondary coil B (44, 45, 46) can be selectively changed, and the transformation ratio can be changed. In the example shown in FIG. 5, the primary coil (41a, 42a, 43a) is combined with the secondary coil A (41c, 42c, 43c). At this time, the iron core of the primary coil and the iron core of the secondary coil A are in contact with each other. Assuming that the voltage of the primary coil is V 1 , the number of turns is N 1 , the voltage of the secondary coil A is V 2 , and the number of turns is N 2 , the transformation ratio α is calculated by the following equation.
α = V 1 / V 2 = k × N 1 / N 2
However, k is the coupling coefficient of the primary coil and the secondary coil A and is ideally 1.

図7に実施例2に係る三相変圧器において第1板状鉄心1を時計と反対方向に60度回転させた後の斜視図を示す。図7に示した例では、1次コイル(41a,42a,43a)が2次コイルB(44,45,46)と組み合わされている。1次コイルの電圧をV1、巻数をN1とし、2次コイルBの電圧をV3、巻数をN3(≠N2)とすると、変圧比βは、以下の式で求められる。
β=V1/V3=k´×N1/N3
ただし、k´は1次コイルと2次コイルBの結合係数で理想的には1である。
FIG. 7 shows a perspective view of the three-phase transformer according to the second embodiment after the first plate-shaped iron core 1 is rotated by 60 degrees in the direction opposite to the clock. In the example shown in FIG. 7, the primary coil (41a, 42a, 43a) is combined with the secondary coil B (44, 45, 46). Assuming that the voltage of the primary coil is V 1 , the number of turns is N 1 , the voltage of the secondary coil B is V 3 , and the number of turns is N 3 (≠ N 2 ), the transformation ratio β is calculated by the following equation.
β = V 1 / V 3 = k'× N 1 / N 3
However, k'is the coupling coefficient of the primary coil and the secondary coil B and is ideally 1.

結合係数k及びk´がほぼ等しいとすると、2次コイルAの巻数N2と2次コイルBの巻数N3が異なるため、変圧比αとβは異なる値となる。従って、1次コイルと組み合わせるコイルを2次コイルAと2次コイルBとの間で切り替えることにより、変圧比をαまたはβに切り替えることができる。
なお、1次コイルと2次コイルAが組み合わさり、鉄心が接触した状態の時、2次コイルBの2つの端子は解放される。2次コイルBの鉄心はどの鉄心とも接触していない状態である。実施例2に係る三相変圧器の等価回路を図8A及び図8Bに示す。図8Aは1次コイルが2次コイルAと組み合わされた場合の三相変圧器の等価回路であり、図8Bは1次コイルが2次コイルBと組み合わされた場合の三相変圧器の等価回路である。図8A及び図8Bにおいてk=k´=1としている。鉄心の接触、非接触により、磁気回路として、機能している鉄心と機能していない鉄心ができ、変圧器が機械式に切り替わる形となる。
Assuming that the coupling coefficients k and k ′ are substantially equal, the turns N 2 of the secondary coil A and the turns N 3 of the secondary coil B are different, so that the transformation ratios α and β have different values. Therefore, the transformation ratio can be switched to α or β by switching the coil to be combined with the primary coil between the secondary coil A and the secondary coil B.
When the primary coil and the secondary coil A are combined and the iron cores are in contact with each other, the two terminals of the secondary coil B are released. The iron core of the secondary coil B is in a state where it is not in contact with any iron core. The equivalent circuit of the three-phase transformer according to the second embodiment is shown in FIGS. 8A and 8B. FIG. 8A shows the equivalent circuit of a three-phase transformer when the primary coil is combined with the secondary coil A, and FIG. 8B shows the equivalent of the three-phase transformer when the primary coil is combined with the secondary coil B. It is a circuit. In FIGS. 8A and 8B, k = k ′ = 1. The contact and non-contact of the iron core creates a functioning iron core and a non-functioning iron core as a magnetic circuit, and the transformer is mechanically switched.

なお、図5及び図7に示した例では、第1板状鉄心1及び第2板状鉄心2の外周部にカバー52を設けた例を示したが、カバーを設けない構成であっても変圧比を変えることができる。カバー52を設けない場合は、第1板状鉄心1及び第2板状鉄心2をネジ等により直接固定するようにしてもよい。 In the examples shown in FIGS. 5 and 7, a cover 52 is provided on the outer peripheral portion of the first plate-shaped iron core 1 and the second plate-shaped iron core 2, but even if the cover is not provided. The transformation ratio can be changed. When the cover 52 is not provided, the first plate-shaped iron core 1 and the second plate-shaped iron core 2 may be directly fixed by screws or the like.

上記の説明では、3つの柱状鉄心を備えた第1板状鉄心1を回転させることにより、変圧比を変える構成について説明したが、第1板状鉄心1に6つ、またはそれ以上の柱状鉄心を配置してもよい。例えば、第1板状鉄心1に複数の1次コイルBを巻回した複数の第1柱状鉄心部分B(図示せず)を設け、複数の1次コイルBを複数の2次コイルAまたは複数の2次コイルBと組み合わせることにより、変圧比をさらに2通り(γ,δ)に変えることができ、合計4通りに変えることができる。さらに、各コイルに接続された配線の繋ぎ方を直列または並列とすることにより、1つの変圧器とすることもできるし、2つ以上の変圧器とすることもできる。また、例えば、各国により電源電圧が異なっており、変圧器を接続する電気機器または電気機械の移動に伴い、変圧比を変える必要がある。変圧比を変えることを可能とすることにより、変圧比が異なる他の変圧器を新たに用意する必要がなくなり、不必要になる変圧器もなくすことができる。 In the above description, the configuration in which the transformation ratio is changed by rotating the first plate-shaped iron core 1 having three columnar iron cores has been described, but six or more columnar iron cores are described in the first plate-shaped iron core 1. May be placed. For example, a plurality of first columnar iron core portions B (not shown) in which a plurality of primary coils B are wound around a first plate-shaped iron core 1 are provided, and a plurality of primary coils B are provided as a plurality of secondary coils A or a plurality of. By combining with the secondary coil B of the above, the transformation ratio can be further changed in two ways (γ, δ), and can be changed in a total of four ways. Further, by connecting the wiring connected to each coil in series or in parallel, one transformer can be used, or two or more transformers can be used. Further, for example, the power supply voltage differs depending on each country, and it is necessary to change the transformation ratio as the electric device or electric machine to which the transformer is connected moves. By making it possible to change the transformation ratio, it is not necessary to newly prepare another transformer having a different transformation ratio, and it is possible to eliminate unnecessary transformers.

次に、実施例3に係る三相変圧器について説明する。図9に実施例3に係る三相変圧器の斜視図を示す。実施例3に係る三相変圧器103が、実施例1に係る三相変圧器101と異なっている点は、第1板状鉄心1及び第2板状鉄心2の外周部に設けられ、複数の柱状鉄心(31,32,33)、複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)を包囲するカバー5をさらに有する点である。実施例3に係る三相変圧器103におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the third embodiment will be described. FIG. 9 shows a perspective view of the three-phase transformer according to the third embodiment. The three-phase transformer 103 according to the third embodiment is different from the three-phase transformer 101 according to the first embodiment in that it is provided on the outer peripheral portions of the first plate-shaped iron core 1 and the second plate-shaped iron core 2. The point is that the columnar iron core (31, 32, 33), the plurality of primary coils (41a, 42a, 43a) and the cover 5 surrounding the plurality of secondary coils (41b, 42b, 43b) are further provided. Since the other configurations of the three-phase transformer 103 according to the third embodiment are the same as the configurations of the three-phase transformer 101 according to the first embodiment, detailed description thereof will be omitted.

変圧器は、柱状鉄心にギャップを設けた場合、ギャップ部分で柱状鉄心の軸方向に大きな吸引力が生じる。また、ギャップなしの変圧器でも、鉄心の磁歪により、音が騒音に繋がると言われている。磁歪は、鉄心中の磁束の変化により、鉄心に応力、変形が生じ、騒音に繋がるとされている。そのため、この吸引力を構造的に支えるため、カバー5を設けることが好ましい。カバー5の材料は鉄、アルミ、及び樹脂のいずれでも良い。あるいは、カバーは磁性体または導体であってもよい。 When a transformer is provided with a gap in the columnar iron core, a large attractive force is generated in the axial direction of the columnar iron core at the gap portion. It is also said that even in a transformer without a gap, sound leads to noise due to the magnetostriction of the iron core. Magnetostriction is said to cause stress and deformation in the iron core due to changes in the magnetic flux in the iron core, leading to noise. Therefore, in order to structurally support this suction force, it is preferable to provide the cover 5. The material of the cover 5 may be iron, aluminum, or resin. Alternatively, the cover may be a magnetic material or a conductor.

図10Aに実施例3に係る三相変圧器のカバーを構成する基材の斜視図を示す。基材50には強磁性体シートを用いることが好ましい。強磁性体シートとして、例えば、電磁鋼板を用いることができる。また、基材50の表面には絶縁処理を施すことが好ましい。また、第1板状鉄心1、第2板状鉄心2、複数の柱状鉄心(31,32,33)及びカバー5のうちの少なくとも1つが巻鉄心で構成されるようにしてもよい。 FIG. 10A shows a perspective view of the base material constituting the cover of the three-phase transformer according to the third embodiment. It is preferable to use a ferromagnetic sheet for the base material 50. As the ferromagnetic sheet, for example, an electromagnetic steel sheet can be used. Further, it is preferable to apply an insulating treatment to the surface of the base material 50. Further, at least one of the first plate-shaped iron core 1, the second plate-shaped iron core 2, the plurality of columnar iron cores (31, 32, 33) and the cover 5 may be composed of a wound iron core.

図10Bに実施例3に係る三相変圧器のカバーの斜視図を示す。図10Aに示すような長方形の基材50を第1板状鉄心1及び第2板状鉄心2の外周部に沿って巻くことによって、図10Bに示すような円筒形状のカバー5を形成することができる。径が小さい変圧器の場合は、筒状の部材の回りに、基材50を巻くようにして円筒形状のカバー5を形成することができる。また、カバーは、電磁鋼板の他に、炭素鋼等を用いることもできる。円筒の場合、旋盤で加工しやすいため、安価に、精度良く加工、製造できるという利点もある。また、円筒の場合、同じ外周長で円筒内の体積が最大になり、柱状鉄心やコイル等を最大限配置でき、使用する部材の量を少なくすることができ、製品のライフサイクルの面で合理的であるという点で好ましい。 FIG. 10B shows a perspective view of the cover of the three-phase transformer according to the third embodiment. By winding the rectangular base material 50 as shown in FIG. 10A along the outer peripheral portions of the first plate-shaped iron core 1 and the second plate-shaped iron core 2, the cylindrical cover 5 as shown in FIG. 10B is formed. Can be done. In the case of a transformer having a small diameter, the cylindrical cover 5 can be formed by winding the base material 50 around the tubular member. Further, as the cover, carbon steel or the like can be used in addition to the electromagnetic steel plate. In the case of a cylinder, since it is easy to process with a lathe, there is an advantage that it can be processed and manufactured at low cost and with high accuracy. Also, in the case of a cylinder, the volume inside the cylinder is maximized with the same outer circumference length, columnar iron cores, coils, etc. can be arranged to the maximum, the amount of members used can be reduced, and it is rational in terms of product life cycle. It is preferable in that it is a target.

第1板状鉄心1及び第2板状鉄心2の外周部の形状も円又は楕円であることが好ましい。カバー5と同様、第1板状鉄心1及び第2板状鉄心2も円又は楕円等の単純な形状とすることにより、精度良く、加工し、製造することができる。そのため、精度良く加工された柱状鉄心(31,32,33)、第1板状鉄心1、第2板状鉄心2、カバー5を組み合わせることにより、柱状鉄心間のギャップの管理が容易になり、ギャップの寸法も一定に保ちやすいため、ギャップに働く吸引力によるギャップ長の変動を小さくすることができる。ギャップのない変圧器でも、積層鋼板を積層したり、組立てることにより、小さなギャップや空気層が存在し、磁気抵抗になっており、精度良く加工できる構造により、低減することができる。ただし、カバー5は円筒には限られず、第1板状鉄心1及び第2板状鉄心2の形状は円または楕円形状以外であっても、本機能を発揮することができる。 The shape of the outer peripheral portion of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 is also preferably circular or elliptical. Like the cover 5, the first plate-shaped iron core 1 and the second plate-shaped iron core 2 can be processed and manufactured with high accuracy by having a simple shape such as a circle or an ellipse. Therefore, by combining the columnar iron cores (31, 32, 33) processed with high accuracy, the first plate-shaped iron core 1, the second plate-shaped iron core 2, and the cover 5, it becomes easy to manage the gap between the columnar iron cores. Since the size of the gap can be easily kept constant, the fluctuation of the gap length due to the suction force acting on the gap can be reduced. Even a transformer without a gap can be reduced by laminating or assembling laminated steel plates to have a small gap or an air layer, which has a magnetic resistance and a structure that can be processed with high accuracy. However, the cover 5 is not limited to a cylinder, and even if the shapes of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 are other than a circular or elliptical shape, this function can be exhibited.

カバー5を鉄やアルミ等で形成することにより、磁束や電磁波を外部に漏えいしないようにすることができる。カバー5を鉄等の磁性体で形成することにより、磁束の通り道にもなり、漏れ磁束を外部に出さないようにすることができる。即ち、カバー5を鉄等の透磁率の高い材料を用いて作製することにより、柱状鉄心からの磁束が第1板状鉄心1、カバー5、第2板状鉄心2を通る経路を形成することができる。さらに、カバー5を鉄やアルミ等で形成することにより、渦電流を低減させたり、磁束の通り易さを向上させたりすることができる。 By forming the cover 5 from iron, aluminum, or the like, it is possible to prevent magnetic flux and electromagnetic waves from leaking to the outside. By forming the cover 5 with a magnetic material such as iron, it also serves as a path for magnetic flux, and it is possible to prevent leakage flux from being emitted to the outside. That is, by manufacturing the cover 5 using a material having a high magnetic permeability such as iron, a path through which the magnetic flux from the columnar iron core passes through the first plate-shaped iron core 1, the cover 5, and the second plate-shaped iron core 2 is formed. Can be done. Further, by forming the cover 5 from iron, aluminum, or the like, it is possible to reduce the eddy current and improve the ease of passing the magnetic flux.

カバー5をアルミ等、透磁率は低いが、抵抗率の小さい材料で形成することにより、電磁波を遮断することができる。一般に、三相交流電流は、IGBT素子などのスイッチング素子で作られ、矩形波の電磁波がEMC試験等で問題になることがある。また、カバー5を樹脂等で形成することにより、液体や異物等の侵入を防ぐことができる。 By forming the cover 5 with a material having a low magnetic permeability such as aluminum but a low resistivity, electromagnetic waves can be blocked. Generally, a three-phase alternating current is generated by a switching element such as an IGBT element, and a square wave electromagnetic wave may cause a problem in an EMC test or the like. Further, by forming the cover 5 with a resin or the like, it is possible to prevent the intrusion of liquids, foreign substances and the like.

ここで、直流の磁束が三相交流に何からの理由で重畳している場合が考えられる。従来技術では、零相すなわち、三相交流ではなく、直流の磁束の対策のために、零相用磁脚鉄心を設ける例が報告されている。一方、図3の磁気解析結果に示すように、本実施例では外周部のカバー5までは磁束は到達しない。しかしながら、カバー5を磁性体で形成し、直流の磁束が流れた場合、漏れ磁束と同様、アンバランスな磁束がカバーの方まで流れることも考えられる。このような場合に、磁性体で形成されたカバーでアンバランスな磁束を吸収し、悪影響を与えないようにすることも可能である。 Here, it is conceivable that the magnetic flux of direct current is superimposed on the three-phase alternating current for some reason. In the prior art, an example has been reported in which a magnetic leg iron core for zero phase is provided as a countermeasure against magnetic flux of direct current instead of zero phase, that is, three-phase alternating current. On the other hand, as shown in the magnetic analysis result of FIG. 3, the magnetic flux does not reach the cover 5 on the outer peripheral portion in this embodiment. However, when the cover 5 is made of a magnetic material and a direct current magnetic flux flows, it is conceivable that an unbalanced magnetic flux flows to the cover as well as the leakage flux. In such a case, it is possible to absorb the unbalanced magnetic flux with a cover made of a magnetic material so as not to have an adverse effect.

なお、図5及び図7に示すように、実施例2に係る三相変圧器にカバー52を設けるようにしてもよい。即ち、第1板状鉄心1及び第2板状鉄心2の外周部に設けられ、複数の第1柱状鉄心部分(31a,32a,33a)、複数の第2柱状鉄心部分(31b,32b,33b)、複数の第3柱状鉄心部分(34,35,36)、複数の1次コイル(41a,42a,43a)、複数の2次コイルA(41c,42c,43c)及び複数の2次コイルB(44,45,46)を包囲するカバー52をさらに有するようにしてもよい。また、第1板状鉄心1、第2板状鉄心2、複数の第1柱状鉄心部分(31a,32a,33a)、複数の第2柱状鉄心部分(31b,32b,33b)、複数の第3柱状鉄心部分(34,35,36)及びカバー52のうちの少なくとも1つが巻鉄心で構成されるようにしてもよい。カバー52は、磁性体または導体であることが好ましい。カバー52を設けることにより、1次コイル、2次コイルA、及び2次コイルBから電磁波が漏えいするのを防止することができる。 As shown in FIGS. 5 and 7, a cover 52 may be provided on the three-phase transformer according to the second embodiment. That is, a plurality of first columnar core portions (31a, 32a, 33a) and a plurality of second columnar core portions (31b, 32b, 33b) are provided on the outer peripheral portions of the first plate-shaped iron core 1 and the second plate-shaped iron core 2. ), A plurality of third columnar iron core portions (34, 35, 36), a plurality of primary coils (41a, 42a, 43a), a plurality of secondary coils A (41c, 42c, 43c) and a plurality of secondary coils B. It may further have a cover 52 surrounding (44, 45, 46). Further, a first plate-shaped iron core 1, a second plate-shaped iron core 2, a plurality of first columnar core portions (31a, 32a, 33a), a plurality of second columnar core portions (31b, 32b, 33b), and a plurality of third columns. At least one of the columnar core portions (34, 35, 36) and the cover 52 may be composed of a wound core. The cover 52 is preferably a magnetic material or a conductor. By providing the cover 52, it is possible to prevent electromagnetic waves from leaking from the primary coil, the secondary coil A, and the secondary coil B.

次に、実施例4に係る三相変圧器について説明する。図11に実施例4に係る三相変圧器の断面図を示す。図11は図9において複数の1次コイル(41a,42a,43a)が巻かれた複数の柱状鉄心(31,32,33)における任意の位置での第1板状鉄心1と水平な面で切断した断面図を示している。実施例4に係る三相変圧器104が、実施例1に係る三相変圧器101と異なっている点は、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸(回転軸C1)を中心軸とするように配置された棒状体6をさらに有する点である。実施例4に係る三相変圧器104におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the fourth embodiment will be described. FIG. 11 shows a cross-sectional view of the three-phase transformer according to the fourth embodiment. FIG. 11 shows a plane horizontal to the first plate-shaped iron core 1 at an arbitrary position in a plurality of columnar iron cores (31, 32, 33) around which a plurality of primary coils (41a, 42a, 43a) are wound in FIG. The cut sectional view is shown. The difference between the three-phase transformer 104 according to the fourth embodiment and the three-phase transformer 101 according to the first embodiment is that the central axes (31y, 32y, 33y) of the plurality of columnar iron cores (31, 32, 33) are present. It is a point that further has a rod-shaped body 6 arranged so as to have an axis (rotation axis C 1) equidistant from the center axis. Since the other configurations of the three-phase transformer 104 according to the fourth embodiment are the same as the configurations of the three-phase transformer 101 according to the first embodiment, detailed description thereof will be omitted.

棒状体6は、複数の1次コイル(41a,42a,43a)が巻かれた複数の柱状鉄心(31,32,33)の配置と第1板状鉄心1及び第2板状鉄心2の形状から、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸(回転軸C1)を中心軸とするように配置することが好ましい。棒状体6は磁性体または導体であることが好ましい。 The rod-shaped body 6 has a plurality of columnar iron cores (31, 32, 33) around which a plurality of primary coils (41a, 42a, 43a) are wound, and the shapes of the first plate-shaped iron core 1 and the second plate-shaped iron core 2. Therefore, it is preferable to arrange the plurality of columnar iron cores (31, 32, 33) so that the axis (rotation axis C 1) equidistant from the central axis (31y, 32y, 33y) is the central axis. The rod-shaped body 6 is preferably a magnetic material or a conductor.

また、変圧器の場合、複数の柱状鉄心(31,32,33)にギャップを設けた場合、ギャップ間に働く吸引力は大きく、第1板状鉄心1及び第2板状鉄心2の中心を支えることにより、第1板状鉄心1及び第2板状鉄心2の撓みを効果的に抑えることができる。また、吸引力はギャップで向き合う柱状鉄心が引き合う方向にしか働かないため、荷重の向きからも、効果的に撓み(ひいてはギャップの変動)を抑えることができる。 Further, in the case of a transformer, when gaps are provided in a plurality of columnar iron cores (31, 32, 33), the suction force acting between the gaps is large, and the center of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 is located. By supporting it, the bending of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 can be effectively suppressed. Further, since the suction force works only in the direction in which the columnar iron cores facing each other in the gap are attracted to each other, the bending (and thus the fluctuation of the gap) can be effectively suppressed from the direction of the load.

図11に示した例では、三相変圧器104にカバー5及び棒状体6が設けられた構成を示しているが、カバー5を設けずに棒状体6を設けるようにしてもよい。この場合、第1板状鉄心1及び第2板状鉄心2をネジ等により直接固定するようにしてもよい。 In the example shown in FIG. 11, the three-phase transformer 104 is provided with the cover 5 and the rod-shaped body 6, but the rod-shaped body 6 may be provided without the cover 5. In this case, the first plate-shaped iron core 1 and the second plate-shaped iron core 2 may be directly fixed by screws or the like.

さらに、図5に示した三相変圧器において、複数の第1柱状鉄心部分(31a,32a,33a)の中心軸から等距離にある軸を中心軸とする固定補助用の棒状体(図示せず)を設けるようにしてもよい。棒状体は、磁性体または導体であることが好ましい。棒状体を設けることにより、第1板状鉄心1を第2板状鉄心2に対して回転させる際に安定性を向上させることができる。 Further, in the three-phase transformer shown in FIG. 5, a rod-shaped body for fixing assistance (shown) having an axis equidistant from the central axes of the plurality of first columnar iron core portions (31a, 32a, 33a) as the central axis. It may be provided. The rod-shaped body is preferably a magnetic material or a conductor. By providing the rod-shaped body, stability can be improved when the first plate-shaped iron core 1 is rotated with respect to the second plate-shaped iron core 2.

上記の実施例に係る三相変圧器において、第1板状鉄心1、第2板状鉄心2、複数の柱状鉄心(31,32,33)、及び棒状体6のうちの少なくとも1つは巻鉄心で構成されるようにしてもよい。さらに巻鉄心の中心部には棒状の中心部鉄心が配置されるようにしてもよい。巻鉄心を用いることにより、励磁電流や鉄損を小さくすることができる。 In the three-phase transformer according to the above embodiment, at least one of the first plate-shaped iron core 1, the second plate-shaped iron core 2, the plurality of columnar iron cores (31, 32, 33), and the rod-shaped body 6 is wound. It may be composed of an iron core. Further, a rod-shaped central core may be arranged at the center of the wound core. By using the wound iron core, the exciting current and the iron loss can be reduced.

図5に示した三相変圧器において、第1板状鉄心1、第2板状鉄心2、複数の第1柱状鉄心部分(31a,32a,33a)及び複数の第2柱状鉄心部分(31b,32b,33b)及び棒状体(図示せず)のうちの少なくとも1つは巻鉄心で構成されることが好ましい。さらに、巻鉄心の中心部には棒状の中心部鉄心が配置されているようにしてもよい。巻鉄心を用いることにより、励磁電流や鉄損を小さくすることができる。 In the three-phase transformer shown in FIG. 5, the first plate-shaped iron core 1, the second plate-shaped iron core 2, a plurality of first columnar core portions (31a, 32a, 33a) and a plurality of second columnar core portions (31b, It is preferable that at least one of 32b, 33b) and a rod-shaped body (not shown) is composed of a wound iron core. Further, a rod-shaped central core may be arranged at the center of the wound core. By using the wound iron core, the exciting current and the iron loss can be reduced.

次に、実施例5に係る三相変圧器について説明する。図12に実施例5に係る三相変圧器の斜視図を示す。図13に実施例5に係る三相変圧器の側面図を示す。実施例5に係る三相変圧器105が、実施例1に係る三相変圧器101と異なっている点は、第1板状鉄心1及び第2板状鉄心2の少なくとも一方と、複数の柱状鉄心(310,320,330)の少なくとも1つとの間に第2ギャップが設けられ、第2ギャップの長さdを調整するギャップ調整機構(71,72,73)が設けられている点である。実施例5に係る三相変圧器105におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the fifth embodiment will be described. FIG. 12 shows a perspective view of the three-phase transformer according to the fifth embodiment. FIG. 13 shows a side view of the three-phase transformer according to the fifth embodiment. The three-phase transformer 105 according to the fifth embodiment is different from the three-phase transformer 101 according to the first embodiment in that at least one of the first plate-shaped iron core 1 and the second plate-shaped iron core 2 and a plurality of columnar columns. A second gap is provided between the iron core (310, 320, 330) and at least one, and a gap adjusting mechanism (71, 72, 73) for adjusting the length d of the second gap is provided. .. Since the other configurations of the three-phase transformer 105 according to the fifth embodiment are the same as the configurations of the three-phase transformer 101 according to the first embodiment, detailed description thereof will be omitted.

ギャップ調整機構(71,72,73)として、第1板状鉄心1に設けたネジを用いることができる。ネジの先端面がカバー5に当接し、第1板状鉄心1にもネジ穴が設けられている。ギャップ調整機構(71,72,73)であるネジを回転させることにより、第1板状鉄心1を上下に動かすことができる。第1板状鉄心1と複数の柱状鉄心(310,320,330)の先端間に第2ギャップdを形成することができ、第2ギャップdの大きさをネジにより調整することができる。ここで、「第2ギャップ」とは、第1板状鉄心1または第2板状鉄心2と複数の柱状鉄心(310,320,330)の先端との間に形成されるギャップをいう。第2ギャップdの大きさを調整することにより、インダクタンスの大きさの調整を行うことができる。このようにして、異なる大きさのインダクタンスを1つの変圧器で形成することが可能となる。 As the gap adjusting mechanism (71, 72, 73), a screw provided on the first plate-shaped iron core 1 can be used. The tip surface of the screw comes into contact with the cover 5, and the first plate-shaped iron core 1 is also provided with a screw hole. By rotating the screw which is the gap adjusting mechanism (71, 72, 73), the first plate-shaped iron core 1 can be moved up and down. A second gap d can be formed between the first plate-shaped iron core 1 and the tips of a plurality of columnar iron cores (310, 320, 330), and the size of the second gap d can be adjusted by a screw. Here, the "second gap" refers to a gap formed between the first plate-shaped iron core 1 or the second plate-shaped iron core 2 and the tips of a plurality of columnar iron cores (310, 320, 330). By adjusting the size of the second gap d, the size of the inductance can be adjusted. In this way, it is possible to form inductances of different sizes with one transformer.

上述のようにギャップ調整機構(71,72,73)であるネジのみでも第1板状鉄心1を固定することは可能である。しかしながら、第2ギャップdに働く磁気吸引力のために、カバー5にネジ山を切り、第1板状鉄心1にもネジ山を切った穴を設け、第1固定ネジ(81,82,83)にて、第1板状鉄心1とカバー5を固定し、結合を強固にするようにしてもよい。一方、第2固定ネジ(91,92,93)にて、第2板状鉄心2とカバー5を固定し、結合を強固にするようにしてもよい。 As described above, it is possible to fix the first plate-shaped iron core 1 only with the screws which are the gap adjusting mechanisms (71, 72, 73). However, due to the magnetic attraction acting on the second gap d, the cover 5 is threaded, the first plate-shaped iron core 1 is also provided with a threaded hole, and the first fixing screw (81, 82, 83) is provided. ), The first plate-shaped iron core 1 and the cover 5 may be fixed to strengthen the bond. On the other hand, the second plate-shaped iron core 2 and the cover 5 may be fixed with the second fixing screw (91, 92, 93) to strengthen the connection.

ギャップ調整機構として、ネジの代わりに、第1板状鉄心1とカバー5との間にスペーサ等の部材を挟み、固定ネジでギャップを形成するようにしてもよい。 As the gap adjusting mechanism, instead of the screw, a member such as a spacer may be sandwiched between the first plate-shaped iron core 1 and the cover 5, and a gap may be formed by a fixing screw.

図12及び図13に示した例では、カバー5が設けられた例を示したが、カバー5を設けない場合は、第2板状鉄心2まで、ギャップ調整機構(71,72,73)としてのネジ及び固定ネジ(81,82,83)を通すことにより、上記と同様にギャップを調整することができる。 In the examples shown in FIGS. 12 and 13, an example in which the cover 5 is provided is shown, but when the cover 5 is not provided, the gap adjusting mechanism (71, 72, 73) is used up to the second plate-shaped iron core 2. The gap can be adjusted in the same manner as described above by passing the screw and the fixing screw (81, 82, 83).

図14に実施例5の変形例に係る三相変圧器を構成する第1板状鉄心10の斜視図を示す。ギャップ調整機構として、ネジの代わりに、第1板状鉄心10の柱状鉄心(図示せず)と対向する面に図14に示すような突出部(11,12,13)を設ける。突出部(11,12,13)は、第1板状鉄心10の回転の中心C2から距離rの位置に沿って設けられ、径方向の長さが時計回りの向きに短くなるように形成されている。また、第1板状鉄心10には周方向の位置を調整するために複数のネジ穴14が設けられている。第1板状鉄心10を回転させることによって、柱状鉄心と第1板状鉄心10の突出部(11,12,13)との接触面積を意図的に変化させて、インダクタンスの大きさを調整することができる。 FIG. 14 shows a perspective view of the first plate-shaped iron core 10 constituting the three-phase transformer according to the modified example of the fifth embodiment. As the gap adjusting mechanism, instead of screws, protrusions (11, 12, 13) as shown in FIG. 14 are provided on the surface of the first plate-shaped iron core 10 facing the columnar iron core (not shown). The protrusions (11, 12, 13) are provided along the position of a distance r from the center C 2 of the rotation of the first plate-shaped iron core 10, and are formed so that the length in the radial direction becomes shorter in the clockwise direction. Has been done. Further, the first plate-shaped iron core 10 is provided with a plurality of screw holes 14 in order to adjust the position in the circumferential direction. By rotating the first plate-shaped iron core 10, the contact area between the columnar iron core and the protruding portions (11, 12, 13) of the first plate-shaped iron core 10 is intentionally changed, and the magnitude of the inductance is adjusted. be able to.

図15に実施例5の変形例に係る三相変圧器1051の斜視図であって、インダクタンスが大きい状態を示す。突出部(11,12,13)の径方向の長さが最大となる位置で複数の柱状鉄心(310,320,330)と接している。このときに、インダクタンスが最大となる。 FIG. 15 is a perspective view of the three-phase transformer 1051 according to the modified example of the fifth embodiment, showing a state in which the inductance is large. The protruding portions (11, 12, 13) are in contact with a plurality of columnar iron cores (310, 320, 330) at positions where the length in the radial direction is maximized. At this time, the inductance becomes maximum.

図16に実施例5の変形例に係る三相変圧器1051の斜視図であって、インダクタンスが小さい状態を示す。突出部(11,12,13)の径方向の長さが最小となる位置で複数の柱状鉄心(310,320,330)と接している。このときに、インダクタンスが最小となる。 FIG. 16 is a perspective view of the three-phase transformer 1051 according to the modified example of the fifth embodiment, showing a state in which the inductance is small. The protrusions (11, 12, 13) are in contact with a plurality of columnar iron cores (310, 320, 330) at positions where the radial length is minimized. At this time, the inductance becomes the minimum.

図15及び図16に示した構成において、第1板状鉄心10、カバー5及び第2板状鉄心2で囲まれた三相変圧器1051の内部を密閉構造とする場合には、部材にて隙間を塞ぐようにしてもよい。密閉構造とすることにより、磁束漏れ、電磁波、粉じん等などの対策をとることができる。 In the configuration shown in FIGS. 15 and 16, when the inside of the three-phase transformer 1051 surrounded by the first plate-shaped iron core 10, the cover 5 and the second plate-shaped iron core 2 is to have a closed structure, a member is used. You may try to close the gap. By adopting a closed structure, it is possible to take measures against magnetic flux leakage, electromagnetic waves, dust and the like.

次に、実施例6に係る三相変圧器について説明する。実施例6に係る三相変圧器が、実施例3に係る三相変圧器103と異なっている点は、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体が充填されている点である。実施例6に係る三相変圧器におけるその他の構成は、実施例3に係る三相変圧器103における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the sixth embodiment will be described. The three-phase transformer according to the sixth embodiment is different from the three-phase transformer 103 according to the third embodiment in the portion surrounded by the first plate-shaped iron core 1, the second plate-shaped iron core 2, and the cover 5. The point is that it is filled with insulating oil or magnetic fluid. Since the other configurations of the three-phase transformer according to the sixth embodiment are the same as the configurations of the three-phase transformer 103 according to the third embodiment, detailed description thereof will be omitted.

図9に示すように、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を充填させる。例えば、第2板状鉄心2にカバー5を設けた後、絶縁油または磁性流体を充填し、第1板状鉄心1をカバー5に設置する。磁性流体の場合、カバー5の中にコイルなどから発生する磁界により、攪拌される効果もある。発熱源は複数の1次コイル(41a,42a,43a)、複数の2次コイル(41b,42b,43b)、及び複数の1次コイル及び2次コイルが巻回されている複数の柱状鉄心(31,32,33)であり、絶縁油または磁性流体は対流して熱伝導により外部と熱交換を行い、複数の1次コイル、2次コイル、及び複数の柱状鉄心を冷却することができる。 As shown in FIG. 9, the portion surrounded by the first plate-shaped iron core 1, the second plate-shaped iron core 2 and the cover 5 is filled with insulating oil or magnetic fluid. For example, after the cover 5 is provided on the second plate-shaped iron core 2, it is filled with insulating oil or magnetic fluid, and the first plate-shaped iron core 1 is installed on the cover 5. In the case of a magnetic fluid, there is also an effect of being agitated by a magnetic field generated from a coil or the like inside the cover 5. The heat source is a plurality of primary coils (41a, 42a, 43a), a plurality of secondary coils (41b, 42b, 43b), and a plurality of columnar iron cores in which a plurality of primary coils and secondary coils are wound. 31, 32, 33), the insulating oil or magnetic fluid can convect and exchange heat with the outside by heat conduction to cool a plurality of primary coils, a secondary coil, and a plurality of columnar iron cores.

次に、実施例7に係る三相変圧器について説明する。図17に実施例7に係る三相変圧器106の斜視図を示す。実施例7に係る三相変圧器106が、実施例3に係る三相変圧器103と異なっている点は、複数の柱状鉄心(311,321,331)は空芯構造及び開口部311aを備え、該空芯構造及び開口部311aを介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させる点である。実施例7に係る三相変圧器106におけるその他の構成は、実施例3に係る三相変圧器103における構成と同様であるので詳細な説明は省略する。 Next, the three-phase transformer according to the seventh embodiment will be described. FIG. 17 shows a perspective view of the three-phase transformer 106 according to the seventh embodiment. The difference between the three-phase transformer 106 according to the seventh embodiment and the three-phase transformer 103 according to the third embodiment is that the plurality of columnar iron cores (311, 321 and 331) have an air-core structure and an opening 311a. A point where insulating oil or magnetic fluid is circulated in a portion surrounded by the first plate-shaped iron core 1, the second plate-shaped iron core 2 and the cover 5 through the air core structure and the opening 311a. Since the other configurations of the three-phase transformer 106 according to the seventh embodiment are the same as the configurations of the three-phase transformer 103 according to the third embodiment, detailed description thereof will be omitted.

複数の柱状鉄心(311,321,331)は、第1板状鉄心1及び第2板状鉄心2を貫通しており、空芯構造は第1板状鉄心1及び第2板状鉄心2の外部に通じている。従って、第1板状鉄心1側から空芯構造を介して絶縁油または磁性流体を流入させ、第2板状鉄心2側から排出することができる。 The plurality of columnar iron cores (311, 321, 331) penetrate the first plate-shaped iron core 1 and the second plate-shaped iron core 2, and the air core structure is that of the first plate-shaped iron core 1 and the second plate-shaped iron core 2. It is open to the outside. Therefore, the insulating oil or magnetic fluid can flow in from the first plate-shaped iron core 1 side through the air core structure and be discharged from the second plate-shaped iron core 2 side.

また、複数の柱状鉄心(311,321,331)の空芯構造には、冷却水や冷却油を流すようにしてもよい。このような構成とすることにより、三相変圧器106の冷却性能を向上させることができる。 Further, cooling water or cooling oil may be allowed to flow through the air core structure of the plurality of columnar iron cores (311, 321, 331). With such a configuration, the cooling performance of the three-phase transformer 106 can be improved.

さらに、複数の柱状鉄心(311,321,331)は空芯構造及び開口部311aを備え、該空芯構造及び開口部311aを介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させるようにしてもよい。また効率よく複数の1次コイル(41a,42a,43a)、複数の2次コイル(41b,42b,43b)、及び複数の1次コイル及び2次コイルが巻回されている複数の柱状鉄心(31,32,33)の冷却を行うために、循環中、熱せられた絶縁油または磁性流体を三相変圧器の外部に排出して冷却してから戻すようにしてもよい。図17には、1つの柱状鉄心311に開口部311aを設ける例を示したが、開口部は1つの柱状鉄心に複数個設けてもよいし、複数の柱状鉄心に1つまたは複数の開口部を設けるようにしてもよい。 Further, the plurality of columnar iron cores (311, 321, 331) are provided with an air core structure and an opening 311a, and the first plate-shaped iron core 1, the second plate-shaped iron core 2 and the second plate-shaped iron core 2 are provided through the air core structure and the opening 311a. Insulating oil or magnetic fluid may be circulated in the portion surrounded by the cover 5. Further, efficiently, a plurality of primary coils (41a, 42a, 43a), a plurality of secondary coils (41b, 42b, 43b), and a plurality of columnar iron cores (a plurality of columnar iron cores in which a plurality of primary coils and secondary coils are wound) are wound. In order to cool 31, 32, 33), the heated insulating oil or magnetic fluid may be discharged to the outside of the three-phase transformer during circulation, cooled, and then returned. Although FIG. 17 shows an example in which one columnar iron core 311 is provided with an opening 311a, a plurality of openings may be provided in one columnar iron core, or one or a plurality of openings may be provided in a plurality of columnar iron cores. May be provided.

図18に実施例7の変形例に係る三相変圧器の斜視図を示す。複数の第1柱状鉄心部分(310a,320a,330a)、複数の第2柱状鉄心部分(310b,320b,330b)、及び複数の第3柱状鉄心部分(340,350,360)のそれぞれに空芯構造を設け、該空芯構造を介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させるようにしてもよい。 FIG. 18 shows a perspective view of a three-phase transformer according to a modified example of the seventh embodiment. Air cores in each of the plurality of first columnar core portions (310a, 320a, 330a), the plurality of second columnar core portions (310b, 320b, 330b), and the plurality of third columnar core portions (340, 350, 360). A structure may be provided, and an insulating oil or a magnetic fluid may be circulated in a portion surrounded by the first plate-shaped iron core 1, the second plate-shaped iron core 2 and the cover 5 through the air core structure.

また、図17には、複数の柱状鉄心(311,321,331)に巻回されたコイルの配線100も示されている。配線100を三相変圧器106の外部に取り出す接続部51は、磁束に影響しない位置に設けることが好ましい。密閉構造にする場合、接続部51にコネクタやゴムパッキン、接着材等を用いることにより、気密性を保つことができる。磁束すなわち、インダクタンスに影響を与えない位置であれば、接続部51をいずれの場所に設けるようにしてもよい。 Further, FIG. 17 also shows the wiring 100 of the coil wound around the plurality of columnar iron cores (311, 321 and 331). The connection portion 51 for taking out the wiring 100 to the outside of the three-phase transformer 106 is preferably provided at a position that does not affect the magnetic flux. In the case of a closed structure, airtightness can be maintained by using a connector, rubber packing, an adhesive or the like for the connecting portion 51. The connecting portion 51 may be provided at any position as long as it does not affect the magnetic flux, that is, the inductance.

1,10 第1板状鉄心
11,12,13 突出部
2 第2板状鉄心
31,32,33 柱状鉄心
31a,32a,33a 第1柱状鉄心部分
31b,32b,33b 第2柱状鉄心部分
34,35,36 第3柱状鉄心部分
41a,42a,43a 1次コイル
41b,42b,43b 2次コイル
41c,42c,43c 2次コイルA
44,45,46 2次コイルB
5,52 カバー
6 棒状体
71,72,73 ギャップ調整機構
1,10 1st plate-shaped core 11,12,13 Protruding part 2 2nd plate-shaped core 31,32,33 Columnar core 31a, 32a, 33a 1st columnar core 31b, 32b, 33b 2nd columnar core 34, 35, 36 Third columnar iron core portion 41a, 42a, 43a Primary coil 41b, 42b, 43b Secondary coil 41c, 42c, 43c Secondary coil A
44, 45, 46 Secondary coil B
5,52 Cover 6 Rod-shaped body 71,72,73 Gap adjustment mechanism

Claims (11)

互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、
前記第1板状鉄心及び前記第2板状鉄心の間に、前記第1板状鉄心又は前記第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、
前記複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び複数の2次コイルを含むコイルと、
前記第1板状鉄心及び前記第2板状鉄心の外周部に設けられ、前記複数の柱状鉄心、前記複数の1次コイル及び前記複数の2次コイルを包囲するカバーと、
を有し、
前記複数の柱状鉄心のそれぞれは長手方向において複数の柱状鉄心部分により形成されており、
前記複数の柱状鉄心部分の間には、第1ギャップが形成されており、
前記第1板状鉄心と、前記複数の柱状鉄心の少なくとも1つとの間に第2ギャップが設けられ、
前記第2ギャップの長さを調整するギャップ調整機構が設けられており、
前記ギャップ調整機構は前記第1板状鉄心に設けたネジを含み、前記ネジの先端面が前記カバーに当接しており、
前記ネジを回転させることにより、前記第1板状鉄心を移動させて前記第2ギャップを調整するようにした、三相変圧器。
The first plate-shaped iron core and the second plate-shaped iron core arranged so as to face each other,
A plurality of columnar cores in multiples of 3 arranged between the first plate-shaped core and the second plate-shaped core so as to be connected to the first plate-shaped core or the second plate-shaped core. A plurality of columnar iron cores arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axis of the plurality of columnar iron cores.
A coil containing a plurality of primary coils and a plurality of secondary coils that are multiples of 3 individually wound around the plurality of columnar iron cores.
A cover provided on the outer peripheral portion of the first plate-shaped iron core and the second plate-shaped iron core and surrounding the plurality of columnar iron cores, the plurality of primary coils, and the plurality of secondary coils.
Have,
Each of the plurality of columnar iron cores is formed by a plurality of columnar iron core portions in the longitudinal direction.
A first gap is formed between the plurality of columnar iron core portions.
Said first plate iron heart, the second gap is provided between at least one of the plurality of columnar core,
A gap adjusting mechanism for adjusting the length of the second gap is provided.
The gap adjusting mechanism includes a screw provided on the first plate-shaped iron core, and the tip surface of the screw is in contact with the cover.
A three-phase transformer in which the first plate-shaped iron core is moved by rotating the screw to adjust the second gap.
互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、
前記第1板状鉄心及び前記第2板状鉄心の間に、前記第1板状鉄心又は前記第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、
前記複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び複数の2次コイルを含むコイルと、
前記第1板状鉄心及び前記第2板状鉄心の外周部に設けられ、前記複数の柱状鉄心、前記複数の1次コイル及び前記複数の2次コイルを包囲するカバーと、
を有し、
前記複数の柱状鉄心のそれぞれは長手方向において複数の柱状鉄心部分により形成されており、
前記複数の柱状鉄心部分の間には、第1ギャップが形成されており
さらに、インダクタンス調整機構が設けられており、
前記インダクタンス調整機構は、前記第1板状鉄心の前記柱状鉄心と対向する面に設けられた複数の突出部を含み、該複数の突出部は、前記第1板状鉄心の回転中心から所定距離の位置に沿って設けられていて、径方向の長さが時計回りの向きに短くなるように形成されており、前記第1板状鉄心には周方向の位置を調整するために複数のネジ穴が設けられており、
前記第1板状鉄心を回転させることによって、前記柱状鉄心と前記第1板状鉄心の前記突出部との接触面積を変化させて、インダクタンスを調整するようにした、三相変圧器。
The first plate-shaped iron core and the second plate-shaped iron core arranged so as to face each other,
A plurality of columnar cores in multiples of 3 arranged between the first plate-shaped core and the second plate-shaped core so as to be connected to the first plate-shaped core or the second plate-shaped core. A plurality of columnar iron cores arranged at positions that are rotationally symmetric with respect to an axis equidistant from the central axis of the plurality of columnar iron cores.
A coil containing a plurality of primary coils and a plurality of secondary coils that are multiples of 3 individually wound around the plurality of columnar iron cores.
A cover provided on the outer peripheral portion of the first plate-shaped iron core and the second plate-shaped iron core and surrounding the plurality of columnar iron cores, the plurality of primary coils, and the plurality of secondary coils.
Have,
Each of the plurality of columnar iron cores is formed by a plurality of columnar iron core portions in the longitudinal direction.
A first gap is formed between the plurality of columnar iron core portions .
In addition, an inductance adjustment mechanism is provided,
The inductance adjusting mechanism includes a plurality of protrusions provided on a surface of the first plate-shaped iron core facing the columnar iron core, and the plurality of protrusions are a predetermined distance from the rotation center of the first plate-shaped iron core. It is provided along the position of, and is formed so that the length in the radial direction becomes shorter in the clockwise direction, and a plurality of screws are provided on the first plate-shaped iron core to adjust the position in the circumferential direction. There is a hole,
A three-phase transformer in which the inductance is adjusted by changing the contact area between the columnar iron core and the protruding portion of the first plate-shaped iron core by rotating the first plate-shaped iron core.
前記複数の1次コイル及び前記複数の2次コイルは、前記第1板状鉄心及び前記第2板状鉄心の端部より内側に配置されている、請求項1または2に記載の三相変圧器。 The three-phase transformer according to claim 1 or 2, wherein the plurality of primary coils and the plurality of secondary coils are arranged inside the ends of the first plate-shaped iron core and the second plate-shaped iron core. vessel. 前記カバーは、磁性体または導体である、請求項1または2に記載の三相変圧器。 The three-phase transformer according to claim 1 or 2 , wherein the cover is a magnetic material or a conductor. 前記第1板状鉄心、前記第2板状鉄心、前記複数の柱状鉄心及び前記カバーのうちの少なくとも1つは巻鉄心で構成される、請求項1または2に記載の三相変圧器。 The three-phase transformer according to claim 1 or 2 , wherein at least one of the first plate-shaped iron core, the second plate-shaped iron core, the plurality of columnar iron cores, and the cover is composed of a wound iron core. 前記複数の柱状鉄心の中心軸から等距離にある軸を中心軸とする固定補助用の棒状体をさらに有する、請求項1乃至5のいずれか一項に記載の三相変圧器。 The three-phase transformer according to any one of claims 1 to 5 , further comprising a rod-shaped body for fixing assistance having an axis equidistant from the central axis of the plurality of columnar iron cores as the central axis. 前記棒状体は、磁性体または導体である、請求項6に記載の三相変圧器。 The three-phase transformer according to claim 6 , wherein the rod-shaped body is a magnetic material or a conductor. 前記第1板状鉄心、前記第2板状鉄心、前記複数の柱状鉄心及び前記棒状体のうちの少なくとも1つは巻鉄心で構成される、請求項6または7に記載の三相変圧器。 The three-phase transformer according to claim 6 or 7 , wherein at least one of the first plate-shaped iron core, the second plate-shaped iron core, the plurality of columnar iron cores, and the rod-shaped body is a wound iron core. 前記巻鉄心の中心部には棒状の中心部鉄心が配置されている、請求項8に記載の三相変圧器。 The three-phase transformer according to claim 8 , wherein a rod-shaped central core is arranged at the center of the wound core. 前記第1板状鉄心、前記第2板状鉄心及び前記カバーに囲まれた部分に絶縁油または磁性流体が充填されている、請求項1または2に記載の三相変圧器。 The three-phase transformer according to claim 1 or 2 , wherein the first plate-shaped iron core, the second plate-shaped iron core, and the portion surrounded by the cover are filled with an insulating oil or a magnetic fluid. 前記複数の柱状鉄心は空芯構造及び開口部を備え、該空芯構造及び開口部を介して、前記第1板状鉄心、前記第2板状鉄心及び前記カバーに囲まれた部分に絶縁油または磁性流体を循環させる、請求項1または2に記載の三相変圧器。 The plurality of columnar iron cores have an air core structure and an opening, and insulating oil is formed in a portion surrounded by the first plate-shaped iron core, the second plate-shaped iron core, and the cover through the air core structure and the opening. Alternatively, the three-phase transformer according to claim 1 or 2 , which circulates a magnetic fluid.
JP2019115741A 2019-06-21 2019-06-21 Three-phase transformer Active JP6856707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115741A JP6856707B2 (en) 2019-06-21 2019-06-21 Three-phase transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115741A JP6856707B2 (en) 2019-06-21 2019-06-21 Three-phase transformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017178296A Division JP6577545B2 (en) 2017-09-15 2017-09-15 Three-phase transformer

Publications (2)

Publication Number Publication Date
JP2019179929A JP2019179929A (en) 2019-10-17
JP6856707B2 true JP6856707B2 (en) 2021-04-07

Family

ID=68278991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115741A Active JP6856707B2 (en) 2019-06-21 2019-06-21 Three-phase transformer

Country Status (1)

Country Link
JP (1) JP6856707B2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892872A (en) * 1972-03-08 1973-12-01
JPS481343Y1 (en) * 1972-03-21 1973-01-13
JPS605105U (en) * 1983-06-11 1985-01-14 東北金属工業株式会社 variable inductance element
JPH08167527A (en) * 1994-12-15 1996-06-25 Meidensha Corp Split transformer
JPH09159614A (en) * 1995-12-11 1997-06-20 Kitashiba Denki Kk Robot for inspecting inside of tank
JP3566481B2 (en) * 1997-02-07 2004-09-15 株式会社日立製作所 Eddy current shield device and three-phase transformer
JPH118138A (en) * 1997-06-15 1999-01-12 Mitsutsu Electric Kk Coaxial, group of coaxial, maltiaxial and coaxial, phase-shifting adjustment coaxial orthogonal, multiphase phase-shifting adjustment co-axial orthogonal, group of coaxial orthogonal, group of phase-shifting coaxial orthogonal, three-phase and single-phase coaxial orthogonal, group of multiphase single-phase coaxial-orthogonal, variable voltage adjustment coaxial, variable phase-shifting coaxial orthogonal, total transformation coaxial orthogonal transformer, transformer with degaussing device and cooling manifold and reactor
JP4330840B2 (en) * 2002-02-01 2009-09-16 東北電力株式会社 Three-phase reactor device
JP5541699B2 (en) * 2010-05-25 2014-07-09 株式会社ダイヘン Power distribution facilities
JP5149976B2 (en) * 2011-04-06 2013-02-20 株式会社神戸製鋼所 Reactor and design method thereof
CN103534769A (en) * 2011-05-16 2014-01-22 株式会社日立制作所 Reactor device and power converter employing same
JP2013115407A (en) * 2011-12-01 2013-06-10 Hitachi Ltd Electrical apparatus
JP2014220435A (en) * 2013-05-09 2014-11-20 株式会社タムラ製作所 Reactor
JP6459116B2 (en) * 2014-09-09 2019-01-30 Tmp株式会社 Trance
CN105529166B (en) * 2016-02-29 2017-05-31 黄中明 There is load stepless voltage regulation energy-economic transformer

Also Published As

Publication number Publication date
JP2019179929A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6577545B2 (en) Three-phase transformer
US11270831B2 (en) Three-phase reactor comprising iron-core units and coils
CN109256266B (en) Three-phase reactor
US11728091B2 (en) Three-phase reactor comprising iron-core units and coils
FI105293B (en) Polar shoe for magnetic resonance imaging
KR102677657B1 (en) Magnetic gear units and pole pieces for magnetic gear units
US10580565B2 (en) Reactor including first end plate and second end plate
US20090026866A1 (en) Transverse flux machine and method for manufacturing same
CN107808732B (en) Electric reactor
JP6856707B2 (en) Three-phase transformer
KR20160134160A (en) Winding device and circuit in power generator with parallel bipolar movement
WO1991009442A1 (en) Magnetic flux return path for an electrical device
JP6674062B2 (en) Three-phase reactor
JP2018093617A (en) Laminated motor, and laminated power generator
JP2008270347A (en) Transformer
JP2009105180A (en) Transformer
JP6407948B2 (en) Polyphase transformer
JP7436246B2 (en) Reactor with temperature detection part
KR102555275B1 (en) iron core structure of transformer
TWI730671B (en) Disc generator structure
JP2019071250A (en) Rotor core heating device
JP2018022783A (en) Coil device
JP2018042445A (en) Motor and motor control circuit
JP6193614B2 (en) Induction heating type processing apparatus and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6856707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150