JP4325091B2 - Far infrared grain dryer - Google Patents

Far infrared grain dryer Download PDF

Info

Publication number
JP4325091B2
JP4325091B2 JP2000231794A JP2000231794A JP4325091B2 JP 4325091 B2 JP4325091 B2 JP 4325091B2 JP 2000231794 A JP2000231794 A JP 2000231794A JP 2000231794 A JP2000231794 A JP 2000231794A JP 4325091 B2 JP4325091 B2 JP 4325091B2
Authority
JP
Japan
Prior art keywords
far
grain
burner
infrared
infrared radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000231794A
Other languages
Japanese (ja)
Other versions
JP2002048470A (en
Inventor
▲れい▼二 小條
栄治 西野
正喜 是久
定和 藤岡
克典 河野
上原  崇
憲樹 能丸
正史 弓立
憲二 今城
正幸 近本
直樹 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2000231794A priority Critical patent/JP4325091B2/en
Publication of JP2002048470A publication Critical patent/JP2002048470A/en
Application granted granted Critical
Publication of JP4325091B2 publication Critical patent/JP4325091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、バーナから発生した熱風を遠赤外線放射体筒に供給し、遠赤外線放射体表面から発生する輻射熱を利用して穀粒を乾燥する遠赤外線穀粒乾燥機の運転制御方法に関する。
【0002】
【従来の技術】
前記遠赤外線穀粒乾燥機において、特開平10−288462号公報のごとく、遠赤外線放射体筒を乾燥室から流下した穀粒を下部搬送ラセンに供給する集穀室上部に配置したものと特許第3035473号公報のごとく、乾燥室に対向するように遠赤外線放射体筒を配置したものとがある。
【0003】
集穀室上部に遠赤外線放射体筒を配置した場合は、納品時の試験運転時や、シーズン前の点検運転時など、穀粒を張り込まない状態でバーナ他各装置が正常に動作するかどうかを調べる運転(以下これを試運転モードと呼ぶ)にあっては、バーナの燃焼量を任意に設定できるようにしておくと、設定値がバーナ燃焼量最大の場合などでは、輻射熱が遠赤外線放射体筒から集穀室壁面や下部搬送ラセンに熱伝達されるため集穀室壁面や下部搬送ラセンが熱膨張をおこし、集穀室壁面を形成する流下板が歪んだり、下部搬送ラセンが横方向にたわみ、運転を行うとたわみによる振動発生や下部搬送ラセンを支持するベアリングにスラスト荷重が発生するなどの不具合が生じる。
【0004】
また、乾燥室に対向するように遠赤外線放射体筒を配置した場合は乾燥室を構成する壁面が歪むという不具合が生じる。
【0005】
【発明が解決しようとする課題】
この様な不具合を解決するために、たとえば、特開平9−89453号公報では、穀粒が流下する集穀室に相当する穀物取出槽壁の内表面に反射板を設け、さらに反射板と集穀室外壁面に相当する流穀板との間に断熱材を内挿したり、下部搬送ラセン上部に輻射熱を遮る遮熱板を設ける例が示されている。しかし、前記方法はコストが上がるうえ、穀粒が乾燥機機内を循環流動し始めると前記下部搬送ラセン温度は穀粒温度にほぼ等しくなり、熱膨張による不具合も発生しないことから、乾燥運転が始まれば必要がないという欠点があった。また、試運転モードはバーナ他各装置が正常に動作するかどうかを確認するための運転であるから、不必要にバーナを燃焼して乾燥機各部を輻射熱で加熱するのは燃料の無駄になり乾燥機を傷める。
0006
【課題を解決するための手段】
【0007】
本発明はバーナからの熱風を遠赤外線放射体筒に供給し、この放射体筒の表面から発生する輻射熱を利用して乾燥する運転制御装置を設けた遠赤外線穀粒乾燥機において、穀粒を張り込まずにバーナ燃焼を行う運転にあってはバーナからの熱風が前記遠赤外線放射体筒に通気せず、乾燥運転にあってはバーナからの熱風が前記遠赤外線放射体筒に通気する切替手段を備えたことを特徴とする。
0008
【発明の作用】
【0009】
請求項1記載の発明においては、熱風は前記通気切替手段により前記遠赤外線放射体筒に通気されず機外へ排出され、通常の乾燥運転を行う場合は前記通気切替手段により熱風は前記遠赤外線放射体筒を通気し当該前記遠赤外線放射体筒を加熱する。これにより試運転モードにおいても、下部搬送ラセンや集穀室壁面が輻射熱により熱膨張することは無くなる。
【0010】
【発明の実施の形態】
次に請求項1記載の実施例を図面に従い詳述する。図1は本発明の遠赤外線穀粒乾燥機1の構成を示す正面全縦断面図であり、図2は側面全縦断面図を示す。
【0011】
本発明に係る遠赤外線穀粒乾燥機1は、循環型の穀粒を乾燥する乾燥装置であり、機枠2の内部には、貯留室3、乾燥室4,4、排風室5,5、熱風室6等を有しており、熱風室6側壁には穀粒を張り込むための張込ホッパ7を設けている。
【0012】
機枠2上部の貯留室3の天井部に排出漏斗8を有した上部搬送装置9を設け、内部の搬送ラセン10で天井部中央に配設した拡散装置11に穀粒を移送する構成である。乾燥室4,4はこの貯留室3下側において、左右一対に設けられ、穀粒を徐々に流下させながら熱風を通気させて乾燥すべく、排風室5と熱風室6との間に設けており、左右それぞれの乾燥室4,4はさらに排風室5,5の下部両側面を形成するごとく、上方を左右に分岐しており、下端をロータリバルブ12に開口している。これら乾燥室4,4の下部に設けたロータリバルブ12,12は、交互に正逆回転して一定量ずつ穀粒を繰り出し流下させるもので機体の長手方向に沿わせて回転自在に軸支している。またロータリバルブ12,12はその軸方向に溝状の受部13が形成されており、該ロータリバルブ12,12が回転して前記受部13が下方に位置したとき穀粒が落下するように構成されている。
【0013】
落下した穀粒は前記張込ホッパ7と機枠2下部に設けた下部搬送ラセン14との間に設けられて集穀室15を形成する流下板16,16上を薄い層状に滑り、下部搬送ラセン14に至る。さらに、下部搬送ラセン14に供給された穀粒は前記機枠2前側に配置した昇降機17に向けて移送され、終端側の戻し樋18を介して該昇降機17に移送され、再び、上部搬送装置9内部の搬送ラセン10で天井部中央の拡散装置11に移送され循環する構成である。昇降機17には当該昇降機内の穀粒をサンプリングして水分計測する水分計19を設けており、前記上部搬送装置9始端側の穀粒投出部近傍には穀粒の流れを検知する穀粒センサ20、前記熱風室内には熱風温度センサ21を設けている。
【0014】
熱風を吸引する吸引フアン22は吸引フアンモータ23により駆動され、下部搬送ラセン14、昇降機17、搬送ラセン10は、昇降機17に装着した昇降機モータ(図示省略)によって駆動され、ロータリバルブ12,12はロータリバルブモータ24により駆動される。
【0015】
遠赤外線放射体筒25は熱せられると遠赤外線を放射する塗料を表面に塗布した薄い鋼鈑で形成された円筒状で、機枠2中央に位置する前記熱風室6と前記集穀室15とによって構成される空間に前後方向に配置され、熱風室6内に設けた吊持機構26と機枠2前壁面とで固定されている。
【0016】
吊持機構26は機枠2の前後壁面に渡らせた桟27に遠赤外線放射体筒25に設けたブラケット28を係止する構造である。遠赤外線放射体筒25の口径は、この筒外周と前記下部搬送ラセン14との距離hを確保でき、前記乾燥室4,4壁面との距離mを確保できる程度の大きさで、一端は機枠2前壁面に開口し、他端は略機枠2後部まで伸長している。
【0017】
また、遠赤外線放射体筒25の後端部は該遠赤外線放射体筒25の口径よりも小さい口径の円筒で左右に分岐し、分岐した円筒25a,25aの先端は再び機枠2前方に伸長し、機枠2前壁面から機内側へ所定距離jの間隔を有し、開口部29を機枠2前壁面に対向している。
【0018】
図2はバーナ30を配置した場合を示し、バーナ30はその燃焼部31を機枠2前壁面に設けた前記遠赤外線放射体筒25の開口部32に内挿するよう配設し、前記遠赤外線放射体筒25と前記燃焼部31とは燃焼ガスが外気と混合されるように半径方向に所定距離dの隙間を有し、前後方向にも所定距離k移動できるように構成している。
【0019】
また、バーナ30は図3のように燃焼部31、燃焼空気供給フアン33、燃焼空気供給フアン用モータ34、点火装置35、電磁ポンプ36、および、電磁バルブ37から構成され、それぞれは、バーナ30上方に設けた運転制御装置38によって、試運転モード時ほか張込運転時、乾燥運転時、排出運転時ごとに制御される。
【0020】
運転制御装置38は、図4、図5のように張込運転、乾燥運転、排出運転ごとに作業を開始する作業別スイッチ39,40,41と停止スイッチ42、および設定条件を設定し記憶する手段とをそれぞれ有しており、前記バーナ30を作業ごとに制御するばかりでなく、前記穀粒センサ20や水分計19の入出力信号に応じて前記吸引フアンモータ23、ロータリバルブモータ24、昇降機モータ等を運転制御しており、その制御は運転制御装置38に設けた作業別スイッチ39,40,41いずれかを押すことによりあらかじめ設定されている記憶手段に基づいて自動的に行うようにプログラムしている。
【0021】
また、試運転モードの運転では前記作業別スイッチ41,42を2つ同時に押すことによって前記穀粒センサ20を強制的に不感知にして、穀粒を張り込まなくてもバーナ燃焼を行える制御に切り替わるようにしている。次に上記実施例の作用について説明する。
【0022】
遠赤外線穀粒乾燥機1は、このような構成において、運転制御装置38の作業別スイッチ41,42を同時に押すと穀粒センサ20入出力信号制御、水分計19のサンプリング制御をそれぞれ停止する。続いて、作業別スイッチ40を押すと、前記吸引フアンモータ23、ロータリバルブモータ24、昇降機モータが起動すると同時に、運転制御装置38は記憶手段にバーナ燃焼量最大と記憶されていてもバーナ燃焼量最少に自動設定を行い、電磁ポンプ36、電磁バルブ37が燃料流量を最少にするように制御を行う。
【0023】
バーナ30点火後、前記各モータの電流値を検出し、正常か否かのチェツクを行い、熱風温度センサ21と燃焼空気供給フアン用モータ34のパルス信号を検出してバーナ関係の異常はないかどうかを調べる。このとき、運転制御装置38は運転前の設定条件に関わらず最少の燃料流量でバーナ30を燃焼するよう制御するので遠赤外線放射体筒25の加熱が少ないため表面温度が上がらず、このため穀粒が循環していなくても前記下部搬送ラセン14や流下板16への輻射伝熱が小さいため、前記下部搬送ラセン14が熱膨張により横方向にたわみ、運転を行うとたわみによる振動発生や下部搬送ラセン14を支持するベアリングにスラスト荷重が発生したり、集穀室15壁面を形成する流下板16が歪むなどの不具合が発生することは無くなる。
【0024】
また、遠赤外線放射体筒25を加熱した熱風は機枠2前壁面から機内側へ所定距離jの間隔を有した円筒25a,25aの先端開口部29から排出され、熱風室6から乾燥室4,4を通り排風室5,5へ吸引され機外へ排出される。図6,図7は請求項2記載の実施例を示す。すなわち、図6は前記遠赤外線放射体筒25を前後方向略中央で25cと25dに二分割し、試運転モードの運転を行った場合は、分割された前記前側の遠赤外線放射体筒25cを自動的に移動モータ(図示省略)により機枠2後方へ移動させるというものである(図6(2))。
【0025】
一方を前記移動モータに連結し、他端を機枠2後側で回転自在に軸支したシャフト43を機枠2前後方向に張架し、該シャフト43の一部にはリードの大きな外ネジを設け、前記遠赤外線放射体筒25cには前記外ネジと螺合する内ネジを設けたスリーブ44を固着し、前記移動モータを回転するとシャフト43が回転し、この回転によりスリーブ44がシャフト43の外ネジに沿って摺動するよう構成している。
【0026】
これにより、運転制御装置38により前記試運転モードを選定、起動すると、前記移動モータが作動し前記遠赤外線放射体筒25cが機体後方へ移動し、バーナ30によって発生した熱風は遠赤外線放射体筒25c,25dを通気、加熱することなく、熱風室6から乾燥室4,4を通り排風室4,4へと吸引され機外に排出される。このため、前記下部搬送ラセン14が熱膨張により横方向にたわみ、運転を行うとたわみによる振動発生や下部搬送ラセン14を支持するベアリングにスラスト荷重が発生したり、集穀室15壁面を形成する流下板16が歪むなどの不具合が発生することは無くなり、バーナ30他各装置に異常はないかどうかを調べることができる。
【0027】
図7は遠赤外線放射体筒27のバーナ30側上面に開口部45を設け、該開口部45を覆う蓋46を前記遠赤外線放射体筒25内に一端をヒンジ47で固定し、該蓋46に設けたアーム48をモータ49に連結したロッド50で回動するよう構成し、試運転モードを選定、起動すると、モータ49によりロッド50とアーム48を介して、前記蓋46が前記遠赤外線放射体筒25内を塞ぎ、バーナ30の熱風は、前記蓋46により、前記遠赤外線放射体筒25の開口部45から上方に排出し、バーナ30によって発生した熱風は遠赤外線放射体筒25を通気、加熱しない。
【0028】
また、図8は遠赤外線を利用した穀粒乾燥機に使用するロータリバルブ12の改良に関するものであり、前記ロータリバルブ12は、交互に正逆回転して、その軸方向に溝状に形成した受部13により一定量ずつ穀粒を繰り出し流下させるもので機体の長手方向に沿わせて回転自在に軸支しており、前記受部13が下方に位置したとき穀粒が落下するように構成されている。
【0029】
ところで、このままの構成であると、前記受部13が下方に回転するにつれて穀粒はその安息角(θ)に従い徐々に落下するため、穀粒は流下板16上において広い落下分布wを示す(図8(2),(3))。穀粒はこの流下板16上を薄い層を為して滑り落ちる間に、遠赤外線放射体筒25による輻射熱を受けて乾燥するため、上記のように広い落下分布では伝熱量が落下場所ごとに異なることを示し、乾燥の均一化を図れない。そこで、本考案は前記ロータリバルブ12から落下する穀粒が流下板16上で狭い分布をするようにし、これにより乾燥の均一化を図ろうとするものである。そのため、下方を所定間隔uの孔部と成し、上方を前記ロータリバルブ12の略下側半分を覆うように設けてなる穀粒落下受部51をロータリバルブ12の下方に設けたことを特徴としている。
【0030】
これにより、ロータリバルブ12から徐々に落下する穀粒は一旦穀粒落下受部51に集まり、下方の孔部uから流下板16に落下することになり、遠赤外線放射体筒25による輻射伝熱量がどの穀粒においてもほぼ同一になり、乾燥の均一化が図れる。
【0031】
【発明の効果】
本発明によれば、バーナ30からの熱風を遠赤外線放射体筒25に供給し、この遠赤外線放射体筒25の表面から発生する輻射熱を利用して乾燥する運転制御装置38を設けた遠赤外線穀粒乾燥機1において、納品時の試験運転の場合や、シーズン前の点検運転の場合など、穀粒を張り込まない状態でバーナ30他各装置が正常に動作するかどうかを調べる運転にあっては、バーナ30が遠赤外線放射体筒25を高温に加熱することがないため、下部搬送ラセン14や集穀室15壁面あるいは乾燥室4,4壁面への輻射伝熱量が少なくなる。よって各壁面が熱膨張を来たし歪んだり、下部搬送ラセン25では横方向にたわみ、このたわみによる振動発生や下部搬送ラセンを支持するベアリングにスラスト荷重が発生するなどの不具合が発生することを防止できる。また、安価に製作でき、燃料を使用しない分省エネになる効果をもたらす。
【図面の簡単な説明】
【図1】 遠赤外線穀粒乾燥機の構成を示す正面全縦断面図。
【図2】 遠赤外線穀粒乾燥機の構成を示す側面全縦断面図。
【図3】 バーナ断面図。
【図4】 運転制御装置。
【図5】 運転制御装置構成図。
【図6】 本発明に係る他の実施例。
【図7】 本発明に係る他の実施例。
【図8】 本発明に係る穀粒落下受部。
【符号の説明】
1…遠赤外線穀粒乾燥機
2…機枠
3…貯留室
4…乾燥室
5…排風室
6…熱風室
7…張込ホッパ
8…排出漏斗
9…上部搬送装置
10…搬送ラセン
11…拡散装置
12…ロータリバルブ
13…受部
14…下部搬送ラセン
15…集穀室
16…流下板
17…昇降機
18…戻し樋
19…水分計
20…穀流センサ
21…熱風温度センサ
22…吸引ファン
23…吸引ファンモータ
24…ロータリバルブモータ
25,25a,25b,25c,25d…遠赤外線放射体筒
26…吊持機構
27…桟
28…ブラケット
29…開口部
30…バーナ
31…燃焼部
32…開口部
33…燃焼空気供給フアン
34…燃焼空気供給フアン用モータ
35…点火装置
36…電磁ポンプ
37…電磁バルブ
38…運転制御装置
39,40,41,42…作業別スイッチ
43…シャフト
44…スリーブ
45…開口部
46…蓋
47…ヒンジ
48…アーム
49…モータ
50…ロッド
51…穀流落下受部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the operation of a far-infrared grain dryer that supplies hot air generated from a burner to a far-infrared radiator cylinder and dries the grain using radiant heat generated from the surface of the far-infrared radiator.
[0002]
[Prior art]
In the far-infrared grain dryer, as disclosed in Japanese Patent Laid-Open No. 10-288462, the far-infrared radiator cylinder is arranged in the upper part of the grain collection room for supplying the grain that has flowed down from the drying room to the lower transport spiral. As described in Japanese Patent No. 3035473, there is one in which a far-infrared radiator cylinder is arranged so as to face the drying chamber.
[0003]
If a far-infrared radiator cylinder is placed in the upper part of the cereal collection room, whether the burner and other devices operate normally with no grain stuck, such as during test operation at the time of delivery or inspection operation before the season In the operation to check whether the burner combustion amount can be set arbitrarily (hereinafter referred to as the test operation mode), if the set value is the maximum burner combustion amount, etc., the radiant heat will radiate far infrared radiation. Because heat is transferred from the cylinder to the wall of the cereal chamber and the lower conveyor spiral, the wall of the cereal chamber and the lower conveyor spiral undergo thermal expansion, the falling plate that forms the wall of the cereal chamber is distorted, and the lower conveyor spiral is lateral When the operation is performed, problems such as the generation of vibration due to the deflection and the generation of a thrust load on the bearing supporting the lower conveyance spiral occur.
[0004]
In addition, when the far-infrared radiator cylinder is arranged so as to face the drying chamber, there arises a problem that the wall surface constituting the drying chamber is distorted.
[0005]
[Problems to be solved by the invention]
In order to solve such problems, for example, in Japanese Patent Laid-Open No. 9-89453, a reflector is provided on the inner surface of a grain take-out tank wall corresponding to a grain collection chamber in which grains flow down, and the reflector and the collector are further collected. An example is shown in which a heat insulating material is inserted between a cereal plate corresponding to the outer wall surface of the cereal chamber and a heat shield plate is provided on the upper part of the lower conveying spiral to block radiant heat. However, this method increases the cost, and when the grain begins to circulate and flow in the dryer, the lower conveying spiral temperature becomes almost equal to the grain temperature, and there is no problem due to thermal expansion. There was a disadvantage that it was not necessary. In addition, since the trial operation mode is an operation for confirming whether the burner and other devices operate normally, it is unnecessary to burn the burner and heat each part of the dryer with radiant heat. Damage the machine.
[ 0006 ]
[Means for Solving the Problems]
[0007]
The present invention supplies hot air from a burner to a far-infrared radiator cylinder, and in a far-infrared grain dryer provided with an operation control device for drying using radiant heat generated from the surface of the radiator cylinder, In operation where burner combustion is performed without sticking, hot air from the burner does not flow through the far infrared radiator cylinder, and in dry operation, hot air from the burner is switched through the far infrared radiator cylinder Means are provided.
[ 0008 ]
[Effects of the Invention]
[0009]
In the first aspect of the present invention , the hot air is not vented to the far-infrared radiator cylinder by the ventilation switching means and is discharged outside the apparatus, and when performing normal drying operation, the hot air is emitted from the far-infrared by the ventilation switching means. The radiator tube is ventilated and the far-infrared radiator tube is heated. Thereby, even in the trial operation mode, the lower transport spiral and the wall of the cereal collection chamber are not thermally expanded by radiant heat.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front full longitudinal sectional view showing a configuration of a far infrared grain dryer 1 of the present invention, and FIG. 2 is a side full vertical sectional view.
[0011]
A far-infrared grain dryer 1 according to the present invention is a drying device that dries a circulation type grain, and a storage chamber 3, drying chambers 4, 4, and exhaust air chambers 5, 5 are provided inside the machine frame 2. The hot air chamber 6 and the like are provided, and a hot hopper 7 for sticking grains is provided on the side wall of the hot air chamber 6.
[0012]
An upper transport device 9 having a discharge funnel 8 is provided in the ceiling portion of the storage chamber 3 above the machine frame 2, and the grains are transferred to a diffusion device 11 disposed in the center of the ceiling portion by an internal transport spiral 10. . The drying chambers 4 and 4 are provided on the lower side of the storage chamber 3 as a pair on the left and right sides, and are provided between the exhaust air chamber 5 and the hot air chamber 6 in order to ventilate the hot air while gradually flowing down the grains and dry it. Each of the left and right drying chambers 4, 4 further branches to the left and right so as to form both lower side surfaces of the exhaust chambers 5, 5, and the lower end is opened to the rotary valve 12. The rotary valves 12 and 12 provided below the drying chambers 4 and 4 rotate forward and backward alternately to feed out and flow down the grains by a fixed amount, and are rotatably supported along the longitudinal direction of the machine body. ing. Further, the rotary valves 12 and 12 are formed with groove-shaped receiving portions 13 in the axial direction so that the grains fall when the rotary valves 12 and 12 are rotated and the receiving portions 13 are positioned below. It is configured.
[0013]
The fallen grain slides in a thin layer on the falling plates 16, 16 that are provided between the tension hopper 7 and the lower conveying spiral 14 provided at the lower part of the machine frame 2 to form the collecting room 15, and are conveyed in the lower part. To spiral 14 Further, the grain supplied to the lower conveying spiral 14 is transferred toward the elevator 17 disposed on the front side of the machine frame 2 and is transferred to the elevator 17 via the return rod 18 on the terminal side, and again the upper conveying device. 9 is configured to be transported and circulated to the diffusion device 11 in the center of the ceiling by the transport spiral 10 inside. The elevator 17 is provided with a moisture meter 19 that samples the grains in the elevator and measures moisture, and a grain that detects the flow of the grains in the vicinity of the grain outlet on the start side of the upper conveying device 9. A hot air temperature sensor 21 is provided in the sensor 20 and the hot air chamber.
[0014]
The suction fan 22 for sucking hot air is driven by a suction fan motor 23, the lower transport spiral 14, the elevator 17 and the transport spiral 10 are driven by an elevator motor (not shown) mounted on the elevator 17, and the rotary valves 12, 12 are It is driven by a rotary valve motor 24.
[0015]
The far-infrared radiator cylinder 25 has a cylindrical shape formed of a thin steel plate coated with a paint that emits far-infrared rays when heated, and the hot air chamber 6 and the cereal collecting chamber 15 located in the center of the machine frame 2. It is arrange | positioned in the space comprised by these in the front-back direction, and is being fixed with the suspension mechanism 26 provided in the hot air chamber 6, and the machine frame 2 front wall surface.
[0016]
The suspension mechanism 26 has a structure in which a bracket 28 provided on the far-infrared radiator cylinder 25 is locked to a crosspiece 27 that extends across the front and rear wall surfaces of the machine frame 2. The diameter of the far-infrared radiator cylinder 25 is large enough to secure a distance h between the outer circumference of the cylinder and the lower conveying spiral 14 and to secure a distance m between the drying chambers 4 and 4 and one end of the cylinder. It opens to the front wall surface of the frame 2, and the other end extends substantially to the rear part of the machine frame 2.
[0017]
Further, the rear end portion of the far-infrared radiator cylinder 25 is branched to the left and right by a cylinder having a diameter smaller than that of the far-infrared radiator cylinder 25, and the tips of the branched cylinders 25a and 25a again extend forward in the machine frame 2. The opening 29 is opposed to the front wall surface of the machine frame 2 with a predetermined distance j from the front wall surface of the machine frame 2 to the inside of the machine.
[0018]
FIG. 2 shows a case where a burner 30 is disposed. The burner 30 is disposed so that its combustion part 31 is inserted into an opening 32 of the far-infrared radiator cylinder 25 provided on the front wall surface of the machine frame 2. The infrared radiator cylinder 25 and the combustor 31 have a gap of a predetermined distance d in the radial direction so that the combustion gas is mixed with the outside air, and are configured to move by a predetermined distance k in the front-rear direction.
[0019]
Further, as shown in FIG. 3, the burner 30 includes a combustion section 31, a combustion air supply fan 33, a combustion air supply fan motor 34, an ignition device 35, an electromagnetic pump 36, and an electromagnetic valve 37. The operation control device 38 provided above controls the test operation mode, the tension operation, the drying operation, and the discharge operation.
[0020]
The operation control device 38 sets and stores work-specific switches 39, 40, and 41 and a stop switch 42 that start work for each of the tension operation, the drying operation, and the discharge operation as shown in FIGS. Each means, and not only controls the burner 30 for each work, but also the suction fan motor 23, rotary valve motor 24, elevator, according to the input / output signals of the grain sensor 20 and moisture meter 19. The motor is controlled to operate, and the program is automatically executed based on the preset storage means by pressing any of the work-specific switches 39, 40, 41 provided in the operation control device 38. is doing.
[0021]
Further, in the operation in the trial operation mode, the grain sensor 20 is forcibly made insensitive by simultaneously pressing the two work-specific switches 41 and 42, and the control is switched to the burner combustion without inserting the grain. I am doing so. Next, the operation of the above embodiment will be described.
[0022]
In such a configuration, the far-infrared grain dryer 1 stops the grain sensor 20 input / output signal control and the sampling control of the moisture meter 19 when the work-specific switches 41 and 42 of the operation control device 38 are pressed simultaneously. Subsequently, when the work-specific switch 40 is pressed, the suction fan motor 23, the rotary valve motor 24, and the elevator motor are started. At the same time, the operation control device 38 can burn the burner combustion amount even if the burner combustion amount is stored in the storage means. The automatic setting is performed to the minimum, and the electromagnetic pump 36 and the electromagnetic valve 37 are controlled to minimize the fuel flow rate.
[0023]
After the burner 30 is ignited, the current values of the motors are detected to check whether or not they are normal, and the pulse signals of the hot air temperature sensor 21 and the combustion air supply fan motor 34 are detected to check whether there is any abnormality related to the burner. Find out. At this time, since the operation control device 38 controls the burner 30 to burn with the minimum fuel flow rate regardless of the setting conditions before operation, the surface temperature does not rise because the far-infrared radiator cylinder 25 is less heated, and therefore the grain Even if the particles are not circulating, since the radiant heat transfer to the lower conveying spiral 14 and the falling plate 16 is small, the lower conveying spiral 14 bends in the lateral direction due to thermal expansion, and when the operation is performed, vibration caused by the deflection or lower There is no possibility that a thrust load is generated in the bearing that supports the conveying spiral 14 or that the falling plate 16 that forms the wall surface of the grain collection chamber 15 is distorted.
[0024]
The hot air heated from the far-infrared radiator cylinder 25 is discharged from the front opening 29 of the cylinders 25a and 25a having a predetermined distance j from the front wall surface of the machine frame 2 to the inside of the machine frame 2, and from the hot air chamber 6 to the drying chamber 4. , 4 are sucked into the exhaust chambers 5 and 5 and discharged outside the machine. 6 and 7 show an embodiment as claimed in claim 2. That is, FIG. 6 shows that when the far-infrared radiator cylinder 25 is divided into 25c and 25d at approximately the center in the front-rear direction, and the front-side far-infrared radiator cylinder 25c is automatically operated in the trial operation mode. In other words, it is moved rearward of the machine casing 2 by a moving motor (not shown) (FIG. 6 (2)).
[0025]
A shaft 43 having one end connected to the moving motor and the other end rotatably supported on the rear side of the machine frame 2 is stretched in the front-rear direction of the machine frame 2, and a part of the shaft 43 has an external screw with a large lead. A sleeve 44 provided with an inner screw that engages with the outer screw is fixed to the far-infrared radiator cylinder 25c. When the moving motor is rotated, the shaft 43 rotates. It is configured to slide along the outer screw.
[0026]
As a result, when the test operation mode is selected and activated by the operation control device 38, the moving motor operates to move the far-infrared radiator cylinder 25c to the rear of the machine body, and the hot air generated by the burner 30 is the far-infrared radiator cylinder 25c. , 25d are sucked from the hot air chamber 6 through the drying chambers 4 and 4 to the exhaust air chambers 4 and 4 without being ventilated and heated, and discharged outside the apparatus. For this reason, the lower conveyance spiral 14 bends in the lateral direction due to thermal expansion, and when the operation is performed, vibration is generated by the deflection, a thrust load is generated on the bearing supporting the lower conveyance spiral 14, and a wall surface of the grain collection chamber 15 is formed. Problems such as distortion of the flow-down plate 16 do not occur, and it is possible to check whether there is any abnormality in the burner 30 and other devices.
[0027]
In FIG. 7, an opening 45 is provided on the upper surface of the far-infrared radiator cylinder 27 on the burner 30 side, a lid 46 covering the opening 45 is fixed in the far-infrared radiator cylinder 25 with a hinge 47, and the lid 46 When the trial operation mode is selected and activated, the lid 46 is moved by the motor 49 via the rod 50 and the arm 48 and the far-infrared radiator is configured. The inside of the cylinder 25 is closed, and the hot air of the burner 30 is discharged upward from the opening 45 of the far-infrared radiator cylinder 25 by the lid 46, and the hot air generated by the burner 30 vents the far-infrared radiator cylinder 25, Do not heat.
[0028]
FIG. 8 relates to the improvement of the rotary valve 12 used in the grain dryer using far-infrared rays, and the rotary valve 12 is alternately rotated forward and backward to form a groove shape in its axial direction. The receiving part 13 feeds and flows down the grain by a fixed amount and is rotatably supported along the longitudinal direction of the machine body so that the grain falls when the receiving part 13 is positioned below. Has been.
[0029]
By the way, if it is the structure as it is, since the grain will fall gradually according to the angle of repose ((theta)) as the said receiving part 13 rotates below, a grain shows the wide fall distribution w on the falling plate 16 ( FIG. 8 (2), (3)). Since the grains are dried by receiving the radiation heat from the far-infrared radiator cylinder 25 while sliding down on the falling plate 16 in a thin layer, the amount of heat transfer varies depending on the location of the fall in the wide fall distribution as described above. This means that drying cannot be made uniform. Therefore, the present invention is intended to make the grains falling from the rotary valve 12 have a narrow distribution on the flow-down plate 16, thereby achieving uniform drying. Therefore, a grain drop receiving portion 51 is provided below the rotary valve 12, the lower portion being formed with holes of a predetermined interval u and the upper portion being provided so as to cover the substantially lower half of the rotary valve 12. It is said.
[0030]
As a result, the grains gradually falling from the rotary valve 12 gather once in the grain drop receiving portion 51 and fall to the falling plate 16 from the lower hole u, and the amount of radiant heat transferred by the far-infrared radiator cylinder 25. However, it is almost the same in any grain, and drying can be made uniform.
[0031]
【The invention's effect】
According to the present invention, far-infrared radiation is provided with an operation control device 38 for supplying hot air from the burner 30 to the far-infrared radiator cylinder 25 and drying using radiant heat generated from the surface of the far-infrared radiator cylinder 25. In the grain dryer 1, there is an operation for checking whether the burner 30 and other devices normally operate in a state in which the grain is not stuck, such as a test operation at the time of delivery or a check operation before the season. Thus, since the burner 30 does not heat the far-infrared radiator cylinder 25 to a high temperature, the amount of radiant heat transferred to the lower transport spiral 14, the cereal collection room 15 wall surface, or the drying room 4, 4 wall surface is reduced. Therefore, it is possible to prevent the occurrence of problems such as thermal expansion and distortion of each wall surface, deflection in the lateral direction in the lower conveyance spiral 25, generation of vibration due to this deflection, and generation of thrust load on the bearing supporting the lower conveyance spiral. . In addition, it can be manufactured at low cost and has the effect of saving energy by not using fuel.
[Brief description of the drawings]
FIG. 1 is a front full longitudinal sectional view showing a configuration of a far-infrared grain dryer.
FIG. 2 is a full side sectional view showing the configuration of a far-infrared grain dryer.
FIG. 3 is a cross-sectional view of a burner.
FIG. 4 is an operation control device.
FIG. 5 is a configuration diagram of an operation control device.
FIG. 6 shows another embodiment according to the present invention.
FIG. 7 shows another embodiment according to the present invention.
FIG. 8 is a grain dropping receptacle according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Far-infrared grain dryer 2 ... Machine frame 3 ... Storage chamber 4 ... Drying chamber 5 ... Exhaust chamber 6 ... Hot air chamber 7 ... Stretch hopper 8 ... Discharge funnel 9 ... Upper conveyance apparatus 10 ... Conveyance spiral 11 ... Diffusion Device 12 ... Rotary valve 13 ... Receiving part 14 ... Lower conveying spiral 15 ... Grain collection room 16 ... Flowing plate 17 ... Elevator 18 ... Return rod 19 ... Moisture meter 20 ... Grain flow sensor 21 ... Hot air temperature sensor 22 ... Suction fan 23 ... Suction fan motor 24 ... rotary valve motors 25, 25a, 25b, 25c, 25d ... far-infrared radiator cylinder 26 ... suspension mechanism 27 ... bar 28 ... bracket 29 ... opening 30 ... burner 31 ... combustion part 32 ... opening 33 ... Combustion air supply fan 34 ... Combustion air supply fan motor 35 ... Ignition device 36 ... Electromagnetic pump 37 ... Electromagnetic valve 38 ... Operation control devices 39, 40, 41, 42 ... Switch by operation 43 ... Shaft 4 ... sleeve 45 ... opening 46 ... lid 47 ... hinge 48 ... arm 49 ... motor 50 ... rod 51 ... Kokuryu falling receiving

Claims (1)

バーナからの熱風を遠赤外線放射体筒に供給し、この放射体筒の表面から発生する輻射熱を利用して乾燥する運転制御装置を設けた遠赤外線穀粒乾燥機において、穀粒を張り込まずにバーナ燃焼を行う運転にあってはバーナからの熱風が前記遠赤外線放射体筒に通気せず、乾燥運転にあってはバーナからの熱風が前記遠赤外線放射体筒に通気する切替手段を備えたことを特徴とする遠赤外線穀粒乾燥機。  In the far-infrared grain dryer provided with an operation control device that supplies hot air from the burner to the far-infrared radiator cylinder and uses the radiant heat generated from the surface of this radiator cylinder to dry the grain In the operation in which the burner combustion is performed, there is provided switching means for preventing the hot air from the burner from passing through the far-infrared radiator cylinder, and in the drying operation, allowing hot air from the burner to pass through the far-infrared radiator cylinder. A far-infrared grain dryer characterized by that.
JP2000231794A 2000-07-31 2000-07-31 Far infrared grain dryer Expired - Fee Related JP4325091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231794A JP4325091B2 (en) 2000-07-31 2000-07-31 Far infrared grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231794A JP4325091B2 (en) 2000-07-31 2000-07-31 Far infrared grain dryer

Publications (2)

Publication Number Publication Date
JP2002048470A JP2002048470A (en) 2002-02-15
JP4325091B2 true JP4325091B2 (en) 2009-09-02

Family

ID=18724573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231794A Expired - Fee Related JP4325091B2 (en) 2000-07-31 2000-07-31 Far infrared grain dryer

Country Status (1)

Country Link
JP (1) JP4325091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435141B2 (en) 2019-10-25 2022-09-06 William J. Wood Radiant conveyor drying system and method

Also Published As

Publication number Publication date
JP2002048470A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP2008032357A (en) Wood fuel combustion device
JP4325091B2 (en) Far infrared grain dryer
KR100673587B1 (en) Drying system
JP5793933B2 (en) Grain dryer
JP2005315496A (en) Far-infrared grain drier
CN113639534A (en) Agricultural product dryer with uniform air supply and drying method thereof
JP2012225625A5 (en)
JP4374733B2 (en) Grain dryer
JP3870850B2 (en) Grain dryer
JP2008045865A (en) Grain dryer
JP3168734B2 (en) Hot air / exhaust air temperature sensor mounting device for grain dryer
JP2006234333A (en) Circulation type grain drier
JP2006234333A5 (en)
JP3330914B2 (en) Grain far-infrared dryer
JP2973538B2 (en) Hot air guide for grain dryer
JPH03113284A (en) Dry control system for grain dryer
JPH01200185A (en) Dryness control device for grain drier of circulation type
JP2003247778A (en) Grain collecting chamber structure of grain dryer
JP3316954B2 (en) Grain dryer combustion equipment
JP4019657B2 (en) Far infrared grain dryer
JP2000329465A (en) Controlling method of operation of far infrared grain drying apparatus
JPH0633345Y2 (en) Grain draft dryer
JP5793934B2 (en) Grain dryer
JP2005009732A (en) Grain far-infrared dryer
JPH07103652A (en) Combustion device for crop particle drying machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150619

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees