JP4326651B2 - Method for producing cement dispersant - Google Patents

Method for producing cement dispersant Download PDF

Info

Publication number
JP4326651B2
JP4326651B2 JP2000004488A JP2000004488A JP4326651B2 JP 4326651 B2 JP4326651 B2 JP 4326651B2 JP 2000004488 A JP2000004488 A JP 2000004488A JP 2000004488 A JP2000004488 A JP 2000004488A JP 4326651 B2 JP4326651 B2 JP 4326651B2
Authority
JP
Japan
Prior art keywords
monomer
group
general formula
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000004488A
Other languages
Japanese (ja)
Other versions
JP2001199751A (en
Inventor
治之 佐藤
幸司 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000004488A priority Critical patent/JP4326651B2/en
Publication of JP2001199751A publication Critical patent/JP2001199751A/en
Application granted granted Critical
Publication of JP4326651B2 publication Critical patent/JP4326651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Description

【0001】
【発明の属する技術分野】
本発明は、セメント分散剤の製造方法に関する。
【0002】
【従来の技術】
セメント分散剤として、ナフタレンスルホン酸ホルムアルデヒド縮合物塩、メラミンスルホン酸ホルムアルデヒド縮合物塩、ポリカルボン酸塩等が知られている。これらは優れた減水効果を示す反面、空気量やスランプ値の保持性が不十分で、それを改善したものとして、特開昭63-285140号、特開平2-163108号、特開平9-286647号には、ポリオキシアルキレン構造を有するビニル重合性単量体とマレイン酸系単量体から得られた特定の共重合体を有効成分とするセメント用分散剤が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報に記載されたセメント用添加剤は、空気量の保持性を改良するものの、スランプ値の保持性については未だ十分ではない。
【0004】
本発明の課題は、空気量及びスランプ値の保持性に優れたセメント分散剤を得る方法を提供することである。
【0005】
【課題を解決するための手段】
本発明は、下記一般式(B-1)で表される化合物と炭素数2〜5のアルケニルエーテル化剤との反応又は下記一般式(B-2)で表される化合物と炭素数1〜5のアルキルエーテル化剤との反応により、下記一般式(A)で表される単量体(A)を得、次いで該単量体(A)をマレイン酸系単量体(C)と共重合させるセメント分散剤の製造方法であって、
一般式(B-1)で表される化合物又は一般式(B-2)で表される化合物の水酸基価(OHVb)と単量体(A)の水酸基価(OHVa)が、〔(OHVa)/(OHVb)〕×100=1〜40の範囲にあり、且つ単量体(A)とマレイン酸系単量体(C)のモル比が(A)/(C)=10/90〜80/20の範囲にあるセメント分散剤の製造方法に関する。
一般式(A); R1O[(EO)n(AO)m]R2
一般式(B-1); R2O[(EO)n(AO)m]H
一般式(B-2); R1O[(EO)n(AO)m]H
〔式中、
R1:炭素数2〜5のアルケニル基
R2:炭素数1〜5のアルキル基
EO:オキシエチレン基
AO:炭素数3もしくは4のオキシアルキレン基又はオキシスチレン基
n、m:n+mが2〜150、m/(n+m)が0〜0.3となる数
を表し、EOとAOの配列はランダムでもブロックでもよく、且つどちらがR1、R2側でもよい。〕
【0006】
【発明の実施の形態】
本発明の製造方法は、一般式(B-1)で表される化合物〔以下単量体(B-1)という〕又は下記一般式(B-2)で表される化合物〔以下単量体(B-2)という〕から一般式(A)で表される単量体(A)を得る工程と、該単量体(A)とマレイン酸系単量体(C)とを共重合させる工程とを有する。
【0007】
単量体(B-1)は、メタノール等のR2に相当するアルキル基を有するアルコールに、エチレンオキサイドを必須とするアルキレンオキサイドを付加させることにより得られる。エチレンオキサイド以外のアルキレンオキサイドとしては、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイドが挙げられる。一般式(B-1)中のR2はメチル基、エチル基、特にメチル基が好ましい。また、一般式(B-1)中のn、mは、n+mが2〜150、好ましくは3〜125、特に好ましくは5〜70、m/(n+m)が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1、特に好ましくは0となる数である。この単量体(B-1)と炭素数2〜5のアルケニルエーテル化剤、好ましくはアリルクロライド、メタリルクロライドとを反応させることにより、単量体(A-1)が得られる。両者の反応モル比は、好ましくは単量体(B-1)/アルケニルエーテル化剤=1/0.6〜1/10、より好ましくは1/0.8〜1/5であり、反応時間や反応温度は適宜設定すればよい。
【0008】
単量体(B-2)は、アリルアルコール等のR1に相当するアルケニル基を有するアルコールに、単量体(B-1)と同様のアルキレンオキサイドを付加させることにより得られる。一般式(B-2)中のR1はアリル基、メタリル基が好ましい。また、一般式(B-2)中のn、mは一般式(B-1)と同様の範囲が好ましい。この単量体(B-2)と炭素数1〜5のアルキルエーテル化剤、好ましくはジメチル硫酸、ジメチル炭酸、メチルクロライド、エチルクロライド、特に好ましくはメチルクロライドとを反応させることにより、単量体(A-1)が得られる。両者の反応モル比は、好ましくは単量体(B-2)/アルキルエーテル化剤=1/0.6〜1/10、より好ましくは1/0.8〜1/5であり、反応時間や反応温度等は適宜設定すればよい。
【0009】
本発明では、このようにして得られた単量体(A)をマレイン酸系単量体(C)と共重合させるが、単量体(B-1)又は単量体(B-2)の水酸基価(OHVb)と単量体(A)の水酸基価(OHVa)は、〔(OHVa)/(OHVb)〕×100=1〜40、好ましくは1.5〜30、より好ましくは2〜25の範囲にある。
【0010】
一般式(A)中のR1炭素数2〜5のアルケニル基としては、例えば、ビニル基、イソプロペニル基、アリル基、メタリル基、3−ブテニル基、2−メチル−1−ブテニル基、3−メチル−1−ブテニル基、2−メチル−3−ブテニル基、3−メチル−3−ブテニル基等を挙げることができる。これらの中で、アリル基及びメタリル基が特に好適である。また、一般式(A)中のR2炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等を挙げることができる。これらの中で、メチル基、エチル基が、特にメチル基が好適である。また、一般式(A)中のn、mは一般式(B-1)と同様の範囲が好ましい。
【0011】
また、マレイン酸系単量体(C)としては、無水マレイン酸、マレイン酸、マレイン酸塩が挙げられ、好ましくは無水マレイン酸である。マレイン酸系単量体は1種類のみでも異なる多種類でも使用できる。マレイン酸塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩等のモノ又はジアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩、ジアンモニウム塩等のアンモニウム塩等を挙げることができる。
【0012】
また、本発明の効果に影響を与えない程度で、他の共重合可能な単量体を使用してもよい。このような単量体としては、例えば、スチレン、酢酸ビニル、アクリル酸、メタクリル酸、アルケニル(炭素数2〜5)スルホン酸、マレイン酸エステル等を挙げることができ、これらは塩であってもよい。これら他の共重合可能な単量体の割合は単量体(A)と(C)の合計に対して30重量%以下であることが好ましい。
【0013】
本発明において、単量体(A)とマレイン酸系単量体(C)のモル比は、(A)/(C)=10/90〜80/20、好ましくは30/70〜70/30、特に好ましくは40/60〜60/40の範囲にある。単量体(A)と(C)のモル比が上記の範囲内にあれば、良好な減水効果等、その性能を十分に発揮することができる。
【0014】
単量体(A)と(C)の共重合反応は、これら単量体を、水中、有機溶剤中、又は水と親水性有機溶剤との混合溶媒中で溶液重合することにより、あるいは、溶剤を全く用いない系で塊状重合することにより行うことができる。反応時間や反応温度等は適宜設定すればよい。
【0015】
有機溶剤中又は溶剤を用いない場合の重合開始剤としては、過酸化ベンゾイル等の有機過酸化物系、あるいは2,2'−アゾビスイソブチロニトリル等のアゾ系重合開始剤等を用いることができる。水系で重合を行う際は、過酸化水素、tert−ブチルヒドロペルオキシド等のヒドロペルオキシド類、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩類等の水溶性の重合開始剤を用いることができる。また、得られた共重合体は、必要に応じて、無水マレイン酸単位の一部又は全部を加水分解により開環してマレイン酸単位とし、更にマレイン酸単位の一部又は全部をアルカリで中和することができる。中和に用いるアルカリとしては、リチウム、ナトリウム、カリウム等アルカリ金属の水酸化物、炭酸塩又は炭酸水素塩、マグネシウム、カルシウム等アルカリ土類金属の水酸化物、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン等やアンモニアを挙げることができ、これらは1種類のみ又は2種類以上を混合して用いることができる。
【0016】
本発明により得られたセメント分散剤の添加量は、通常、セメントに対して固形分として0.01〜3重量%、0.04〜1重量%であることが、減水性、スランプロス防止性、凝結時間、作業性の点で好ましい。
【0017】
本発明により得られたセメント分散剤を適用することができるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント等のポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント等の混合セメント、又はこれらのセメントと、高炉スラグ、フライアッシュ、シリカフューム、石灰石等の混和材を組み合わせたセメント、更にはビーライト系セメント、油井セメント、高硫酸塩スラグセメント、アルミナセメント、マグネシヤセメント、耐酸セメント等の特殊セメントを挙げることができる。これらのセメントは必要に応じて1種又は2種以上組み合わせて用いることができる。本発明により得られたセメント分散剤の使用方法は、モルタルやコンクリートに使用する水にあらかじめ溶解して使用したり、注水と同時に添加して使用したり、注水から練り上がりまでの間に添加して使用したり、一旦練り上がったセメント組成物に後から添加して使用することもできる。また、担体に担持させる等により粉末化したものをセメントとプレミックスしてもよい。本発明により得られたセメント分散剤は、その効果を損なわない程度で、必要に応じて他のセメント用添加剤と併用することが可能である。他のセメント用添加剤としては、ナフタレンスルホン酸ホルムアルデヒド縮合物塩、メラミンスルホン酸ホルムアルデヒド縮合物塩、リグニンスルホン酸塩、ポリカルボン酸塩、オキシカルボン酸塩、側鎖にポリアルキレングリコール鎖を有するポリカルボン酸及びその塩の中から選ばれる1種以上のセメント分散剤が挙げられる。また、その他にも空気連行剤、消泡剤、分離低減剤、凝結遅延剤、凝結促進剤、膨張材、乾燥収縮低減剤、防錆剤等を挙げることができる。
【0018】
【実施例】
合成例1
▲1▼単量体B−1の合成
攪拌器付き高圧型反応容器にアリルアルコール61.7重量部、水酸化カリウム1.2重量部を仕込み、窒素置換後昇温し100〜125℃、ゲージ圧49〜441kPaでエチレンオキサイド937.1重量部を3時間で圧入し反応させ、更に125℃にて1時間熟成後、減圧下で残存するエチレンオキサイドを除去し、単量体B−1を得た。単量体B−1の構造及び水酸基価を表1に示す。
▲2▼単量体A−1の合成
攪拌器付き高圧型反応容器に単量体B−1を985重量部、水酸化ナトリウムを62.9重量部仕込み、窒素置換後昇温し減圧下115℃で3時間脱水処理したのち、メチルクロライド52.3重量部を115℃、ゲージ圧29.4〜245kPaで3時間かけ圧入し、更に115℃で3時間熟成し、6N塩酸で中和後、減圧下で脱水し、析出した塩をろ別し表1に示す単量体A−1を得た。単量体A−1の構造及び水酸基価を表1に示す。
【0019】
合成例2
▲1▼単量体B−2の合成
合成例1の容器にメタノール16.1重量部、ソジウムメチラート0.8重量部を仕込み、窒素置換後昇温し100℃〜125℃、ゲージ圧49〜441kPaでエチレンオキサイド227.7重量部とプロピレンオキサイド299.9重量部の混合物を4時間で圧入し反応させ、更に125℃にて1時間熟成後、同温でエチレンオキサイド455.5重量部を2時間で圧入し反応させ、更に1時間熟成後、減圧下で残存するエチレンオキサイドを除去し単量体B−2を得た。単量体B−2の構造及び水酸基価を表1に示す。
▲2▼単量体A−2の合成
合成例1の容器に単量体B−2を980重量部、水酸化カリウムを36.9重量部仕込み、窒素置換後昇温し減圧下115℃で3時間脱水処理したのち、アリルクロライド39重量部を115℃、ゲージ圧19.6〜245kPaで3時間かけ圧入し、更に115℃で3時間熟成し、6N塩酸で中和後、減圧下で脱水し、析出した塩をろ別し表1に示す単量体A−2を得た。単量体A−2の構造及び水酸基価を表1に示す。
【0020】
合成例3
▲1▼単量体B−3の合成
合成例2の▲1▼と同様の操作で、メタノールを10.4重量部、ソジウムメチラートを1.1重量部とし、プロピレンオキサイドを使用せずにエチレンオキサイドを988.5重量部一括添加し、単量体B−3を得た。単量体B−3の構造及び水酸基価を表1に示す。
▲2▼単量体A−3の合成
合成例2の▲2▼と同様の操作で、単量体B−2の代わりに単量体B−3を982重量部用い、水酸化カリウムを28.5重量部とし、アリルクロライドの代わりにメタリルクロライドを33.2重量部用いて表1に示す単量体A−3を得た。単量体A−3の構造及び水酸基価を表1に示す。
【0021】
合成例4
▲1▼単量体B−4の合成
合成例1の▲1▼と同様の操作で、アリルアルコールを28.4重量部、水酸化カリウムを1.4重量部、エチレンオキサイドを970.2重量部として単量体B−4を得た。単量体B−4の構造及び水酸基価を表1に示す。
▲2▼単量体A−4の合成
合成例1の▲2▼と同様の操作で、単量体B−1の代わりに単量体B−4を986重量部用い、水酸化ナトリウムを29重量部とし、メチルクロライドの代わりにエチルクロライドを40.5重量部用いて表1に示す単量体A−4を得た。単量体A−4の構造及び水酸基価を表1に示す。
【0022】
合成例5
▲1▼単量体B−5の合成
合成例2の▲1▼と同様の操作で、メタノールを5.2重量部、ソジウムメチラートを1重量部、後段に仕込むエチレンオキサイドを993.8重量部として単量体B−5を得た。単量体B−5の構造及び水酸基価を表1に示す。
▲2▼単量体A−5の合成
合成例2の▲2▼と同様の操作で、単量体B−2の代わりに単量体B−5を990重量部、水酸化カリウムの代わりに金属ナトリウムを3.9重量部、アリルクロライドを16.2重量部用いて表1に示す単量体A−5を得た。単量体A−5の構造及び水酸基価を表1に示す。
【0023】
合成例6
合成例1の▲2▼と同様の操作で、水酸化ナトリウムの代わりに金属ナトリウムを24.1重量部、メチルクロライドを53重量部用いて表1に示す単量体A−6を得た。単量体A−6の構造及び水酸基価を表1に示す。
【0024】
合成例7
合成例2の▲2▼と同様の操作で、単量体B−2の代わりに合成例3で得た単量体B−3を981重量部、水酸化カリウムの代わりに金属ナトリウムを7.8重量部、アリルクロライドを30.7重量部用いて表1に示す単量体A−7を得た。単量体A−7の構造及び水酸基価を表1に示す。
【0025】
合成例8
合成例1の▲2▼と同様の操作で、水酸化ナトリウムを33.6重量部、メチルクロライドを53重量部用いて表1に示す単量体A−8を得た。単量体A−8の構造及び水酸基価を表1に示す。
【0026】
合成例9
▲1▼単量体B−6の合成
合成例2の▲1▼と同様の操作で、メタノールを3.7重量部、後段のエチレンオキサイドを995.2重量部として単量体B−6を得た。単量体B−6の構造及び水酸基価を表1に示す。
▲2▼単量体A−9の合成
合成例2の▲2▼と同様の操作で、単量体B−2の代わりに単量体B−6を989重量部、水酸化カリウムの代わりに金属ナトリウムを3重量部、アリルクロライド15.9重量部用いて表1に示す単量体A−9を得た。単量体A−9の構造及び水酸基価を表1に示す。
【0027】
【表1】

Figure 0004326651
【0028】
実施例1〜5及び比較例1〜4
<セメント分散剤の製造>
反応器に、合成例1で得た単量体A−1 953g、無水マレイン酸98.1g、2,2'−アゾビスイソブチロニトリル3.3g、トルエン452gを添加し、窒素ガス雰囲気下で、70℃で4時間、次いで80℃に昇温後3時間反応後、トルエンを110℃、減圧下にて除去し、セメント分散剤を得た(実施例1)。実施例1と同様にして表2に示す組み合わせで実施例2〜5及び比較例1〜4のセメント分散剤を得た。尚、実施例4は溶媒を使用せずに重合を行った。
【0029】
【表2】
Figure 0004326651
【0030】
(注)
NaAS:アリルスルホン酸ナトリウム
AIBN:2,2'−アゾビスイソブチロニトリル
BPO:過酸化ベンゾイル。
【0031】
<セメント分散剤の評価>
表3に示す配合のコンクリート材料と表2のセメント分散剤を、傾同ミキサーを用いて25r/minで3分間混練りし、流動性(スランプ値)と空気量を測定後、更に4r/minで60分間回転させ、60分後の空気量とスランプ値(cm)を測定した。なお、空気量が4±0.5%になるように気泡連行剤(ビンソール:山宗化学社製)及び消泡剤(ニコフィックス:日華化学社製)で、初期スランプ値が20±1cmになるようにセメント分散剤の添加量で調整した(添加量はセメントに対する固形分添加量を表わす)。スランプ値の測定はJIS-A1101法により測定した。測定結果を表4に示す。
【0032】
【表3】
Figure 0004326651
【0033】
【表4】
Figure 0004326651
【0034】
(注)
NS:ナフタレン系分散剤(マイティ150;花王(株)製)
PC:ポリカルボン酸系分散剤(FC-600S;日本触媒化学工業(株)製)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cement dispersant.
[0002]
[Prior art]
Known cement dispersants include naphthalene sulfonic acid formaldehyde condensate salt, melamine sulfonic acid formaldehyde condensate salt, polycarboxylate and the like. While these show excellent water reduction effects, the retention of air amount and slump value is insufficient, and as an improvement, JP-A-63-285140, JP-A-2-163108, JP-A-9-286647 No. 3 discloses a dispersant for cement containing a specific copolymer obtained from a vinyl polymerizable monomer having a polyoxyalkylene structure and a maleic monomer as an active ingredient.
[0003]
[Problems to be solved by the invention]
However, although the additive for cement described in the above publication improves the retention of the air amount, the retention of the slump value is still not sufficient.
[0004]
An object of the present invention is to provide a method for obtaining a cement dispersant excellent in retention of air amount and slump value.
[0005]
[Means for Solving the Problems]
The present invention provides a reaction between a compound represented by the following general formula (B-1) and an alkenyl etherifying agent having 2 to 5 carbon atoms or a compound represented by the following general formula (B-2) and 1 to 1 carbon atoms. 5 to obtain a monomer (A) represented by the following general formula (A), and then the monomer (A) is combined with the maleic monomer (C). A method for producing a cement dispersant to be polymerized, comprising:
The hydroxyl value (OHVb) of the compound represented by the general formula (B-1) or the compound represented by the general formula (B-2) and the hydroxyl value (OHVa) of the monomer (A) are [(OHVa) / (OHVb)] × 100 = 1-40, and the molar ratio of the monomer (A) to the maleic monomer (C) is (A) / (C) = 10 / 90-80 / 20 relates to a method for producing a cement dispersant in the range of 20.
Formula (A); R 1 O [(EO) n (AO) m ] R 2
Formula (B-1); R 2 O [(EO) n (AO) m ] H
Formula (B-2); R 1 O [(EO) n (AO) m ] H
[Where,
R 1 : an alkenyl group having 2 to 5 carbon atoms
R 2 : an alkyl group having 1 to 5 carbon atoms
EO: Oxyethylene group
AO: C3 or C4 oxyalkylene group or oxystyrene group
n, m: n + m represents a number from 2 to 150 and m / (n + m) represents a number from 0 to 0.3. The arrangement of EO and AO may be random or block, and either may be on the R 1 or R 2 side. ]
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention comprises a compound represented by the general formula (B-1) [hereinafter referred to as monomer (B-1)] or a compound represented by the following general formula (B-2) [hereinafter monomer (Referred to as (B-2)), the step of obtaining the monomer (A) represented by the general formula (A), and the monomer (A) and the maleic monomer (C) are copolymerized Process.
[0007]
The monomer (B-1) can be obtained by adding an alkylene oxide essentially containing ethylene oxide to an alcohol having an alkyl group corresponding to R 2 such as methanol. Examples of alkylene oxides other than ethylene oxide include propylene oxide, butylene oxide, and styrene oxide. R 2 in the general formula (B-1) is preferably a methyl group, an ethyl group, particularly a methyl group. Further, n and m in the general formula (B-1) are such that n + m is 2 to 150, preferably 3 to 125, particularly preferably 5 to 70, and m / (n + m) is 0 to 0.3, preferably 0 to 0.2. , More preferably 0 to 0.1, particularly preferably 0. By reacting this monomer (B-1) with an alkenyl etherifying agent having 2 to 5 carbon atoms, preferably allyl chloride or methallyl chloride, monomer (A-1) can be obtained. The reaction molar ratio between the two is preferably monomer (B-1) / alkenyl etherifying agent = 1 / 0.6 to 1/10, more preferably 1 / 0.8 to 1/5. The reaction time and reaction temperature are What is necessary is just to set suitably.
[0008]
The monomer (B-2) can be obtained by adding the same alkylene oxide as the monomer (B-1) to an alcohol having an alkenyl group corresponding to R 1 such as allyl alcohol. R 1 in the general formula (B-2) is preferably an allyl group or a methallyl group. Further, n and m in the general formula (B-2) are preferably in the same range as in the general formula (B-1). By reacting this monomer (B-2) with an alkyl etherifying agent having 1 to 5 carbon atoms, preferably dimethyl sulfate, dimethyl carbonate, methyl chloride, ethyl chloride, particularly preferably methyl chloride, (A-1) is obtained. The reaction molar ratio between the two is preferably monomer (B-2) / alkyl etherifying agent = 1 / 0.6 to 1/10, more preferably 1 / 0.8 to 1/5, such as reaction time and reaction temperature. May be set as appropriate.
[0009]
In the present invention, the monomer (A) thus obtained is copolymerized with the maleic monomer (C), but the monomer (B-1) or monomer (B-2) The hydroxyl value (OHVb) of the monomer and the hydroxyl value (OHVa) of the monomer (A) are [(OHVa) / (OHVb)] × 100 = 1-40, preferably 1.5-30, more preferably 2-25. Is in range.
[0010]
The R 1 alkenyl group having 2 to 5 carbon atoms in formula (A), for example, vinyl group, isopropenyl group, allyl group, methallyl, 3-butenyl, 2-methyl-1-butenyl group, 3 -Methyl-1-butenyl group, 2-methyl-3-butenyl group, 3-methyl-3-butenyl group and the like can be mentioned. Of these, allyl groups and methallyl groups are particularly preferred. Examples of the alkyl group having 1 to 5 carbon atoms in R 2 in the general formula (A) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Group, pentyl group, isopentyl group, neopentyl group and the like. Among these, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable. Further, n and m in the general formula (A) are preferably in the same range as in the general formula (B-1).
[0011]
Examples of the maleic acid monomer (C) include maleic anhydride, maleic acid, and maleate, and maleic anhydride is preferred. The maleic monomer can be used alone or in many different types. Examples of maleates include mono- or dialkali metal salts such as lithium salts, sodium salts, and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and ammonium salts such as ammonium salts and diammonium salts. be able to.
[0012]
Further, other copolymerizable monomers may be used as long as they do not affect the effects of the present invention. Examples of such monomers include styrene, vinyl acetate, acrylic acid, methacrylic acid, alkenyl (2 to 5 carbon atoms) sulfonic acid, maleic acid ester, and the like. Good. The ratio of these other copolymerizable monomers is preferably 30% by weight or less based on the total of the monomers (A) and (C).
[0013]
In the present invention, the molar ratio of the monomer (A) to the maleic monomer (C) is (A) / (C) = 10/90 to 80/20, preferably 30/70 to 70/30. Particularly preferably, it is in the range of 40/60 to 60/40. When the molar ratio between the monomers (A) and (C) is within the above range, the performance such as a good water reducing effect can be sufficiently exhibited.
[0014]
The copolymerization reaction of the monomers (A) and (C) is performed by solution polymerization of these monomers in water, in an organic solvent, or in a mixed solvent of water and a hydrophilic organic solvent, or in the solvent Can be carried out by bulk polymerization in a system in which no is used. What is necessary is just to set reaction time, reaction temperature, etc. suitably.
[0015]
As the polymerization initiator in an organic solvent or when no solvent is used, an organic peroxide such as benzoyl peroxide or an azo polymerization initiator such as 2,2′-azobisisobutyronitrile may be used. Can do. When the polymerization is carried out in an aqueous system, water-soluble polymerization initiators such as hydrogen peroxide, hydroperoxides such as tert-butyl hydroperoxide, and persulfates such as potassium persulfate and ammonium persulfate can be used. In addition, if necessary, the obtained copolymer may be subjected to ring-opening by hydrolysis of some or all of the maleic anhydride units to form maleic units, and further, some or all of the maleic units may be neutralized with an alkali. Can be summed. Examples of the alkali used for neutralization include hydroxides of alkali metals such as lithium, sodium and potassium, carbonates or hydrogen carbonates, hydroxides of alkaline earth metals such as magnesium and calcium, monoethanolamine, diethanolamine and triethanolamine. Examples thereof include alkanolamines such as ethylamine, alkylamines such as diethylamine and triethylamine, and ammonia. These may be used alone or in combination of two or more.
[0016]
The amount of the cement dispersant obtained by the present invention is usually 0.01 to 3% by weight and 0.04 to 1% by weight as a solid content with respect to the cement. It is preferable in terms of workability.
[0017]
Examples of the cement to which the cement dispersant obtained by the present invention can be applied include ordinary Portland cement, early-strength Portland cement, super early-strength Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement and other portland cement, blast furnace Cement, silica cement, mixed cement such as fly ash cement, or a combination of these cements with admixtures such as blast furnace slag, fly ash, silica fume, limestone, belite cement, oil well cement, high sulfate Special cements such as slag cement, alumina cement, magnesia cement and acid resistant cement can be mentioned. These cements can be used alone or in combination of two or more as required. The cement dispersant obtained by the present invention can be used by dissolving in water used in mortar and concrete in advance, adding it simultaneously with water injection, or adding it between water injection and kneading. Or can be used after being added to a cement composition once kneaded. Moreover, you may premix with what was pulverized by carrying | supporting to a support | carrier etc .. The cement dispersant obtained according to the present invention can be used in combination with other cement additives as necessary, as long as the effect is not impaired. Other additives for cement include naphthalene sulfonic acid formaldehyde condensate salt, melamine sulfonic acid formaldehyde condensate salt, lignin sulfonate, polycarboxylate, oxycarboxylate, and polyalkylene glycol chain in the side chain. Examples thereof include one or more cement dispersants selected from carboxylic acids and salts thereof. Other examples include an air entraining agent, an antifoaming agent, a separation reducing agent, a setting retarding agent, a setting accelerator, an expanding material, a drying shrinkage reducing agent, and a rust preventive agent.
[0018]
【Example】
Synthesis example 1
(1) Synthesis of Monomer B-1 A high-pressure reactor equipped with a stirrer is charged with 61.7 parts by weight of allyl alcohol and 1.2 parts by weight of potassium hydroxide, and after nitrogen replacement, the temperature is raised to 100 to 125 ° C., gauge pressure 49 to 441 kPa Then, 937.1 parts by weight of ethylene oxide was injected and reacted in 3 hours, and after aging at 125 ° C. for 1 hour, the remaining ethylene oxide was removed under reduced pressure to obtain monomer B-1. Table 1 shows the structure and hydroxyl value of Monomer B-1.
(2) Synthesis of Monomer A-1 A high-pressure reactor equipped with a stirrer was charged with 985 parts by weight of monomer B-1 and 62.9 parts by weight of sodium hydroxide, and the temperature was raised after substitution with nitrogen at 115 ° C under reduced pressure. After dehydration for 3 hours, 52.3 parts by weight of methyl chloride was injected at 115 ° C. and a gauge pressure of 29.4 to 245 kPa over 3 hours, further aged at 115 ° C. for 3 hours, neutralized with 6N hydrochloric acid, dehydrated under reduced pressure, The precipitated salt was filtered off to obtain monomer A-1 shown in Table 1. Table 1 shows the structure and hydroxyl value of Monomer A-1.
[0019]
Synthesis example 2
(1) Synthesis of Monomer B-2 The container of Synthesis Example 1 was charged with 16.1 parts by weight of methanol and 0.8 parts by weight of sodium methylate, and after replacing with nitrogen, the temperature was raised to 100 ° C to 125 ° C and the gauge pressure was 49 to 441 kPa. A mixture of 227.7 parts by weight of ethylene oxide and 299.9 parts by weight of propylene oxide was injected and reacted in 4 hours. After aging at 125 ° C. for 1 hour, 455.5 parts by weight of ethylene oxide was injected and reacted at the same temperature for 2 hours. After aging for 1 hour, the remaining ethylene oxide was removed under reduced pressure to obtain monomer B-2. Table 1 shows the structure and hydroxyl value of Monomer B-2.
(2) Synthesis of monomer A-2 The container of Synthesis Example 1 was charged with 980 parts by weight of monomer B-2 and 36.9 parts by weight of potassium hydroxide, and after heating with nitrogen, the temperature was raised and the temperature was reduced at 115 ° C for 3 hours. After dehydration, 39 parts by weight of allyl chloride was injected at 115 ° C. and a gauge pressure of 19.6 to 245 kPa over 3 hours, further aged at 115 ° C. for 3 hours, neutralized with 6N hydrochloric acid, dehydrated under reduced pressure, and precipitated. The salt was filtered off to obtain monomer A-2 shown in Table 1. Table 1 shows the structure and hydroxyl value of monomer A-2.
[0020]
Synthesis example 3
(1) Synthesis of monomer B-3 By the same operation as in (1) of Synthesis Example 2, methanol was changed to 10.4 parts by weight, sodium methylate to 1.1 parts by weight, and ethylene oxide was added without using propylene oxide. The monomer B-3 was obtained by adding 988.5 parts by weight all at once. Table 1 shows the structure and hydroxyl value of Monomer B-3.
(2) Synthesis of Monomer A-3 In the same manner as in (2) of Synthesis Example 2, using 982 parts by weight of monomer B-3 instead of monomer B-2, 28.5 potassium hydroxide was used. The monomer A-3 shown in Table 1 was obtained using 3 parts by weight of methallyl chloride instead of allyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-3.
[0021]
Synthesis example 4
(1) Synthesis of Monomer B-4 In the same manner as in (1) of Synthesis Example 1, monomer B was prepared with 28.4 parts by weight of allyl alcohol, 1.4 parts by weight of potassium hydroxide and 970.2 parts by weight of ethylene oxide. -4 was obtained. Table 1 shows the structure and hydroxyl value of Monomer B-4.
(2) Synthesis of Monomer A-4 By the same operation as in (2) of Synthesis Example 1, 986 parts by weight of monomer B-4 is used instead of monomer B-1, and sodium hydroxide is 29 The monomer A-4 shown in Table 1 was obtained using 40.5 parts by weight of ethyl chloride instead of methyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-4.
[0022]
Synthesis example 5
(1) Synthesis of Monomer B-5 By the same operation as in (1) of Synthesis Example 2, methanol is 5.2 parts by weight, sodium methylate is 1 part by weight, and ethylene oxide charged in the latter stage is 993.8 parts by weight. A monomer B-5 was obtained. Table 1 shows the structure and hydroxyl value of Monomer B-5.
(2) Synthesis of monomer A-5 By the same operation as in (2) of Synthesis Example 2, 990 parts by weight of monomer B-5 instead of monomer B-2, instead of potassium hydroxide Monomer A-5 shown in Table 1 was obtained using 3.9 parts by weight of metallic sodium and 16.2 parts by weight of allyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-5.
[0023]
Synthesis Example 6
Monomer A-6 shown in Table 1 was obtained in the same manner as in (2) of Synthesis Example 1 using 24.1 parts by weight of metal sodium and 53 parts by weight of methyl chloride instead of sodium hydroxide. Table 1 shows the structure and hydroxyl value of Monomer A-6.
[0024]
Synthesis example 7
In the same manner as in (2) of Synthesis Example 2, 981 parts by weight of Monomer B-3 obtained in Synthesis Example 3 instead of Monomer B-2 and 7.8 wt.% Of sodium metal instead of potassium hydroxide The monomer A-7 shown in Table 1 was obtained using 30.7 parts by weight of allyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-7.
[0025]
Synthesis example 8
Monomer A-8 shown in Table 1 was obtained in the same manner as in (2) of Synthesis Example 1 using 33.6 parts by weight of sodium hydroxide and 53 parts by weight of methyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-8.
[0026]
Synthesis Example 9
(1) Synthesis of Monomer B-6 Monomer B-6 was obtained in the same manner as in (1) of Synthesis Example 2 with 3.7 parts by weight of methanol and 995.2 parts by weight of ethylene oxide at the latter stage. Table 1 shows the structure and hydroxyl value of Monomer B-6.
(2) Synthesis of monomer A-9 By the same operation as in (2) of Synthesis Example 2, 989 parts by weight of monomer B-6 instead of monomer B-2, instead of potassium hydroxide Monomer A-9 shown in Table 1 was obtained using 3 parts by weight of metallic sodium and 15.9 parts by weight of allyl chloride. Table 1 shows the structure and hydroxyl value of Monomer A-9.
[0027]
[Table 1]
Figure 0004326651
[0028]
Examples 1-5 and Comparative Examples 1-4
<Manufacture of cement dispersant>
To the reactor were added 953 g of monomer A-1 obtained in Synthesis Example 1, 98.1 g of maleic anhydride, 3.3 g of 2,2′-azobisisobutyronitrile, and 452 g of toluene. Under a nitrogen gas atmosphere, After reacting at 70 ° C. for 4 hours and then at 80 ° C. for 3 hours, toluene was removed at 110 ° C. under reduced pressure to obtain a cement dispersant (Example 1). In the same manner as in Example 1, the cement dispersants of Examples 2 to 5 and Comparative Examples 1 to 4 were obtained in the combinations shown in Table 2. In Example 4, polymerization was carried out without using a solvent.
[0029]
[Table 2]
Figure 0004326651
[0030]
(note)
NaAS: Sodium allyl sulfonate
AIBN: 2,2'-azobisisobutyronitrile
BPO: benzoyl peroxide.
[0031]
<Evaluation of cement dispersant>
The concrete materials shown in Table 3 and the cement dispersant shown in Table 2 are kneaded for 3 minutes at 25r / min using a tilt mixer, and after measuring fluidity (slump value) and air volume, further 4r / min. Rotated for 60 minutes and measured the air volume and slump value (cm) after 60 minutes. The initial slump value is 20 ± 1 cm with a bubble entrainment agent (Binsole: manufactured by Yamaso Chemical Co., Ltd.) and an antifoaming agent (Nicofix: manufactured by Nikka Chemical Co., Ltd.) so that the air volume is 4 ± 0.5%. The amount of cement dispersant was adjusted as described above (the amount added represents the amount of solid content added to the cement). The slump value was measured by the JIS-A1101 method. Table 4 shows the measurement results.
[0032]
[Table 3]
Figure 0004326651
[0033]
[Table 4]
Figure 0004326651
[0034]
(note)
NS: Naphthalene dispersant (Mighty 150; manufactured by Kao Corporation)
PC: polycarboxylic acid dispersant (FC-600S; manufactured by Nippon Shokubai Chemical Industry Co., Ltd.)

Claims (3)

下記一般式(B-1)で表される化合物と炭素数2〜5のアルケニルエーテル化剤とを反応させて、又は下記一般式(B-2)で表される化合物と炭素数1〜5のアルキルエーテル化剤とを反応させて、下記一般式(A)で表される単量体(A)を得、次いで該単量体(A)をマレイン酸系単量体(C)と共重合させるセメント分散剤の製造方法であって、
一般式(B-1)で表される化合物又は一般式(B-2)で表される化合物の水酸基価(OHVb)と単量体(A)の水酸基価(OHVa)が、〔(OHVa)/(OHVb)〕×100=1〜40の範囲にあり、且つ単量体(A)とマレイン酸系単量体(C)のモル比が(A)/(C)=10/90〜80/20の範囲にあるセメント分散剤の製造方法。
一般式(A); R1O[(EO)n(AO)m]R2
一般式(B-1); R2O[(EO)n(AO)m]H
一般式(B-2); R1O[(EO)n(AO)m]H
〔式中、
R1:炭素数2〜5のアルケニル基
R2:炭素数1〜5のアルキル基
EO:オキシエチレン基
AO:炭素数3もしくは4のオキシアルキレン基又はオキシスチレン基
n、m:n+mが2〜150、m/(n+m)が0〜0.3となる数
を表し、EOとAOの配列はランダムでもブロックでもよく、且つどちらがR1、R2側でもよい。〕
A compound represented by the following general formula (B-1) and an alkenyl etherifying agent having 2 to 5 carbon atoms are reacted, or a compound represented by the following general formula (B-2) and 1 to 5 carbon atoms. To obtain a monomer (A) represented by the following general formula (A), and then co-polymerize the monomer (A) with the maleic monomer (C). A method for producing a cement dispersant to be polymerized, comprising:
The hydroxyl value (OHVb) of the compound represented by the general formula (B-1) or the compound represented by the general formula (B-2) and the hydroxyl value (OHVa) of the monomer (A) are [(OHVa) / (OHVb)] × 100 = 1-40, and the molar ratio of the monomer (A) to the maleic monomer (C) is (A) / (C) = 10 / 90-80 A method for producing a cement dispersant in the range of / 20.
Formula (A); R 1 O [(EO) n (AO) m ] R 2
Formula (B-1); R 2 O [(EO) n (AO) m ] H
Formula (B-2); R 1 O [(EO) n (AO) m ] H
[Where,
R 1 : an alkenyl group having 2 to 5 carbon atoms
R 2 : an alkyl group having 1 to 5 carbon atoms
EO: Oxyethylene group
AO: C3 or C4 oxyalkylene group or oxystyrene group
n, m: n + m represents a number from 2 to 150 and m / (n + m) represents a number from 0 to 0.3. The arrangement of EO and AO may be random or block, and either may be on the R 1 or R 2 side. ]
一般式(B-1)又は一般式(B-2)中のn、mが、n+m=2〜70となる数である請求項1記載のセメント分散剤の製造方法。The method for producing a cement dispersant according to claim 1, wherein n and m in the general formula (B-1) or the general formula (B-2) are numbers such that n + m = 2 to 70. マレイン酸系単量体が無水マレイン酸であり、一般式(B-1)中のR2がメチル基又はエチル基であり、一般式(B-2)中のR1がアリル基又はメタアリル基である請求項1又は2記載のセメント分散剤の製造方法。The maleic monomer is maleic anhydride, R 2 in the general formula (B-1) is a methyl group or an ethyl group, and R 1 in the general formula (B-2) is an allyl group or a methallyl group The method for producing a cement dispersant according to claim 1 or 2.
JP2000004488A 2000-01-13 2000-01-13 Method for producing cement dispersant Expired - Fee Related JP4326651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004488A JP4326651B2 (en) 2000-01-13 2000-01-13 Method for producing cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004488A JP4326651B2 (en) 2000-01-13 2000-01-13 Method for producing cement dispersant

Publications (2)

Publication Number Publication Date
JP2001199751A JP2001199751A (en) 2001-07-24
JP4326651B2 true JP4326651B2 (en) 2009-09-09

Family

ID=18533275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004488A Expired - Fee Related JP4326651B2 (en) 2000-01-13 2000-01-13 Method for producing cement dispersant

Country Status (1)

Country Link
JP (1) JP4326651B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105042A (en) * 2001-09-28 2003-04-09 Nof Corp Method for manufacturing polycarboxlic acid-based copolymer and additive for cement
KR100570302B1 (en) * 2003-07-14 2006-04-12 한국과학기술연구원 A process for preparing Alkoxy poly oxy alkylene glycolalkyl unsaturated carboxylic acid diesters
JP5466374B2 (en) * 2007-04-05 2014-04-09 株式会社日本触媒 Method for producing unsaturated (poly) alkylene glycol ether monomer and method for producing polymer having (poly) alkylene glycol chain
JP5466373B2 (en) * 2007-04-05 2014-04-09 株式会社日本触媒 Process for producing polycarboxylic acid copolymer
CN102731732A (en) 2007-04-05 2012-10-17 株式会社日本触媒 Production method of (poly)alkylene glycol chain-containing polymer
JP5426090B2 (en) * 2007-12-26 2014-02-26 株式会社日本触媒 Process for producing polymer having (poly) alkylene glycol chain
US8362180B2 (en) 2009-05-20 2013-01-29 Basf Se Hydrophobically associating copolymers
WO2010133527A2 (en) * 2009-05-20 2010-11-25 Basf Se Hydrophobically associating copolymers
WO2012105239A1 (en) * 2011-02-01 2012-08-09 株式会社日本触媒 Hydraulic material dispersing agent and hydraulic material composition

Also Published As

Publication number Publication date
JP2001199751A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
JP2774445B2 (en) Concrete admixture
EP0846090B1 (en) Concrete admixture
WO2011019034A1 (en) Polymer composition for cement dispersant and method for producing same
JP4208984B2 (en) Concrete admixture
JP4326651B2 (en) Method for producing cement dispersant
JPH1081549A (en) Concrete admixture
JPH07247150A (en) Concrete admixture
JP3181226B2 (en) Fluidity decrease inhibitor for hydraulic cement composition and method for preventing fluidity decrease of hydraulic cement composition
JPH0940447A (en) Concrete admixture
JP4311348B2 (en) Additive for cement
JP3226125B2 (en) Cement dispersant
JP3560047B2 (en) Dispersant for concrete
JP2004043213A (en) Powdery contraction reducing agent
JP2016145126A (en) Cement admixture and cement composition containing the same
JPH09142905A (en) Concrete admixture
JPH09241056A (en) Admixture for concrete
JP4590720B2 (en) Additive for cement
JP4394756B2 (en) Additive for cement
JP3812601B2 (en) Additive composition for cement
JPH0967153A (en) Mixing agent for concrete
JP2003105040A (en) Method for manufacturing copolymer and its use
JPH08225354A (en) Concrete admixture
JPH1112010A (en) Concrete admixture, concrete composition and concrete structure
JPH0848852A (en) Cement dispersant
JPH07247148A (en) Concrete admixture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees