JP4321105B2 - Polylactic acid film - Google Patents

Polylactic acid film Download PDF

Info

Publication number
JP4321105B2
JP4321105B2 JP2003131285A JP2003131285A JP4321105B2 JP 4321105 B2 JP4321105 B2 JP 4321105B2 JP 2003131285 A JP2003131285 A JP 2003131285A JP 2003131285 A JP2003131285 A JP 2003131285A JP 4321105 B2 JP4321105 B2 JP 4321105B2
Authority
JP
Japan
Prior art keywords
film
polylactic acid
range
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003131285A
Other languages
Japanese (ja)
Other versions
JP2004331860A (en
JP2004331860A5 (en
Inventor
延久 山根
崇志 吉田
政之 新沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003131285A priority Critical patent/JP4321105B2/en
Publication of JP2004331860A publication Critical patent/JP2004331860A/en
Publication of JP2004331860A5 publication Critical patent/JP2004331860A5/ja
Application granted granted Critical
Publication of JP4321105B2 publication Critical patent/JP4321105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐スクラッチ性の良好なポリ乳酸系フィルムに関するものである。さらに詳しくは紙、フィルム、金属等の素材からなる印刷物表面にラミネートして用いるのに好適であり、たとえば本、雑誌などの出版物、化粧品、菓子、玩具、スポーツ用品等の包装箱等、家具、建材、電化製品等の表層に好ましく用いることができる。本発明のポリ乳酸系フィルムは、貼り合わせたフィルム面が擦れた際にもフィルム表面に傷がつきにくいといった特徴を有する。
【0002】
【従来の技術】
従来から、印刷物にフィルムをラミネートしたプリントラミ用途には、ポリオレフィン系フィルム、ポリエステル系フィルムなどが用いられているが、近年、環境意識の高まりから非石油原料素材、生分解性素材などが注目されており、プリントラミ用にもポリ乳酸系フィルムが用いた例が見られるようになった。
【0003】
たとえば、特許文献1には、ゴルフボール用包装箱に、ポリ乳酸系フィルムが貼り合わせて用いられた例が示されている。この包装箱には内容物が外から見えるよう窓があけられ、窓部分にはポリ乳酸系フィルムが用いられたものである。この文献では、ゴルフボールが輸送中に、ある程度中箱内で動くために、窓に貼り付けたフィルムに当たってフィルムを傷つけるという問題があり、ポリエチレン、ポリプロピレンに代わってポリ乳酸フィルムを用いた場合には箱の窓部分に傷や折れ目が入らないという効果を例示している。確かにこの文献が示すゴルフボールとフィルムとの擦れによる傷に対しては従来のポリ乳酸系フィルムで有効であるが、本発明の目的であるフィルムとフィルムが面で接触して擦れあい、傷が発生するという問題点を解消するには不十分であった。
【0004】
ポリ乳酸フィルム表面の傷発生を抑制した例としては、特許文献2,3が挙げられる。これらの例ではポリ乳酸等のポリエステルフィルムの表面粗さ等を特定の範囲とすることによって、フィルムの製造工程、離型層形成時等の加工時にフィルムに傷が発生したり、削れるなどの問題点を解消したものである。これらの例では摩擦係数を考慮していないため、本発明の課題の耐スクラッチ性の改善には不十分なものであった。
【0005】
また、特許文献4には、フィルムの製造工程などでフィルムを巻き取る際の皺発生を抑制する目的でポリ乳酸にアンチブロッキング剤を特定量添加した例が示されている。この例では、本発明の目的である耐スクラッチ性を十分改良できる具体的な例はなく、さらにはそのための具体的な手法についての記載はない。
【0006】
特許文献5は、フィルム加工時のハンドリング性を良くする目的で、紙とポリ乳酸系フィルムの滑り性、フィルムの表面固有比抵抗を所定の範囲内にすることについて開示している。具体的な達成手段としては、帯電防止剤をインラインコーティングする手法が挙げられているが、本発明の課題である耐スクラッチ性解決には不十分であり、特許文献5は本発明とは目的・手段が異なるだけでなく、本発明の意図する耐スクラッチ性を改善する手段について十分な開示がなされたものではなかった。
【0007】
また、従来のプリントラミ用途向けポリプロピレンフィルムで耐スクラッチ性改善のために添加される有機滑剤としては、たとえばステアリン酸モノジグリセライドなどがその代表例として挙げられるが、本願発明の目的を達するに十分な効果を得ることができないものであった。
【0008】
【特許文献1】
特開2001−192023号公報
【0009】
【特許文献2】
特開2001−323079号公報
【0010】
【特許文献3】
特開2001−310313号公報
【0011】
【特許文献4】
特開2002−146064号公報
【0012】
【特許文献5】
特開2003−25427号公報
【0013】
【発明が解決しようとする課題】
本発明の目的は、上記した従来技術の問題点を解消することにあり、耐スクラッチ性の良好なポリ乳酸系フィルムを提供することにある。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するため、次の構成を有する。すなわち、S面を形成する層(A層)にアミド系有機滑剤を0.3〜0.5重量%含有し、フィルム中に無機粒子を0.01〜1重量%含有し、少なくとも片面(S面)同士の静摩擦係数が0.05〜0.4の範囲であり、かつS面の表面粗さRaが15〜300nmの範囲であり、かつヘイズが%以下であり、かつS面の光沢度が120〜180%の範囲であり、かつ少なくともフィルムの長手方向または幅方向のいずれか一方向の破断伸度が100〜300%の範囲のポリ乳酸系フィルムである。
【0015】
【発明の実施の形態】
本発明のポリ乳酸系フィルムにおいて用いられるポリ乳酸系樹脂としては、ポリ乳酸またはL−乳酸、D−乳酸などの乳酸からなる重合体、あるいは他のヒドロキシカルボン酸との共重合体が挙げられる。他のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ビドロキシカプロン酸などが代表的に挙げられる。ポリ乳酸系樹脂は単独で用いても良いが、2種類以上の混合物であってもかまわない。
【0016】
高い耐熱性と透明性を発現する上で、また抗菌性、防かび性などの衛生性の点からも、本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂全体に対し、乳酸またはL−乳酸、D−乳酸などの乳酸からなる重合体の割合が90モル%以上であることが好ましく、特に物性の長期安定性を有する点、耐ブロッキング特性を良好とする面からは、なかでもL−乳酸の割合が95モル%以上であることが好ましい。
【0017】
また、本発明においては、ポリ乳酸系フィルムの融点が150℃以上であることが好ましい。特に印刷物へのラミネート加工などの加工適正を良好とするためには、ポリ乳酸系フィルムの融点はさらに好ましくは160℃以上であり、特に好ましくは165℃以上である。融点が低温であると耐熱性が悪く、加工時の乾燥工程などでシワが発生したりするなどの問題が発生するためである。なお、融点は特に上限はないが、好ましくは300℃以下である。
【0018】
本発明のポリ乳酸系フィルムは、少なくともS面同士(S面/S面)の静摩擦係数が0.05〜0.4の範囲であることが必要である。ここで、「S面」とは、フィルムを印刷物等に貼り合わせた際に、接着面とは反対側の表層となる側の面のことをいう。ラミネート加工時や本などに加工され積み重ねられた際には、表面のS面同士が擦れあうが、静摩擦係数がこの範囲を越えると滑りが悪いために表面に傷が付きやすく、またこの範囲未満であると取り扱い性が悪く、たとえば製品を重ねた際に荷崩れの原因となるなどのため、いずれの場合も特にプリントラミ用途にした場合には不適当である。上記静摩擦係数の範囲は、好ましくは0.05〜0.35の範囲であり、特に好ましくは0.05〜0.3の範囲である。
【0019】
さらに、S面の表面粗さRaは15〜300nmの範囲であることが必要である。上記下限値未満では、表面の粗さが不十分であり、表面の接触面積が大きくなるため、擦れた際の傷発生が顕著となる。逆に上記上限値よりも大きいと、表面の突起起因の傷発生や粒子の脱落等による傷発生が顕著となるため本発明の目的を達成することができない。ここで、表面粗さRaとは中心線平均粗さのことであり、この定義はたとえば奈良治郎著「表面粗さの評価法」(総合技術センタ、1983)などの文献に示されている。上記Raの範囲は好ましくは15〜200nmであり、さらに好ましくは15〜45nm、特に好ましくは15〜30nmの範囲である。
【0020】
また、上記の静摩擦係数、表面粗さを達成する上では、S面を形成する層(A層)には滑剤などの添加剤を含有させることが好ましい。好ましい滑剤としては、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、N-オレイルパルミトアミド、N-ステアリルエルカアミド、エチレンビスステアリン酸アミド 、エチレンビスオレイン酸アミド 等のアミド系有機滑剤、また、ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、オレイン酸メチル、エルカ酸メチル、べへニン酸メチル、ラウリン酸ブチル、ステアリン酸ブチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、パルミチン酸オクチル、ヤシ脂肪酸オクチルエステル、ステアリン酸オクチル、ラウリン酸ラウリル、長ステアリン酸ステアリル、長鎖脂肪酸高級アルコールエステル、べへニン酸べへニン、ミリスチン酸セチル等のモノエステル系有機滑剤、さらにはステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸鉛、オレイン酸ソーダ、ラウリン酸バリウム、ラウリン酸亜鉛等の脂肪酸塩、シリコン系化合物、カルナウバワックス、キャンデリラワックスなどが挙げられる。なかでもアミド系滑剤が優れた滑り性の発現、耐ブリードアウト性などの点から好適に使用することが可能である。
【0021】
有機滑剤のフィルム中への好ましい添加量としては、0.1〜0.5重量%の範囲であり、さらに好ましくは0.3〜0.5重量%、特に好ましくは0.32〜0.45重量%の範囲である。
【0022】
また、クレー、マイカ、酸化チタン、炭酸カルシウム、リン酸カルシウム、カオリン、タルク、アルミナ、ジルコニア、スピネル、湿式あるいは乾式シリカなどの無機粒子、アクリル酸系ポリマー類、ポリスチレン等を構成成分とする有機粒子等を配合することが可能であり、なかでも分散性等の点からシリカ、アルミナ等の無機粒子を好ましく用いることができる。これら無機粒子、有機粒子の粒子は表面粗さ等の物性が上述の範囲である限り任意とすることが可能であるが、好ましくは0.01〜5μm、より好ましくは0.1〜3μmの粒径である。また、無機粒子、有機粒子のフィルムへの添加量は、0.001〜30重量%の範囲であり、より好ましくは0.01〜1重量%の範囲である。
【0023】
また、本発明のポリ乳酸系フィルムには、好ましくは30重量%以下の範囲、特に好ましくは5重量%以下の範囲で、可塑剤、酸化防止剤、帯電防止剤、紫外線吸収剤、着色防止剤などの各種添加剤や改質剤、さらには脂肪族ポリエステル、芳香族ポリエステル、ポリオレフィンなどのポリマーを含有させてもよい。
【0024】
本発明のポリ乳酸系フィルムは、ヘイズが3%以下である。好ましくは1%以下である。ヘイズが低いと透明性が良好であるので、裏面の印刷等の視認性が良好となるため好ましい。
【0025】
また、S面の光沢度は120〜180%の範囲である。好ましくは125〜145%の範囲である。ヘイズ、光沢度を上記範囲に設定するためには、フィルムに用いる0.1μm以上の大きさ、分散径を有する添加剤、改質剤、また非相溶な異種ポリマーの添加量を抑制し、たとえばポリ乳酸系樹脂に対して1重量%以下とするなどの方法が挙げられる。
【0026】
また、本発明のポリ乳酸系フィルムは、少なくともフィルムの長手方向または幅方向のいずれか一方向の破断伸度が100〜300%の範囲である好ましくは125〜200%の範囲である。上記下限値未満であれば、フィルム製造時の製膜安定性およびラミネート加工時などの加工安定性が悪化する上、耐スクラッチ性が悪化するため好ましくない。また、この上記上限値を越える場合は十分に配向が進んでいない場合があり、耐熱性、経時安定性の面で好ましくない場合がある。破断伸度をこの範囲内とする手段については特に限定されるものでないが、たとえばポリ乳酸系樹脂に添加する滑剤等の添加剤、改質剤、異種ポリマーの含有量を極力少なくすることや延伸による適度な配向を持たせること、具体的には製膜の際の延伸温度をTg(ガラス転移温度)+5〜30℃の範囲とし、また延伸倍率を面倍率(縦倍率×横倍率)として2〜16倍の範囲とすることなどが挙げられる。
【0027】
また、本発明のポリ乳酸フィルムの120℃×30分加熱時の熱収縮率はフィルムの長手方向(MD方向)、および幅方向(TD)ともに、−5〜5%の範囲であることが好ましく、さらに好ましくは−1〜3%の範囲である。熱収縮率が大きいとフィルム加工時に大きく収縮し、またこの範囲より小さいと加熱加工時にフィルムが伸び、いずれにしてもしわの発生などのフィルム加工時に不具合を発生させるため好ましくない。。フィルムの熱収縮率を上記範囲とする方法については、特に限定されるものでないが、たとえばフィルム製造工程においてあらかじめフィルムを0.5〜10%程度弛緩させながらたとえば120〜160℃程度の比較的高い温度で加熱処理(熱固定)する方法や、一度巻き取ったフィルムを加熱オーブン中で弛緩させながら120〜160℃程度の温度で熱処理をする方法などが挙げられる。
【0028】
ポリ乳酸系フィルムは耐熱性の面、経時安定性の面で、1軸延伸フィルムまたは2軸延伸フィルムであることが好ましい。これらの延伸フィルムを製造方法は特に限定されるものではないが、以下に一例を示す。
【0029】
ポリ乳酸系樹脂と添加剤のマスターペレット(あらかじめ無機粒子、有機滑剤などを2軸押出機などで高濃度(2〜50重量%程度)含有させたポリ乳酸系樹脂)により添加剤を希釈混合させ、適度な温度(たとえば60〜140℃程度の温度)で乾燥し十分に水分を除去(300ppm以下、好ましくは100ppm以下の水分率)後、押出機内で180〜250℃程度の好適な条件で溶融し、ポリマー流を形成させる。かかる溶融ポリマーは5〜50μm程度の濾過精度を有するフィルターを通過させポリマーを濾過し粗大異物を除去する。濾過後のポリマーは、スリット状の口金からシート状に押し出し、静電印加法などの手法で10〜50℃程度に温度制御したキャスティングドラムに密着させて冷却固化させ未延伸フィルムを作成する。このフィルムを連続して縦方向に1.1〜5倍程度加熱延伸し、しかる後にテンター内に導入してクリップで把持しながら横方向に2〜6倍加熱延伸して、適宜80〜150℃程度の温度で熱処理を行い延伸フィルムを得る。
【0030】
フィルムの厚みとしては特に限定されるものではないが、通常1〜500μm程度、好ましくは6〜50μm程度、特に好ましくは10〜25μm程度である。
【0031】
また、ポリ乳酸系フィルムの耐スクラッチ性を良好とする上で、フィルムの製造工程において、フィルターによる溶融ポリマーの濾過工程を有することが好ましい。フィルターによる濾過により粗大異物、変性ポリマーが十分除去され、フィルム品位上問題となる粗大突起、フィッシュアイを防止するだけでなく、製造工程でも破れの減少となり安定した製膜が可能となる。
【0032】
本発明のポリ乳酸系フィルムは、単膜構成でもよいし、別の層を積層した2層以上からなる複合フィルムであっても構わない。
【0033】
積層フィルムとする場合の手法については、特に限定されるものではないが、共押し出しによる方法、インラインコーティング、オフラインコーティングによる方法などが一般的手法として挙げられ、さらにはドライラミネーションによる方法、押し出しラミネーションによる方法が挙げられる。このとき積層比は特に限定されるものではない。ただし積層厚みの比で50%以上を形成する主たる層がポリ乳酸系樹脂からなることが必要である。
【0034】
また、フィルムの接着面側のぬれ張力はコロナ処理やアンカーコート処理などを施すことにより、40mN/m以上であることが好ましい。
【0035】
上記した本発明のポリ乳酸系フィルムは、紙、フィルム、金属等の素材からなる印刷物の表面に貼り合わせたり、フィルムの接着面側に印刷を施しこれらの素材表面に貼り合わせて用いるのに好適である。本発明のポリ乳酸系フィルムは、たとえば本、雑誌などの出版物、あるいは化粧品、菓子、玩具、スポーツ用品等の包装箱等、さらには家具、建材、電化製品等の各種素材の表層に用いることができる。
【0036】
【実施例】
以下、実施例により本発明をさらに説明する。
[特性の測定方法]
(1)摩擦係数
ASTM−D−1894に従い、ポリ乳酸系フィルムのS面/S面の静摩擦係数(μs)、動摩擦係数(μd)を測定した。測定はフィルムの長手方向に5点行い、その平均値を測定値とした。
(2)表面粗さ
小坂研究所製ET−10を用いて触針先端半径0.5μm、針圧5mg、測定長1mm、カットオフ0.08mmの条件にて中心線平均粗さ(Ra)を測定した。測定はフィルムの長手方向に5点行い、その平均値を測定値とした。
(3)ヘイズ
スガ試験器製ヘイズメーターを使用し、JIS−K7105に従い、ヘイズ(全ヘイズ)を測定した。測定値は5点の平均値によるものである。
(4)光沢度(Gs(60°))
JIS−Z8741に基づき、60度鏡面光沢を測定した。測定値は5点の平均値によるものである。
(5)破断伸度
幅10mm、長さ150mmに試料を切り出し、この試料をJISZ1702に準じて、オリエンテック社製引張試験機を用い初期長50mm、引張速度300mm/分、23℃の条件で引張試験を行い、破断伸度(%)を測定した。なお、これらの測定値はフィルムの長手方向(MD)5点、幅方向(TD)5点のサンプルによるものである。
(6)Δヘイズ
未処理のフィルム2枚を重ね合わせた際のヘイズと摩擦試験後のフィルムを2枚重ね合わせたヘイズとの差からΔヘイズを測定した。なお、摩擦試験は大英化学精器社製の学振型染色物摩擦堅牢試験器“Rubbing tester”にフィルムを貼り付けて、荷重200gをかけ、フィルムのS面同士で20回摩擦した。測定値は5点の平均値によるものである。
(7)耐スクラッチ性
印刷紙にフィルムをラミネートしたシートのフィルムのS面同士を摩擦する形で上記Δヘイズで行った方式と同様にして摩擦試験を行った。摩擦試験後の試験片の傷の様子を目視にて観察し、下記基準にて判定した。なお、◎または○が合格である
◎:傷発生は見られない。
【0037】
○:わずかに傷発生が見られる。
【0038】
×:傷発生が顕著である(不合格)。
【0039】
[ポリ乳酸原料]
以下に実施例で用いたポリ乳酸系樹脂について示す。
ポリ乳酸A:
重量平均分子量約15万、L−乳酸成分量98.5%、D−乳酸成分量1.5%、溶融粘度200Pa・s(240℃、剪断速度100sec−1)、融点168℃のポリ乳酸樹脂である。
ポリ乳酸B:
ポリ乳酸Aに対し、平均粒径1.6μmのシリカ粒子(水澤化学工業(株)製ミズカシルP−527)を210℃で二軸押出機を用いて、シリカ濃度5重量%混合した。
ポリ乳酸C:
ポリ乳酸Aに対し、エチレンビスステアリン酸アミド(日本油脂製、アルフローH−50T。以下、「EBA」と略する)を210℃で二軸押出機を用いて、7重量%の濃度で混合した。
ポリ乳酸D:
ポリ乳酸Aに対し、ステアリン酸モノ・ジグリセライド(花王製、エキセル84、グリセリン系有機滑剤)を210℃で二軸押出機を用いて、7重量%の濃度で混合した。
【0040】
[ポリ乳酸系フィルムの作成]
実施例1
フィルムへの有機滑剤(EBA)の添加量が0.35重量%、無機粒子(シリカ)添加量が0.03重量%となるよう上述のポリ乳酸原料をポリ乳酸A:ポリ乳酸B:ポリ乳酸C=944:6:50の重量比率で混合し、120℃、2kPa以下の真空条件下で5時間乾燥した。
【0041】
乾燥後の樹脂を、スクリュー径50mmの単軸押出機に供給し、押出機シリンダ温度230℃で溶融させた。溶融ポリマーは20μmの濾過精度を有する焼結ディスクフィルターを通過せしめ、引き続き口金温度220℃でフィルム状に押し出し、30℃に冷却したドラム上に静電印加キャストして未延伸フィルムを作製した。連続して83℃の加熱ロール間で長手方向に3倍延伸した後、フィルム端部をクリップで把持してテンター内に導き、75℃の温度で加熱しつつ横方向に3.5倍延伸し、幅方向に2%弛緩させながら140℃、15秒間の熱処理を行い、さらに片面(接着面)にコロナ処理を施し、厚み15μmのポリ乳酸系フィルムを得た。得られたフィルムの特性は、表1に示したとおり、耐スクラッチ性は良好であり、本発明のポリ乳酸系フィルムとして良好なものであった。
【0042】
比較例7
有機滑剤(EBA)の添加量を0.2重量%、無機粒子(シリカ)添加量を0.02重量%とした以外は実施例1と同様にして、厚み15μmのポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムの特性は表1に示した通りであり、実施例1と比較して、Δヘイズの上昇が見られた
【0043】
実施例3
有機滑剤(EBA)の添加量を0.4重量%、無機粒子(シリカ)添加量を0.01重量%とし、厚み25μmに変更した以外は実施例1と同様にしてポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムの特性は表1に示した通りであり、耐スクラッチ性は非常に良好であった。
【0044】
実施例4
A層、B層に用いる原料の添加剤を表1に示す濃度となるよう調整し、2台の押出機を用いてB層の両面にA層を積層(積層比1:13:1)にて、製膜を行った。乾燥条件、押出条件、製膜条件等の各種条件は実施例1と同様にした。得られたフィルムは透明性が良好であり、耐スクラッチ性も優れ、本発明のポリ乳酸系フィルムとして好適なものであった。
【0045】
実施例5
S面を形成するA層の片面に、B層を積層した以外は実施例4と同様の手法にてポリ乳酸系フィルムを得た。得られたフィルムの特性は透明性に優れ、耐スクラッチ性も優れ、本発明のポリ乳酸系フィルムとして好適なものであった。
【0046】
比較例1
有機滑剤(EBA)の添加量を0.3重量%、無機粒子(シリカ)添加量を0.5重量%とし、厚みを10μmとした以外は実施例1と同様にしてポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムは艶消し状のフィルムとなり、耐スクラッチ性試験で若干の傷が見られた
【0047】
比較例2
有機滑剤(EBA)の添加量を0.4重量%、無機粒子(シリカ)添加量を0.05重量%とし、長手方向の延伸倍率を3.3倍、テンター内での延伸温度を72℃とした以外は実施例1と同様にして厚み15μmのポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムの特性は表2に示した通りであり、破断伸度の低下が見られ、耐スクラッチ性試験で若干の傷がみられた
【0048】
比較例
有機滑剤の添加量をゼロとし、無機粒子(シリカ)を添加量0.05重量%とした以外は実施例1と同様にしてポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムは摩擦係数が大きく、耐スクラッチ性試験では傷が顕著であり、外観の劣るものであった。
【0049】
比較例
有機滑剤(EBA)の添加量を0.4重量%、無機粒子の添加量をゼロとし、縦延伸温度74℃、横延伸温度76℃、熱処理温度を125℃とし、フィルム厚みを40μmとした以外は実施例1と同様の手法にてポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムは、表面粗さが非常に小さく、耐スクラッチ性試験では傷が顕著であり外観の劣るものであった。
【0050】
比較例
ポリ乳酸Cに変えてポリ乳酸Dを用い、グリセリン系有機滑剤(ステアリン酸モノ・ジグリセライド)の添加量を0.35重量%、無機粒子(シリカ)の添加量を0.03重量%とした以外は実施例1と同様の手法にてポリ乳酸系フィルムを得た。得られたポリ乳酸系フィルムは摩擦係数が高く、耐スクラッチ性試験では傷が顕著であり外観の劣るものであった。
【0051】
比較例
ポリ乳酸Aに対し、ポリ乳酸Bを無機粒子(シリカ)の添加量を0.08重量%となるようで混合し、120℃、2KPa以下の真空条件下で5時間乾燥した。乾燥後の樹脂をスクリュー径50mmの単軸押出機に供給し、押出機シリンダ温度230℃で溶融させ、口金温度220℃でフィルム状に押し出し、25℃に冷却したドラム上にエアナイフにて押しつけ冷却した。この未延伸フィルムの片面に、帯電防止剤(三洋化成社製、ケミスタット3033Nとケミスタット2500の8/2(質量比)混合物)の1質量%濃度の水溶液を塗布した後、倍率可変式パンタグラフ方式の同時二軸延伸機に導いた。60℃でフィルムを予熱しながら塗剤を乾燥した後85℃で縦3.02倍、横3.17倍に同時二軸延伸を行った。続いて125℃で熱処理をしながらTD方向に5%の弛緩熱処理を行い厚み25μmのポリ乳酸系フィルムを得た。なお、塗布面がS面である。表2に得られたフィルムの特性を示すが、得られたポリ乳酸系フィルムは摩擦係数が高く、耐スクラッチ性試験では傷が顕著であり外観の劣るものであった。
【0052】
【表1】

Figure 0004321105
【0053】
【表2】
Figure 0004321105
【0054】
【発明の効果】
本発明のポリ乳酸系フィルムは、耐スクラッチ性に優れ、フィルム面が擦れた際にも表面に傷がつきにくいといった特徴を有する。このため紙、フィルム、金属等の素材からなる印刷物表面にラミネートして用いるのに好適であり、本、雑誌などの出版物、化粧品、菓子、玩具、スポーツ用品等の包装箱等、家具、建材、電化製品等の表層に好ましく使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polylactic acid film having good scratch resistance. More specifically, it is suitable to be used by laminating on the surface of printed materials made of materials such as paper, film, metal, etc., for example, publications such as books, magazines, packaging boxes for cosmetics, confectionery, toys, sports equipment, etc. It can be preferably used for surface layers of building materials, electrical appliances and the like. The polylactic acid film of the present invention has a feature that even when the bonded film surfaces are rubbed, the film surface is hardly damaged.
[0002]
[Prior art]
Conventionally, polyolefin films, polyester films, etc. have been used for printing laminations in which films are laminated on printed materials, but in recent years, non-petroleum raw materials, biodegradable materials, etc. have attracted attention due to increasing environmental awareness. As a result, examples of using polylactic acid-based films for printing laminates have come to be seen.
[0003]
For example, Patent Document 1 shows an example in which a polylactic acid film is bonded to a golf ball packaging box. In this packaging box, a window is opened so that the contents can be seen from the outside, and a polylactic acid film is used for the window portion. In this document, since the golf ball moves in the middle box to some extent during transportation, there is a problem of hitting the film stuck on the window and damaging the film, and when using a polylactic acid film instead of polyethylene or polypropylene, The effect that a crack and a crease do not enter in the window part of a box is illustrated. Certainly, the conventional polylactic acid film is effective against scratches caused by rubbing between the golf ball and the film described in this document. However, the film and film which are the object of the present invention are in contact with each other and rubbed against each other. It was not enough to solve the problem of the occurrence of.
[0004]
Patent documents 2 and 3 are mentioned as an example which controlled generating of a crack on the surface of a polylactic acid film. In these examples, by making the surface roughness of the polyester film such as polylactic acid into a specific range, the film may be damaged or scraped during processing such as film production process or mold release layer formation. This is a solution to the problem. In these examples, since the friction coefficient is not taken into consideration, it is insufficient for improving the scratch resistance of the subject of the present invention.
[0005]
Patent Document 4 shows an example in which a specific amount of an antiblocking agent is added to polylactic acid for the purpose of suppressing wrinkle generation when the film is wound up in a film production process or the like. In this example, there is no specific example that can sufficiently improve the scratch resistance, which is the object of the present invention, and there is no description of a specific technique for that purpose.
[0006]
Patent Document 5 discloses that the slipperiness between the paper and the polylactic acid-based film and the surface specific resistivity of the film are within a predetermined range for the purpose of improving the handleability during film processing. As a specific achievement means, a method of in-line coating with an antistatic agent is mentioned, but it is insufficient for solving the scratch resistance which is the subject of the present invention. Not only the means are different, but also a sufficient disclosure of means for improving the intended scratch resistance of the present invention has not been made.
[0007]
In addition, as a typical example of an organic lubricant added for improving scratch resistance in a conventional polypropylene film for use in print lamination, for example, stearic acid monodiglyceride can be cited as a representative example, which is sufficient to achieve the object of the present invention. The effect could not be obtained.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-1920203
[Patent Document 2]
JP 2001-323079 A
[Patent Document 3]
Japanese Patent Laid-Open No. 2001-310313
[Patent Document 4]
Japanese Patent Laid-Open No. 2002-146064
[Patent Document 5]
Japanese Patent Laid-Open No. 2003-25427
[Problems to be solved by the invention]
An object of the present invention is to eliminate the above-described problems of the prior art and to provide a polylactic acid film having good scratch resistance.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration. That is, the layer forming the S surface (A layer) contains 0.3 to 0.5% by weight of an amide organic lubricant, 0.01 to 1% by weight of inorganic particles in the film, and at least one side (S Surface) has a static friction coefficient in the range of 0.05 to 0.4, the surface roughness Ra of the S surface is in the range of 15 to 300 nm, the haze is 3 % or less, and the gloss of the S surface. The polylactic acid film has a degree of breakage in the range of 120 to 180% and at least the elongation at break in either one of the longitudinal direction or width direction of the film is in the range of 100 to 300%.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the polylactic acid resin used in the polylactic acid film of the present invention include polymers made of lactic acid such as polylactic acid, L-lactic acid, and D-lactic acid, and copolymers with other hydroxycarboxylic acids. Other hydroxycarboxylic acids typically include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-bidoxycaproic acid and the like. The polylactic acid resin may be used alone, but may be a mixture of two or more.
[0016]
From the standpoint of high heat resistance and transparency, and also from the viewpoint of hygiene such as antibacterial and antifungal properties, the polylactic acid film of the present invention is lactic acid or L-lactic acid relative to the entire polylactic acid resin. The ratio of the polymer composed of lactic acid such as D-lactic acid is preferably 90 mol% or more. Particularly, from the viewpoint of having long-term stability of physical properties and good anti-blocking properties, L-lactic acid is particularly preferable. Is preferably 95 mol% or more.
[0017]
Moreover, in this invention, it is preferable that melting | fusing point of a polylactic acid-type film is 150 degreeC or more. In particular, in order to improve processing suitability such as laminating a printed material, the melting point of the polylactic acid film is more preferably 160 ° C. or higher, and particularly preferably 165 ° C. or higher. This is because if the melting point is low, the heat resistance is poor and problems such as wrinkles occur during the drying process during processing. The melting point has no particular upper limit, but is preferably 300 ° C. or lower.
[0018]
In the polylactic acid-based film of the present invention, it is necessary that the coefficient of static friction between at least S surfaces (S surface / S surface) is in the range of 0.05 to 0.4. Here, the “S surface” refers to a surface on the side opposite to the adhesive surface when the film is bonded to a printed material or the like. When laminated and processed into a book, etc., the S surfaces of the surfaces rub against each other, but if the static friction coefficient exceeds this range, the surface is prone to scratches and the surface is easily scratched. In such a case, the handling property is poor and, for example, it may cause a load collapse when the products are stacked. The range of the static friction coefficient is preferably in the range of 0.05 to 0.35, and particularly preferably in the range of 0.05 to 0.3.
[0019]
Furthermore, the surface roughness Ra of the S surface needs to be in the range of 15 to 300 nm. If it is less than the lower limit, the surface roughness is insufficient and the contact area of the surface becomes large, so that the occurrence of scratches when rubbed becomes significant. On the other hand, if it is larger than the above upper limit value, the occurrence of scratches due to protrusions on the surface or the occurrence of scratches due to particle dropout becomes significant, and the object of the present invention cannot be achieved. Here, the surface roughness Ra is a center line average roughness, and this definition is shown in documents such as “Evaluation Method of Surface Roughness” by Jiro Nara (General Technology Center, 1983). The range of Ra is preferably 15 to 200 nm, more preferably 15 to 45 nm, and particularly preferably 15 to 30 nm.
[0020]
In order to achieve the static friction coefficient and the surface roughness, it is preferable that an additive such as a lubricant is contained in the layer forming the S plane (A layer). Preferred lubricants include amide-based organic compounds such as oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, N-oleyl palmitoamide, N-stearyl erucamide, ethylene bis stearic acid amide, and ethylene bis oleic acid amide. Lubricant, methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate, methyl erucate, methyl behenate, butyl laurate, butyl stearate, isopropyl myristate, isopropyl palmitate, Monoester organics such as octyl palmitate, octyl palmitate, octyl stearate, lauryl laurate, stearyl long stearate, higher alcohol esters of long chain fatty acids, behenine behenate, cetyl myristate Agents, and also fatty acid salts such as zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, lead stearate, sodium oleate, barium laurate, zinc laurate, silicon compounds , Carnauba wax, candelilla wax and the like. Of these, amide-based lubricants can be suitably used from the viewpoints of excellent slipperiness and bleed-out resistance.
[0021]
The preferred amount of organic lubricant added to the film is in the range of 0.1 to 0.5% by weight, more preferably 0.3 to 0.5% by weight, particularly preferably 0.32 to 0.45. It is in the range of wt%.
[0022]
Also, inorganic particles such as clay, mica, titanium oxide, calcium carbonate, calcium phosphate, kaolin, talc, alumina, zirconia, spinel, wet or dry silica, organic particles composed of acrylic acid polymers, polystyrene, etc. Among them, inorganic particles such as silica and alumina can be preferably used from the viewpoint of dispersibility. The particle diameter of these inorganic particles and organic particles can be arbitrarily set as long as the physical properties such as surface roughness are within the above-mentioned range, but preferably 0.01 to 5 μm, more preferably 0.1 to 3 μm. The particle size. Moreover, the addition amount to the film of an inorganic particle and an organic particle is the range of 0.001-30 weight%, More preferably, it is the range of 0.01-1 weight%.
[0023]
The polylactic acid-based film of the present invention preferably has a plasticizer, an antioxidant, an antistatic agent, an ultraviolet absorber, and an anti-coloring agent in the range of 30% by weight or less, particularly preferably in the range of 5% by weight or less. Various additives and modifiers such as aliphatic polyesters, aromatic polyesters, and polyolefins may be contained.
[0024]
The polylactic acid film of the present invention has a haze of 3% or less. Preferably it is 1% or less. When the haze is low, the transparency is good, and thus visibility such as printing on the back surface is good, which is preferable.
[0025]
Also, the glossiness of the S plane, area by der 120 to 180%. Preferably it is 125 to 145% of range. In order to set the haze and glossiness within the above ranges, the amount of additives or modifiers having a size of 0.1 μm or more used in the film, a dispersed diameter, a modifier, or an incompatible different polymer is suppressed, For example, the method of making it 1 weight% or less with respect to polylactic acid-type resin is mentioned.
[0026]
The polylactic acid film of the present invention has a breaking elongation in the range of 100 to 300% in at least one of the longitudinal direction and the width direction of the film . Preferably it is 125 to 200% of range. If it is less than the said lower limit, since film-forming stability at the time of film manufacture and processing stability at the time of a lamination process deteriorate, it is unpreferable since scratch resistance deteriorates. Moreover, when this upper limit is exceeded, the orientation may not be sufficiently advanced, which may be undesirable in terms of heat resistance and stability over time. The means for setting the breaking elongation within this range is not particularly limited. For example, additives such as lubricants added to polylactic acid resins, modifiers, reducing the content of different polymers as much as possible and stretching. The stretching temperature during film formation is set to a range of Tg (glass transition temperature) +5 to 30 ° C., and the stretching ratio is 2 (vertical ratio × horizontal ratio). For example, a range of ˜16 times may be mentioned.
[0027]
Moreover, it is preferable that the thermal contraction rate at the time of 120 degreeC x 30 minute heating of the polylactic acid film of this invention is the range of -5 to 5% in the longitudinal direction (MD direction) and width direction (TD) of a film. More preferably, it is in the range of −1 to 3%. If the heat shrinkage rate is large, the film is greatly shrunk during film processing, and if it is smaller than this range, the film is stretched during heat processing, and in any case, problems such as wrinkles are caused during film processing. . The method for setting the heat shrinkage rate of the film in the above range is not particularly limited, but is relatively high, for example, about 120 to 160 ° C. while relaxing the film about 0.5 to 10% in advance in the film production process. Examples thereof include a method of heat treatment (heat setting) at a temperature and a method of heat treatment at a temperature of about 120 to 160 ° C. while relaxing the film once wound in a heating oven.
[0028]
The polylactic acid film is preferably a uniaxially stretched film or a biaxially stretched film in terms of heat resistance and stability over time. Although the manufacturing method of these stretched films is not particularly limited, an example is shown below.
[0029]
Master additive pellets of polylactic acid resin and additives (polylactic acid resin containing inorganic particles, organic lubricant, etc. in high concentration (about 2 to 50% by weight) with a twin screw extruder) Then, after drying at an appropriate temperature (for example, a temperature of about 60 to 140 ° C.) and sufficiently removing water (moisture content of 300 ppm or less, preferably 100 ppm or less), it is melted in an extruder at suitable conditions of about 180 to 250 ° C. To form a polymer stream. The molten polymer is passed through a filter having a filtration accuracy of about 5 to 50 μm, and the polymer is filtered to remove coarse foreign matters. The polymer after filtration is extruded into a sheet form from a slit-shaped base, and is brought into close contact with a casting drum whose temperature is controlled to about 10 to 50 ° C. by a technique such as an electrostatic application method to cool and solidify to produce an unstretched film. The film is continuously heated and stretched about 1.1 to 5 times in the longitudinal direction, and then introduced into the tenter and heated and stretched 2 to 6 times in the lateral direction while being held by a clip. A stretched film is obtained by performing heat treatment at a temperature of about.
[0030]
Although it does not specifically limit as thickness of a film, Usually, about 1-500 micrometers, Preferably it is about 6-50 micrometers, Most preferably, it is about 10-25 micrometers.
[0031]
In order to improve the scratch resistance of the polylactic acid-based film, it is preferable that the film production process includes a filtration step of the molten polymer using a filter. By filtering with a filter, coarse foreign matter and modified polymer are sufficiently removed, and not only coarse protrusions and fish eyes that cause problems in film quality are prevented, but also tearing is reduced in the production process, and stable film formation becomes possible.
[0032]
The polylactic acid film of the present invention may have a single film configuration or a composite film composed of two or more layers obtained by laminating other layers.
[0033]
The method for forming a laminated film is not particularly limited, but methods such as coextrusion, in-line coating, and offline coating are examples of general methods, and further, dry lamination and extrusion lamination. A method is mentioned. At this time, the lamination ratio is not particularly limited. However, it is necessary that the main layer that forms 50% or more of the lamination thickness ratio is made of a polylactic acid resin.
[0034]
The wetting tension on the adhesive surface side of the film is preferably 40 mN / m or more by performing corona treatment or anchor coating treatment.
[0035]
The polylactic acid-based film of the present invention described above is suitable for use on a surface of a printed material made of a material such as paper, film or metal, or for printing on the adhesive surface side of the film and attaching to the surface of these materials. It is. The polylactic acid film of the present invention is used for the surface layer of various materials such as publications such as books and magazines, packaging boxes for cosmetics, confectionery, toys, sports equipment and the like, as well as furniture, building materials, and electrical appliances. Can do.
[0036]
【Example】
Hereinafter, the present invention will be further described by examples.
[Measurement method of characteristics]
(1) Friction coefficient According to ASTM-D-1894, the static friction coefficient (μs) and dynamic friction coefficient (μd) of the S surface / S surface of the polylactic acid film were measured. Measurement was performed at five points in the longitudinal direction of the film, and the average value was taken as the measured value.
(2) Surface roughness Using ET-10 manufactured by Kosaka Laboratory, the center line average roughness (Ra) was measured under the conditions of a stylus tip radius of 0.5 μm, a needle pressure of 5 mg, a measurement length of 1 mm, and a cutoff of 0.08 mm. It was measured. Measurement was performed at five points in the longitudinal direction of the film, and the average value was taken as the measured value.
(3) Using a haze meter manufactured by Haze Suga Test Instruments, haze (total haze) was measured according to JIS-K7105. The measured value is based on an average value of 5 points.
(4) Glossiness (Gs (60 °))
Based on JIS-Z8741, 60 degree specular gloss was measured. The measured value is based on an average value of 5 points.
(5) A sample was cut out to a breaking elongation width of 10 mm and a length of 150 mm, and this sample was pulled according to JISZ1702 using an orientec tensile tester under the conditions of an initial length of 50 mm, a tensile speed of 300 mm / min, and 23 ° C. The test was performed and the elongation at break (%) was measured. These measured values are based on samples of 5 points in the longitudinal direction (MD) and 5 points in the width direction (TD) of the film.
(6) Δhaze was measured from the difference between the haze when two untreated haze films were superposed and the haze obtained by superposing two films after the friction test. The friction test was performed by attaching a film to a “Rubbing tester”, a Gakushin type dyeing friction fastness tester manufactured by Daiei Kagaku Seiki Co., Ltd., applying a load of 200 g, and rubbing 20 times between the S surfaces of the film. The measured value is based on an average value of 5 points.
(7) A friction test was carried out in the same manner as in the above-mentioned Δ haze method in which the S surfaces of the film laminated on the scratch-resistant printing paper were rubbed. The state of scratches on the test piece after the friction test was visually observed and judged according to the following criteria. In addition, (double-circle) or (circle) is a pass (double-circle): A crack generation | occurrence | production is not seen.
[0037]
○: Slight scratching is observed.
[0038]
X: Scratch generation is remarkable (failure).
[0039]
[Polylactic acid raw material]
The polylactic acid resin used in the examples is shown below.
Polylactic acid A:
Polylactic acid resin having a weight average molecular weight of about 150,000, an L-lactic acid component amount of 98.5%, a D-lactic acid component amount of 1.5%, a melt viscosity of 200 Pa · s (240 ° C., shear rate of 100 sec-1), and a melting point of 168 ° C. It is.
Polylactic acid B:
Polylactic acid A was mixed with silica particles having an average particle diameter of 1.6 μm (Mizusukacil P-527 manufactured by Mizusawa Chemical Co., Ltd.) at 210 ° C. using a twin screw extruder at a silica concentration of 5% by weight.
Polylactic acid C:
Polylactic acid A was mixed with ethylenebisstearic acid amide (manufactured by NOF Corporation, Alflow H-50T, hereinafter abbreviated as “EBA”) at 210 ° C. using a twin screw extruder at a concentration of 7% by weight. .
Polylactic acid D:
Polylactic acid A was mixed with stearic acid mono-diglyceride (manufactured by Kao Corporation, Excel 84, glycerin organic lubricant) at 210 ° C. using a twin screw extruder at a concentration of 7% by weight.
[0040]
[Creation of polylactic acid film]
Example 1
Polylactic acid A: Polylactic acid B: Polylactic acid were added to the above-mentioned polylactic acid raw material so that the amount of organic lubricant (EBA) added to the film was 0.35% by weight and the amount of inorganic particles (silica) added was 0.03% by weight. The mixture was mixed at a weight ratio of C = 944: 6: 50, and dried under a vacuum condition of 120 ° C. and 2 kPa or less for 5 hours.
[0041]
The dried resin was supplied to a single screw extruder having a screw diameter of 50 mm and melted at an extruder cylinder temperature of 230 ° C. The molten polymer was passed through a sintered disk filter having a filtration accuracy of 20 μm, subsequently extruded into a film shape at a base temperature of 220 ° C., and electrostatically cast on a drum cooled to 30 ° C. to produce an unstretched film. After continuously stretching 3 times in the longitudinal direction between 83 ° C heating rolls, the film edge is gripped with a clip and guided into the tenter and stretched 3.5 times in the lateral direction while heating at a temperature of 75 ° C. Then, heat treatment was performed at 140 ° C. for 15 seconds while relaxing 2% in the width direction, and further, corona treatment was performed on one surface (adhesion surface) to obtain a polylactic acid film having a thickness of 15 μm. As shown in Table 1, the obtained film had good scratch resistance and was good as the polylactic acid film of the present invention.
[0042]
Comparative Example 7
A polylactic acid film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the addition amount of the organic lubricant (EBA) was 0.2 wt% and the addition amount of the inorganic particles (silica) was 0.02 wt%. . The characteristics of the obtained polylactic acid-based film are as shown in Table 1. Compared with Example 1, an increase in Δhaze was observed .
[0043]
Example 3
A polylactic acid film was obtained in the same manner as in Example 1 except that the amount of organic lubricant (EBA) added was 0.4% by weight, the amount of inorganic particles (silica) added was 0.01% by weight, and the thickness was changed to 25 μm. It was. The properties of the obtained polylactic acid film were as shown in Table 1, and the scratch resistance was very good.
[0044]
Example 4
The additive of the raw material used for the A layer and the B layer is adjusted so as to have the concentration shown in Table 1, and the A layer is laminated on both surfaces of the B layer by using two extruders (lamination ratio 1: 13: 1). Then, film formation was performed. Various conditions such as drying conditions, extrusion conditions, and film forming conditions were the same as in Example 1. The obtained film had good transparency and excellent scratch resistance, and was suitable as the polylactic acid film of the present invention.
[0045]
Example 5
A polylactic acid film was obtained in the same manner as in Example 4 except that the B layer was laminated on one side of the A layer forming the S surface. The obtained film was excellent in transparency and scratch resistance, and was suitable as a polylactic acid film of the present invention.
[0046]
Comparative Example 1
A polylactic acid-based film was obtained in the same manner as in Example 1 except that the amount of organic lubricant (EBA) added was 0.3% by weight, the amount of inorganic particles (silica) added was 0.5% by weight, and the thickness was 10 μm. It was. The resulting polylactic acid film was a matte film, and some scratches were observed in the scratch resistance test .
[0047]
Comparative Example 2
The amount of organic lubricant (EBA) added is 0.4% by weight, the amount of inorganic particles (silica) added is 0.05% by weight, the stretching ratio in the longitudinal direction is 3.3 times, and the stretching temperature in the tenter is 72 ° C. A polylactic acid film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that. The properties of the obtained polylactic acid film were as shown in Table 2. A decrease in the elongation at break was observed, and some scratches were observed in the scratch resistance test .
[0048]
Comparative Example 3
A polylactic acid-based film was obtained in the same manner as in Example 1 except that the amount of organic lubricant added was zero and the amount of inorganic particles (silica) was 0.05% by weight. The obtained polylactic acid-based film had a large coefficient of friction, scratches were remarkable in the scratch resistance test, and the appearance was inferior.
[0049]
Comparative Example 4
Except that the addition amount of organic lubricant (EBA) is 0.4 wt%, the addition amount of inorganic particles is zero, the longitudinal stretching temperature is 74 ° C., the transverse stretching temperature is 76 ° C., the heat treatment temperature is 125 ° C., and the film thickness is 40 μm. Obtained a polylactic acid film in the same manner as in Example 1. The obtained polylactic acid-based film had very small surface roughness, and scratches were remarkable in the scratch resistance test, and the appearance was poor.
[0050]
Comparative Example 5
Other than using polylactic acid D instead of polylactic acid C, the addition amount of glycerin-based organic lubricant (stearic acid mono-diglyceride) was 0.35% by weight, and the addition amount of inorganic particles (silica) was 0.03% by weight Obtained a polylactic acid film in the same manner as in Example 1. The obtained polylactic acid-based film had a high coefficient of friction, and scratches were remarkable in the scratch resistance test, resulting in poor appearance.
[0051]
Comparative Example 6
Polylactic acid B was mixed with polylactic acid A so that the amount of inorganic particles (silica) added was 0.08% by weight, and dried under vacuum conditions of 120 ° C. and 2 KPa or less for 5 hours. The dried resin is supplied to a single screw extruder with a screw diameter of 50 mm, melted at an extruder cylinder temperature of 230 ° C, extruded into a film at a die temperature of 220 ° C, and cooled by pressing it onto a drum cooled to 25 ° C with an air knife. did. After applying an aqueous solution having a concentration of 1% by mass of an antistatic agent (manufactured by Sanyo Chemical Co., Ltd., 8/2 (mass ratio) mixture of Chemistat 3033N and Chemistat 2500) to one side of this unstretched film, a variable magnification pantograph system was used. It led to simultaneous biaxial stretching machine. The coating was dried while preheating the film at 60 ° C., and then subjected to simultaneous biaxial stretching at 85 ° C. to 3.02 times in length and 3.17 times in width. Subsequently, a relaxation heat treatment of 5% was performed in the TD direction while performing a heat treatment at 125 ° C. to obtain a 25 μm thick polylactic acid film. The application surface is the S surface. The characteristics of the obtained film are shown in Table 2. The obtained polylactic acid-based film had a high coefficient of friction, and scratches were remarkable in the scratch resistance test, resulting in poor appearance.
[0052]
[Table 1]
Figure 0004321105
[0053]
[Table 2]
Figure 0004321105
[0054]
【The invention's effect】
The polylactic acid-based film of the present invention is excellent in scratch resistance and has the characteristics that the surface is hardly damaged even when the film surface is rubbed. For this reason, it is suitable to be used by laminating on the surface of printed materials made of materials such as paper, film, metal, etc., publications such as books, magazines, packaging boxes for cosmetics, confectionery, toys, sports equipment, etc., furniture, building materials It can be preferably used for the surface layer of electrical appliances.

Claims (3)

S面を形成する層(A層)にアミド系有機滑剤を0.3〜0.5重量%含有し、
フィルム中に無機粒子を0.01〜1重量%含有し、
少なくとも片面(S面)同士の静摩擦係数が0.05〜0.4の範囲であり、
かつS面の表面粗さRaが15〜300nmの範囲であり、
かつヘイズが%以下であり、
かつS面の光沢度が120〜180%の範囲であり、
かつ少なくともフィルムの長手方向または幅方向のいずれか一方向の破断伸度が100〜300%の範囲であるポリ乳酸系フィルム。
Containing 0.3 to 0.5% by weight of an amide organic lubricant in the layer forming the S surface (A layer);
Containing 0.01 to 1% by weight of inorganic particles in the film,
The static friction coefficient between at least one surface (S surface) is in the range of 0.05 to 0.4,
And the surface roughness Ra of the S surface is in the range of 15 to 300 nm,
And haze is 3 % or less,
And the glossiness of the S surface is in the range of 120 to 180%,
And the polylactic acid-type film whose breaking elongation of any one of the longitudinal direction or the width direction of a film is the range of 100 to 300%.
積層フィルムである、請求項1に記載のポリ乳酸系フィルム。The polylactic acid film according to claim 1 , which is a laminated film . 印刷物の表面に設けられた請求項1又は2に記載のポリ乳酸系フィルム。  The polylactic acid film according to claim 1 or 2 provided on the surface of a printed matter.
JP2003131285A 2003-05-09 2003-05-09 Polylactic acid film Expired - Lifetime JP4321105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131285A JP4321105B2 (en) 2003-05-09 2003-05-09 Polylactic acid film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131285A JP4321105B2 (en) 2003-05-09 2003-05-09 Polylactic acid film

Publications (3)

Publication Number Publication Date
JP2004331860A JP2004331860A (en) 2004-11-25
JP2004331860A5 JP2004331860A5 (en) 2006-06-15
JP4321105B2 true JP4321105B2 (en) 2009-08-26

Family

ID=33506504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131285A Expired - Lifetime JP4321105B2 (en) 2003-05-09 2003-05-09 Polylactic acid film

Country Status (1)

Country Link
JP (1) JP4321105B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269642B2 (en) * 2009-02-23 2013-08-21 三菱樹脂株式会社 Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article

Also Published As

Publication number Publication date
JP2004331860A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4151370B2 (en) Release film
JP4661073B2 (en) Laminated film
KR102529474B1 (en) Laminated polyester film
TWI402158B (en) Polyamide-based mixed resin laminated film roll, and a method for producing the same
JP2013056438A (en) Polyester film for transfer
WO2022059580A1 (en) Cavity-containing polyester film
JP2017179336A (en) Void-containing polyester-based film and manufacturing method therefor
JP4321105B2 (en) Polylactic acid film
JP2007021773A (en) Polyamide mixed resin laminated film roll and its manufacturing method
JP4696544B2 (en) Polyester film for decorative sheet
JP4595321B2 (en) Polyester laminate and method for producing polyester laminate
JP4572584B2 (en) Polylactic acid film for decorative sheet, transfer foil and decorative sheet
JP4029444B2 (en) Laminated polypropylene film
JP4927615B2 (en) Biaxially stretched polyester film for simultaneous molding transfer
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JP4313614B2 (en) Release film
JP3797185B2 (en) Peelable laminated film and process film for ceramic green sheet using the same
JP2001293833A (en) Gas barrier polyester film
KR0173023B1 (en) Base sheet for case container and preparing method of the same
JP5331272B2 (en) Polyester film for in-mold transfer foil
JP4631277B2 (en) Heat shrinkable polystyrene film
JP4273827B2 (en) Method for producing thermoplastic resin film and thermoplastic resin film
JP2006265465A (en) Heat shrinkable polyester-based film, its manufacturing method and a heat shrinkable label
JPH10244642A (en) Multilayer orientated film
JP2000318079A (en) Multilayered stretched film and stretched polyethylene-2,6-naphthalate film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R151 Written notification of patent or utility model registration

Ref document number: 4321105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

EXPY Cancellation because of completion of term