JP4325368B2 - Air-fuel ratio measuring device - Google Patents

Air-fuel ratio measuring device Download PDF

Info

Publication number
JP4325368B2
JP4325368B2 JP2003382117A JP2003382117A JP4325368B2 JP 4325368 B2 JP4325368 B2 JP 4325368B2 JP 2003382117 A JP2003382117 A JP 2003382117A JP 2003382117 A JP2003382117 A JP 2003382117A JP 4325368 B2 JP4325368 B2 JP 4325368B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
detection means
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382117A
Other languages
Japanese (ja)
Other versions
JP2005146900A (en
Inventor
大介 柴田
昌宣 金丸
裕 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003382117A priority Critical patent/JP4325368B2/en
Publication of JP2005146900A publication Critical patent/JP2005146900A/en
Application granted granted Critical
Publication of JP4325368B2 publication Critical patent/JP4325368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、空燃比測定装置に関する。   The present invention relates to an air-fuel ratio measuring apparatus.

吸蔵還元型NOx触媒(以下、NOx触媒とする。)を内燃機関の排気通路に配置し、酸化雰囲気のときに排気中の窒素酸化物(NOx)を該NOx触媒に吸蔵し、還元雰囲気となったときは該NOx触媒に吸蔵されていたNOxを還元して排気中のNOxを浄化する技術
が知られている。
A NOx storage reduction catalyst (hereinafter referred to as NOx catalyst) is disposed in the exhaust passage of the internal combustion engine, and nitrogen oxide (NOx) in the exhaust gas is stored in the NOx catalyst in an oxidizing atmosphere to form a reducing atmosphere. In this case, a technique is known in which NOx stored in the NOx catalyst is reduced to purify NOx in the exhaust gas.

このNOx触媒は、熱劣化や経年変化による劣化とともにNOxの吸蔵能力が低下することが知られており、この劣化の判定を該NOx触媒前後に取り付けた酸素センサの出力に
基づいて行う技術が知られている(例えば、特許文献1参照。)。
特開平11−10741号公報 特開平9−268934号公報 特開平8−254522号公報
This NOx catalyst is known to have a NOx occlusion capability that decreases with thermal deterioration and deterioration over time, and a technology for determining this deterioration based on the outputs of oxygen sensors attached before and after the NOx catalyst is known. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-10741 JP-A-9-268934 JP-A-8-254522

ところで、前記従来技術によりNOx触媒の劣化判定を行うときには、排気中の酸素濃
度や空燃比を酸素センサや空燃比センサにより正確に検出することが求められる。しかし、排気中に含まれる燃料のクラッキングが十分でないと、一部の燃料が空燃比センサの拡散抵抗層を通過できなくなる。そのため、実際よりも燃料成分が少ない状態で空燃比の測定が行われ、空燃比センサにより検出される空燃比は、実際よりもリーン側へずれることになる。
By the way, when the deterioration determination of the NOx catalyst is performed according to the conventional technique, it is required to accurately detect the oxygen concentration and the air-fuel ratio in the exhaust gas by using an oxygen sensor or an air-fuel ratio sensor. However, if the cracking of the fuel contained in the exhaust is not sufficient, some fuel cannot pass through the diffusion resistance layer of the air-fuel ratio sensor. Therefore, the air-fuel ratio is measured in a state where the fuel component is smaller than the actual amount, and the air-fuel ratio detected by the air-fuel ratio sensor is shifted to the lean side from the actual.

本発明は、上記したような問題点に鑑みてなされたものであり、空燃比測定装置において、排気中に高分子HCが存在していても空燃比を正確に検出することができる技術を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides an air-fuel ratio measurement apparatus that can accurately detect an air-fuel ratio even when polymer HC is present in exhaust gas. The purpose is to do.

上記課題を達成するために本発明による空燃比測定装置は、以下の手段を採用した。すなわち、
内燃機関の排気通路を流通する排気の空燃比を検出する空燃比検出手段と、
排気中の高分子HC濃度に関連する値に基づいて前記空燃比検出手段により検出された空燃比を補正する空燃比補正手段と、
を備えることを特徴とする。
In order to achieve the above object, the air-fuel ratio measuring apparatus according to the present invention employs the following means. That is,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas flowing through the exhaust passage of the internal combustion engine;
Air-fuel ratio correction means for correcting the air-fuel ratio detected by the air-fuel ratio detection means based on a value related to the polymer HC concentration in the exhaust;
It is characterized by providing.

本発明の最大の特徴は、空燃比検出手段により検出された空燃比を、排気中の高分子HC濃度に関連する値に基づいて補正し、実際の空燃比に近づけることにある。   The most important feature of the present invention is that the air-fuel ratio detected by the air-fuel ratio detecting means is corrected based on a value related to the polymer HC concentration in the exhaust gas and brought close to the actual air-fuel ratio.

なお、高分子HCとは、空燃比検出手段により検出することができないほど分子量の大きな燃料成分である。ここで、燃料中には、CnHm(n、mは任意の数)で表される様々な分子量の成分が混在している。そして、nの数が大きくなると、空燃比検出手段の例えば拡散抵抗層を通過することができなくなる。従って、高分子HCとは、拡散抵抗層を通過することができない燃料成分としても良い。ここで、nは、例えば6以上の数であり、空燃比検出手段の種類によっても異なる値である。   The polymer HC is a fuel component having a molecular weight that cannot be detected by the air-fuel ratio detection means. Here, components of various molecular weights represented by CnHm (n and m are arbitrary numbers) are mixed in the fuel. When the number n increases, it becomes impossible to pass through, for example, the diffusion resistance layer of the air-fuel ratio detection means. Therefore, the polymer HC may be a fuel component that cannot pass through the diffusion resistance layer. Here, n is a number of 6 or more, for example, and is a value that varies depending on the type of air-fuel ratio detection means.

このような高分子HCが排気中に存在すると、空燃比検出手段により検出される空燃比は実際の空燃比からリーン側へずれてしまう。そして、このときの空燃比のずれは、高分子HCの濃度と相関がある。すなわち、高分子HC濃度が高いほど、拡散抵抗層を通過することができなくなる燃料が増加し、空燃比検出手段により検出される空燃比は実際よりもリーン側へずれる。従って、排気中の高分子HCの濃度に関する要素に基づいて、前記空燃比検出手段により検出された空燃比のずれの度合いを知ることができ、検出された空燃比を補正することが可能となる。   If such a polymer HC is present in the exhaust gas, the air-fuel ratio detected by the air-fuel ratio detection means shifts from the actual air-fuel ratio to the lean side. The air-fuel ratio shift at this time has a correlation with the concentration of the polymer HC. That is, as the polymer HC concentration increases, the amount of fuel that cannot pass through the diffusion resistance layer increases, and the air-fuel ratio detected by the air-fuel ratio detection means shifts to the lean side from the actual level. Therefore, the degree of deviation of the air-fuel ratio detected by the air-fuel ratio detecting means can be known based on the factor relating to the concentration of the polymer HC in the exhaust gas, and the detected air-fuel ratio can be corrected. .

ここで、本発明では排気中の高分子HC濃度に関連する値に基づいて空燃比を補正しているが、高分子HC濃度を実際に求め、この値に基づいて空燃比を補正しても良い。   Here, in the present invention, the air-fuel ratio is corrected based on the value related to the polymer HC concentration in the exhaust gas. However, even if the polymer HC concentration is actually obtained and the air-fuel ratio is corrected based on this value, the air-fuel ratio is corrected. good.

本発明においては、前記空燃比検出手段よりも上流の排気通路から燃料を添加する燃料添加手段をさらに備え、前記空燃比補正手段は、前記燃料添加手段により排気中へ添加される燃料が多いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくすることができる。   The present invention further includes fuel addition means for adding fuel from an exhaust passage upstream of the air / fuel ratio detection means, and the air / fuel ratio correction means increases the amount of fuel added to the exhaust gas by the fuel addition means. A value for correcting the air-fuel ratio detected by the air-fuel ratio detecting means to the rich side when the polymer HC concentration is high can be increased.

排気中に添加される燃料量が多くなると、その分、排気中の高分子HC濃度も高くなる。すなわち、排気中に添加される燃料量と排気中の高分子HC濃度とには相関がある。そのため、排気添加手段により排気中へ添加される燃料が多いほど、例えば拡散抵抗層を通過することができない燃料成分が多くなる。これにより、空燃比検出手段により検出された空燃比はリーン側へずれ、排気中に添加される燃料量が多いほど、このずれが大きくなる。従って、燃料添加手段による燃料添加量に基づいて、空燃比検出手段により検出される空燃比を補正することができる。   As the amount of fuel added to the exhaust gas increases, the polymer HC concentration in the exhaust gas increases accordingly. That is, there is a correlation between the amount of fuel added to the exhaust and the polymer HC concentration in the exhaust. Therefore, as the amount of fuel added into the exhaust gas by the exhaust gas adding means increases, for example, the fuel component that cannot pass through the diffusion resistance layer increases. As a result, the air-fuel ratio detected by the air-fuel ratio detecting means shifts to the lean side, and the shift increases as the amount of fuel added to the exhaust gas increases. Therefore, the air-fuel ratio detected by the air-fuel ratio detecting means can be corrected based on the amount of fuel added by the fuel adding means.

本発明においては、前記空燃比検出手段よりも上流の排気通路に酸化機能を有する触媒と、前記酸化機能を有する触媒の温度を検出する温度検出手段と、をさらに備え、前記空燃比補正手段は、前記温度検出手段により検出される温度が低いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくすることができる。   The present invention further comprises a catalyst having an oxidation function in an exhaust passage upstream of the air-fuel ratio detection means, and a temperature detection means for detecting the temperature of the catalyst having the oxidation function, wherein the air-fuel ratio correction means comprises The lower the temperature detected by the temperature detection means, the higher the value for correcting the air-fuel ratio detected by the air-fuel ratio detection means to the rich side, assuming that the polymer HC concentration is higher.

酸化機能を有する触媒の温度が低いほど、該触媒での燃料のクラッキング能力が低下し、排気中の高分子HC濃度が多くなる。すなわち、酸化機能を有する触媒の温度と排気中の高分子HC濃度とには相関がある。そのため、酸化機能を有する触媒の温度が低いほど、例えば拡散抵抗層を通過することができない燃料成分が多くなる。これにより、空燃比検出手段により検出された空燃比はリーン側へずれ、酸化機能を有する触媒の温度が低いほど、このずれが大きくなる。従って、温度検出手段により検出される温度に基づいて、空燃比検出手段により検出される空燃比を補正することができる。   The lower the temperature of the catalyst having an oxidizing function, the lower the fuel cracking ability of the catalyst and the higher the concentration of polymer HC in the exhaust. That is, there is a correlation between the temperature of the catalyst having an oxidation function and the polymer HC concentration in the exhaust. For this reason, the lower the temperature of the catalyst having an oxidation function, for example, the more fuel components that cannot pass through the diffusion resistance layer. As a result, the air-fuel ratio detected by the air-fuel ratio detecting means shifts to the lean side, and this shift becomes larger as the temperature of the catalyst having the oxidation function is lower. Therefore, the air-fuel ratio detected by the air-fuel ratio detecting means can be corrected based on the temperature detected by the temperature detecting means.

本発明に係る空燃比測定装置では、高分子HCに起因した検出空燃比のずれを補正し、空燃比検出の精度を向上することができる。   In the air-fuel ratio measuring apparatus according to the present invention, the deviation of the detected air-fuel ratio caused by the polymer HC can be corrected, and the accuracy of air-fuel ratio detection can be improved.

以下、本発明に係る空燃比測定装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of the air-fuel ratio measuring apparatus according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る空燃比測定装置を適用する内燃機関1とその排気系の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which an air-fuel ratio measuring apparatus according to this embodiment is applied and its exhaust system.

図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。   The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.

内燃機関1には、燃焼室へ通じる排気通路2が接続されている。この排気通路2は、下流にて大気へと通じている。   An exhaust passage 2 leading to the combustion chamber is connected to the internal combustion engine 1. This exhaust passage 2 communicates with the atmosphere downstream.

前記排気通路2の途中には、酸化触媒3、及び吸蔵還元型NOx触媒4(以下、NOx触媒4という。)が内燃機関1側から順に備えられている。   In the middle of the exhaust passage 2, an oxidation catalyst 3 and an NOx storage reduction catalyst 4 (hereinafter referred to as NOx catalyst 4) are sequentially provided from the internal combustion engine 1 side.

NOx触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する機
能を有する。
The NOx catalyst 4 has a function of storing NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is reduced and a reducing agent is present. Have.

また、酸化触媒3よりも下流で且つNOx触媒4よりも上流の排気通路2には、該排気
通路2を流通する排気の空燃比を検出する上流側空燃比センサ5が取り付けられている。一方、NOx触媒4よりも下流の排気通路2には、該排気通路2を流通する排気の温度を
検出する排気温度センサ6、及び該排気通路2を流通する排気の空燃比を検出する下流側空燃比センサ7が取り付けられている。
An upstream air-fuel ratio sensor 5 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust passage 2 is attached to the exhaust passage 2 downstream of the oxidation catalyst 3 and upstream of the NOx catalyst 4. On the other hand, in the exhaust passage 2 downstream of the NOx catalyst 4, an exhaust temperature sensor 6 that detects the temperature of the exhaust gas that flows through the exhaust passage 2, and a downstream side that detects the air-fuel ratio of the exhaust gas that flows through the exhaust passage 2. An air-fuel ratio sensor 7 is attached.

ここで、上流側空燃比センサ5及び下流側空燃比センサ7について説明する。   Here, the upstream air-fuel ratio sensor 5 and the downstream air-fuel ratio sensor 7 will be described.

図2は、上流側空燃比センサ5の概略構成図である。なお、下流側空燃比センサ7は、上流側センサ5と同一の構成である。   FIG. 2 is a schematic configuration diagram of the upstream air-fuel ratio sensor 5. The downstream air-fuel ratio sensor 7 has the same configuration as the upstream sensor 5.

上流側空燃比センサ5はハウジング51を備えている。このハウジング51は、中央部にセンサ素子52が保持される貫通穴を有し、外周部に形成されたねじにて排気通路2に固定される。   The upstream air-fuel ratio sensor 5 includes a housing 51. The housing 51 has a through hole in which the sensor element 52 is held at the center, and is fixed to the exhaust passage 2 with a screw formed on the outer periphery.

センサ素子52は、基端部がハウジング51の貫通穴内に保持固定され、先端部はハウジング51より突出して図の下方に延び、被測定ガスである内燃機関1からの排気の流通する排気通路2内に位置している。センサ素子52は、円管状に形成した安定化ジルコニア等の酸素イオン導電性固体電解質501の内周面及び外周面に、夫々白金等の電極502、503を配設してなり、外周面の電極503の表面には多孔質層よりなる拡散抵抗層504が形成されている。また、内部には電極502、503の温度を例えば600℃に維持する電気ヒータ505が備えられている。   The sensor element 52 has a base end portion held and fixed in a through hole of the housing 51, a tip end portion protruding from the housing 51 and extending downward in the figure, and an exhaust passage 2 through which exhaust gas from the internal combustion engine 1, which is a measured gas, flows. Located in. The sensor element 52 is formed by disposing electrodes 502 and 503 such as platinum on the inner peripheral surface and the outer peripheral surface of an oxygen ion conductive solid electrolyte 501 such as stabilized zirconia formed in a circular tube, respectively. A diffusion resistance layer 504 made of a porous layer is formed on the surface of 503. In addition, an electric heater 505 that maintains the temperature of the electrodes 502 and 503 at, for example, 600 ° C. is provided.

センサ素子52の外表面は一部を除いてコーティング層で被覆されており、このコーティング層を形成しない先端よりの一部が被測定ガス中の特定成分濃度を検出するガス濃度検出部として機能する。   The outer surface of the sensor element 52 is covered with a coating layer except for a part thereof, and a part from the tip where the coating layer is not formed functions as a gas concentration detection unit for detecting a specific component concentration in the gas to be measured. .

次に、前記構成の上流側空燃比センサ5の作動について説明する。   Next, the operation of the upstream air-fuel ratio sensor 5 having the above configuration will be described.

センサ素子52の温度は電気ヒータ505により、例えば600℃に加熱されているため、センサ素子52周辺の温度は数百℃になっている。そのため、排気中の可燃性ガスと酸素とが反応し、酸素が消費される。さらに、残りの可燃性ガスと酸素とが拡散抵抗層504内で反応し、可燃性ガスが消費される。残りの酸素は外部電極503に到達してイオン化する。このようにしてイオン化した酸素は、固体電解質501内を移動して内部電極502で電子を放出する。この結果、排気中の酸素濃度に比例した電流が流れる。この電流は、可燃性ガスと反応した酸素の分だけ少なくなるので、この電流により得られた酸素濃度により排気の空燃比を検出することが可能となる。   Since the temperature of the sensor element 52 is heated to, for example, 600 ° C. by the electric heater 505, the temperature around the sensor element 52 is several hundred degrees C. Therefore, the combustible gas in the exhaust gas reacts with oxygen, and oxygen is consumed. Further, the remaining combustible gas and oxygen react in the diffusion resistance layer 504, and the combustible gas is consumed. The remaining oxygen reaches the external electrode 503 and is ionized. The oxygen ionized in this manner moves in the solid electrolyte 501 and emits electrons at the internal electrode 502. As a result, a current proportional to the oxygen concentration in the exhaust flows. Since this current is reduced by the amount of oxygen that has reacted with the combustible gas, it becomes possible to detect the air-fuel ratio of the exhaust gas based on the oxygen concentration obtained by this current.

ところで、内燃機関1が希薄燃焼運転されている場合は、NOx触媒4のNOx吸蔵能力が飽和する前にNOx触媒4に吸蔵されたNOxを還元させる必要がある。   By the way, when the internal combustion engine 1 is operated in lean combustion, it is necessary to reduce the NOx stored in the NOx catalyst 4 before the NOx storage capability of the NOx catalyst 4 is saturated.

そこで、本実施例では、NOx触媒4より上流の排気通路2を流通する排気中に還元剤
たる燃料(軽油)を添加する燃料添加弁8を備えている。ここで、燃料添加弁8は、後述するECU9からの信号により開弁して燃料を噴射する。燃料添加弁8から排気通路2内へ噴射された燃料は、排気通路2の上流から流れてきた排気の酸素濃度を低下させると共に、NOx触媒4に吸蔵されていたNOxを還元する。
Therefore, in this embodiment, a fuel addition valve 8 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 2 upstream from the NOx catalyst 4 is provided. Here, the fuel addition valve 8 is opened by a signal from an ECU 9 described later to inject fuel. The fuel injected from the fuel addition valve 8 into the exhaust passage 2 lowers the oxygen concentration of the exhaust flowing from the upstream of the exhaust passage 2 and reduces NOx stored in the NOx catalyst 4.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU9が併設されている。このECU9は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 9 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 9 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU9には、各種センサ等が電気配線を介して接続され、該センサ等の出力信号が入力されるようになっている。   Various sensors and the like are connected to the ECU 9 via electric wiring, and output signals from the sensors and the like are input.

一方、ECU9には、燃料添加弁8が電気配線を介して接続され、ECU9により制御することが可能になっている。   On the other hand, the fuel addition valve 8 is connected to the ECU 9 via electric wiring, and can be controlled by the ECU 9.

ところで、NOx触媒4は、経年変化や熱劣化によりNOxの吸蔵能力が低下する。この吸蔵能力の低下を、NOx触媒4前後の空燃比センサ5、7を用いて検出する方法が知ら
れている。
By the way, the NOx storage capacity of the NOx catalyst 4 decreases due to aging and thermal deterioration. A method is known in which the decrease in the storage capacity is detected using air-fuel ratio sensors 5 and 7 before and after the NOx catalyst 4.

ここで、NOx触媒4にNOxが吸蔵されている場合に、該NOx触媒4にリッチ空燃比
の排気を流通させると、該NOx触媒4に吸蔵されているNOx及び酸素が放出される。このNOx及び酸素が放出されている間は、NOx触媒4の下流の空燃比すなわち下流側空燃比センサ7により検出される空燃比がストイキとなることが知られている。そして、NOx及び酸素が放出された後、下流側空燃比センサ7により検出される空燃比がリッチ空燃
比に移行する。このように下流側空燃比センサ7によりストイキが検出され、リッチ空燃比に移行するまでの時間は、NOx触媒4に吸蔵されているNOx及び酸素の量が多いほど長くなる。すなわち、NOx触媒4の吸蔵能力が低下して、該NOx触媒4に吸蔵されるNOx量及び酸素量が減少すると、前記ストイキが検出され、その後リッチ空燃比に移行す
るまでの時間が短くなる。従って、この時間を計ることにより、NOx触媒4の劣化の度
合いを判定することが可能となる。
Here, when NOx is occluded in the NOx catalyst 4 and the rich air-fuel ratio exhaust gas is circulated through the NOx catalyst 4, NOx and oxygen occluded in the NOx catalyst 4 are released. It is known that the air-fuel ratio downstream of the NOx catalyst 4, that is, the air-fuel ratio detected by the downstream air-fuel ratio sensor 7 becomes stoichiometric while NOx and oxygen are released. Then, after NOx and oxygen are released, the air-fuel ratio detected by the downstream air-fuel ratio sensor 7 shifts to the rich air-fuel ratio. As described above, the time from when the downstream air-fuel ratio sensor 7 detects the stoichiometric gas to the rich air-fuel ratio becomes longer as the amount of NOx and oxygen stored in the NOx catalyst 4 increases. That is, if the storage capacity of the NOx catalyst 4 decreases and the NOx amount and oxygen amount stored in the NOx catalyst 4 decrease, the time until the stoichiometric detection is detected and then the rich air-fuel ratio is shifted is shortened. Therefore, it is possible to determine the degree of deterioration of the NOx catalyst 4 by measuring this time.

なお、NOx触媒4の劣化の度合いを判定するときには、該NOx触媒4に流入する排気の空燃比をストイキ若しくは、ストイキよりも若干リッチ側とする必要がある。従って、上流側空燃比センサ5の検出精度を高めることが重要となる。   When determining the degree of deterioration of the NOx catalyst 4, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 needs to be stoichiometric or slightly richer than stoichiometric. Therefore, it is important to improve the detection accuracy of the upstream air-fuel ratio sensor 5.

ところで、燃料添加弁8から排気中へ燃料が添加されると、酸化触媒3においてこの燃料がクラッキングされる。しかし、燃料の添加量が多い場合や、酸化触媒3の温度が低い場合、排気中の酸素濃度が低い場合には、燃料のクラッキングが十分になされず、前記上流側空燃比センサ5に高分子HCを多く含んだ排気が到達することがある。ここで、高分子HCは、拡散抵抗層504を通過することができない燃料成分であり、例えば、CnHmで表される燃料成分のうちnが6以上のものを指す。   By the way, when fuel is added into the exhaust gas from the fuel addition valve 8, the fuel is cracked in the oxidation catalyst 3. However, when the amount of fuel added is large, when the temperature of the oxidation catalyst 3 is low, or when the oxygen concentration in the exhaust gas is low, the fuel is not sufficiently cracked, and the upstream air-fuel ratio sensor 5 has a polymer. Exhaust containing a lot of HC may arrive. Here, the polymer HC is a fuel component that cannot pass through the diffusion resistance layer 504, and for example, indicates a fuel component represented by CnHm in which n is 6 or more.

図3は、燃料添加時に本来上流側空燃比センサ5で検出される値、上流側センサ5の出力値、及び下流側センサ7の出力値の時間推移を示したタイムチャート図である。ここで、図3の横軸に示される時間において、およそ1秒経過時点から10秒経過時点まで燃料添加弁8による燃料添加が行われている。すなわち、この間が、「燃料添加時」に該当す
る。「燃料添加時に本来上流側空燃比センサ5で検出される値」とは、酸化触媒3からNOx触媒4までの間を流通する排気の実際の空燃比を示し、上流側空燃比センサ5の出力
値がリーン側へずれていなければ該上流側センサ5から出力される空燃比である。
FIG. 3 is a time chart showing the time transition of the value originally detected by the upstream air-fuel ratio sensor 5 at the time of fuel addition, the output value of the upstream sensor 5 and the output value of the downstream sensor 7. Here, in the time shown on the horizontal axis of FIG. 3, fuel addition by the fuel addition valve 8 is performed from about 1 second to 10 seconds. That is, this period corresponds to “at the time of fuel addition”. The “value originally detected by the upstream air-fuel ratio sensor 5 at the time of fuel addition” indicates the actual air-fuel ratio of the exhaust gas flowing between the oxidation catalyst 3 and the NOx catalyst 4, and the output of the upstream air-fuel ratio sensor 5 If the value does not deviate toward the lean side, the air-fuel ratio output from the upstream sensor 5 is obtained.

ここで、排気中に高分子HCが多く含まれると、上流側空燃比センサ5では、拡散抵抗層504内で反応する燃料が少なくなり、外部電極503に到達してイオン化する酸素が多くなる。その結果、上流側空燃比センサ5から出力される空燃比は、実際の空燃比よりも酸素量が多い値となる。すなわちリーン側へずれた値が上流側空燃比センサ5から出力される。以下、センサの出力値が実際よりもリーン側へずれていることを「リーンずれ」という。   Here, if the exhaust gas contains a large amount of polymer HC, in the upstream air-fuel ratio sensor 5, the amount of fuel that reacts in the diffusion resistance layer 504 decreases, and the amount of oxygen that reaches the external electrode 503 and ionizes increases. As a result, the air-fuel ratio output from the upstream air-fuel ratio sensor 5 has a value with a larger amount of oxygen than the actual air-fuel ratio. That is, the value shifted to the lean side is output from the upstream air-fuel ratio sensor 5. Hereinafter, the fact that the output value of the sensor is shifted to the lean side from the actual value is referred to as “lean shift”.

このように、上流側空燃比センサ5がリーンずれを起こしていると、前記したようなNOx触媒4の劣化判定が困難となる。   Thus, if the upstream air-fuel ratio sensor 5 has a lean shift, it is difficult to determine the deterioration of the NOx catalyst 4 as described above.

その点、本実施例においては、上流側空燃比センサ5のリーンずれを高分子HC濃度と関連する値、すなわち、燃料添加量、酸化触媒3の温度、内燃機関1から排出される酸素量に基づいて補正し、より正確な空燃比の検出を可能とする。   In this respect, in this embodiment, the lean deviation of the upstream air-fuel ratio sensor 5 is set to a value related to the polymer HC concentration, that is, the amount of fuel added, the temperature of the oxidation catalyst 3, and the amount of oxygen discharged from the internal combustion engine 1. Correction based on this makes it possible to detect the air-fuel ratio more accurately.

ここで、リーンずれは、燃料添加量、酸化触媒3の温度、内燃機関1から排出される酸素量により変化する。   Here, the lean shift varies depending on the amount of fuel added, the temperature of the oxidation catalyst 3, and the amount of oxygen discharged from the internal combustion engine 1.

図4は、酸化触媒3の温度と上流側空燃比センサ5のリーンずれの度合いとの関係を示した図である。このように、酸化触媒3の温度が高いほどリーンのずれ度合いが小さくなる。   FIG. 4 is a graph showing the relationship between the temperature of the oxidation catalyst 3 and the degree of lean deviation of the upstream air-fuel ratio sensor 5. Thus, the higher the temperature of the oxidation catalyst 3, the smaller the degree of lean deviation.

また、図5は、燃料添加量を排気中の酸素量で除した値とリーンずれ度合いとの関係を示した図である。このように、燃料添加量の酸素量に対する比が多いほど、リーンずれ度合いが大きくなる。   FIG. 5 is a diagram showing the relationship between the value obtained by dividing the fuel addition amount by the oxygen amount in the exhaust gas and the degree of lean deviation. Thus, the greater the ratio of the fuel addition amount to the oxygen amount, the greater the degree of lean deviation.

図4及び図5の関係は、実験等により得ることができる。   4 and 5 can be obtained by experiments or the like.

次に、本実施例における検出空燃比の補正方法について説明する。   Next, a method for correcting the detected air-fuel ratio in the present embodiment will be described.

ここで、上流側空燃比センサ5で検出される空燃比は、以下の式により表すことができる。   Here, the air-fuel ratio detected by the upstream air-fuel ratio sensor 5 can be expressed by the following equation.

A/F=Ga/(Gf+Gad)
ここで、A/Fは、上流側空燃比センサ5により検出される空燃比、Gaは、吸入空気量、Gfは、気筒内への燃料噴射量、Gadは、燃料添加弁8からの燃料添加量である。
A / F = Ga / (Gf + Gad)
Here, A / F is the air-fuel ratio detected by the upstream air-fuel ratio sensor 5, Ga is the intake air amount, Gf is the fuel injection amount into the cylinder, and Gad is the fuel addition from the fuel addition valve 8. Amount.

すなわち、
Gad=Ga/(A/F)−Gf
と表すことができる。
That is,
Gad = Ga / (A / F) -Gf
It can be expressed as.

次に、上流側空燃比センサ5のリーンずれを考慮し、燃料添加弁8からの燃料添加量Gadを次式により補正する。補正後の燃料添加量をGad’とすると、
Gad’=Gad×MAP
ここで、MAPは、図4及び図5の関係から求められる値であり、酸化触媒3の温度と、吸入空気量とから得られる値である。この燃料添加量Gad’は、燃料添加のために用いることはなく、次に説明する空燃比A/F’を得るためだけに用いられる。
Next, the fuel addition amount Gad from the fuel addition valve 8 is corrected by the following equation in consideration of the lean deviation of the upstream air-fuel ratio sensor 5. When the corrected fuel addition amount is Gad ′,
Gad '= Gad × MAP
Here, MAP is a value obtained from the relationship of FIGS. 4 and 5, and is a value obtained from the temperature of the oxidation catalyst 3 and the intake air amount. This fuel addition amount Gad ′ is not used for fuel addition, but is used only to obtain an air-fuel ratio A / F ′ described below.

そして、補正した燃料添加量Gad’から補正後の空燃比A/F’を次式により算出する。   Then, the corrected air-fuel ratio A / F ′ is calculated from the corrected fuel addition amount Gad ′ by the following equation.

A/F’=Ga/(Gf+Gad’)
この補正後の空燃比A/F’は、図3に示される「本来上流側空燃比センサで検出される値」、すなわち実際の空燃比と略等しくなる。
A / F ′ = Ga / (Gf + Gad ′)
The corrected air-fuel ratio A / F ′ is substantially equal to the “value originally detected by the upstream air-fuel ratio sensor” shown in FIG. 3, that is, the actual air-fuel ratio.

このようにして、上流側空燃比センサ5により検出された空燃比を補正することが可能となる。   In this way, the air-fuel ratio detected by the upstream air-fuel ratio sensor 5 can be corrected.

このように、上流側空燃比センサ5の出力値を補正することにより、NOx触媒4に流
入する排気の空燃比をストイキ若しくは若干リッチ側とすることができ、NOx触媒4の
劣化判定の精度を向上させることができる。
In this way, by correcting the output value of the upstream air-fuel ratio sensor 5, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 can be stoichiometric or slightly rich, and the accuracy of the deterioration determination of the NOx catalyst 4 can be improved. Can be improved.

実施例に係る空燃比測定装置を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which the air-fuel ratio measuring apparatus which concerns on an Example is applied, and its exhaust system. 空燃比センサの概略構成図である。It is a schematic block diagram of an air fuel ratio sensor. 燃料添加時に本来上流側空燃比センサで検出される値、上流側センサの出力値、及び下流側センサの出力値の時間推移を示したタイムチャート図である。FIG. 5 is a time chart showing a time transition of a value originally detected by an upstream air-fuel ratio sensor at the time of fuel addition, an output value of an upstream sensor, and an output value of a downstream sensor. 酸化触媒の温度と空燃比センサのリーンずれの度合いとの関係を示した図である。It is the figure which showed the relationship between the temperature of an oxidation catalyst, and the degree of lean deviation of an air fuel ratio sensor. 燃料添加量を排気中の酸素量で除した値とリーンずれ度合いとの関係を示した図である。It is the figure which showed the relationship between the value which remove | divided the fuel addition amount with the oxygen amount in exhaust, and the lean shift | offset | difference degree.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 酸化触媒
4 吸蔵還元型NOx触媒
5 上流側空燃比センサ
6 排気温度センサ
7 下流側空燃比センサ
8 燃料添加弁
9 ECU
51 ハウジング
52 センサ素子
501 酸素イオン導電性固体電解質
502 内部電極
503 外部電極
504 拡散抵抗層
505 電気ヒータ
1 Internal combustion engine 2 Exhaust passage 3 Oxidation catalyst 4 NOx storage reduction catalyst 5 Upstream air-fuel ratio sensor 6 Exhaust temperature sensor 7 Downstream air-fuel ratio sensor 8 Fuel addition valve 9 ECU
51 housing 52 sensor element 501 oxygen ion conductive solid electrolyte 502 internal electrode 503 external electrode 504 diffusion resistance layer 505 electric heater

Claims (4)

NOx触媒よりも上流に設けられ、内燃機関の排気通路を流通する排気の空燃比を検出する空燃比検出手段と、
排気中の高分子HC濃度に関連する値に基づいて前記空燃比検出手段により検出された
空燃比を補正する空燃比補正手段と、
を備え
前記空燃比補正手段は、空燃比を低下させてNOx触媒の劣化判定を行うときに空燃比
を補正することを特徴とする空燃比測定装置。
An air-fuel ratio detecting means that is provided upstream of the NOx catalyst and detects the air-fuel ratio of the exhaust flowing through the exhaust passage of the internal combustion engine;
Air-fuel ratio correction means for correcting the air-fuel ratio detected by the air-fuel ratio detection means based on a value related to the polymer HC concentration in the exhaust;
Equipped with a,
The air-fuel ratio correction means reduces the air-fuel ratio and determines the deterioration of the NOx catalyst.
An air-fuel ratio measuring device and corrects a.
前記空燃比検出手段よりも上流の排気通路から燃料を添加する燃料添加手段をさらに備
え、前記空燃比補正手段は、前記燃料添加手段により排気中へ添加される燃料が多いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくすることを特徴とする請求項1に記載の空燃比測定装置。
The fuel addition means further adds fuel from an exhaust passage upstream of the air-fuel ratio detection means, and the air-fuel ratio correction means has a higher polymer HC concentration as the amount of fuel added into the exhaust by the fuel addition means increases. 2. The air-fuel ratio measuring apparatus according to claim 1, wherein a value for correcting the air-fuel ratio detected by the air-fuel ratio detecting means to be rich is increased.
前記空燃比検出手段よりも上流の排気通路に酸化機能を有する触媒と、前記酸化機能を
有する触媒の温度を検出する温度検出手段と、をさらに備え、前記空燃比補正手段は、前記温度検出手段により検出される温度が低いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくすることを特徴とする請求項1または2に記載の空燃比測定装置。
A catalyst having an oxidation function in an exhaust passage upstream of the air-fuel ratio detection means; and a temperature detection means for detecting a temperature of the catalyst having the oxidation function, wherein the air-fuel ratio correction means is the temperature detection means 3. The sky according to claim 1, wherein a value for correcting the air-fuel ratio detected by the air-fuel ratio detection means to a rich side is increased by assuming that the polymer HC concentration is higher as the temperature detected by Fuel ratio measuring device.
内燃機関の排気通路を流通する排気の空燃比を検出する空燃比検出手段と、
排気中の高分子HC濃度に関連する値に基づいて前記空燃比検出手段により検出された
空燃比を補正する空燃比補正手段と、
前記空燃比検出手段よりも上流の排気通路から燃料を添加する燃料添加手段と、
前記空燃比検出手段よりも上流の排気通路に設けられ酸化機能を有する触媒と、
前記酸化機能を有する触媒の温度を検出する温度検出手段と、
を備え、
前記空燃比補正手段は、
前記燃料添加手段により排気中へ添加される燃料が多いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくし、
前記温度検出手段により検出される温度が低いほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きくし、
排気中の酸素量が少ないほど高分子HC濃度が濃いとして前記空燃比検出手段により検出された空燃比をリッチ側へ補正する値を大きく
することを特徴とする空燃比測定装置。
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas flowing through the exhaust passage of the internal combustion engine;
Air-fuel ratio correction means for correcting the air-fuel ratio detected by the air-fuel ratio detection means based on a value related to the polymer HC concentration in the exhaust;
Fuel addition means for adding fuel from an exhaust passage upstream of the air-fuel ratio detection means ;
A catalyst provided in the exhaust passage upstream of the air-fuel ratio detection means and having an oxidation function;
Temperature detecting means for detecting the temperature of the catalyst having the oxidation function;
With
The air-fuel ratio correcting means includes
Increasing the amount of fuel added to the exhaust gas by the fuel addition means increases the value for correcting the air-fuel ratio detected by the air-fuel ratio detection means to the rich side as the polymer HC concentration is higher ,
The lower the temperature detected by the temperature detection means, the higher the value for correcting the air-fuel ratio detected by the air-fuel ratio detection means to the rich side as the polymer HC concentration is higher ,
The smaller the amount of oxygen in the exhaust, the higher the polymer HC concentration and the larger the value for correcting the air-fuel ratio detected by the air-fuel ratio detection means to the rich side.
An air-fuel ratio measuring apparatus.
JP2003382117A 2003-11-12 2003-11-12 Air-fuel ratio measuring device Expired - Fee Related JP4325368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382117A JP4325368B2 (en) 2003-11-12 2003-11-12 Air-fuel ratio measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382117A JP4325368B2 (en) 2003-11-12 2003-11-12 Air-fuel ratio measuring device

Publications (2)

Publication Number Publication Date
JP2005146900A JP2005146900A (en) 2005-06-09
JP4325368B2 true JP4325368B2 (en) 2009-09-02

Family

ID=34691274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382117A Expired - Fee Related JP4325368B2 (en) 2003-11-12 2003-11-12 Air-fuel ratio measuring device

Country Status (1)

Country Link
JP (1) JP4325368B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696760B2 (en) * 2005-07-29 2011-06-08 トヨタ自動車株式会社 Sensor characteristic calibration device
JP2007040130A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4811001B2 (en) * 2005-12-07 2011-11-09 トヨタ自動車株式会社 Exhaust gas sensor system
JP4894529B2 (en) * 2007-01-18 2012-03-14 トヨタ自動車株式会社 Catalyst degradation detector
JP5125298B2 (en) * 2007-08-03 2013-01-23 日産自動車株式会社 Fuel supply control device for internal combustion engine
JP2009221873A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP5157739B2 (en) * 2008-08-11 2013-03-06 日産自動車株式会社 Exhaust gas purification system and exhaust gas purification method using the same
JP5131255B2 (en) * 2009-08-05 2013-01-30 株式会社デンソー Air-fuel ratio detection device
US8707680B2 (en) * 2011-08-01 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
GB2504715A (en) * 2012-08-07 2014-02-12 Gm Global Tech Operations Inc Method of improving an O2 signal of an air/fuel ratio sensor in an exhaust system of an automotive internal combustion engine
JP5981819B2 (en) * 2012-09-25 2016-08-31 日本特殊陶業株式会社 Sensor

Also Published As

Publication number Publication date
JP2005146900A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
EP2061958B1 (en) Catalyst deterioration monitoring system and catalyst deterioration monitoring method
JP3333678B2 (en) Gas component sensor and catalyst diagnostic device
US7520274B2 (en) Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine
WO2014118889A1 (en) Control device for internal combustion engine
CN108691613B (en) Exhaust gas purification device for internal combustion engine
US6220017B1 (en) Exhaust emission control system for internal combustion engine
US7013214B2 (en) Air-fuel ratio feedback control apparatus and method for internal combustion engine
JP4325368B2 (en) Air-fuel ratio measuring device
JP6268976B2 (en) Control device for internal combustion engine
US7449092B2 (en) Dual mode oxygen sensor
CN109386354B (en) Exhaust gas purification device for internal combustion engine
JP2008255952A (en) Sulfur concentration detection device of internal combustion engine
JP4432515B2 (en) Exhaust gas purification device for internal combustion engine
US6918385B2 (en) Air-fuel ratio detecting apparatus of engine and method thereof
US8943799B2 (en) Control device for internal combustion engine
JP3609616B2 (en) Oxygen concentration detector
JP4894529B2 (en) Catalyst degradation detector
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
JP4360294B2 (en) Air-fuel ratio detection device
JP3046852B2 (en) Engine exhaust purification device
JP2007033394A (en) Sensor property calibration device
JP4214923B2 (en) Exhaust gas purification device for internal combustion engine
JPH06323185A (en) Air-fuel ratio control device
JP3608321B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004108373A (en) Emission gas concentration detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees