JP4329306B2 - Benzonitrile derivative and method for producing the same - Google Patents
Benzonitrile derivative and method for producing the same Download PDFInfo
- Publication number
- JP4329306B2 JP4329306B2 JP2002159364A JP2002159364A JP4329306B2 JP 4329306 B2 JP4329306 B2 JP 4329306B2 JP 2002159364 A JP2002159364 A JP 2002159364A JP 2002159364 A JP2002159364 A JP 2002159364A JP 4329306 B2 JP4329306 B2 JP 4329306B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- group
- fluoro
- acid
- benzonitrile derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CC(C)(c(cc1)ccc1NC(C)(*)c1cc(F)ccc1)NC(CC1)CCC11O*O1 Chemical compound CC(C)(c(cc1)ccc1NC(C)(*)c1cc(F)ccc1)NC(CC1)CCC11O*O1 0.000 description 1
Landscapes
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は液晶表示材料等の電子材料や機能性材料又は医農薬や香料、各種添加剤及びそれらの合成中間体として有用な、ベンゾニトリル誘導体及びその製造方法に関する。
【0002】
【従来の技術】
2-フルオロ-4-置換ベンゾニトリル誘導体は電子材料や機能性材料又は医農薬や香料、各種添加剤等の用途に有用であり、特にSTN型液晶表示材料用の液晶化合物として、液晶組成物の駆動電圧の低減や、応答時間の改善等に極めて有効であり、最近その需要が特に増大している。一般に4-置換ベンゾニトリル誘導体のような液晶化合物において分子の他端には鎖状基が存在するが、これまで用いられている2-ジフルオロ-4-置換ベンゾニトリル誘導体においては、鎖状基はほとんどが直鎖状アルキル基に限定されていた。液晶化合物においては鎖状基としてアルキル基に換えてアルケニル基を導入することにより、その液晶性や粘性、急峻性等の諸特性における改善が得られることが知られているが、一般式(A)
【0003】
【化4】
(式中、Alkenylは炭素原子数2〜20のアルケニル基を表し、M、N、A及びnは一般式(I)におけると同じ意味を表す。)で表される、アルケニル基を導入した2-フルオロ-4-置換ベンゾニトリル誘導体においても同様な効果が期待できる。これらの2-フルオロ-4-置換ベンゾニトリル誘導体である液晶化合物は、アルケニル基を導入した対応する3-フルオロベンゼン誘導体を中間体としてその4位にシアノ基を導入することによって合成されたが、この方法では反応の収率やシアノ基の導入位置選択性が充分高いとは言えず、シクロヘキサン環の立体やアルケニル基の二重結合に異性化の恐れがある等、必ずしも問題がないわけではなかった。このため、アルケニル基を導入した2-フルオロ-4-置換ベンゾニトリル誘導体である液晶化合物を合成するための、より有効な中間体がのぞまれていた。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、アルケニル基を導入した2-フルオロ-4-置換ベンゾニトリル誘導体を製造するための新しい中間体を提供し、さらにその中間体化合物の簡便な製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するために鋭意検討した結果、アセタール基を有する2-フルオロ-4-置換ベンゾニトリル誘導体が容易に製造でき、かつアルケニル基を導入した2-フルオロ-4-置換ベンゾニトリル誘導体の製造中間体として極めて有効であることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は一般式(I)
【化5】
(式中、Rは置換基を有していてもよい炭素原子数2〜4のアルキレン基を表し、M及びNはそれぞれ独立的に単結合、-CH2CH2-、-CH=CH-、-CF=CF-、-C≡C-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CF2CF2-、-CH2CH(CH3)-、-CH(CH3)CH2-、-CH2CH2CH2CH2-、-OCH2CH2CH2-、又は-CH2CH2CH2O-を表し、Aはトランス-1,4-シクロヘキシレン基、フッ素置換されていてもよい1,4-フェニレン基、又はピリミジン-2,5-ジイル基を表し、nは0又は1を表す。)で表されるベンゾニトリル誘導体を提供する。
【0007】
また、本発明は一般式(II)
【化6】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表される化合物を酸化剤の存在下にアンモニアと反応させることを特徴とする(I)の製造方法、及び一般式(VI)
【0008】
【化7】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表し、Xはヨウ素又は臭素原子を表す。)で表されるハロゲン化ベンゼン誘導体にシアン化銅(I)を反応させることを特徴とする製造方法を提供する。
【0009】
【発明の実施の形態】
(本件発明の化合物)
一般式(I)において、Rは置換基を有していてもよい炭素原子数2〜4のアルキレン基を表す。置換基としては製造上の反応工程で不活性な基であれば特に制限はないが、低級アルキル基又はアリール基又は無置換であることが好ましい。アルキレンの主鎖としては炭素原子数が2又は3が好ましく、Qとして-CH2CH2CH2-又は-CH2CH2-が好ましい。
【0010】
M及びNはそれぞれ独立的に単結合、-CH2CH2-、-CH=CH-、-CF=CF-、-C≡C-、-CH2O-、-OCH2-、-CF2O-、-OCF2-、-CF2CF2-、-CH2CH(CH3)-、-CH(CH3)CH2-、-CH2CH2CH2CH2-、-OCH2CH2CH2-、又は-CH2CH2CH2O-を表すが、単結合又は-CH2CH2-が好ましく、単結合が特に好ましい。
【0011】
Aはトランス-1,4-シクロヘキシレン基、フッ素置換されていてもよい1,4-フェニレン基、又はピリミジン-2,5-ジイル基を表すが、トランス-1,4-シクロヘキシレン基又はフッ素置換されていてもよい1,4-フェニレン基が好ましく、トランス-1,4-シクロヘキシレン基又はフ1,4-フェニレン基又は2-フルオロ-1,4-フェニレン基がさらに好ましく、トランス-1,4-シクロヘキシレン基が特に好ましい。
nは0又は1を表すが特にn=0が好ましい。
【0012】
本発明の一般式(I)の化合物は具体的には以下の(I-1)〜(I-3)で表される化合物が好ましく、(I-1)の化合物が特に好ましい。
【化8】
【0013】
(本件発明の製造方法1)
本発明の製造法は一般式(II)で表される化合物を酸化剤の存在下にアンモニアと反応させることを特徴とし、酸化剤としては過酸化ニッケル、二酸化マンガン等の金属酸化物、四酢酸鉛等の金属塩、酸素(通常金属塩が併用される)等を用いることができるが、二酸化マンガンが特に好ましい。反応は脱水剤を併用することも好ましい。脱水剤としては硫酸ナトリウム等の塩類の他、使用する酸化剤に対して不活性である限り特に制限はない。
【0014】
この製法において、使用する反応剤あるいは反応条件によっては一般式(I)又は(II)で表される化合物における脱アセタール化が進行する場合もある。脱アセタール化が生じても次工程に支障のない場合もあるが、必要に応じて再アセタール化を実施することも好ましい。再アセタール化は一般式(I)又は(II)のRに応じて、即ちR=-CH2CH2-の場合には酸触媒存在下にエチレングリコールを反応させればよい。
【0015】
ここで(II)のベンズアルデヒド誘導体は一般式(IV)
【化9】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表される3-フルオロベンゼン誘導体をアルキルリチウムでリチオ化した後、ホルミル化剤と反応させることにより得ることができる。
【0016】
(本件発明の製造方法2)
本発明の製造法は一般式(VI)で表されるハロゲン化ベンゼン誘導体にシアン化銅(I)を反応させることにより一般式(I)で表される2-フルオロ-4-置換ベンゾニトリル誘導体を製造し、一般式(VI)においてXはヨウ素又は臭素原子を表すが、ヨウ素がより好ましい。ここで一般式(VI)で表されるハロゲン化ベンゼン誘導体は(IV)で表される化合物をリチオ化し、これをヨウ素あるいは臭素と反応させることにより得ることができる。
【0017】
あるいは一般式(I)の2-フルオロ-4-置換ベンゾニトリル誘導体は以下に示す方法によっても製造することができる。
【0018】
(製法A)
一般式(II)
【化10】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表されるベンズアルデヒド誘導体をヒドロキシルアミン又はその水和物又はその塩と反応させて一般式(III)
【化11】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表されるオキシムを得る。反応は通常溶媒の存在下に実施される。溶媒はヒドロキシルアミンやアルデヒドに対する反応性がない限りにおいて特に制限はないが、ヘキサン、トルエン等の炭化水素系溶媒、テトラヒドロフラン(THF)、ジイソプロピルエーテル(IPE)、ジメトキシエタン(DME)等のエーテル系溶媒、ジクロロメタン等の塩素系溶媒、メタノール、メチルセルソルブ等のアルコール系溶媒、酢酸等のカルボン酸系溶媒あるいはこれらの混合物等が好ましく用いることができる。これらの溶媒は(II)の化合物に対し、質量比で1〜100倍、好ましくは5〜20倍使用される。反応は室温から加熱下、あるいは冷却下に実施されるが、通常は0℃〜120℃の範囲が好ましく、室温から溶媒の還流温度の範囲内がより好ましい。
【0019】
得られた(III)の化合物を脱水反応させることにより(I)の2-フルオロ-4-置換ベンゾニトリル誘導体を製造することができる。
【0020】
脱水剤あるいは脱水触媒としては無水酢酸、無水トリフルオロメタンスルホン酸等の酸無水物、p-トルエンスルホン酸、トリフルオロ酢酸等の酸類、ベンゼンスルホン酸クロリド、クロロ蟻酸フェニル等の酸塩化物、ピリジン、トリエチルアミン等の塩基類、蟻酸ナトリウム等の塩類、四塩化チタン等のルイス酸(通常ピリジンやトリエチルアミン等と併用される)、ジシクロヘキシルカルボジイミド(DCC)、1、1'-ジカルボニルジイミダゾール等のカルボジイミド類、トリフェニルホスフィン等のホスフィン類(通常四塩化炭素と併用される)、二酸化セレン、酸化水銀(II)等の金属酸化物、オルト蟻酸エチル等のオルトエステル類、フェニルイソシアナート等のイソシアナート類、4-アミノ-1、2、4-トリアゾール等のN-アミノ複素環類等を用いることができるが、以上の中で、無水酢酸等の酸無水物が好ましく、無水酢酸が特に好ましい。無水酢酸は(III)のオキシム調製時にあらかじめ系内に存在させておくことにより、(III)を単離することなく1バッチで(I)の2-フルオロ-4-置換ベンゾニトリル誘導体を製造することができる。
【0021】
(製法B)
一般式(V)
【化12】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表される安息香酸誘導体を酸アミドに導いた後、脱水することにより(I)の2-フルオロ-4-置換ベンゾニトリル誘導体を製造することができる。
【0022】
安息香酸のアミド化は、例えばカルボン酸を塩化チオニル等の塩素化剤で酸塩化物とした後、アンモニアあるいはその塩と反応させることにより容易に実施される。あるいは直接カルボン酸にアンモニアを反応させることも可能である。
【0023】
アミドの脱水は脱水剤存在下に容易に実施できる。脱水剤としては塩化チオニル、五塩化リン、オキシ塩化リン等の無機酸の酸塩化物(ピリジン等の塩基の共存が好ましい場合もある)、塩化p-トルエンスルホニル、ホスゲン等の有機酸塩化物(ピリジン等の塩基の共存が好ましい場合もある)、五酸化リン、ポリリン酸、ポリリン酸のエステル類等のリン酸誘導体、無水酢酸等の酸無水物、DCC、1、1'-ジカルボニルジイミダゾール等のカルボジイミド類等を使用することができ、塩化チオニル、ポリリン酸あるいはそのエステル類は特に好ましい。
【0024】
ここで、(V)のカルボン酸は一般式(IV)の化合物を製法A又はBに従ってリチオ化し、得られたフェニルリチウム反応剤に二酸化炭素を反応させることにより得ることができる。通常は-30〜-80℃の温度範囲で二酸化炭素を吹き込むか、ドライアイスを加えればよい。
【0025】
あるいは(V)のカルボン酸は一般式(IV)の化合物に塩化アルミニウム等のルイス酸存在下に、シュウ酸クロリドを反応させ得られた酸塩化物を加水分解しても得ることができる。この場合、カルボン酸を経由することなく、アミドに変換することができる。
本方法においても、必要に応じて再アセタール化を実施することも好ましい。
【0026】
(製法C)
一般式(VII)
【化13】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表されるスルホン酸エステルに触媒存在下にシアン化金属を反応させることにより(I)の2、6-ジフルオロ-4-置換ベンゾニトリル誘導体を製造することができる。。Qは炭素原子数7以下のアルキル基、パーフルオロアルキル基又はアリール基を表すが、フェニル基、4-メチルフェニル基、メチル基、トリフルオロメチル基が好ましく、トリフルオロメチル基が特に好ましい。
【0027】
反応触媒としては遷移金属の塩及び錯体を使用することが好ましく、ニッケル(II)錯体、パラジウム(II)錯体、パラジウム(II)塩、パラジウム(0)錯体がより好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)等のパラジウム(0)錯体が特に好ましい。
【0028】
ここで一般式(VII)のスルホン酸エステルは一般式(VIII)
【化14】
(式中、R、M、N、A及びnは一般式(I)のおけると同じ意味を表す。)で表されるフェノールに、対応するスルホン酸クロリドあるいはスルホン酸無水物を反応させることにより得ることができる。スルホン酸クロリドとしては塩化ベンゼンスルホニル、塩化p-トルエンスルホニル、塩化メタンスルホニル、塩化トリフルオロメタンスルホニルが好ましく、スルホン酸無水物としてはトリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物が好ましく、塩化ベンゼンスルホニル、塩化p-トルエンスルホニル、トリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物がより好ましく、トリフルオロメタンスルホン酸無水物が特に好ましい。
【0029】
ここで、(VIII)の化合物はジケトンのモノアセタールを原料として容易に製造することができる。例えば一般式(I)においてn=0でMが単結合を表す場合には、一般式(IXa)
【0030】
【化15】
(式中、Rは一般式(I)のおけると同じ意味を表す。)で表されるシクロヘキサン-1,4-ジオンのモノアセタールと一般式(X)
【0031】
【化16】
(式中、Wは金属原子又は金属原子を含む基を表し、カルボニル基に求核付加する限り特に制限はないが、MgBr、MgI、MgCl又はLiが特に好ましい。Qは水酸基の保護基を表すが、メチル基、ベンジル基、テトラヒドロピラニル基、テトラヒドロフリル基、メトキシメチル基又はエトキシメチル基が好ましく、メチル基又はベンジル基が酸性条件や塩基性条件に安定なため特に好ましい。これらの保護基は製造の各工程において、脱保護される場合も存在するが、その場合には必要に応じ再度保護すればよい。)を反応させ、脱水後必要に応じて再アセタール化を行い、水素添加し、脱保護することにより得ることができる。n=1でM及びNがともに単結合を表す場合には(IXa)に換えて、一般式(IXb)
【0032】
【化17】
(式中、Rは一般式(I)のおけると同じ意味を表す。)で表されるビシクロヘキサン-4,4'-ジオンのモノアセタールを用いればよく、その他の場合も類似の方法で得ることができる。
【0033】
【実施例】
以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。
【0034】
(実施例1) 4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタール(I-1)の製造(1)
1-a) 4-(3-フルオロフェニル)シクロヘキサノンエチレンアセタール(この化合物は3-フルオロ-1-ブロモベンゼンから調製したグリニヤール反応剤をシクロヘキサン-1,4-ジオンモノエチレンアセタールと反応させ、酸触媒存在下の脱水後、二重結合を接触還元することにより得た。)10.0gの40mLのテトラヒドロフラン(THF)溶液を窒素雰囲気下で-55℃に冷却した。これにt-ブトキシカリウム2.9gを加え、次いでn-ブチルリチウム(1.57Mヘキサン溶液)32mLを30分で滴下しフェニルリチウム誘導体を調製した。同温度で1時間攪拌後、N,N-ジメチルホルムアミド(DMF)5mlを-55℃で滴下した。-55℃で 時間攪拌後、0℃まで昇温させ、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸ナトリウムで脱水乾燥させた。溶媒を溜去して4-(3-フルオロ-4-ホルミルフェニル)シクロヘキサノンエチレンアセタール10.1gを得た。
1-b) 得られた化合物の全量を酢酸40mLに溶解し、ヒドロキシルアミン塩酸塩3.8g及び酢酸ナトリウム(無水)4.9gを加え3時間加熱還流させた。これに無水酢酸10.0gを加えさらに3時間攪拌させた。氷水中に反応液を加え、析出した結晶を濾取し、水で洗浄した後、トルエン40mLに溶解した。飽和食塩水で洗浄後、p-トルエンスルホン酸0.4g及びエチレングリコール3.8gを加え、共沸する水を除去しながら水の溜出がみられなくなるまで加熱還流させた。室温まで放冷後、水、飽和重曹水、水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を溜去して得られた粗生成物をヘキサンから再結晶させて4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタールの白色結晶6.7gを得た。
【0035】
(実施例2) 4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタール(I-1)の製造(2)
2-a) 実施例1と同様にして調製したフェニルリチウム誘導体に、DMFに換えて、粉砕したドライアイス3.7gをゆっくり加え、以下同様に反応させた。同様に後処理して2-フルオロ-4-(4,4-エチレンジオキシシクロヘキシル)安息香酸10.7gを得た。
2-b) この全量をジクロロメタン40mLに溶解し、塩化チオニル7.6g及びピリジン0.1mLを加え、6時間加熱還流させた。溶媒及び過剰の塩化チオニルを溜去後、再度ジクロロメタンに溶解し、30%アンモニア水を加えよく攪拌させた。有機層を水で洗浄後、溶媒を溜去して得られた粗結晶をメタノールから再結晶させて、2-フルオロ-4-(4、4-エチレンジオキシシクロヘキシル)ベンズアミド10.7gを得た。
2-c) この全量をトルエン40mLに溶解し、オキシ塩化リン10.5を加え、3時間加熱還流させた。室温まで放冷後、氷水にあけ、トルエン層を水、飽和重曹水、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去して得られた粗生成物をヘキサンから再結晶させて4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタールの白色結晶6.5gを得た。
【0036】
(実施例3) トランス-4'-(3-フルオロ-4-シアノフェニル)ビシクロヘキサン-4-オンエチレンアセタール(I-3)の製造
3-a) 10gのトランス-4'-(3-フルオロ-4-ヒドロキシフェニル)ビシクロヘキサン-4-オンエチレンアセタール(この化合物は2-フルオロ-4-ブロモアニソールから調製したグリニヤール反応剤をビシクロヘキサン-4,4'-ジオンモノエチレンアセタールと反応させ、酸触媒存在下の脱水後、二重結合を接触還元し、酢酸中臭化水素酸で脱メチル後、再度アセタール化することにより得た。)10.0g及び7.5gのトリフルオロメタンスルホン酸無水物をジクロロメタン40mLに溶解し、水冷下ピリジン3.6gを滴下した。3時間室温で攪拌後、トルエンを加え、有機層を分離し、5%塩酸水、飽和重曹水、水で順次洗浄した。無水硫酸ナトリウムで脱水後、溶媒を溜去し、フラッシュカラムクロマト(トルエン)で精製して、トランス-4'-(3-フルオロ-4-トリフルオロメタンスルホニルオキシフェニル)ビシクロヘキサン-4-オンエチレンアセタール12.2gを得た。
3-b) この全量を45mLのTHFに溶解し、1.3gのシアン化ナトリウム及び340mgのテトラキス(トリフェニルホスフィン)パラジウム(0)を加え、8時間加熱還流させた。室温まで放冷後、トルエンを加え、有機層を水、飽和食塩水で洗浄した。溶媒を溜去して得られた粗生成物をヘキサンから再結晶させてトランス-4'-(3-フルオロ-4-シアノフェニル)ビシクロヘキサン-4-オンエチレンアセタールの白色結晶7.8gを得た。
【0037】
(応用例) 4-(トランス-4-ビニルシクロヘキシル)-2-フルオロベンゾニトリル(A-1)の合成
実施例1で得られた4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタール6.7gをトルエン23mLに溶解し、蟻酸23mLを加え、60℃で3時間加熱攪拌させた。放冷後、トルエン層を分離し、水、飽和重曹水、水、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水後、溶媒を溜去して4-(3-フルオロ-4-シアノフェニル)シクロヘキサノン5.3gを得た。
【0038】
トルエン及びTHFの混合溶媒中、11.7gの塩化トリフェニルメトキシメチルホスホニウムと3.9gのt-ブトキシカリウムから調製したウィッティヒ反応剤中に、上記の4-(3-フルオロ-4-シアノフェニル)シクロヘキサノン6.7gのTHF溶液を氷冷下に滴下し、反応させた。水及びヘキサンを加え、ヘキサン層中の不溶物を濾別した後、メタノール/水の混合溶媒で洗浄した。溶媒を溜去後、THFに再度溶解し、10%塩酸を加えて室温で攪拌した。ヘキサンで抽出後、水で洗浄し、溶媒を溜去させ、メタノールに溶解した。10%水酸化ナトリウム水溶液を加え、室温で攪拌した。析出した結晶を集め、水及び冷メタノールで洗浄してトランス-4-(3-フルオロ-4-シアノフェニル)シクロヘキサンカルバルデヒド5.1gを得た。
【0039】
トルエン及びTHFの混合溶媒中、9.5gの臭化メチルトリフェニルホスホニウムと2.5gのt-ブトキシカリウムから調製したウィッティヒ反応剤中に、上記のトランス-4-(3-フルオロ-4-シアノフェニル)シクロヘキサンカルバルデヒド5.1gのTHF溶液を氷冷下に滴下し、反応させた。室温で塩酸を加えて中和し、ヘキサンで抽出し、水洗後、無水硫酸ナトリウムで乾燥させた。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、さらにメタノールから再結晶させて、4-(トランス-4-ビニルシクロヘキシル)-2-フルオロベンゾニトリルの白色結晶3.1g(総収率52%)を得た。融点49.9℃。
【0040】
(実施例4) 4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタール(I-1)の製造(3)
実施例1で得た4-(3-フルオロ-4-ホルミルフェニル)シクロヘキサノンエチレンアセタール10.0gのトルエン40mL溶液を窒素雰囲気下で氷冷した。アンモニアガスを導入しながら、二酸化マンガン10gを少量ずつ加えた。アンモニアガスの導入を止め室温で24時間攪拌した。水及びトルエンを加え不要物セライト濾過した後トルエンで抽出し、有機層を10%塩酸水溶液、飽和重曹水、水にて順次洗浄し、水層をトルエンで洗浄して有機層に加えた。溶媒を溜去して得られた粗生成物をヘキサンから再結晶させて4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタールの白色結晶5.3gを得た。
【0041】
(実施例4) 4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタール(I-1)の製造(4)
4-(3-フルオロ-4-ヨードフェニル)シクロヘキサノンエチレンアセタール10.0gのN-メチル-2-ピロリドン40mL溶液にシアン化銅(I)5gを加え窒素雰囲気化で80℃で5時間攪拌した。反応系を冷却後、トルエン及び水を加え不要物をセライト濾過した後、5%水酸化ナトリウム水溶液で2回、水で3回洗浄した。有機層を濃縮した後得られた粗生成物をトルエンに溶解し、エチレングリコール及びp-トルエンスルホン酸を加えトルエンを除きながら還流し再アセタール化した。反応系を冷却後、飽和重曹水、水で順次洗浄し濃縮後得られた粗生成物をヘキサンから再結晶させて4-(3-フルオロ-4-シアノフェニル)シクロヘキサノンエチレンアセタールの白色結晶4.1gを得た。
【0042】
【発明の効果】
本発明は液晶材料として有用なアルケニル基を含有する2-フルオロ-4-置換ベンゾニトリル誘導体の重要な中間体を提供し、またこれら中間体の簡便な製造法を提供し、これにより所望の2-フルオロ-4-置換ベンゾニトリル誘導体である液晶化合物の簡便で安価な製造を可能とした。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a benzonitrile derivative useful as an electronic material such as a liquid crystal display material, a functional material, a medical pesticide, a fragrance, various additives, and a synthetic intermediate thereof, and a method for producing the same.
[0002]
[Prior art]
2-Fluoro-4-substituted benzonitrile derivatives are useful for applications such as electronic materials, functional materials, medical pesticides, fragrances, various additives, etc., especially as liquid crystal compounds for STN type liquid crystal display materials. It is extremely effective for reducing drive voltage and improving response time, and recently its demand is increasing. In general, in a liquid crystal compound such as a 4-substituted benzonitrile derivative, a chain group is present at the other end of the molecule, but in the 2-difluoro-4-substituted benzonitrile derivative used so far, the chain group is Most were limited to linear alkyl groups. In liquid crystal compounds, it is known that by introducing an alkenyl group instead of an alkyl group as a chain group, improvements in various properties such as liquid crystallinity, viscosity, and steepness can be obtained. )
[0003]
[Formula 4]
(Wherein Alkenyl represents an alkenyl group having 2 to 20 carbon atoms, and M, N, A and n have the same meaning as in general formula (I)), and an alkenyl group represented by 2 A similar effect can be expected with a -fluoro-4-substituted benzonitrile derivative. These 2-fluoro-4-substituted benzonitrile derivatives, which are liquid crystal compounds, were synthesized by introducing a cyano group at the 4-position using the corresponding 3-fluorobenzene derivative introduced with an alkenyl group as an intermediate, In this method, the yield of the reaction and the selectivity of the introduction position of the cyano group cannot be said to be sufficiently high, and there is a possibility that isomerization may occur in the cyclohexane ring steric or double bond of the alkenyl group. It was. For this reason, a more effective intermediate for synthesizing a liquid crystal compound which is a 2-fluoro-4-substituted benzonitrile derivative having an alkenyl group introduced therein has been desired.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a new intermediate for producing a 2-fluoro-4-substituted benzonitrile derivative having an alkenyl group introduced, and to provide a simple method for producing the intermediate compound. There is.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present invention can easily produce a 2-fluoro-4-substituted benzonitrile derivative having an acetal group and introduces an alkenyl group into the 2-fluoro-4-substituted benzonitrile. The inventors have found that it is extremely effective as an intermediate for producing a nitrile derivative, and have completed the present invention.
[0006]
That is, the present invention is a general formula (I)
[Chemical formula 5]
(In the formula, R represents an optionally substituted alkylene group having 2 to 4 carbon atoms, M and N are each independently a single bond, —CH 2 CH 2 —, —CH═CH— , -CF = CF-, -C≡C-, -CH 2 O-, -OCH 2- , -CF 2 O-, -OCF 2- , -CF 2 CF 2- , -CH 2 CH (CH 3 ) -, -CH (CH 3 ) CH 2- , -CH 2 CH 2 CH 2 CH 2- , -OCH 2 CH 2 CH 2- , or -CH 2 CH 2 CH 2 O-, and A is trans-1 , 4-cyclohexylene group, 1,4-phenylene group optionally substituted with fluorine, or pyrimidine-2,5-diyl group, and n represents 0 or 1.) provide.
[0007]
Further, the present invention is a general formula (II)
[Chemical 6]
(Wherein R, M, N, A and n have the same meaning as in general formula (I)), and characterized by reacting with ammonia in the presence of an oxidizing agent ( I) production method and general formula (VI)
[0008]
[Chemical 7]
(Wherein R, M, N, A and n represent the same meaning as in general formula (I) and X represents an iodine or bromine atom). A production method characterized by reacting I) is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Compound of the present invention)
In the general formula (I), R represents an alkylene group having 2 to 4 carbon atoms which may have a substituent. The substituent is not particularly limited as long as it is inactive in the reaction step in the production, but is preferably a lower alkyl group, an aryl group or unsubstituted. The alkylene main chain preferably has 2 or 3 carbon atoms, and Q is preferably —CH 2 CH 2 CH 2 — or —CH 2 CH 2 —.
[0010]
M and N are each independently a single bond, —CH 2 CH 2 —, —CH═CH—, —CF═CF—, —C≡C—, —CH 2 O—, —OCH 2 —, —CF 2 O-, -OCF 2- , -CF 2 CF 2- , -CH 2 CH (CH 3 )-, -CH (CH 3 ) CH 2- , -CH 2 CH 2 CH 2 CH 2- , -OCH 2 CH 2 CH 2 — or —CH 2 CH 2 CH 2 O— represents a single bond or —CH 2 CH 2 —, and a single bond is particularly preferable.
[0011]
A represents a trans-1,4-cyclohexylene group, a fluorine-substituted 1,4-phenylene group, or a pyrimidine-2,5-diyl group. An optionally substituted 1,4-phenylene group is preferred, a trans-1,4-cyclohexylene group, a 1,4-phenylene group or a 2-fluoro-1,4-phenylene group is more preferred, and a trans-1 A 4-cyclohexylene group is particularly preferred.
n represents 0 or 1, but n = 0 is particularly preferable.
[0012]
Specifically, the compound of the general formula (I) of the present invention is preferably a compound represented by the following (I-1) to (I-3), and particularly preferably a compound of (I-1).
[Chemical 8]
[0013]
(Production method 1 of the present invention)
The production method of the present invention is characterized in that the compound represented by the general formula (II) is reacted with ammonia in the presence of an oxidizing agent, the oxidizing agent being a metal oxide such as nickel peroxide or manganese dioxide, tetraacetic acid Metal salts such as lead, oxygen (usually used in combination with metal salts), and the like can be used, but manganese dioxide is particularly preferable. In the reaction, it is also preferable to use a dehydrating agent in combination. The dehydrating agent is not particularly limited as long as it is inactive to the oxidizing agent used in addition to salts such as sodium sulfate.
[0014]
In this production method, deacetalization in the compound represented by the general formula (I) or (II) may proceed depending on the reactants or reaction conditions used. Even if deacetalization occurs, there may be no problem in the next step, but it is also preferable to carry out reacetalization as necessary. The reacetalization may be carried out by reacting ethylene glycol in the presence of an acid catalyst depending on R in the general formula (I) or (II), that is, in the case of R = —CH 2 CH 2 —.
[0015]
Here, the benzaldehyde derivative of (II) has the general formula (IV)
[Chemical 9]
(Wherein R, M, N, A and n have the same meaning as in general formula (I)), after lithiation with alkyllithium, It can be obtained by reacting.
[0016]
(Production method 2 of the present invention)
The production method of the present invention comprises a 2-fluoro-4-substituted benzonitrile derivative represented by general formula (I) by reacting copper (I) cyanide with a halogenated benzene derivative represented by general formula (VI). In general formula (VI), X represents an iodine or bromine atom, with iodine being more preferred. Here, the halogenated benzene derivative represented by the general formula (VI) can be obtained by lithiation of the compound represented by (IV) and reacting it with iodine or bromine.
[0017]
Alternatively, the 2-fluoro-4-substituted benzonitrile derivative of the general formula (I) can also be produced by the method shown below.
[0018]
(Manufacturing method A)
Formula (II)
Embedded image
(Wherein R, M, N, A and n represent the same meaning as in general formula (I)). A benzaldehyde derivative represented by general formula (I) is reacted with hydroxylamine or a hydrate or a salt thereof. Formula (III)
Embedded image
(Wherein R, M, N, A and n have the same meaning as in general formula (I)). The reaction is usually carried out in the presence of a solvent. The solvent is not particularly limited as long as it is not reactive with hydroxylamine or aldehyde, but is a hydrocarbon solvent such as hexane or toluene, or an ether solvent such as tetrahydrofuran (THF), diisopropyl ether (IPE) or dimethoxyethane (DME). A chlorinated solvent such as dichloromethane, an alcohol solvent such as methanol or methyl cellosolve, a carboxylic acid solvent such as acetic acid, or a mixture thereof can be preferably used. These solvents are used in a mass ratio of 1 to 100 times, preferably 5 to 20 times with respect to the compound (II). The reaction is carried out from room temperature under heating or cooling, but is usually preferably in the range of 0 ° C to 120 ° C, more preferably in the range of room temperature to the reflux temperature of the solvent.
[0019]
The 2-fluoro-4-substituted benzonitrile derivative of (I) can be produced by dehydrating the obtained compound of (III).
[0020]
Examples of the dehydrating agent or dehydrating catalyst include acid anhydrides such as acetic anhydride and trifluoromethanesulfonic acid, acids such as p-toluenesulfonic acid and trifluoroacetic acid, acid chlorides such as benzenesulfonic acid chloride and phenyl chloroformate, pyridine, Bases such as triethylamine, salts such as sodium formate, Lewis acids such as titanium tetrachloride (usually used in combination with pyridine and triethylamine, etc.), carbodiimides such as dicyclohexylcarbodiimide (DCC), 1,1'-dicarbonyldiimidazole Phosphines such as triphenylphosphine (usually used in combination with carbon tetrachloride), metal oxides such as selenium dioxide and mercury (II) oxide, orthoesters such as ethyl orthoformate, and isocyanates such as phenyl isocyanate. N-aminoheterocycles such as 4-amino-1,2,4-triazole, etc. Of these, acid anhydrides such as acetic anhydride are preferred, and acetic anhydride is particularly preferred. Acetic anhydride is present in the system in advance during the preparation of the oxime of (III), thereby producing the 2-fluoro-4-substituted benzonitrile derivative of (I) in one batch without isolating (III). be able to.
[0021]
(Manufacturing method B)
Formula (V)
Embedded image
(In the formula, R, M, N, A and n represent the same meaning as in general formula (I).) The benzoic acid derivative represented by formula (I) is led to acid amide and then dehydrated. Of the 2-fluoro-4-substituted benzonitrile derivative.
[0022]
Amidation of benzoic acid is easily carried out, for example, by converting a carboxylic acid into an acid chloride with a chlorinating agent such as thionyl chloride and then reacting with ammonia or a salt thereof. Alternatively, it is also possible to react ammonia directly with a carboxylic acid.
[0023]
Amide dehydration can be easily carried out in the presence of a dehydrating agent. As the dehydrating agent, acid chlorides of inorganic acids such as thionyl chloride, phosphorus pentachloride, phosphorus oxychloride (in some cases, coexistence of a base such as pyridine may be preferred), organic acid chlorides such as p-toluenesulfonyl chloride, phosgene ( Coexistence of a base such as pyridine may be preferable), phosphoric acid derivatives such as phosphorus pentoxide, polyphosphoric acid, esters of polyphosphoric acid, acid anhydrides such as acetic anhydride, DCC, 1,1′-dicarbonyldiimidazole Carbodiimides and the like can be used, and thionyl chloride, polyphosphoric acid or esters thereof are particularly preferable.
[0024]
Here, the carboxylic acid (V) can be obtained by lithiation of the compound of the general formula (IV) according to the production method A or B, and reacting the resulting phenyllithium reactant with carbon dioxide. Usually, carbon dioxide is blown in the temperature range of -30 to -80 ° C or dry ice is added.
[0025]
Alternatively, the carboxylic acid (V) can also be obtained by hydrolyzing the acid chloride obtained by reacting the compound of the general formula (IV) with oxalic chloride in the presence of a Lewis acid such as aluminum chloride. In this case, it can be converted to an amide without going through a carboxylic acid.
Also in this method, it is also preferable to carry out reacetalization as necessary.
[0026]
(Manufacturing method C)
Formula (VII)
Embedded image
(Wherein R, M, N, A, and n have the same meaning as in general formula (I)). By reacting a metal cyanide with a sulfonic acid ester represented by (I 2,6-difluoro-4-substituted benzonitrile derivatives can be prepared. . Q represents an alkyl group having 7 or less carbon atoms, a perfluoroalkyl group or an aryl group, preferably a phenyl group, a 4-methylphenyl group, a methyl group or a trifluoromethyl group, and particularly preferably a trifluoromethyl group.
[0027]
As the reaction catalyst, it is preferable to use a transition metal salt and complex, more preferably a nickel (II) complex, a palladium (II) complex, a palladium (II) salt, a palladium (0) complex, tetrakis (triphenylphosphine). Palladium (0) complexes such as palladium (0) are particularly preferred.
[0028]
Here, the sulfonate ester of the general formula (VII) is represented by the general formula (VIII)
Embedded image
(Wherein R, M, N, A and n represent the same meaning as in general formula (I)), by reacting the corresponding sulfonic acid chloride or sulfonic acid anhydride with the corresponding phenol. Obtainable. As the sulfonic acid chloride, benzenesulfonyl chloride, p-toluenesulfonyl chloride, methanesulfonyl chloride, and trifluoromethanesulfonyl chloride are preferable. As the sulfonic acid anhydride, trifluoromethanesulfonic acid anhydride and methanesulfonic acid anhydride are preferable, and benzenesulfonyl chloride. , P-toluenesulfonyl chloride, trifluoromethanesulfonic anhydride, and methanesulfonic anhydride are more preferable, and trifluoromethanesulfonic anhydride is particularly preferable.
[0029]
Here, the compound of (VIII) can be easily produced using a diacetone monoacetal as a raw material. For example, in the general formula (I), when n = 0 and M represents a single bond, the general formula (IXa)
[0030]
Embedded image
(Wherein R represents the same meaning as in general formula (I)) and monoacetal of cyclohexane-1,4-dione represented by general formula (X)
[0031]
Embedded image
(Wherein, W represents a metal atom or a group containing a metal atom, and is not particularly limited as long as nucleophilic addition to a carbonyl group is performed, but MgBr, MgI, MgCl or Li is particularly preferable. Q represents a hydroxyl-protecting group. Is preferably a methyl group, a benzyl group, a tetrahydropyranyl group, a tetrahydrofuryl group, a methoxymethyl group or an ethoxymethyl group, and particularly preferably a methyl group or a benzyl group because they are stable under acidic or basic conditions. May be deprotected in each step of production, but in that case, it may be protected again if necessary), and after dehydration, reacetalization is performed as necessary, followed by hydrogenation. Can be obtained by deprotection. When n = 1 and M and N both represent a single bond, instead of (IXa), the general formula (IXb)
[0032]
Embedded image
(In the formula, R represents the same meaning as in general formula (I).) A monoacetal of bicyclohexane-4,4′-dione represented by the general formula (I) may be used. be able to.
[0033]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples.
[0034]
Example 1 Production of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal (I-1) (1)
1-a) 4- (3-Fluorophenyl) cyclohexanone ethylene acetal (This compound is prepared by reacting a Grignard reagent prepared from 3-fluoro-1-bromobenzene with cyclohexane-1,4-dione monoethylene acetal to produce an acid catalyst. After dehydration in the presence, the double bond was obtained by catalytic reduction.) 10.0 g of 40 mL tetrahydrofuran (THF) solution was cooled to −55 ° C. under nitrogen atmosphere. To this was added 2.9 g of t-butoxypotassium, and then 32 mL of n-butyllithium (1.57 M hexane solution) was added dropwise over 30 minutes to prepare a phenyllithium derivative. After stirring at the same temperature for 1 hour, 5 ml of N, N-dimethylformamide (DMF) was added dropwise at -55 ° C. After stirring at −55 ° C. for an hour, the temperature was raised to 0 ° C., a saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate. The extract was washed with saturated saline and then dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 10.1 g of 4- (3-fluoro-4-formylphenyl) cyclohexanone ethylene acetal.
1-b) The total amount of the obtained compound was dissolved in 40 mL of acetic acid, 3.8 g of hydroxylamine hydrochloride and 4.9 g of sodium acetate (anhydrous) were added, and the mixture was heated to reflux for 3 hours. To this, 10.0 g of acetic anhydride was added and further stirred for 3 hours. The reaction solution was added to ice water, and the precipitated crystals were collected by filtration, washed with water, and dissolved in 40 mL of toluene. After washing with saturated brine, 0.4 g of p-toluenesulfonic acid and 3.8 g of ethylene glycol were added, and the mixture was heated to reflux until no water was distilled out while removing azeotropic water. The mixture was allowed to cool to room temperature, washed with water, saturated aqueous sodium hydrogen carbonate, water and saturated brine in that order, and dried over anhydrous magnesium sulfate. The crude product obtained by distilling off the solvent was recrystallized from hexane to obtain 6.7 g of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal as white crystals.
[0035]
Example 2 Production of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal (I-1) (2)
2-a) 3.7 g of pulverized dry ice was slowly added to the phenyllithium derivative prepared in the same manner as in Example 1 instead of DMF, and the reaction was conducted in the same manner. In the same manner, 10.7 g of 2-fluoro-4- (4,4-ethylenedioxycyclohexyl) benzoic acid was obtained.
2-b) The total amount was dissolved in 40 mL of dichloromethane, 7.6 g of thionyl chloride and 0.1 mL of pyridine were added, and the mixture was heated to reflux for 6 hours. After distilling off the solvent and excess thionyl chloride, it was dissolved again in dichloromethane, and 30% aqueous ammonia was added and stirred well. After washing the organic layer with water, the solvent was distilled off and the crude crystals obtained were recrystallized from methanol to obtain 10.7 g of 2-fluoro-4- (4,4-ethylenedioxycyclohexyl) benzamide.
2-c) The total amount was dissolved in 40 mL of toluene, and 10.5 phosphorus oxychloride was added and heated to reflux for 3 hours. The mixture was allowed to cool to room temperature, poured into ice water, and the toluene layer was washed with water, saturated aqueous sodium hydrogen carbonate, water and saturated brine in that order, and dried over anhydrous sodium sulfate. The crude product obtained by distilling off the solvent was recrystallized from hexane to obtain 6.5 g of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal as white crystals.
[0036]
Example 3 Production of trans-4 ′-(3-fluoro-4-cyanophenyl) bicyclohexane-4-one ethylene acetal (I-3)
3-a) 10 g of trans-4 ′-(3-fluoro-4-hydroxyphenyl) bicyclohexane-4-one ethylene acetal (this compound is a Grignard reagent prepared from 2-fluoro-4-bromoanisole and It was obtained by reacting with -4,4'-dione monoethylene acetal, dehydration in the presence of an acid catalyst, catalytic reduction of the double bond, demethylation with hydrobromic acid in acetic acid, and acetalization again. ) 10.0 g and 7.5 g of trifluoromethanesulfonic anhydride were dissolved in 40 mL of dichloromethane, and 3.6 g of pyridine was added dropwise under water cooling. After stirring at room temperature for 3 hours, toluene was added, the organic layer was separated, and washed successively with 5% aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and water. After dehydration with anhydrous sodium sulfate, the solvent was distilled off and purified by flash column chromatography (toluene), trans-4 '-(3-fluoro-4-trifluoromethanesulfonyloxyphenyl) bicyclohexane-4-one ethylene acetal 12.2 g was obtained.
3-b) This whole amount was dissolved in 45 mL of THF, 1.3 g of sodium cyanide and 340 mg of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was heated to reflux for 8 hours. After cooling to room temperature, toluene was added, and the organic layer was washed with water and saturated brine. The crude product obtained by distilling off the solvent was recrystallized from hexane to obtain 7.8 g of trans-4 '-(3-fluoro-4-cyanophenyl) bicyclohexane-4-one ethylene acetal white crystals. .
[0037]
(Application Example) Synthesis of 4- (trans-4-vinylcyclohexyl) -2-fluorobenzonitrile (A-1) 4- (3-Fluoro-4-cyanophenyl) cyclohexanone ethylene acetal 6.7 obtained in Example 1 g was dissolved in 23 mL of toluene, 23 mL of formic acid was added, and the mixture was heated and stirred at 60 ° C. for 3 hours. After standing to cool, the toluene layer was separated, washed with water, saturated aqueous sodium hydrogen carbonate, water, saturated brine, dehydrated with anhydrous sodium sulfate, and the solvent was distilled off to remove 4- (3-fluoro-4-cyanophenyl) 5.3 g of cyclohexanone was obtained.
[0038]
In a Wittig reagent prepared from 11.7 g triphenylmethoxymethylphosphonium chloride and 3.9 g potassium t-butoxy in a mixed solvent of toluene and THF, the above 4- (3-fluoro-4-cyanophenyl) cyclohexanone 6.7 A THF solution of g was added dropwise under ice-cooling to react. Water and hexane were added, insolubles in the hexane layer were filtered off, and washed with a mixed solvent of methanol / water. After distilling off the solvent, it was dissolved again in THF, 10% hydrochloric acid was added, and the mixture was stirred at room temperature. After extraction with hexane, the mixture was washed with water, the solvent was distilled off, and the residue was dissolved in methanol. A 10% aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature. The precipitated crystals were collected and washed with water and cold methanol to obtain 5.1 g of trans-4- (3-fluoro-4-cyanophenyl) cyclohexanecarbaldehyde.
[0039]
In a Wittig reagent prepared from 9.5 g of methyltriphenylphosphonium bromide and 2.5 g of t-butoxy potassium in a mixed solvent of toluene and THF, the above trans-4- (3-fluoro-4-cyanophenyl) A THF solution of cyclohexanecarbaldehyde 5.1 g was added dropwise under ice cooling to cause a reaction. The mixture was neutralized by adding hydrochloric acid at room temperature, extracted with hexane, washed with water, and dried over anhydrous sodium sulfate. After removing the solvent, the residue was purified by silica gel column chromatography (hexane) and recrystallized from methanol to give 3.1 g of white crystals of 4- (trans-4-vinylcyclohexyl) -2-fluorobenzonitrile (total yield). Rate 52%). Melting point 49.9 ° C.
[0040]
Example 4 Production of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal (I-1) (3)
A 40 mL toluene solution of 10.0 g of 4- (3-fluoro-4-formylphenyl) cyclohexanone ethylene acetal obtained in Example 1 was ice-cooled in a nitrogen atmosphere. While introducing ammonia gas, 10 g of manganese dioxide was added little by little. The introduction of ammonia gas was stopped and the mixture was stirred at room temperature for 24 hours. Water and toluene were added, and unnecessary substances were filtered through Celite, followed by extraction with toluene. The organic layer was washed successively with 10% aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and water, and the aqueous layer was washed with toluene and added to the organic layer. The crude product obtained by distilling off the solvent was recrystallized from hexane to obtain 5.3 g of white crystals of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal.
[0041]
Example 4 Production of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal (I-1) (4)
To a solution of 10.0 g of 4- (3-fluoro-4-iodophenyl) cyclohexanone ethylene acetal in 40 mL of N-methyl-2-pyrrolidone was added 5 g of copper (I) cyanide, and the mixture was stirred at 80 ° C. for 5 hours under nitrogen atmosphere. After cooling the reaction system, toluene and water were added, and unnecessary substances were filtered through Celite, and then washed twice with 5% aqueous sodium hydroxide solution and three times with water. The crude product obtained after concentrating the organic layer was dissolved in toluene, added with ethylene glycol and p-toluenesulfonic acid, refluxed while removing toluene, and reacetalized. The reaction system was cooled, washed successively with saturated aqueous sodium hydrogencarbonate and water and concentrated. The resulting crude product was recrystallized from hexane to give 4.1 g of white crystals of 4- (3-fluoro-4-cyanophenyl) cyclohexanone ethylene acetal. Got.
[0042]
【The invention's effect】
The present invention provides important intermediates of 2-fluoro-4-substituted benzonitrile derivatives containing an alkenyl group useful as a liquid crystal material, and also provides a simple method for producing these intermediates, whereby the desired 2 A simple and inexpensive production of a liquid crystal compound which is a -fluoro-4-substituted benzonitrile derivative was made possible.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002159364A JP4329306B2 (en) | 2002-05-31 | 2002-05-31 | Benzonitrile derivative and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002159364A JP4329306B2 (en) | 2002-05-31 | 2002-05-31 | Benzonitrile derivative and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004002220A JP2004002220A (en) | 2004-01-08 |
JP4329306B2 true JP4329306B2 (en) | 2009-09-09 |
Family
ID=30429165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002159364A Expired - Fee Related JP4329306B2 (en) | 2002-05-31 | 2002-05-31 | Benzonitrile derivative and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4329306B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114394915B (en) * | 2022-03-24 | 2022-06-07 | 中孚药业股份有限公司 | Preparation method of 2-cyanobenzaldehyde and derivatives thereof |
-
2002
- 2002-05-31 JP JP2002159364A patent/JP4329306B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004002220A (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0144347B1 (en) | Trifluorobenzene derivative and liquid crystal composttion containing the same | |
JP4970340B2 (en) | Method for producing compound having CF2O bridge | |
CN1974550B (en) | Process for the preparation of compounds having CF2O bridge | |
JP4262477B2 (en) | Process for the synthesis of cyclic fluorinated carboxylic acid orthoesters and corresponding compounds | |
KR100644955B1 (en) | 1,7,8-trifluoronaphthalene-2-naphthol, and method for producing liquid crystal compound using same | |
JPH09296172A (en) | Liquid crystal display element | |
JP4329306B2 (en) | Benzonitrile derivative and method for producing the same | |
JP3632702B2 (en) | 1,7,8-trifluoro-2-naphthol and method for producing liquid crystal compound using the same | |
JP4300450B2 (en) | Benzonitrile derivative and method for producing the same | |
JP2927957B2 (en) | Phenylcyclohexanes and liquid crystal media | |
KR100281380B1 (en) | Chlorobenzene derivative and liquid crystal composition containing the same | |
JP4496770B2 (en) | 1-halogeno-2-alkoxynaphthalene derivative and method for producing the same | |
JP5458787B2 (en) | Method for producing phenol | |
TWI332494B (en) | Process for the preparation of naphthalene derivatives | |
JP5584444B2 (en) | Compound having 1,2-dicyclohexyltetrafluoroethylene skeleton and process for producing the same | |
JP2005170900A (en) | Method for manufacturing 1-fluoro-2-naphthol derivative | |
JP2000001463A (en) | Production of 4-cynobenzene derivative | |
JP2001294541A (en) | Method for producing tolane derivative | |
JP2003146932A (en) | Substituted fluoroaromatic compound, method for producing the same and use thereof | |
CN103183591B (en) | 4 '-dialkoxymethyl bis cyclohexane-4-base methyl alcohol and manufacture method thereof | |
JP4096395B2 (en) | Compound containing (trifluoromethoxy) alkyl group, liquid crystal composition containing the same, and method for producing the same | |
JP3579726B2 (en) | Conjugated eneyne derivative and liquid crystal composition | |
JP4501457B2 (en) | Process for producing 2-alkyl-substituted indane derivatives | |
JP2001002597A (en) | Phenyldecahydronaphthalene derivative | |
JPH07316082A (en) | Liquid crystal compound and liquid crystal composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050602 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4329306 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |