JP4328335B2 - Operation method of contact sulfuric acid factory - Google Patents

Operation method of contact sulfuric acid factory Download PDF

Info

Publication number
JP4328335B2
JP4328335B2 JP2006097352A JP2006097352A JP4328335B2 JP 4328335 B2 JP4328335 B2 JP 4328335B2 JP 2006097352 A JP2006097352 A JP 2006097352A JP 2006097352 A JP2006097352 A JP 2006097352A JP 4328335 B2 JP4328335 B2 JP 4328335B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
cooler
gas
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006097352A
Other languages
Japanese (ja)
Other versions
JP2007269550A (en
Inventor
裕史 千田
文章 佐藤
竜也 本村
尚之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006097352A priority Critical patent/JP4328335B2/en
Priority to CN2007100061556A priority patent/CN101045531B/en
Priority to CL200700751A priority patent/CL2007000751A1/en
Publication of JP2007269550A publication Critical patent/JP2007269550A/en
Application granted granted Critical
Publication of JP4328335B2 publication Critical patent/JP4328335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treating Waste Gases (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は接触式硫酸工場の操業方法に関するものである。     The present invention relates to a method for operating a contact sulfuric acid factory.

非特許文献1:資源と素材、2002年5,6月号、第318〜321頁において「最近の佐賀関製錬所硫酸工場の諸改善について」との標題で出願人の転化式硫酸製造設備の概況を発表し、銅生産量増大に伴い転化器入口でのSO2濃度増加が起こっていると述べたが、4年後の現在ではこの傾向はさらに顕著になっている。 Non-Patent Document 1: Resources and Materials, May / June 2002, pp. 318-321 “Appropriate Convertible Sulfuric Acid Production Facility” Announced that the increase in copper production caused an increase in SO 2 concentration at the converter inlet, but this trend is even more pronounced four years later.

また、SO2濃度が高濃度となると、転化率が低くなる問題に対処するためにはボイラー又はSO3クーラーを併設して余剰熱を回収することが望ましいと述べられている。 Further, it is stated that it is desirable to recover a surplus heat with a boiler or an SO 3 cooler in order to cope with the problem that the conversion rate decreases when the SO 2 concentration becomes high.

本出願人の製錬所における従来の転化器群フローシートを図1に示す。
硫酸転化器群の設備は、SO2ガス乾燥塔(DT)、亜硫酸(SO2)ガスを硫酸(SO3)ガスに酸化する転化器(Cv)及び原料ガスと熱交換し所定の反応温度とするための熱交換器(1HE)、SO3ガスを吸収するための吸収塔(AbT) 及び転化器各層からのガスの温度調整を行うための熱交換器(2HE,3HE, 4HE)で構成されるのが一般的である。ダブルコンタクト方式の転化器第2層出口SO3ガスは高温熱交換器4HE(a)と低温熱交器4HE(b)を通って、中間吸収塔(IAbT)においてSO3を硫酸中に吸収させる。
さらに、吸収塔における酸化熱や希釈熱など定常状態で発生する熱を連続的に除去するための酸クーラー(図示せず)も常設されている。
A conventional converter group flow sheet in the applicant's smelter is shown in FIG.
The equipment of the sulfuric acid converter group consists of a SO 2 gas drying tower (DT), a converter (Cv) that oxidizes sulfurous acid (SO 2 ) gas to sulfuric acid (SO 3 ) gas, and heat exchange with the raw material gas and a predetermined reaction temperature. Heat exchanger (1HE) to absorb, SO 3 gas absorption tower (AbT), and heat exchanger (2HE, 3HE, 4HE) to adjust the temperature of the gas from each converter layer It is common. Double contact converter second layer outlet SO 3 gas passes through high-temperature heat exchanger 4HE (a) and low-temperature heat exchanger 4HE (b) to absorb SO 3 in sulfuric acid in the intermediate absorption tower (IAbT) .
Furthermore, an acid cooler (not shown) for continuously removing heat generated in a steady state such as oxidation heat and dilution heat in the absorption tower is also installed.

製錬所によっては、一般的な熱交換器や酸クーラーの代わりにSO 2 クーラーやSO 3 クーラー、廃熱ボイラ、エコノマイザをフローに組み入れて、熱回収を行ったり、増産による熱過剰の解消を図ったりしている。 Some smelters incorporate SO 2 coolers, SO 3 coolers, waste heat boilers, and economizers in the flow instead of general heat exchangers and acid coolers to recover heat and eliminate excess heat due to increased production. I am planning.

非特許文献2:「硫酸工場における省エネルギーについて」住友金属鉱山株式会社、東予工場発表(インターネット検索文献)によると、2基併設転化器→直列3段熱交換器→SO3クーラー(付設ファン定格290kW.160kW)→吸収塔の処理フローが示されている。
特許第32772379号 「資源と素材」2002年5,6月号、第318〜321頁「最近の佐賀関製錬所の硫酸工場の改善について」 「硫酸工場における省エネルギーについて」住友金属鉱山株式会社、東予工場発表(インターネット検索文献)
Non-Patent Document 2: “Energy Saving in Sulfuric Acid Factory” According to Sumitomo Metal Mining Co., Ltd. and Toyo Factory announcement (Internet search literature), two converters in series → three-stage heat exchanger in series → SO 3 cooler (attached fan rating 290 kW) .160kW) → The processing flow of the absorption tower is shown.
Japanese Patent No. 3272379 “Resources and Materials”, May / June 2002, pp. 318-321 “Recent improvement of sulfuric acid factory at Sagaseki Smelter” “Energy Saving in Sulfuric Acid Factory” Sumitomo Metal Mining Co., Ltd. and Toyo Factory announced

上述のようにSO2濃度が高濃度となると熱過剰となって転化器温度が適切温度以上に上昇し、転化率が低下する問題が起こるので、これに対処するためにはSO3クーラーが有効であることは分かっていた。
SO3クーラーについては、温度の低い状態で使用するとSO3が凝縮して管内が閉塞したり、ガス中に水分が混在する場合は硫酸となって管壁の腐食を招いたりするため、一般的には160℃以上で運転することが多い。
このため、省エネルギー等を目的に、図1に示される転化器群内にSO3クーラー等を設置する場合は、この温度の制約により、既存の熱交換器(図1のHE)を廃止して新たに新設備を組み込む必要があり一般的ではない。
If the SO 2 concentration becomes high as described above, heat will be excessive, the converter temperature will rise above the appropriate temperature, and the conversion rate will decrease, so an SO 3 cooler is effective to deal with this. I knew it was.
For SO 3 coolers, when used in a low temperature state, SO 3 condenses and the inside of the pipe is blocked, or if moisture is mixed in the gas, it becomes sulfuric acid and causes corrosion of the pipe wall. In many cases, it is operated at 160 ° C or higher.
For this reason, when installing SO 3 coolers etc. in the converter group shown in Fig. 1 for the purpose of energy saving, the existing heat exchanger (HE in Fig. 1) is abolished due to this temperature restriction. It is not common because new equipment must be installed.

本発明は、転化ガスの温度を監視しながら適切なガスの振り分けを行うことにより、既存
の転化器システムを大幅に変更することなく、SO3クーラーを併設して効率的な熱回収や硫酸生産能力増強を図ることを骨子としている。
即ち、本発明は、
(1)接触式硫酸製造工場の転化器によりSO2からSO3へ転化したSO3を、熱交換器を経由
し吸収塔で濃硫酸中に吸収させる接触式硫酸工場の操業方法において、前記転化器から前
記吸収塔へのガス流路から、バイパスするガス流路に流量制御弁及びSO3クーラーを並列配置するとともに、該並列配置したSO3クーラー中のガス温度が160℃以上となるようにガス流量を調節することを特徴とする接触式硫酸工場の操業方法。
(2)上記(1)の回収した余剰熱を高温空気として銅精鉱の乾燥用に使用する接触式硫
酸工場の操業方法。
(3)上記(1)の回収した余剰熱を高温空気として珪酸鉱の粉砕乾燥用に使用する接触
式硫酸工場の操業方法。
(4)上記(1)のSO3クーラーの冷却用空気を循環使用する接触式硫酸製造工場の操業方法。を提供する。
The present invention performs efficient heat recovery and sulfuric acid production by installing an SO 3 cooler without significantly changing the existing converter system by appropriately allocating gas while monitoring the temperature of the converted gas. The essence is to increase capacity.
That is, the present invention
(1) In the operation method of a contact-type sulfuric acid factory in which SO 3 converted from SO 2 to SO 3 by a converter in a contact-type sulfuric acid production factory is absorbed in concentrated sulfuric acid by an absorption tower via a heat exchanger, the conversion The flow rate control valve and the SO 3 cooler are arranged in parallel from the gas flow path from the vessel to the absorption tower to the bypass gas flow path, and the gas temperature in the parallel disposed SO 3 cooler is 160 ° C. or higher. A method of operating a contact sulfuric acid factory characterized by adjusting the gas flow rate.
(2) A method for operating a contact sulfuric acid factory in which the excess heat recovered in (1) above is used as high-temperature air for drying copper concentrate.
(3) A method for operating a contact-type sulfuric acid factory in which the surplus heat recovered in (1) is used as high-temperature air for grinding and drying silicate ore.
(4) A method of operating a contact-type sulfuric acid manufacturing plant in which the cooling air of the SO 3 cooler of (1) is circulated and used. I will provide a.

本発明において、以下の効果を有する。
(1)回収する340から370℃の高温空気は、銅製錬炉の鉱石乾燥用や溶剤粉砕ミルへの高
温空気として有効利用することができる。
(2)吸収塔の後の酸クーラーは除熱を行なうものであるが、高SO 2 負荷操業では、酸クーラーにより除熱される熱量は反応熱の一部である。SO 3 クーラーを設置すると、酸クーラーで除去できない反応熱を吸収し、これにより転化器温度を適正に保つことで高転化率の操業を行うことができる。
(3)また負荷変動に対しては、ファンの運転を制御することにより、SO3排出側の様々な運転状況(自溶炉運転状況、PS転炉の操業状況)に応じて操業をすることが出来る。
(4)上記により、設備保護及び省エネルギーの観点からも極めて有効である。
(5)また、並列にSO3 クーラーを配置するため、既存の熱交換器を通るガス量を削減することにより圧損の低減ができ、メインブロワの省エネルギー効果も得られた。
The present invention has the following effects.
(1) The recovered high-temperature air from 340 to 370 ° C. can be effectively used as high-temperature air for ore drying in a copper smelting furnace or for a solvent grinding mill.
(2) Although the acid cooler after the absorption tower performs heat removal, in a high SO 2 load operation, the amount of heat removed by the acid cooler is part of the reaction heat. When the SO 3 cooler is installed, the heat of reaction that cannot be removed by the acid cooler is absorbed, so that the converter temperature can be kept at an appropriate level, so that a high conversion operation can be performed.
(3) For load fluctuations, control the operation of the fan to operate according to various operating conditions on the SO 3 discharge side (flux operating conditions, PS converter operating conditions). I can do it.
(4) By the above, it is very effective also from a viewpoint of equipment protection and energy saving.
(5) Since the SO 3 cooler is arranged in parallel, the pressure loss can be reduced by reducing the amount of gas passing through the existing heat exchanger, and the energy saving effect of the main blower was also obtained.

続いて、本発明の実施態様に関して、図2を基にして説明する。図2は、図1のフロー
シートに示したもののうち転化器以降に関するフローを示した図面である。
このフローが最も特徴とするところは、高温熱交4HE(a)と低温熱交4HE(b)をバイパスす
るようSO3クーラー(SC)を設置する。SO3クーラー(SC)の入口又は出口側にガス流量調節弁
(VG)を配し、SO3 クーラーを通過させるガス量を任意に変更できるようにしたところである。
Fは外気をクーラー(SC)内に圧送するファンである。このような設備構成により、転化ガスの温度が高くなった場合には、ガス流量調整弁(VG)を開放して、SO3ガスをバイパスさせることにより、高い転化率を維持するものである。
Next, an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing a flow relating to the converter and subsequent ones among those shown in the flow sheet of FIG.
The feature of this flow is that the SO 3 cooler (SC) is installed so as to bypass the high temperature heat exchange 4HE (a) and the low temperature heat exchange 4HE (b). Gas flow control valve on the inlet or outlet side of the SO 3 cooler (SC)
(VG) is arranged so that the amount of gas passing through the SO 3 cooler can be changed arbitrarily.
F is a fan that pumps outside air into the cooler (SC). With such an equipment configuration, when the temperature of the converted gas becomes high, a high conversion rate is maintained by opening the gas flow rate adjusting valve (VG) and bypassing the SO 3 gas.

さらに、SO3クーラー冷却用空気は、常に外気を取り入れかつ冷却後放出する方式とすると、過冷却が起こり易くなり、また取りいれるSO3量の変動に追随できず効率が悪くなることがある。よって、好ましい実施態様においては、SO3クーラー冷却用空気は循環型として、必要量のみ放出しかつ循環後回収するとともに、循環空気温度を常温以上に任意に設定すると、負荷変動に対して効率よく熱回収したり、過冷却を防止することができる。 Furthermore, if the air for cooling the SO 3 cooler is always a system in which outside air is taken in and released after cooling, overcooling is likely to occur, and fluctuations in the amount of SO 3 taken in cannot be followed, resulting in poor efficiency. Therefore, in a preferred embodiment, the SO 3 cooler cooling air is a circulation type, and only a necessary amount is discharged and recovered after circulation, and when the circulating air temperature is arbitrarily set to room temperature or higher, it is efficient against load fluctuations. Heat recovery and overcooling can be prevented.

非特許文献1に説明されている改善前転化器No.8に次の定格のSO3クーラーを併設した。
全ガス量:2800Nm3/min
SO2濃度:11%
転化率:99.7%
必要除熱量:48.22Mcal/min
必要除熱面積:615m2
The pre-improvement converter No. 8 described in Non-Patent Document 1 was provided with an SO 3 cooler with the following rating.
Total gas volume: 2800Nm 3 / min
SO 2 concentration: 11%
Conversion rate: 99.7%
Necessary heat removal: 48.22Mcal / min
Necessary heat removal area: 615m 2

比較例
銅製錬における自溶炉あるいは、PS転炉から排出したSO2ガスを転化されSO3ガスを冷却
するSO3クーラーを並設しない転化器群の第2層出口SO3ガス温度は550℃、低温熱交換器
(4HE(b))出口SO3ガス温度は215℃で、これが中間吸収塔へ入り酸側で除熱された後、熱
交換器(4HE(b))へ約70℃で戻る。この際、当然のことながら熱回収は行われず、酸クーラ
ーの除熱能力に相当する分だけ冷却水へ熱が逃がされる。
Comparative example In the smelting furnace in copper smelting or the SO 2 gas discharged from the PS converter, the SO 3 gas temperature in the converter group without the SO 3 cooler that converts the SO 3 gas and cools the SO 3 gas is 550 ° C The temperature of the SO 3 gas at the outlet of the low-temperature heat exchanger (4HE (b)) is 215 ° C. After entering the intermediate absorption tower and removing the heat on the acid side, the heat exchanger (4HE (b)) is heated to about 70 ° C. Return. At this time, as a matter of course, heat recovery is not performed, and heat is released to the cooling water by an amount corresponding to the heat removal capability of the acid cooler.

実施例
これに対し、SO3クーラー(SC)を設置し使用し、第2層出口温度を比較例と同じ条件で
操業した場合は、低温熱交器(4HE(b))出口SO3ガス温度が180℃、SO3クーラー(SC)出口SO3
ガス温度が190℃、SO3クーラー循環空気温度110℃で操業できた。これによって、およそ
370℃の高温空気が所定量得られた。
各部におけるガス流量、温度などは次のとおりであった。
低温熱交換器(4HE(B))出口ガス:207℃、2320Nm3/分
吸収塔入口ガス:207℃、2660Nm3/分
SO3クーラーへのバイパスガス:540℃、340Nm3/分
SO3クーラーへの供給空気:17℃、410Nm3/分
SO3クーラーからの放出ガス:370℃、570Nm3/分
In contrast Example, using established the SO 3 cooler (SC), if it operating in the same conditions as in Comparative Example A second layer outlet temperature, low-temperature heat交器(4HE (b)) the outlet SO 3 gas temperature 180 ° C, SO 3 cooler (SC) outlet SO 3
Operation was possible at a gas temperature of 190 ° C and a SO 3 cooler circulating air temperature of 110 ° C. As a result,
A predetermined amount of hot air at 370 ° C. was obtained.
The gas flow rate and temperature in each part were as follows.
Low temperature heat exchanger (4HE (B)) outlet gas: 207 ° C, 2320 Nm 3 / min Absorption tower inlet gas: 207 ° C, 2660 Nm 3 / min
Bypass gas to SO 3 cooler: 540 ° C, 340Nm 3 / min
Supply air to SO 3 cooler: 17 ° C, 410Nm 3 / min
Emission gas from SO 3 cooler: 370 ° C, 570 Nm 3 / min

370℃の高温空気は、銅製錬炉の鉱石乾燥用や溶剤粉砕ミルへの高温空気として有効利用することができる。SO3クーラーで回収された分は、吸収塔の後で酸クーラーにより除熱される熱量以上に発生する余剰反応熱に相当するため、より高負荷のSO2量に対しても転化率を低下させることなく対応可能となった。
また負荷変動に対しては、ファンの運転を制御することにより、様々な運転が可能であ
り、設備保護及び省エネルギーの観点から極めて有効である。
また、並列にSO3 クーラーを配置することにより
圧損の低減ができ、メインブロワの省エネルギー効果も得られた。
The high temperature air of 370 ° C. can be effectively used as high temperature air for ore drying in a copper smelting furnace or for a solvent grinding mill. The amount recovered by the SO 3 cooler corresponds to the excess reaction heat generated beyond the amount of heat removed by the acid cooler after the absorption tower, thus reducing the conversion rate even for higher load SO 2 amounts. It became possible to cope without.
Moreover, various operations are possible for load fluctuations by controlling the operation of the fan, which is extremely effective from the viewpoint of equipment protection and energy saving.
Moreover, pressure loss can be reduced by arranging SO 3 cooler in parallel, and the energy saving effect of the main blower was also obtained.

以上説明したように、本発明によって既存設備の大幅変更なしに容易に廃熱回収と増産が可能となる。
さらに、本発明を採用することにより、転化器群の除熱量を容易に高めることができることから、所定量の触媒を増加すれば、増産効果も得られるなど利点が大きい。
以上の効果から年間約1億円のコストダウンが可能となった。
As described above, according to the present invention, it is possible to easily recover waste heat and increase production without drastically changing existing facilities.
Furthermore, by adopting the present invention, it is possible to easily increase the heat removal amount of the converter group. Therefore, if a predetermined amount of catalyst is increased, there is a great advantage that a production increase effect can be obtained.
As a result, the annual cost can be reduced by about 100 million yen.

従来の触媒式転化装置のフローシートである。It is a flow sheet of a conventional catalytic converter. 本発明の実施例に係る転化器群のフローシートである。It is a flow sheet of a converter group concerning an example of the present invention.

Claims (4)

接触式硫酸製造工場の転化器によりSO2からSO3へ転化したSO3を、熱交換器を経由し吸収
塔で濃硫酸中に吸収させる接触式硫酸工場の操業方法において、前記転化器から前記吸収
塔へのガス流路から、バイパスするガス流路に流量制御弁及びSO3クーラーを並列配置するとともに、該並列配置したSO3クーラー中のガス温度が160℃以上となるようにガス流量を調節することを特徴とする接触式硫酸工場の操業方法。
The SO 3 was converted from SO 2 to SO 3 by the converter of contact sulfuric acid production plant, in operation the method of contact sulfuric acid plant is absorbed into the concentrated sulfuric acid through absorbing tower heat exchanger, said from the converter A flow control valve and SO 3 cooler are arranged in parallel from the gas flow path to the absorption tower to the bypass gas flow path, and the gas flow rate is adjusted so that the gas temperature in the parallel arranged SO 3 cooler is 160 ° C. or higher. A method of operating a contact sulfuric acid factory characterized by adjusting.
請求項1の回収した余剰熱を高温空気として銅精鉱の乾燥用に使用することを特徴とする接触式硫酸工場の操業方法。 A method for operating a contact sulfuric acid factory, wherein the recovered surplus heat of claim 1 is used as high-temperature air for drying copper concentrate. 請求項1の回収した余剰熱を高温空気として珪酸鉱の粉砕乾燥用に使用することを特徴とする接触式硫酸工場の操業方法。 A method for operating a contact sulfuric acid factory, wherein the recovered surplus heat of claim 1 is used as high-temperature air for grinding and drying silicate ore. SO3クーラーの冷却用空気を循環使用することを特徴とする請求項1から3までの何れか1項記載の接触式硫酸製造工場の操業方法。 The method for operating a contact-type sulfuric acid production plant according to any one of claims 1 to 3, wherein the cooling air of the SO 3 cooler is circulated and used.
JP2006097352A 2006-03-31 2006-03-31 Operation method of contact sulfuric acid factory Active JP4328335B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006097352A JP4328335B2 (en) 2006-03-31 2006-03-31 Operation method of contact sulfuric acid factory
CN2007100061556A CN101045531B (en) 2006-03-31 2007-01-31 Operation method for contact type sulphuric acid device
CL200700751A CL2007000751A1 (en) 2006-03-31 2007-03-22 METHOD OF OPERATION OF A SULFURIC ACID PLANT, IN WHICH SO2 IS CONVERTED IN SO3 BY A CONVERTER THAT INCLUDES INSTALLING A FLOW CONTROL VALVE AND A SO3 COOLER IN A GAS LINE DERIVED FROM A GAS DISTRIBUTION NETWORK, D

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097352A JP4328335B2 (en) 2006-03-31 2006-03-31 Operation method of contact sulfuric acid factory

Publications (2)

Publication Number Publication Date
JP2007269550A JP2007269550A (en) 2007-10-18
JP4328335B2 true JP4328335B2 (en) 2009-09-09

Family

ID=38672728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097352A Active JP4328335B2 (en) 2006-03-31 2006-03-31 Operation method of contact sulfuric acid factory

Country Status (3)

Country Link
JP (1) JP4328335B2 (en)
CN (1) CN101045531B (en)
CL (1) CL2007000751A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070850B2 (en) * 2008-01-11 2011-12-06 E H P Technology, LLC Process for liberating metals using direct production of leach grade acid solutions
CN102095312B (en) * 2010-11-07 2012-05-02 湖南新恒光科技有限公司 Process for recycling sulfuric acid from iron pyrite by low-temperature afterheat
CN104229756A (en) * 2013-06-18 2014-12-24 天津渤大硫酸工业有限公司 High-yield system for 105 acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009737B (en) * 1983-12-23 1990-09-26 金属股份有限公司 Process of drying sulfide ore by direct contact with hot drying gases
CN2280213Y (en) * 1996-12-20 1998-04-29 南京化工大学 Heat pipe steam generator with heat recovery from slag

Also Published As

Publication number Publication date
JP2007269550A (en) 2007-10-18
CN101045531A (en) 2007-10-03
CN101045531B (en) 2011-06-08
CL2007000751A1 (en) 2008-03-07

Similar Documents

Publication Publication Date Title
JP4839273B2 (en) Steam power plant
US8038129B2 (en) Method and device for cooling circulating air
JP5913369B2 (en) Non-contact exhaust residual heat sludge drying system
EP3233723B1 (en) Process and plant for improved energy-efficient production of sulfuric acid
CN108479332A (en) A kind of low-temperature flue gas desulphurization denitration disappears white system
EP2944369B1 (en) Dehydration device, gas compression system, and dehydration method
EP2942494B1 (en) Coal fired oxy plant with heat integration
JP2010101184A (en) Air compression device
CN201361530Y (en) Flue gas recirculation loop of high-concentration sulfur dioxide reforming device
JP2014009877A (en) Flue gas treatment equipment and method
JP4328335B2 (en) Operation method of contact sulfuric acid factory
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
KR20130126508A (en) Integrated gas cooling system for electric arc furnace
JP5984506B2 (en) Utilization method and system of waste heat in sulfuric acid production facility
CN208406572U (en) A kind of low-temperature flue gas desulphurization denitration disappears white system
CN102705810A (en) Device for boiler flue gas waste heat utilization in thermal power unit
CN202630026U (en) Device recycling flue gas waste-heat of boiler of thermal power generating unit
CN210786812U (en) Air preheating flue gas mixed air white eliminating system
JP7178335B2 (en) Gas processing system
JP2007046113A (en) Facility for cleaning blast furnace gas and method for cleaning blast furnace gas
JP5425844B2 (en) Waste heat recovery method for contact sulfuric acid plant
CN208155096U (en) A kind of air cooling device convenient for Steam Recovery
CN111068453A (en) Flue gas whitening system and flue gas whitening method
CN113432143B (en) Low-temperature flue gas waste heat recovery system
CN215909079U (en) Wet flue gas cooling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250