JP4320881B2 - Grain moisture measuring device - Google Patents

Grain moisture measuring device Download PDF

Info

Publication number
JP4320881B2
JP4320881B2 JP35039299A JP35039299A JP4320881B2 JP 4320881 B2 JP4320881 B2 JP 4320881B2 JP 35039299 A JP35039299 A JP 35039299A JP 35039299 A JP35039299 A JP 35039299A JP 4320881 B2 JP4320881 B2 JP 4320881B2
Authority
JP
Japan
Prior art keywords
grain
frequency distribution
measuring device
grains
moisture measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35039299A
Other languages
Japanese (ja)
Other versions
JP2001165884A (en
Inventor
正幸 近本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP35039299A priority Critical patent/JP4320881B2/en
Publication of JP2001165884A publication Critical patent/JP2001165884A/en
Application granted granted Critical
Publication of JP4320881B2 publication Critical patent/JP4320881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Drying Of Solid Materials (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、穀粒乾燥機等に利用する穀粒水分測定装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来穀粒乾燥機等の昇降機に装着して揚穀穀粒を一粒ごとに取り込む形態の水分計とし、例えば100粒の水分を測定し、未熟粒や粃の割合を算出する形態が公知である(例えば特公平3−5509号公報)。
【0003】
ところで、上記公報に記載される形態では、予め設定した全サンプルデータ数に対する所定偏差幅を超える高含水率データ数の比率とする程度であるから、自ずと該全サンプルデータ数に100粒等の制約が生じる。従って、所定時間間隔で行われる測定毎にばらつきが生じることとなる。
【0004】
【課題を解決するための手段】
この発明は、穀粒送り螺旋33などの穀粒繰出機構から供給される穀粒を単粒ごとに圧砕してその電気信号を出力する一対の電極ロール46a,46bを備える検出機構部40b、該電気信号を処理して水分値に換算する制御回路部39)からなる穀粒水分測定装置において、当該制御回路部39には、あらかじめ設定した粒数区分毎に各測定水分値に基づく度数分布を求めると共にこの度数分布を正規化する正規化処理手段、及びこの正規化された度数分布を穀粒乾燥の進行に従って順次求め、これら正規化された度数分布を累積する累積処理手段を備えて構成してなる。
【0005】
請求項2に記載の発明は、上記累積処理手段による結果得られる度数分布を整粒、青未熟粒、又は粃の割合算出の根拠データとする物である。また、累積処理手段による累積回数は乾燥の進行と共に順次上積みするよう構成するか、又は張り込まれる穀粒量によって決定される構成である。
【0006】
【発明の作用効果】
例えば乾燥途中において、順次所定粒数毎に水分を算出し、この原データを正規化処理する。所定時間間隔で順次実行する水分測定毎に正規化処理を施しながら、累積処理を行い、当該時点での水分分布を表すことができる。
【0007】
原データを正規化処理しながら、順に累積処理を施す作用を行うことによって整粒と青未熟粒又は粃との境界区分の仕分けが精度よく実行でき、各割合算出精度も高くなる。
【0008】
【発明の実施の形態】
この発明の一実施例を図面に基づき説明する。1は穀物乾燥装置の機枠で、内部には貯留室2、乾燥室3、集穀室4の順に積み重ねられ、外部に設ける昇降機5の駆動によって穀物を循環させながら、乾燥室3部でバーナ6燃焼と吸引ファン7とにより発生する熱風を浴びせて乾燥する公知の形態である。
【0009】
8は繰り出しドラムで正逆に回転しながら所定量の穀物を流下させる。9は上記昇降機5に通じる下部移送装置、10は昇降機5上部側に接続する上部移送装置で、貯留室2上部の拡散盤11に穀物供給できる。バーナ6や穀物循環機構等は、乾燥制御に必要な制御プログラムや各種データ等を記憶するメモリを備えるコンピュータによって行なわれる。即ち、操作盤12には液晶形態の表示部13を設け、該表示部13の下縁に沿って4個の押しボタン形態のスイッチ14〜17、及びやや離れて非常停止スイッチ18を配設している。該スイッチ14〜17はその機能が表示部13に表示されるもので、図例では、順に張込・乾燥・排出・通風の各運転用スイッチに構成されるが、表示部13の画面変更に従って異なる機能を具備せしめ得る構成である。
【0010】
内蔵の制御部は操作盤12面のスイッチ情報や乾燥機機枠1各部に配設したセンサ類からの検出情報等を受けて必要な比較演算のもと、バーナ燃焼量の制御,穀物循環系の起動・停止制御,表示部13の表示内容制御等を行う。上記操作盤12のスイッチ類は、張込・乾燥・排出・通風の各設定のほか、穀物種類、設定水分(仕上げ水分)、張込量、タイマ増・減等を設定できる。
【0011】
図5は制御ブロック図を示し、上記操作盤12を有するコントロールボックスに内蔵するコンピュータの演算制御部19には上記スイッチ類からの設定情報のほか、水分計20検出情報、昇降機5の投げ出し部に設ける穀物流れ検出器21の穀物検出情報、熱風温度検出情報等が入力される。一方出力情報としては、バーナ6の燃焼系信号、例えば燃料供給信号,その流量制御信号、あるいは上下移送螺旋,昇降機5,繰出バルブ8等の穀物循環系モータ制御信号、吸引ファン7モータ制御信号,各表示部への表示出力等がある。
【0012】
昇降機5はバケット式で、無端ベルト30に多数のバケット31,31…を取り付け、外周を側壁5aにより覆った構造で、バケット31により集穀室4より出る穀粒を掬い上げて上昇し貯留室2へと運ぶ。昇降機5の側壁5aの正面内側に、一粒式水分計20の穀粒取り込み部32の前縁をバケット用無端ベルト30のバケット31の近くまで差し込んで設置し、側壁5aの内側で、穀粒取り込み部32の底部排出口下方に、穀粒送り螺旋33の始端部をのぞませる。
【0013】
この穀粒取り込み部32の前縁と穀粒送り螺旋33の始端部は、バケット用無端ベルト30の上昇側と下降側のベルト内側に位置するので、ベルト30やバケット31の移動に支障はない。一粒水分計の筐体は、フレーム34と、そのフレーム34を覆うカバー35とからなる。このうち、フレーム34は、昇降機5の側面に沿い、昇降機5との間を仕切る底板36と、底板36上に一体的に起立させた仕切板37とからなり、フレーム34に組付けたモータ38,制御部39と機構部40とを当該仕切板37により仕切る。
【0014】
仕切板37にモータ38の駆動軸41を貫通して水平に固定し、この駆動軸41の先端に、はすば歯車42を固定する。上記はすば歯車42とは回転軸心を一致させて順次下位に第2はすば歯車43,第3はすば歯車44を噛合させるものである。そして、第2はすば歯車43の軸45には第1電極ロール46aを、第3はすば歯車44の軸47には第2電極ロール46bを夫々固定するものである。
【0015】
上記仕切板37と平行に、いずれも透明の樹脂材からなる中間仕切48と電極ロール取付板49とを、仕切板37から突出すべく一体に成形する取付脚部50,50…に着脱自在にボルト(図示せず)止めにより共締めしている。なお、仕切板37と中間仕切48との間隔は上記取付脚部50の存在によって確保し、中間仕切48と電極ロール取付板49との間隔はこの取付板49と一体成形する幅狭の起立部51によって確保する。従って、前記軸45及び軸47は一端を仕切板37に軸受し、他端を電極ロール取付板49に軸受支持させる構成である。
【0016】
さらに、底板36の所定位置に、穀粒送り螺旋33の回転軸52を挿通し、この回転軸52にはすば歯車53を固定し、駆動軸41のはすば歯車42と直角に噛合する。図8は一粒式水分計を昇降機5内側から見た背面図で、穀粒取り込み部32は、底板36より昇降機5内部に突出し、その上部開口55の開口縁を斜め下方に傾斜させ、開口面積を大きく形成すると共に、この開口55に複数の弾線を並べてその根元を固定することにより、櫛状の異物除去体56を形成している。
【0017】
穀粒取り込み部32の下部は、断面V字状に間隔を狭め、その一側を穀粒送り螺旋33の真上まで延伸し、他側の下端に底部排出口57を形成し、これに穀粒送り螺旋33の先端部を接続する。そして穀粒送り螺旋33と平行で上縁を穀粒取り込み部32の外側に回転自在に軸支した穀粒送り板58を垂設し、バネ59により穀粒送り螺旋33の外周に接するように付勢する。
【0018】
前記穀粒送り螺旋33の終端部の下方に穀粒落下路60を設ける。この穀粒落下路60の上部入口と穀粒送り板58との間に形成される間隙に穀粒飛込防止板(図示せず)を設置してこの間隙を閉鎖している。穀粒落下路60は、第1,第2電極ロール46a,46bが斜めに位置してこれらの接近する部分に向けて誘導壁を形成し、穀粒を電極ロール46a,46bの間隙に誘導する。なお穀粒落下路60は、電極ロール46a,46bの左右に接近する中間仕切48と電極ロール取付板49とによって形成されるものであるが、その間隔は、両電極ロール46a,46bによる圧砕部付近では圧砕穀粒の侵入を防止しうるよう狭く形成している。すなわち、当該圧砕部付近の間隔が狭くなるよう中間仕切48と電極ロール取付板49の内壁面をやや膨出状に形成するものである。
【0019】
なお、穀粒送り螺旋33は、円柱体の外周に2本の線状突起62の間に穀粒の1粒に見合う浅い凹部63を形成し、穀粒送り螺旋33の先端の一定範囲を除き、上記2本の線状突起53の外側を断面台形に切削して螺旋状の深い溝64を形成する。
【0020】
65は、傾斜状に配設する電極ロール46a,46bの下方に沿って設ける圧砕済穀粒の排出案内部で、この圧砕済穀粒を昇降機内空間へ還元案内する構成である。この排出案内部65は、前記電極ロール取付板48と一体成形される起立部51と同様に成形される構成である。
【0021】
ところで前記電極ロール46a,46bは、穀粒圧砕のために表面に規則正しい斜め方向のローレット処理を施すものであるが、軸方向矢視において、その端面カット処理は施さず、当該端面側に位置する左右のロール46a,46bが頂端線同士で接触し合うよう、つまり頂点p,p…が最外側ラインLに沿って形成されるよう加工及び軸への組付けを行っている。こうすることにより、左右ロール間隙が適正であるかの確認作業等に非常に便利である。
【0022】
前記制御部39には、回路基板66上に各種制御回路を構成するものであるが、この基板66には数ボルトまでの弱電回路を一まとめにして構成する。一方、モータトランス67に代表される強電部はこの基板66から離れた位置に、例えばモータ38と制御部39との間の底板36に支持させる構成としている。
【0023】
68は、前記操作盤12を備えるコントローラと水分計の制御回路39やモータトランス67を接続するためのハーネスであって、底板36に開口69を形成すると共に、昇降機5にはこの開口69に一致して断面矩形のトンネル状貫通筒70を当該昇降機5の前後に亘って設けてある。
【0024】
前記カバー35は、逆皿型の形状となし、前記仕切板37,中間仕切48,電極ロール取付板49の上端面に接するように取付られるもので、このカバー35の取付状態で、左右に、モータ38,制御基板66及びモータトランス67を配置する制御部39、歯車を上下に配置する伝動機構部40a、並びに一対の電極ロール46a,46bを備える検出機構部40bに区分けされる。
【0025】
前記制御部39の機能について説明する。この制御部39から所定時間間隔で水分測定信号が出力される。例えば15分間隔である。水分測定信号が出力されると、モータ38が起動し各部を回転連動し、穀粒の取り込みが始まり、各粒毎の電気信号が入力される。制御部39ではこれら電気信号を夫々に処理して水分値信号として記憶する。所定粒数、例えば100粒の電気信号が入力されると、先ずノイズや異常粒信号を取り除くための上下限カット処理が行われる。この上下限カット処理は、100粒の平均水分値Xや標準偏差σから例えば、上限カット閾水分値(=MH)、下限カット閾水分値(=ML)を決定することにより実行できる。なお、MH=平均水分値X+3×標準偏差σ、ML=平均水分値X−1.1×標準偏差σとすると、取り込み粒Mは、ML<M<MHとなる。上記のように算出された後、正規化手段による正規化処理が行われる。この正規化処理は、一粒水分値x、平均水分値x、標準偏差σとするとき、一粒水分値と平均水分値との差(x−X)を標準偏差σで徐した値(=uとする)の分布状況をもって表される。即ち、平均値「0」、標準偏差「1」の正規化状態を得るものである(例えば図11(a)(b)(c)など)。
【0026】
同じ要領で次回測定信号が出力されたときの100粒についても、上下限カット処理及び正規化処理が施される。ある籾乾燥をサンプルとして横軸に検出水分値を表し、縦軸に度数を表すと、乾燥初期、乾燥途中、仕上がり、の水分測定分布は図12のようになり、穀粒乾燥が進むにしたがって低水分側に移動している。これを上記上下限カット処理及び正規化処理を施しつつ、初回からn回目までを累積して「n」で徐した結果が図13のAに示される(累積処理)。産地や品種の異なる籾の場合が同図B,Cのように表される。
【0027】
こうして求められた度数分布に基づき、青未熟粒割合や粃割合を算出することができる。その一例を示せば、正規化され、累積処理された度数分布において、予め実験的に決定された度数aを基準ラインとして、高水分域及び低水分域夫々において当該基準ラインよりも低い度数部分の合算α又はβの全度数Nに対する比率をもって青未熟粒割合RA又は粃割合RSとする。
【0028】
即ち、RA=(α/N)×100(%)、RS=(β/N)×100(%)である。上記正規化,累積の一連の処理のうち、累積処理にあたっては、その累積回数を初回から乾燥の進行に従い順次上積みする構成とするが、次のように累積回数を設定してもよい。即ち、別途構成する張込量センサからの検出結果に基づき、予め設定してある穀粒量−累積回数関係グラフ(図14)により累積回数を求める形態である。このように構成すると、穀粒の多小に応じた累積回数が設定でき、穀粒量が多いにも拘らず累積回数が少ないと乾燥機内全体を測定できない恐れをなくし、判定に要する時間の最適化ひいては判定精度の向上がはかれる。なお、張込量データとしては目視確認による手動設定のデータでもよい。またこれらのほか、予め設定した回数をもって累積回数とすることもできる。
【0029】
上記いずれの累積処理を行っても、その結果得られる青未熟粒割合、及び粃割合の算出精度はきわめて高い。その裏付けは、図15に示されている。即ち、外観品位測定装置(図示せず)で測定した青未熟粒の結果と、本件実施例による正規化,累積処理の手順を経た結果とを比較することによってその精度が測れる。図は横軸に測定回数をとり、縦軸に本件実施例による算出比率値と外観品位測定装置による算出値との「差」を真の青未熟粒割合(≒外観品位測定装置の検出値)で徐した値(×100%)としている。図中実線は実施例による正規化,累積処理の手順を経た値に関するもので、ほとんど外観品位測定装置の結果と一致していることが判明した。
【0030】
なお、図中破線は正規化処理のみの結果との比較であるが、大きく上下に変動していて精度の粗さは否めない。このように、原データを正規化処理しながら、順に累積処理を施すことによって整粒と青未熟粒又は粃との境界区分の仕分けが精度よく実行でき、各割合算出精度も高くなる効果がある。
【0031】
上例の作用について説明する。基本画面を呼び出しスイッチ14をONすると、ホッパに投入された乾燥すべき穀物は昇降機5を経て貯留部2に張り込まれる。張込完了すると、停止スイッチ16をONして各部を一旦停止する。次には乾燥作業に移行するためスイッチ15をONし、画面を穀物種類・乾燥モード設定画面に切り替え、前段で穀物種類設定スイッチ14を押して当該張込穀物の種類を設定し、かつ乾燥モードを選択設定する。尚別途に設ける設定画面により同じ要領で水分設定機能スイッチをもって希望の乾燥仕上げ水分値を設定する。
【0032】
こうすることにより、昇降機5上下移送螺旋、繰出バルブ等は運転を開始し、かつバーナ6も駆動状態におかれて熱風乾燥を開始するものである。ここで、熱風温度は選択された穀物種類毎に予め乾燥速度が決められており、当該乾燥速度にそって熱風温度が決定されることとなり、乾燥室3の穀物流路を流下するうち熱風が作用して乾燥し、集穀室4から昇降機5を経て貯留室2に戻され調質作用を受ける。このような循環を所定水分に達するまで繰返し行う。
【0033】
上記の乾燥運転中、所定時間間隔で水分測定が行われる。即ち所定時間間隔で一粒水分計のモータ38に駆動指令信号が出力される。昇降機5内バケット31で掻き上げられる穀粒の一部は溢出流下し、その一部が穀粒取り込み部32を経て穀粒送り螺旋33と穀粒送り板58との間で受けられ、一粒毎に穀粒送り螺旋33終端側、つまり水分計本体内へ導入される。この穀粒送り螺旋3の終端部から穀粒落下路60を流下しながら通過して電極ロール46a,46bの間に案内される。電極ロール46a,46bは互いに逆回転していて、穀粒を取り込みつつ圧砕しながらその電気抵抗値が検出されるものとなる。制御回路部39では、所定粒数、例えば100粒の電気抵抗値に見合う電気信号が入力される。制御回路部39では、前記した正規化処理及び累積処理が施され、穀粒の平均水分値とし表示部13画面に表示出力すると共に、同時に青未熟粒割合や粃割合を求める。
【0034】
前記の正規化処理及び累積処理に基づく度数分布表に基づき乾燥制御を行う。例えば、図13のA,B又はCのように表された度数分布のうち+(プラス)側度数と−(マイナス)側度数の比率を算出し、その算出結果に基づき、乾燥初期等の通風乾燥の要否判定を行わせる構成である。{(+(プラス)側度数)/(−(マイナス)側度数)}×100(%)がNを越えるか下回るかで上記通風乾燥の要否を判定する。Nを越えるときは、ばらつき解消乾燥運転は必要でなく、例えば「通風乾燥不要」とし、逆にN%を下回るときは「通風乾燥要」と判定する。Nは例えば「1」に設定される。
【0035】
又、図17に示すものは、正規化処理及び累積処理に基づく度数分布に予め設定した基準度数分布を重ね、両者の誤差の大小に基づき、所謂通風乾燥を施すか否かを決定するものである。つまり正規性を推測することができるから、精度の高い乾燥制御運転を実行できる。ここで基準度数分布の設定にあたっては、累積された度数分布のピーク値が平均値「0」に一致すべく平行移動して得るなど種々の方法がある。
【0036】
上記のように、正規化,累積処理によって精度の高い青未熟粒割合や粃割合を算出することができるが、図11(a)(b)(c)の正規化の状態から青未熟粒比率の概要を知ることができる。即ち、図11(a)(b)(c)において、青未熟粒比率は(a)<(b)<(c)の関係にあることは容易に知ることとなるが、この傾向は、正規化された度数分布の級数「0」の度数を比較することと等しい。つまり、当該級数「0」ブロックの度数を算出するのみで、予め制御装置に記憶させておく設定度数との比較によって青未熟粒が「多い」「普通」「少ない」などの表示が可能となるが、上記の構成にあっては、複雑な算出式を要しないため迅速容易に表示出力が行われて便利である。
【図面の簡単な説明】
【図1】 穀物乾燥機の正面図である。
【図2】 穀物乾燥機の正断面図である。
【図3】 水分計の分解斜視図である。
【図4】 コントロールボックスの制御盤正面図である。
【図5】 制御ブロック図である。
【図6】 水分計の正断面図である。
【図7】 同上の側断面図である。
【図8】 同上の背面図である。
【図9】 電極ロールの平面図である。
【図10】 電極ロールのローレット部拡大側面図である。
【図11】 (a)(b)(C)正規処理した水分分布一例である。
【図12】 原データによる水分分布一例である。
【図13】 正規化,累積処理した度数分布一例である。
【図14】 張込量−累積回数関係グラフである。
【図15】 外観品位測定装置との比較線図である。
【図16】 フローチャートである。
【図17】 正規化,累積処理した度数分布別例である。
【符号の説明】
1…乾燥機枠,2…貯留室,3…乾燥室,4…集穀室,5…昇降機,6…バーナ,7…吸引ファン,8…繰出バルブ,9…下部移送装置,10…上部移送装置,11…拡散盤,12…操作盤,13…表示部,14〜17…スイッチ,18…非常停止スイッチ,19…演算制御部,20…水分計,30…無端ベルト,31…バケット,32…穀粒取り込み部,33…穀粒送り螺旋,34…フレーム,35…カバー,36…底板,37…仕切板,38…モータ,39…制御部,40…機構部,41…駆動軸,42…はすば歯車,43…はすば歯車,44…はすば歯車,45…軸,46a…第1電極ロール,46b…第2電極ロール,47…軸,48…中間仕切,49…電極ロール取付板,50…取付脚部,51…起立部,52…回転軸,53…はすば歯車,55…開口,56…異物除去体,57…底部排出口,58…穀粒送り板,59…バネ,60…穀粒落下路,61…穀粒飛込防止板,62…線状突起,63…凹部,64…深い溝,65…排出案内部,66…回路基板
[0001]
[Industrial application fields]
The present invention relates to a grain moisture measuring device used for a grain dryer or the like.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, it is a moisture meter that is mounted on a lifting machine such as a grain dryer and takes in the whole grains, and for example, 100 forms of moisture are measured and the ratio of immature grains and straw is calculated. Yes (for example, Japanese Patent Publication No. 3-5509).
[0003]
By the way, in the form described in the above publication, since the ratio is the ratio of the high moisture content data number exceeding the predetermined deviation width to the preset total sample data number, the total sample data number is naturally limited to 100 grains or the like. Occurs. Therefore, variation occurs for each measurement performed at predetermined time intervals.
[0004]
[Means for Solving the Problems]
This invention is a detection mechanism provided with a pair of electrode rolls ( 46a, 46b ) that crushes the grains supplied from a grain feeding mechanism such as a grain feed spiral ( 33 ) into individual grains and outputs the electrical signals. part (40b), the control circuit section (39) grain moisture measuring apparatus comprising a which processes the electrical signal is converted to a water content, to the control circuit unit (39), number of grains classified each preset to Normalization processing means for obtaining a frequency distribution based on each measured moisture value and normalizing the frequency distribution, and sequentially obtaining the normalized frequency distribution according to the progress of grain drying, and accumulating these normalized frequency distributions And accumulating processing means.
[0005]
The invention described in claim 2 is a product in which the frequency distribution obtained as a result of the cumulative processing means is used as basis data for calculating the ratio of sized, unripe, or wrinkles. Further, the number of times of accumulation by the accumulation processing means is configured to be sequentially stacked with the progress of drying, or is determined according to the amount of grain to be laid.
[0006]
[Effects of the invention]
For example, during the drying process, moisture is calculated for each predetermined number of grains, and the original data is normalized. Accumulation processing is performed while performing normalization processing for each moisture measurement sequentially executed at predetermined time intervals, and the moisture distribution at the time point can be expressed.
[0007]
By performing the process of performing the accumulation process in order while normalizing the original data, the classification of the boundary between the sized particle and the blue immature particle or cocoon can be executed with high accuracy, and the ratio calculation accuracy is also increased.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. 1 is a machine frame of a grain drying device, which is stacked in the order of a storage chamber 2, a drying chamber 3, and a grain collection chamber 4, and burners in the drying chamber 3 while circulating grains by driving an elevator 5 provided outside. 6 is a publicly known form in which hot air generated by the combustion and the suction fan 7 is bathed and dried.
[0009]
A predetermined amount of grain 8 flows down while rotating forward and reverse by a feeding drum 8. Reference numeral 9 denotes a lower transfer device that communicates with the elevator 5, and 10 denotes an upper transfer device that is connected to the upper side of the elevator 5, and can supply grains to the diffusion plate 11 at the upper part of the storage chamber 2. The burner 6 and the grain circulation mechanism are performed by a computer having a memory for storing a control program necessary for drying control, various data, and the like. That is, the operation panel 12 is provided with a liquid crystal display unit 13, and four push button switches 14 to 17 and an emergency stop switch 18 are arranged slightly apart along the lower edge of the display unit 13. ing. The functions of the switches 14 to 17 are displayed on the display unit 13. In the example shown in the figure, the switches 14 to 17 are configured as operation switches for stretching, drying, discharging, and ventilation in order. This is a configuration that can have different functions.
[0010]
The built-in control unit receives the switch information on the operation panel 12 surface and the detection information from the sensors installed in each part of the dryer machine frame 1 and controls the burner combustion amount, grain circulation system based on the necessary comparison calculation. Start / stop control, display content control of the display unit 13 and the like. The switches on the operation panel 12 can set grain type, set moisture (finishing moisture), amount of penetration, timer increase / decrease, etc., in addition to each setting of tension / dry / discharge / ventilation.
[0011]
FIG. 5 is a control block diagram. In addition to the setting information from the switches, the calculation control unit 19 of the computer built in the control box having the operation panel 12 includes the moisture meter 20 detection information and the throwing unit of the elevator 5. Grain detection information, hot air temperature detection information, and the like of the provided grain flow detector 21 are input. On the other hand, the output information includes a combustion system signal of the burner 6, for example, a fuel supply signal, a flow rate control signal thereof, or a vertical circulation spiral, a grain circulation system motor control signal such as an elevator 5 and a feed valve 8, a suction fan 7 motor control signal, There is a display output to each display unit.
[0012]
The elevator 5 is a bucket type, and has a structure in which a large number of buckets 31, 31... Are attached to an endless belt 30, and the outer periphery is covered with a side wall 5 a. Carry to 2. Inside the front side of the side wall 5a of the elevator 5 is installed by inserting the front edge of the grain intake portion 32 of the single-grain moisture meter 20 to the vicinity of the bucket 31 of the endless belt 30 for buckets. Below the bottom discharge port of the take-in portion 32, the start end of the grain feed spiral 33 is looked over.
[0013]
Since the leading edge of the grain take-in portion 32 and the start end of the grain feed spiral 33 are located on the inside of the bucket endless belt 30 on the rising side and the descending belt side, there is no hindrance to the movement of the belt 30 and the bucket 31. . The housing of the single moisture meter includes a frame 34 and a cover 35 that covers the frame 34. The frame 34 includes a bottom plate 36 that divides the elevator 5 along the side surface of the elevator 5, and a partition plate 37 that stands integrally on the bottom plate 36. A motor 38 that is assembled to the frame 34. The control unit 39 and the mechanism unit 40 are partitioned by the partition plate 37.
[0014]
A drive shaft 41 of a motor 38 is passed through the partition plate 37 and fixed horizontally, and a helical gear 42 is fixed to the tip of the drive shaft 41. The helical gear 42 is a gear in which the second helical gear 43 and the third helical gear 44 are sequentially meshed in the lower order by aligning the rotational axis. The first electrode roll 46 a is fixed to the shaft 45 of the second helical gear 43, and the second electrode roll 46 b is fixed to the shaft 47 of the third helical gear 44.
[0015]
In parallel with the partition plate 37, both the intermediate partition 48 made of a transparent resin material and the electrode roll mounting plate 49 are detachably attached to mounting legs 50, 50, which are integrally formed so as to protrude from the partition plate 37. They are fastened together with bolts (not shown). The interval between the partition plate 37 and the intermediate partition 48 is ensured by the presence of the mounting leg portion 50, and the interval between the intermediate partition 48 and the electrode roll mounting plate 49 is a narrow upright portion integrally formed with the mounting plate 49. Secure by 51. Accordingly, the shaft 45 and the shaft 47 are configured such that one end is supported by the partition plate 37 and the other end is supported by the electrode roll mounting plate 49.
[0016]
Further, the rotary shaft 52 of the grain feed spiral 33 is inserted into a predetermined position of the bottom plate 36, and a helical gear 53 is fixed to the rotary shaft 52, and meshes with the helical gear 42 of the drive shaft 41 at a right angle. . FIG. 8 is a rear view of the single-grain moisture meter as seen from the inside of the elevator 5, and the grain taking-in portion 32 protrudes into the elevator 5 from the bottom plate 36, and the opening edge of the upper opening 55 is inclined obliquely downward. The comb-like foreign matter removing body 56 is formed by forming a large area and arranging a plurality of bullets in the opening 55 and fixing the roots thereof.
[0017]
The lower part of the grain intake part 32 narrows the interval in a V-shaped cross section, extends one side to the position just above the grain feed spiral 33, forms a bottom outlet 57 at the lower end on the other side, The tip of the grain feeding spiral 33 is connected. Then, a grain feed plate 58 that is parallel to the grain feed spiral 33 and whose upper edge is rotatably supported on the outside of the grain take-in portion 32 is suspended, and a spring 59 is in contact with the outer periphery of the grain feed spiral 33. Energize.
[0018]
A grain dropping path 60 is provided below the terminal end of the grain feeding spiral 33. A grain jump prevention plate (not shown) is installed in a gap formed between the upper entrance of the grain dropping path 60 and the grain feeding plate 58 to close the gap. In the grain dropping path 60, the first and second electrode rolls 46a and 46b are obliquely formed to form a guide wall toward the approaching parts, and the grain is guided to the gap between the electrode rolls 46a and 46b. . The grain dropping path 60 is formed by an intermediate partition 48 approaching the left and right of the electrode rolls 46a and 46b and the electrode roll mounting plate 49, and the interval between them is a crushing portion formed by both electrode rolls 46a and 46b. In the vicinity, it is narrowly formed to prevent the intrusion of crushed grains. That is, the inner wall surfaces of the intermediate partition 48 and the electrode roll mounting plate 49 are formed in a slightly bulging shape so that the interval near the crushing portion is narrowed.
[0019]
In addition, the grain feeding spiral 33 forms a shallow concave portion 63 corresponding to one grain of grain between two linear protrusions 62 on the outer periphery of the cylindrical body, except for a certain range at the tip of the grain feeding spiral 33. The outer sides of the two linear protrusions 53 are cut into a trapezoidal cross section to form a spiral deep groove 64.
[0020]
65 is a discharge guide part of the crushed grain provided along the lower side of the electrode rolls 46a, 46b disposed in an inclined manner, and this crushed grain is reduced and guided to the elevator space. The discharge guide portion 65 is formed in the same manner as the upright portion 51 formed integrally with the electrode roll mounting plate 48.
[0021]
By the way, the electrode rolls 46a and 46b are for subjecting the surface to a regular oblique knurling process for grain crushing, but are not subjected to the end face cutting process in the axial direction, and are located on the end face side. Processing and assembly to the shaft are performed so that the left and right rolls 46a and 46b come into contact with each other at the top end lines, that is, the apexes p, p... Are formed along the outermost line L. By doing so, it is very convenient for checking whether the left and right roll gaps are appropriate.
[0022]
The control unit 39 constitutes various control circuits on the circuit board 66, and the board 66 is configured with a weak electric circuit up to several volts as a whole. On the other hand, the high power unit represented by the motor transformer 67 is configured to be supported on the bottom plate 36 between the motor 38 and the control unit 39 at a position away from the substrate 66, for example.
[0023]
Reference numeral 68 denotes a harness for connecting the controller having the operation panel 12 to the moisture meter control circuit 39 and the motor transformer 67. The harness 69 forms an opening 69 in the bottom plate 36, and the elevator 5 has a single opening 69. In addition, a tunnel-shaped through cylinder 70 having a rectangular cross section is provided across the elevator 5.
[0024]
The cover 35 has an inverted dish shape, and is attached so as to be in contact with the upper end surfaces of the partition plate 37, the intermediate partition 48, and the electrode roll mounting plate 49. The motor 38, the control board 66, and the motor transformer 67 are divided into a control unit 39, a transmission mechanism unit 40a that arranges gears up and down, and a detection mechanism unit 40b that includes a pair of electrode rolls 46a and 46b.
[0025]
The function of the control unit 39 will be described. A moisture measurement signal is output from the control unit 39 at predetermined time intervals. For example, every 15 minutes. When the moisture measurement signal is output, the motor 38 is activated to rotate and link each part, the grain intake starts, and the electrical signal for each grain is input. The controller 39 processes each of these electric signals and stores them as a moisture value signal. When an electrical signal of a predetermined number of grains, for example, 100 grains is input, first, upper and lower limit cut processing is performed to remove noise and abnormal grain signals. This upper and lower limit cut processing can be executed by determining, for example, an upper limit cut threshold moisture value (= MH) and a lower limit cut threshold moisture value (= ML) from the average moisture value X and standard deviation σ of 100 grains. If MH = average moisture value X + 3 × standard deviation σ and ML = average moisture value X−1.1 × standard deviation σ, the incorporated grains M satisfy ML <M <MH. After the calculation as described above, normalization processing by normalization means is performed. In this normalization process, when a single grain moisture value x, an average moisture value x, and a standard deviation σ, a value obtained by gradually grading the difference (x−X) between the single grain moisture value and the average moisture value by the standard deviation σ (= u)). That is, the normalization state of the average value “0” and the standard deviation “1” is obtained (for example, FIGS. 11A, 11B, and 11C).
[0026]
The upper and lower limit cut processing and normalization processing are performed on 100 grains when the next measurement signal is output in the same manner. When a certain moisture drying is used as a sample and the detected moisture value is represented on the horizontal axis and the frequency is represented on the vertical axis, the moisture measurement distribution in the initial stage of drying, during drying, and finishing is as shown in FIG. It moves to the low moisture side. FIG. 13A shows a result obtained by accumulating the first to n-th times and gradually increasing the value by “n” while performing the above-described upper and lower limit cut processing and normalization processing (accumulation processing). Cases with different origins and varieties are represented as shown in FIGS.
[0027]
Based on the frequency distribution thus obtained, the ratio of blue immature grains and the percentage of wrinkles can be calculated. For example, in a normalized and cumulative frequency distribution, the frequency a determined experimentally in advance is used as a reference line, and the frequency portion lower than the reference line in each of the high moisture region and the low moisture region is used. The ratio of the total α or β to the total frequency N is defined as the blue immature grain ratio RA or the wrinkle ratio RS.
[0028]
That is, RA = (α / N) × 100 (%), RS = (β / N) × 100 (%). Of the series of normalization and accumulation processes, in the accumulation process, the accumulation number is sequentially stacked from the first time as the drying progresses. However, the accumulation number may be set as follows. That is, it is a form which calculates | requires the frequency | count of accumulation by the grain amount-accumulation frequency relationship graph (FIG. 14) set beforehand based on the detection result from the tension amount sensor comprised separately. When configured in this way, the number of accumulations can be set according to the size of the kernel, and there is no risk that the entire dryer can not be measured if the number of accumulations is small despite the large amount of kernels. As a result, determination accuracy can be improved. The insertion amount data may be manually set data by visual confirmation. In addition to these, a cumulative number of times may be set in advance.
[0029]
Regardless of which accumulation process is performed, the accuracy of calculating the ratio of blue immature grains and the percentage of wrinkles obtained as a result is extremely high. The support is shown in FIG. That is, the accuracy can be measured by comparing the result of the blue immature grains measured by an appearance quality measuring device (not shown) with the result of normalization and accumulation processing according to the present embodiment. In the figure, the horizontal axis shows the number of measurements, and the vertical axis shows the “difference” between the calculated ratio value according to this example and the calculated value by the appearance quality measuring device, the true blue immature grain ratio (≈ detected value of the appearance quality measuring device). The value is slow (× 100%). The solid line in the figure relates to the value after the normalization and accumulation process according to the example, and it was found that it almost coincided with the result of the appearance quality measuring device.
[0030]
In addition, although the broken line in the figure is a comparison with the result of only the normalization process, it fluctuates greatly up and down and the accuracy of the roughness cannot be denied. In this way, the normal data is normalized, and the accumulation process is performed in order, so that the classification of the boundary between the sized particle and the blue immature particle or cocoon can be performed with high accuracy, and each ratio calculation accuracy is also increased. .
[0031]
The operation of the above example will be described. When the basic screen is called and the switch 14 is turned ON, the grain to be dried put into the hopper is stuck into the storage unit 2 through the elevator 5. When the insertion is completed, the stop switch 16 is turned on to temporarily stop each part. Next, the switch 15 is turned on to shift to the drying operation, the screen is switched to the grain type / drying mode setting screen, the grain type setting switch 14 is pressed in the preceding stage to set the type of the overhanging grain, and the drying mode is set. Select and set. The desired dry finish moisture value is set with the moisture setting function switch in the same manner on a separate setting screen.
[0032]
By doing so, the elevator 5 up / down transfer spiral, the feeding valve and the like start operation, and the burner 6 is also driven to start hot air drying. Here, the hot air temperature is determined in advance for each selected grain type, and the hot air temperature is determined according to the drying speed, and the hot air is flowing down the grain flow path of the drying chamber 3. It acts and dries, and returns to the storage chamber 2 from the cereal collection chamber 4 through the elevator 5 and undergoes a tempering operation. Such circulation is repeated until the predetermined moisture is reached.
[0033]
During the drying operation, moisture measurement is performed at predetermined time intervals. That is, a drive command signal is output to the single moisture meter motor 38 at predetermined time intervals. A part of the grain scraped up by the bucket 31 in the elevator 5 overflows and a part of the grain is received between the grain feeding spiral 33 and the grain feeding plate 58 via the grain taking-in part 32, and one grain. Each time it is introduced into the grain feed spiral 33 end side, that is, into the moisture meter body. It passes through the grain drop path 60 from the end of the grain feed spiral 3 and is guided between the electrode rolls 46a and 46b. The electrode rolls 46a and 46b rotate in the opposite directions, and the electric resistance value is detected while crushing while taking in the grains. In the control circuit unit 39, an electric signal corresponding to an electric resistance value of a predetermined number of grains, for example, 100 grains, is input. In the control circuit unit 39, the normalization process and the accumulation process described above are performed, and the average moisture value of the grains is displayed and output on the display unit 13 screen, and at the same time, the ratio of blue immature grains and the percentage of wrinkles are obtained.
[0034]
Drying control is performed based on the frequency distribution table based on the normalization process and the accumulation process. For example, in the frequency distribution represented as A, B or C in FIG. 13, the ratio of the + (plus) side frequency and the − (minus) side frequency is calculated, and the ventilation at the initial stage of drying is calculated based on the calculation result. In this configuration, the necessity of drying is determined. Whether {(+ (plus) side frequency) / (− (minus) side frequency)} × 100 (%) exceeds or falls below N determines whether or not the air drying is necessary. When N exceeds N, the dispersion-resolving drying operation is not necessary. For example, it is determined that “ventilation drying is unnecessary”, and conversely, when it is less than N%, it is determined that “ventilation drying is necessary”. N is set to “1”, for example.
[0035]
In addition, what is shown in FIG. 17 is to superimpose a preset reference frequency distribution on the frequency distribution based on the normalization process and the accumulation process, and determines whether to perform so-called ventilation drying based on the magnitude of the error between the two. is there. That is, since normality can be estimated, highly accurate drying control operation can be performed. Here, in setting the reference frequency distribution, there are various methods such as a method in which the peak value of the accumulated frequency distribution is translated so as to coincide with the average value “0”.
[0036]
As described above, the blue immature grain ratio and the wrinkle ratio with high accuracy can be calculated by normalization and accumulation processing, but the blue immature grain ratio can be calculated from the normalized state of FIGS. 11 (a), (b), and (c). You can get an overview of That is, in FIGS. 11A, 11B, and 11C, it is easy to know that the ratio of blue immature grains is in the relationship of (a) <(b) <(c). It is equivalent to comparing the frequency of the series “0” of the generalized frequency distribution. In other words, only by calculating the frequency of the series “0” block, it is possible to display “large”, “normal”, “low”, etc., for the blue immature grains by comparison with the preset frequency stored in the control device in advance. However, since the above configuration does not require a complicated calculation formula, display output is performed quickly and easily, which is convenient.
[Brief description of the drawings]
FIG. 1 is a front view of a grain dryer.
FIG. 2 is a front sectional view of a grain dryer.
FIG. 3 is an exploded perspective view of a moisture meter.
FIG. 4 is a front view of the control box of the control box.
FIG. 5 is a control block diagram.
FIG. 6 is a front sectional view of a moisture meter.
FIG. 7 is a side sectional view of the above.
FIG. 8 is a rear view of the above.
FIG. 9 is a plan view of an electrode roll.
FIG. 10 is an enlarged side view of a knurled portion of an electrode roll.
FIGS. 11A, 11B, and 11C are examples of moisture distribution subjected to normal processing. FIGS.
FIG. 12 is an example of moisture distribution based on original data.
FIG. 13 is an example of a frequency distribution that has been normalized and accumulated.
FIG. 14 is a graph illustrating the relationship between the amount of pasting and the cumulative number of times.
FIG. 15 is a comparison diagram with an appearance quality measuring device.
FIG. 16 is a flowchart.
FIG. 17 shows examples of frequency distributions that have been normalized and accumulated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dryer frame, 2 ... Storage room, 3 ... Drying room, 4 ... Grain collection room, 5 ... Elevator, 6 ... Burner, 7 ... Suction fan, 8 ... Feeding valve, 9 ... Lower transfer device, 10 ... Upper transfer Device: 11 ... Diffusion plate, 12 ... Control panel, 13 ... Display, 14-17 ... Switch, 18 ... Emergency stop switch, 19 ... Calculation control unit, 20 ... Moisture meter, 30 ... Endless belt, 31 ... Bucket, 32 ... Grain uptake part, 33 ... Grain feed spiral, 34 ... Frame, 35 ... Cover, 36 ... Bottom plate, 37 ... Partition plate, 38 ... Motor, 39 ... Control part, 40 ... Mechanism part, 41 ... Drive shaft, 42 ... helical gear, 43 ... helical gear, 44 ... helical gear, 45 ... shaft, 46a ... first electrode roll, 46b ... second electrode roll, 47 ... shaft, 48 ... intermediate partition, 49 ... electrode Roll mounting plate, 50 ... Mounting leg, 51 ... Standing part, 52 ... Rotating shaft, 53 ... Gears, 55 ... openings, 56 ... foreign material removal bodies, 57 ... bottom outlets, 58 ... grain feed plates, 59 ... springs, 60 ... grain drop paths, 61 ... grain jump prevention plates, 62 ... linear Projection, 63 ... recess, 64 ... deep groove, 65 ... discharge guide, 66 ... circuit board

Claims (4)

穀粒送り螺旋33などの穀粒繰出機構から供給される穀粒を単粒ごとに圧砕してその電気信号を出力する一対の電極ロール46a,46bを備える検出機構部40b、該電気信号を処理して水分値に換算する制御回路部39)からなる穀粒水分測定装置において、当該制御回路部39には、あらかじめ設定した粒数区分毎に各測定水分値に基づく度数分布を求めると共にこの度数分布を正規化する正規化処理手段、及びこの正規化された度数分布を穀粒乾燥の進行に従って順次求め、これら正規化された度数分布を累積する累積処理手段を備えて構成してなる穀粒水分測定装置。Detection mechanism part ( 40b ) provided with a pair of electrode rolls ( 46a, 46b ) that crushes the grains supplied from a grain feeding mechanism such as a grain feed spiral ( 33 ) into individual grains and outputs an electrical signal thereof , electric in processing the electrical signal grain moisture measuring apparatus comprising a control circuit unit for converting the water content value (39) and, to the control circuit unit (39) is preset number of grains classified per each measurement moisture content Normalization processing means for obtaining a frequency distribution based on the frequency and normalizing the frequency distribution, and cumulative processing means for sequentially obtaining the normalized frequency distribution according to the progress of grain drying and accumulating the normalized frequency distribution A grain moisture measuring device comprising: 請求項1における累積処理手段による結果得られる度数分布を整粒、青未熟粒、又は粃の割合算出の根拠データとする穀粒水分測定装置。  A grain moisture measuring device using the frequency distribution obtained as a result of the accumulation processing means in claim 1 as basis data for calculating the ratio of sized, unripe, or cocoon. 請求項1における累積処理手段による累積回数は乾燥の進行と共に順次上積みするよう構成する穀粒水分測定装置。  2. A grain moisture measuring device configured to pile up the cumulative number of times by the cumulative processing means in claim 1 as the drying progresses. 請求項1における累積処理手段による累積回数は張り込まれる穀粒量によって決定される構成である穀粒水分測定装置。  The grain moisture measuring device according to claim 1, wherein the number of times of accumulation by the accumulation processing means is determined by the amount of grain to be embedded.
JP35039299A 1999-12-09 1999-12-09 Grain moisture measuring device Expired - Fee Related JP4320881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35039299A JP4320881B2 (en) 1999-12-09 1999-12-09 Grain moisture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35039299A JP4320881B2 (en) 1999-12-09 1999-12-09 Grain moisture measuring device

Publications (2)

Publication Number Publication Date
JP2001165884A JP2001165884A (en) 2001-06-22
JP4320881B2 true JP4320881B2 (en) 2009-08-26

Family

ID=18410185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35039299A Expired - Fee Related JP4320881B2 (en) 1999-12-09 1999-12-09 Grain moisture measuring device

Country Status (1)

Country Link
JP (1) JP4320881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732281B2 (en) * 2011-03-07 2015-06-10 株式会社山本製作所 Moisture measuring device
CN112525760A (en) * 2020-11-24 2021-03-19 厦门市健康医疗大数据中心(厦门市医药研究所) Method for digitally and quantitatively evaluating moisture absorption strength of substance

Also Published As

Publication number Publication date
JP2001165884A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
US20050205389A1 (en) Coin conditioning device and method, and a coin processing apparatus comprising a coin conditioning device
JP4320881B2 (en) Grain moisture measuring device
KR102667621B1 (en) Moisture measuring device
CN112816527A (en) Grain moisture detection device, grain drying equipment and temperature control method
JP7162805B2 (en) Moisture measuring device and moisture measuring method
JP2005077212A (en) Cereal moisture measuring instrument
JP3968513B2 (en) Grain moisture measuring device
JP3622434B2 (en) Moisture measuring device
JP3937931B2 (en) Grain moisture measuring device
JP2003294664A (en) Grain moisture measurement apparatus
GB2039052A (en) Apparatus for measuring the moisture content of grain
JP2008298324A5 (en)
JP3943290B2 (en) Moisture value control device in sample grain dryer
JPH11211348A (en) Moisture measuring instrument for grain drying machine
JP2003107027A (en) Instrument for measuring moisture of grain
JPH09257735A (en) Moisture detector of grain dryer
JP4697536B2 (en) Circulation prevention operation method of circulation type grain dryer
KR200258565Y1 (en) Electronically controlled rice bowl for sink mounting
KR100306019B1 (en) automatic white rice recovery rate checker
JP3151962B2 (en) Grain grain detection device in grain dryer
JPH03101848A (en) Drying method for grain
JPH10123078A (en) Grain moisture detecting indicator for grain dryer
JP2012122836A (en) Moisture measurement apparatus
JP2002153762A (en) Rice polishing machine
JP2004061348A (en) Cereal moisture measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4320881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees