JP3943290B2 - Moisture value control device in sample grain dryer - Google Patents

Moisture value control device in sample grain dryer Download PDF

Info

Publication number
JP3943290B2
JP3943290B2 JP21215299A JP21215299A JP3943290B2 JP 3943290 B2 JP3943290 B2 JP 3943290B2 JP 21215299 A JP21215299 A JP 21215299A JP 21215299 A JP21215299 A JP 21215299A JP 3943290 B2 JP3943290 B2 JP 3943290B2
Authority
JP
Japan
Prior art keywords
moisture
drying
sample
value
moisture value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21215299A
Other languages
Japanese (ja)
Other versions
JP2001041654A (en
Inventor
博 相沢
国博 垣添
直樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP21215299A priority Critical patent/JP3943290B2/en
Publication of JP2001041654A publication Critical patent/JP2001041654A/en
Application granted granted Critical
Publication of JP3943290B2 publication Critical patent/JP3943290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、乾燥調製施設等荷受け穀物の自主検定装置に供給する前にサンプル穀物を乾燥するサンプル穀物乾燥装置における水分値制御装置に関する。
【0002】
【従来技術及び発明が解決しようとする課題】
従来、サンプル穀物乾燥装置として、例えばサンプル乾燥機本体機枠の正面縦横複数に形成した空間部に、サンプル穀物を収容したサンプル箱を格納し、これらサンプル箱の夫々に対応すべく水分検出装置を設ける構成として、乾燥仕上がり状況を監視している。サンプル箱個々に水分検出装置を備えるため、検出遅れのない状態でサンプル乾燥を終了できる点で優れるが、個々に水分検出装置を必要としてコストが嵩む欠点がある。
【0003】
【課題を解決するための手段】
この発明は上記に鑑み、小型で廉価なサンプル乾燥装置を実現し、併せて処理時間の効率化をはかろうとするもので、次の技術的手段を講じた。即ち、複数のサンプル穀物を所定水分に乾燥するサンプル穀物乾燥装置と、サンプル穀物の水分を測定する水分計18と備えたサンプル穀物乾燥装置における水分値制御装置において、水分計18で乾燥初期水分M0を測定すると共にサンプル穀物の乾減率Aを設定し、これら初期水分M0と乾減率Aとから仕上げ水分値Meに到達する前に水分測定するための初回乾燥時間H1を求め、この初回乾燥時間H1乾燥後、水分計18で中間水分値Mnを測定し、該中間水分値Mnと乾減率Aから仕上げ水分Meまでに要する次回乾燥時間H(n+1)を求め、この次回乾燥時間H(n+1)について乾燥出力をなす構成とし中間水分値Mnが仕上げ水分値Meに予め設定する最終水分測定範囲αを加えた範囲内の水分値に達すると、その後の次回乾燥時間H ( n+1 ) についてはその乾燥出力経過後水分測定を行わず乾燥終了する構成としたサンプル穀物乾燥装置における水分値制御装置の構成とする。
【0004】
【発明の作用及び効果】
この発明は以上の構成であるから、乾減率Aと測定水分値とから初期乾燥時間、次回乾燥時間、…のように乾燥時間を管理しながら乾燥を継続していくものであるから、定期的なサンプル穀物の水分検出を行う必要がなく、個々に水分計を備える必要がなく、廉価に構成できる。
【0005】
また、サンプル穀物の中間水分値Mnが仕上げ水分値Meに予め設定する最終水分測定範囲αを加えた範囲内に収まるとタイマ管理に切り替えて乾燥仕上げとなるものである。従って、過乾燥となる恐れが少なく、然も最終仕上時の管理はタイマのみのよるから作業 効率を低下させず、次回乾燥時間H(n+1)の経過後水分測定を行わず乾燥終了するものであるから、乾燥終了の判定を迅速に行うことができる。
【0006】
【発明の実施の形態】
この発明の一実施例を図面に基づいて説明する。図1はサンプル乾燥から自主検定を経てサンプルを袋詰するサンプルパックまでを一連に自動化した装置の概要であり、1はサンプル乾燥機、2は自主検定装置、3はサンプルパック機、4は制御部である。
【0007】
上記のうち、サンプル乾燥機1は、サンプル収容すべきサンプル箱5,5…にサンプルを投入ないし排出するサンプル投入排出部6と、機枠の正面側に複数のサンプルを格納しうる格納空間(図例では縦10列横12列で計120口)7,7…を形成したサンプル箱格納部8と、サンプル箱を所定の格納部7位置にて搬入出するサンプル搬入出部9と、上記機枠内にあって乾燥に必要な乾燥風調整機器を内蔵した乾燥風循環部10等からなる。
【0008】
上記サンプル投入排出部6には、サンプル箱5を、正面側に荷受けサンプル投入位置イ、水分測定のための水分測定サンプル投入位置ロ、同じく水分測定サンプル受け位置ハ、及び乾燥終了後のサンプル排出位置ニ、の夫々に対応すべくサンプル箱5挿入口11,12,13及び14を開口している。図外荷受け計量器より600gから1000gの範囲でサンプリングされた穀物は、適宜案内ダクト15を介してサイクロン16内に送られ、該サイクロン16の下部に接続する案内シュート17の下端部を上記荷受けサンプル投入位置イにのぞませる。
【0009】
上記の水分測定のための水分測定サンプル投入位置ロと水分測定サンプル受け位置ハとを接続する流下路には水分計18を設け、サンプルの更に一部を受けて単粒毎に水分測定しながら平均水分を算出しうる構成である。また、前記乾燥終了後のサンプル排出位置ニは後記の自主検定装置2の入り口部に供給案内するシュート19上端側をのぞませている。
【0010】
サンプル箱5は、上面5aが開放され底部5bは通気網部に構成されており、その正面側には断面よりもやや大きい形状の密閉兼用の正面板5cを有し、サンプル仕切り5dが、この正面板5cとは適宜間隔離れて設けられている。このような構成の各サンプル箱5,5…は、機枠正面の前記格納空間7,7…に略水平状態で出入りさせることができる。該格納空間7,7…は、サンプル箱5の受け面に通気網面積に見合うような通気開口7aを有し、後面下方から該通気開口7aに亘り乾燥風を導入する斜め方向の導入経路7bを形成している。7cはサンプル穀物を通過した乾燥排風の排風口である。
【0011】
上記サンプル箱5,5…の格納空間7,7…への搬入,排出、及びサンプル投入排出部6間への移動は、サンプル搬入出部9の搬入出ロボット20が司る。この搬入出ロボット20は、機枠前面上部と機枠下面のベース部材21とに設ける横レール22,23,23に沿って横移動可能に設ける縦連結枠24に、上下移動可能に装着されるもので、以下の構成である。縦連結枠24に沿って上下移動する移動枠25に、左右一対のレール26,26を設け、該レール26,26に沿ってサンプル箱を前後に搬入出する吸着ハンド28を備える搬入出体29を設けてなる。なお、吸着ハンド28のレール26,26に沿う前進は正逆転モータ27の正転により、逆の後進は該モータ27の逆転による。
【0012】
吸着ハンド28は、その先端部に通電により吸着作用し、かつ正逆転モータ30の作用にて上下反転する電磁石体28a、該電磁石体28aに一体の上下一対の突起部28b,28bからなり、前記サンプル箱5の正面板5cを吸着し併せて該正面板5cに形成する上下対称の反転用孔5e,5eに上記突起部28b,28bを係合して保持しうるもので、電磁石体28aの反転回動により、サンプル箱5の開放上面5aが上向く標準姿勢と、底部5bが上向く反転姿勢とに姿勢変更作動する構成である。31は縦連結枠25を左右方向に移動させる横移動モータ、32は移動枠26を上下縦移動させる縦移動モータである。33はサンプル箱5を吸着保持状態で格納空間から搬出した状態時にサンプル箱5の有無を検出しうる光学センサで、仕上搬送や中間の水分確認処理の際の搬出時にサンプル箱5が正規に吸着されているか否かを検知できる構成である。また、正規状態ではサンプル箱5を吸着保持しない動作(例えばサンプル箱搬出動作)にも関わらず当該センサがサンプル箱5検知するときは異常であることを警報しうる。
【0013】
前記サンプル乾燥機1の機枠内背面部において、乾燥風循環部10を構成している。多数のサンプル箱5,5…格納空間7,7…の背面側に、前後幅を適宜に狭く構成した空間を形成し、この空間部を隔てて観音開きの開閉扉34,34を設ける。開閉扉34の裏面側には、上下に長い断面矩形の一対のダクト35,35を構成する。なお該ダクト35の上下側は開放し、これらダクト途中にはヒータ36を設けると共に上面開放部側近傍には吸引ファン37を配設している。38は吸引ファン37近傍の機枠壁部に形成した外気導入口である。該ダクト35の下方出口には、温度センサ39を配設している。ヒータ36をオンし、吸引ファン37を作動すると、ダクト35内には上方から下方に抜ける通気状態となり、その間でヒータ36で温められ乾燥風となってダクト35の外側を上昇し、再び外気と混合しながらダクト35内を抜けて乾燥風を循環しうるもので、温度センサ39が検出する乾燥風温度が予め設定した乾燥風温度に達するとヒータ36の通電をオフし、再び当該設定温度以下に至ると通電オンしながら、循環する乾燥風温度を制御する構成である。
【0014】
従ってダクト35の内部を上方から下方に流通しながら乾燥風となり、ダクト35から出て上昇する乾燥風とで乾燥風循環経路10aが形成される。該乾燥風循環経路10aの上昇側経路には、前記サンプル箱格納空間7の各乾燥風導入経路7b,7b…がのぞみ、これら各導入経路7b,7b…入り口側に設ける導入ファン40,40…のオン作動によって乾燥風の一部が所定の乾燥風導入経路7bに導入される構成である。
【0015】
上記の実施例では、開閉扉34,34の裏面側にダクト35,35を構成したから、内部点検のために開閉扉34,34を開放すると、サンプル箱5の格納空間部背面が露出してこれら周辺の点検作業が容易である。なお、ダクト35内に乾燥風調整機器としてのヒータ36を設けたが、外部であっても良く、また、乾燥風調整機器としてはヒータのほか除湿器などがある。
【0016】
41,41…は、機枠上面に設けた排気ファンで、上下に連設する格納空間7,7…の排風口に接続されていて、サンプル箱5に収容されたサンプル穀物中を通過した乾燥風を集合して排気しうる構成である。前記水分測定サンプル投入位置ロと水分測定サンプル受け位置ハとを接続する流下路の水分計18につき詳細に説明すると、流下路42はホッパ42aとこれに続く細径の垂直路42bとからなり、ホッパ42aの側壁一部を切欠き構成して少量のサンプル穀物の溜り部42cを構成する。この溜り部42cの下方にのぞませて左右一対の送り螺旋43a,43bからなる一粒繰出機構43を設ける。この一粒繰出機構43は水分計18の構成一部であるが、当該水分計18本体は、流下路42の近傍に固定して設けられる。本体内部には、一対の電極ロール44を配設し、一粒毎繰り出される穀物を順次圧砕しながらその電気抵抗値を水分値に換算する公知の構成である。一粒毎に複数粒の水分値を算出するとその平均水分値を算出するものである。45は水分測定用に供給されるサンプル穀物以外を垂直路42bに一旦保持するシャッタであり、サンプル箱5が水分測定サンプル投入位置ロから水分測定サンプル受け位置ハに移動してくるまでの間、シャッタ45閉じして上記保持状態とする。サンプル箱5が水分測定サンプル受け位置ハに移動して待機状態となるとシャッタ45を開とすべくタイマ制御する構成である。46は水分測定用に供給された圧砕サンプルの取出し容器である。
【0017】
上記水分検出信号は、後記制御部4にて演算処理され各部運転の信号出力がなされる。水分測定結果とサンプル乾燥終了との関連につき、以下説明する。図外荷受計量機による測定水分値(初期水分値)をM0(%)、中間の測定水分値Mn(%)、仕上げ水分値Me(%)、乾減率A(%)とする。荷受水分値M0と仕上げ水分値Meより初回乾燥時間H1を算出する。即ち、
H1=((M0−Me)/A)/2
である。この乾燥時間H1経過時点で中間の水分値M1を測定できる。即ち、吸着ハンド28は、該当のサンプル箱5を搬出し、水分測定サンプル投入位置ロまで移動してこのサンプル箱5を反転し、全量をホッパ42aに投入すると、その一部のサンプル穀物は水分計18に供給され水分測定される。その平均水分値が上記M1である。制御部4はこの中間水分値M1と仕上げ水分値Meとより、次回乾燥時間(H2)を算出する。即ち、
H2=((M1−Me)/A)/2
である。
【0018】
そしてH2時間が経過すると、再びサンプル箱5は水分測定を受けるべく水分測定サンプル投入位置ロに搬出移動され、同様の処理と演算が行われる。(n+1)回目の測定にかかる水分値Mnとすると、(n+1)回目の乾燥時間は、
H(n+1)=((Mn−Me)/A)/2
と表される。この次回乾燥時間H(n+1)の算出に基づき、サンプル箱5は所定格納空間7に戻されて乾燥を継続するが、この乾燥の経過と共に、上記中間測定水分値Mnが、仕上げ水分値Me+αの範囲以内になると、つまり、最終水分測定範囲α(例えばα=1%)となって、最終の仕上げ水分値に近づくと、乾燥のみ行い時間経過しても水分測定は行わず、この経過時間に達すると、該当のサンプル箱5は乾燥終了後のサンプル排出位置ニに搬出移送されて自主検定装置2入り口で待機する。
【0019】
上記乾減率Aについて、予め設定された値でもよく、実測による算出値でもよいが、安定して乾燥できる場合には設定値支障ないものである。自主検定装置2の構成について説明する。籾の自主検定装置は、籾を脱ぷ処理して後、整粒玄米と屑米とに篩い選別し、それらの比率を算出して荷受け籾の歩留まりを求め、籾持込み農家個々の金額換算の根拠とするものである。自主検定装置2の入り口ホッパ50に前記シュート19の排出口をのぞませ、サンプル乾燥完了後の籾を受入れ可能に構成している。該入り口ホッパ50は下方の計量ホッパ51に連通しており、該計量ホッパ51内投入待機状態で計量器52による計量が実行できる構成である。なお入り口ホッパ50には所定容積を越える過剰部分が案内シュート53を経由してスロワ54に直接供給される。
【0020】
一方計量ホッパ51内籾はゲートが開くとスロワ55を経由して機枠上部に設けられ、一対の脱ぷロール56,56を有する脱ぷ部57に供給される構成である。58は排塵ファン,59は排塵筒である。脱ぷ部57の下方には単一の回転選別筒60を設ける。該選別筒60には脱ぷ済の玄米が供給され、篩孔から漏下する屑米と選別筒内に残る整玄米とに選別する構成である。これら選別分離された屑米と整玄米とは順序を前後して上記計量ホッパ51に供給される構成であり、各別に計量されるものである。
【0021】
上記の計量された屑米,整玄米は前記過剰籾を受け入れるスロワ54に供給される。上記スロワ54の排出口は、サイクロン61を経由してサンプルパック機3に供給され、先にスロワ54に供給された籾・屑米・整玄米の順に袋詰めされる。即ち、サンプルパック機3は左右のロールから帯状フィルムが順次繰り出されるよう構成され、縦・横溶着機構の作動により袋状に成形されたフィルムに、先ず籾サンプルが供給され、自主検定作業の終了と共に屑米・整玄米の順で包装処理される。整玄米サンプルには、荷受けデータや計量検査データが印字された伝票が同封される。62は伝票出力印字機である。
【0022】
前記サンプル乾燥機1,自主検定装置2,サンプルパック機3の各運転制御及び各装置間の関連制御は制御部4が司る。例えば制御部4には、荷受日,穀物持込み者氏名,品種等の荷受データ入力部を備え、該入力データは、荷受計量機からサンプル籾を乾燥するサンプル乾燥機におけるサンプル箱5の状況、自主検定装置2による検定結果等を一元的に管理する指標となっている。
【0023】
上記制御部4は、前記水分計18データの入力と関連制御出力のほか、サンプル乾燥機1の搬入出ロボット20の作動、乾燥風循環部10のヒータ36のオンオフ制御、自主検定装置2の運転制御と各種計量信号の入出力処理、サンプルパック機3のシール機構の制御や伝票印字出力、封入出力など一連の動作を司っている。
【0024】
上例の作用について説明する。サンプル乾燥機1の搬入出ロボット20は、空のサンプル箱5を吸着ハンド28で吸着保持して、荷受サンプル投入位置イに挿入して待機する。荷受計量機からのサンプル穀物としての籾が搬送されてきて、その排出口からサンプル箱5内に投入される。搬入出ロボット20は予め設定された空きの格納空間7に向け、縦横に移動し、サンプル箱5はその正面に達する。続いてモータ27'の正転に伴い移動枠26毎前方に移動して、サンプル箱5を格納空間7に挿入するものである。ここで吸着ハンド28の通電を解くと、サンプル箱5は格納空間7に挿入維持されることとなる。移動枠26は退避動して次のサンプル箱搬入出に携わる。サンプル箱5が格納空間7に挿入保持されると、対応する導入ファン40を作動し、乾燥風循環部10の循環経路10aから乾燥風の一部を導入しつつサンプル籾に作用させて乾燥させる。以下の数値を元に乾燥終了時間の管理手順を説明する。仮に、
荷受水分値:M0=25(%)
中間測定水分値:Mn=Mn(%)
仕上げ水分値:Me=15(%)
乾減率:1(%)
初回乾燥時間:H1
次回乾燥時間:H(n+1)
最終水分測定範囲:α=1(%)
とする。先ず、初回乾燥時間H1は、
H1=((25−15)/1)/2=5(時間)
この初回乾燥時間経過後の水分測定による中間水分値が16(%)とすると、Mn=16(%)であるから、
H2=((16−15)/1)/2=0.5(時間)
となり、H2≦Me+αであるから、このH2なる乾燥時間経過後、乾燥終了信号が出力され、導入ファン40をオフする。もって乾燥風の供給は停止される。
【0025】
図12に示す他例について説明すると、設定乾減率1%における理論連続乾燥データ(図中二点鎖線)では、荷受水分値25%から仕上水分値15%まで乾燥するに際して、初回乾燥時間5時間では測定水分値が20%となり、順次7.5時間後に第2回測定水分値が17.5%、8.75時間後に第3回測定水分値が16.3%…となり、10時間で乾燥終了する。この理論直線に対し、実測乾燥データには(図中実線)、熱風温度のばらつき、サンプル箱内籾サンプルの密度の相違等によって、必ずしも設定乾減率1%は確保できず、図例のように初回乾燥時間5時間で水分測定値がいきなり17.5%となり、実質乾減率1.5%となっている。順次第2回乾燥時間6.25時間経過後測定水分値16.5%、第3回乾燥時間7時間経過後測定水分値15.9%となり、この水分値15.9%は最終水分測定範囲α(=1%)以下となって、最終乾燥時間0.9時間が経過すると乾燥終了となる。
【0026】
このように、理論連続乾燥データ通りには乾燥経過しないけれども、初回乾燥時間、第2回乾燥時間…を順次実測水分値から算出できて、所定の範囲に収まるとタイマ管理に切り替えて乾燥仕上げとなるものである。従って、過乾燥となる恐れが少なく、然も最終仕上時の管理はタイマのみのよるから作業効率を低下させないものである。
【0027】
上記の要領で乾燥終了の水分を管理する構成であるから、測定水分と乾減率とから乾燥時間を算出しながら乾燥を継続することができ、定期的なサンプル穀物の水分検出を行う必要がなく、複数のサンプルに対して単一の水分計を設ければ足り、コストダウンに寄与しうる。なお、最終水分測定範囲を定めて最後は水分測定を省略する構成であるため、乾燥終了の判定を迅速に行うことができる。
【0028】
上記実施例では乾減率Aは固定の定数をもって算出するものとしたが、水分測定の都度実際の乾減率値と比較し、該乾減率Aの正否を確認しながら適宜に補正処理して用いてもよい。この場合には、精度の向上がはかれる。乾燥終了したサンプル箱5のサンプル籾は、サンプル排出位置ニにおいて、吸着ハンド28先端の電磁石体28aの反転により、シュート19に移される。この乾燥済サンプル籾は、自主検定装置2の入り口ホッパ50に至り、所定容積の籾が確保され、自主検定工程処理を受ける。余りの籾はそのままサンプルパック機3に投入されて袋詰めされ、残りの検定サンプルの投入を待つ。
【0029】
さて、自主検定装置2に入った籾は、先ず計量ホッパ51に入り、計量器52で計量される。その計量データは制御部4の所定記憶手段に記憶される。計量後直ちにスロワ55を経由して脱ぷ部57に供給される。一対の脱ぷロール56,56で脱ぷされた後、玄米は回転選別筒60に入って選別処理を受ける。予め設定された所定時間回転選別作用を受け、篩孔から漏下する屑米が先に計量ホッパ51に供給されて計量され、次いで整玄米が計量ホッパ51に排出されて計量される。これらの計量データも籾計量データと同様に出力され記憶される。なお、制御部4では、整玄米の歩留まりが計算される。
【0030】
計量ホッパ51での計量が完了すると直ちにスロワ55でサンプルパック機3に投入され屑米と整玄米とが別々に袋詰めされる。整玄米サンプルが投入される際には前記荷受データや上記計量データ,算出歩留まり等が印字された伝票が挿入され、一緒に封入される。
【図面の簡単な説明】
【図1】 装置概要正面図である。
【図2】 その平面図である。
【図3】 サンプル搬入出ロボットの側面図である。
【図4】 サンプル搬入出ロボットの側面図である。
【図5】 サンプル乾燥機の側断面図である。
【図6】 縦連結枠の支持構成を示す断面図である。
【図7】 サンプル乾燥機の平面図である。
【図8】 水分測定部の正面図出有る。
【図9】 自主検定装置の正断面図である。
【図10】 自主検定装置の側断面図である。
【図11】 自主検定装置の側断面図である。
【図12】 乾燥時間−水分値関係グラフである。
【符号の説明】
1…サンプル乾燥機、2…自主検定装置、3…サンプルパック機、4…制御部、5…サンプル箱、5a…上面、5b…底部、5c…正面板、5d…サンプル仕切り、5e,5e…反転用孔、6…サンプル投入排出部、7…格納空間、7a…通気開口、7b…(個別)導入経路、7c…排風口、8…サンプル箱格納部、9…サンプル搬入出部、10…乾燥風循環部、10a…乾燥風循環経路、11,12,13,14…サンプル箱挿入口、15…案内ダクト、16…サイクロン、17…案内シュート、18…水分計、19…シュート、20…搬入出ロボット、21…ベース部材、22,23…横レール、24…縦連結枠、25…移動枠、26,26…レール、27…正逆転モータ、28…吸着ハンド、28a…電磁石体、29…搬入出体、29b,29b…突起部、30…正逆転モータ、31…横移動モータ、32…縦移動モータ、33…光学センサ、34,34…開閉扉、35,35…ダクト、36…ヒータ、37…吸引ファン(循環ファン)、38…外気導入口、39…温度センサ、40,40…導入ファン、41…排気ファン、42…流下路、42a…ホッパ、42b…垂直路、42c…溜り部、43…一粒繰出機構、43a,43b…送り螺旋、44…電極ロール、45…シャッタ、50…入り口ホッパ、51…計量ホッパ、52…計量器、53…案内シュート、54…スロワ、55…スロワ、56,56…脱ぷロール、57…脱ぷ部、58…排塵ファン、59…排塵筒、60…回転選別筒、61…サイクロン、62…伝票出力印字機
[0001]
[Industrial application fields]
The present invention relates to a moisture value control device in a sample grain drying apparatus that dries sample grains before being supplied to a self-inspection apparatus for received grains such as a drying preparation facility.
[0002]
[Prior Art and Problems to be Solved by the Invention]
Conventionally, as a sample grain drying apparatus, for example, a sample box containing sample grains is stored in a space formed in a plurality of front, side, and side of the machine body frame of the sample dryer, and a moisture detection apparatus is provided to correspond to each of these sample boxes. As a configuration to provide, the dry finish situation is monitored. Since each sample box is provided with a moisture detection device, it is excellent in that the sample drying can be completed without detection delay, but there is a disadvantage that the moisture detection device is individually required and the cost is increased.
[0003]
[Means for Solving the Problems]
In view of the above, the present invention aims to realize a small and inexpensive sample drying apparatus and to improve the processing time efficiency, and has taken the following technical means. That is, in the moisture value control device in the sample grain drying apparatus provided with the sample grain drying apparatus for drying a plurality of sample grains to a predetermined moisture and the moisture meter 18 for measuring the moisture of the sample grain , the moisture initial value M0 is dried by the moisture meter 18. And the drying rate A of the sample grain is set , and the initial drying time H1 for measuring moisture before reaching the finished moisture value Me is obtained from the initial moisture M0 and the drying rate A, and this initial drying is performed. time H1 after drying, measuring the intermediate moisture value Mn moisture meter 18 obtains the next drying time H (n + 1) required from the intermediate moisture value Mn and dry lapse rate a to finishing water content Me, the next drying time H (n + 1) is configured to form a dry output for, when the intermediate moisture value Mn reaches a moisture content within the range plus final moisture measurement range α which preset moisture value Me finishing, then the next For 燥時between H (n + 1) is a structure of a water content value controller in the configuration and sample grain drying apparatus to finish drying without water measured after the drying output progress.
[0004]
[Action and effect of the invention]
Since the present invention is configured as described above, the drying is continued while managing the drying time such as the initial drying time, the next drying time,... From the drying rate A and the measured moisture value. It is not necessary to detect the moisture of a typical sample grain, and it is not necessary to provide a moisture meter individually, and can be constructed at a low cost.
[0005]
Further, when the intermediate moisture value Mn of the sample grain falls within the range obtained by adding the final moisture measurement range α set in advance to the finishing moisture value Me, the timer management is switched to the dry finishing. Therefore, there is little risk of overdrying. However, since the management at the time of final finishing depends only on the timer, the work efficiency is not lowered, and the drying is finished without measuring the moisture after the next drying time H (n + 1). Therefore, it is possible to quickly determine the end of drying.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. Fig. 1 is an overview of a series of automated systems from sample drying to sample packing for packing samples through self-test. 1 is a sample dryer, 2 is a self-test device, 3 is a sample pack machine, and 4 is a control. Part.
[0007]
Among the above, the sample dryer 1 includes a sample loading / unloading unit 6 for loading or unloading samples in the sample boxes 5, 5..., And a storage space for storing a plurality of samples on the front side of the machine frame ( In the illustrated example, the sample box storage unit 8 in which 10 columns and 12 columns are arranged in a total of 120 ports) 7, 7,..., The sample loading / unloading unit 9 for loading / unloading the sample box at a predetermined storage unit 7 position, It consists of a drying air circulation unit 10 or the like that is in the machine frame and incorporates a drying air adjusting device necessary for drying.
[0008]
In the sample loading / unloading section 6, the sample box 5 is placed on the front side with a receiving sample loading position a, a moisture measurement sample loading position b for moisture measurement, a moisture measurement sample receiving position c, and a sample discharging after completion of drying. The sample box 5 insertion ports 11, 12, 13 and 14 are opened to correspond to the respective positions D. Grains sampled in the range of 600 g to 1000 g from the unillustrated load receiving weighing machine are appropriately sent into the cyclone 16 through the guide duct 15, and the lower end portion of the guide chute 17 connected to the lower portion of the cyclone 16 is used as the above-mentioned load receiving sample. Look into the loading position a.
[0009]
A moisture meter 18 is provided in the flow path connecting the moisture measurement sample loading position B and the moisture measurement sample receiving position C for moisture measurement, and receiving a part of the sample and measuring moisture for each single grain. In this configuration, the average moisture can be calculated. Further, the sample discharge position D after completion of the drying is viewed from the upper end side of the chute 19 that supplies and guides the inlet of the self-test apparatus 2 described later.
[0010]
The sample box 5 has an upper surface 5a open and a bottom portion 5b configured as a ventilation net portion. The front side of the sample box 5 has a front plate 5c having a slightly larger shape than the cross section. The front plate 5c is provided at an appropriate interval. Each of the sample boxes 5, 5... Configured as described above can enter and exit the storage spaces 7, 7. The storage spaces 7, 7... Have a ventilation opening 7a corresponding to the area of the ventilation net on the receiving surface of the sample box 5, and an oblique introduction path 7b for introducing dry air from below the rear surface to the ventilation opening 7a. Is forming. 7c is an exhaust port of the dry exhaust which passed through the sample grain.
[0011]
The loading / unloading of the sample boxes 5, 5 ... into / from the storage spaces 7, 7 ... and the movement between the sample loading / unloading sections 6 are controlled by the loading / unloading robot 20 of the sample loading / unloading section 9. The loading / unloading robot 20 is mounted on a vertical connection frame 24 provided so as to be laterally movable along horizontal rails 22, 23, 23 provided on an upper front surface of the machine frame and a base member 21 on the lower surface of the machine frame. The configuration is as follows. A moving frame 25 that moves up and down along the vertical connecting frame 24 is provided with a pair of left and right rails 26 and 26, and a loading / unloading body 29 including a suction hand 28 that loads and unloads the sample box back and forth along the rails 26 and 26. Is provided. The forward movement of the suction hand 28 along the rails 26 and 26 is caused by the forward rotation of the forward / reverse motor 27, and the reverse movement is caused by the reverse rotation of the motor 27.
[0012]
The suction hand 28 is composed of an electromagnet body 28a that is attracted to the tip by energization and is turned upside down by the action of the forward / reverse motor 30, and a pair of upper and lower protrusions 28b, 28b integrated with the electromagnet body 28a. The projections 28b and 28b can be engaged and held in the vertically symmetrical reversing holes 5e and 5e formed by adsorbing the front plate 5c of the sample box 5 and forming the front plate 5c. By the reversal rotation, the posture change operation is performed between the standard posture in which the open upper surface 5a of the sample box 5 faces upward and the reversed posture in which the bottom 5b faces upward. Reference numeral 31 denotes a horizontal movement motor that moves the vertical connection frame 25 in the left-right direction, and reference numeral 32 denotes a vertical movement motor that moves the movement frame 26 up and down. Reference numeral 33 denotes an optical sensor that can detect the presence or absence of the sample box 5 when the sample box 5 is carried out of the storage space while being sucked and held, and the sample box 5 is properly sucked when it is carried out during finishing conveyance or intermediate moisture confirmation processing. It is the structure which can detect whether it is done. Moreover, when the sensor detects the sample box 5 in spite of an operation (for example, a sample box unloading operation) in which the sample box 5 is not sucked and held in the normal state, an alarm can be given.
[0013]
A drying air circulation unit 10 is formed on the rear side in the machine frame of the sample dryer 1. A space having an appropriately narrow front and rear width is formed on the back side of the large number of sample boxes 5, 5..., The storage spaces 7, 7,. On the back surface side of the opening / closing door 34, a pair of ducts 35, 35 having a rectangular section that is long in the vertical direction are formed. The upper and lower sides of the duct 35 are opened, a heater 36 is provided in the middle of these ducts, and a suction fan 37 is disposed in the vicinity of the upper surface opening portion side. Reference numeral 38 denotes an outside air inlet formed in the machine frame wall near the suction fan 37. A temperature sensor 39 is disposed at the lower outlet of the duct 35. When the heater 36 is turned on and the suction fan 37 is actuated, the duct 35 is ventilated from above to below, and is heated by the heater 36 during that time to become dry air, rises outside the duct 35, and again becomes the outside air. It is possible to circulate the drying air through the duct 35 while mixing. When the drying air temperature detected by the temperature sensor 39 reaches the preset drying air temperature, the heater 36 is turned off and again below the set temperature. In this configuration, the circulating drying air temperature is controlled while energization is turned on.
[0014]
Accordingly, the drying air circulation path 10a is formed by the drying air that flows from the upper side to the lower side of the duct 35 and becomes the drying air rising from the duct 35 and rising. The drying air introduction path 7b, 7b,... Of the sample box storage space 7 is seen in the ascending side path of the drying air circulation path 10a, and the introduction fans 40, 40,. A part of the drying air is introduced into the predetermined drying air introduction path 7b by the on-operation.
[0015]
In the above embodiment, the ducts 35, 35 are formed on the back side of the open / close doors 34, 34. Therefore, when the open / close doors 34, 34 are opened for internal inspection, the back of the storage space of the sample box 5 is exposed. These peripheral inspections are easy. In addition, although the heater 36 as a dry-air adjustment apparatus was provided in the duct 35, it may be outside and there exist a dehumidifier other than a heater as a dry-air adjustment apparatus.
[0016]
41, 41... Are exhaust fans provided on the upper surface of the machine frame, connected to the air outlets of the storage spaces 7, 7... Connected in the vertical direction, and passed through the sample grain accommodated in the sample box 5. It is a configuration that can collect and exhaust the wind. The flow meter 42 of the flow path connecting the moisture measurement sample input position B and the moisture measurement sample receiving position C will be described in detail. The flow path 42 includes a hopper 42a and a narrow vertical path 42b following the hopper 42a. A portion of the side wall of the hopper 42a is cut out to form a small amount of sample grain reservoir 42c. A single grain feeding mechanism 43 comprising a pair of left and right feed spirals 43a and 43b is provided so as to look below the pool portion 42c. The single grain feeding mechanism 43 is a part of the configuration of the moisture meter 18, but the moisture meter 18 body is fixedly provided in the vicinity of the flow channel 42. A pair of electrode rolls 44 is disposed inside the main body, and the electrical resistance value is converted to a moisture value while sequentially crushing the grain that is fed out one by one. When the moisture value of a plurality of grains is calculated for each grain, the average moisture value is calculated. 45 is a shutter that temporarily holds the grain other than the sample grain supplied for moisture measurement in the vertical path 42b until the sample box 5 moves from the moisture measurement sample loading position B to the moisture measurement sample receiving position C. The shutter 45 is closed to enter the holding state. When the sample box 5 moves to the moisture measurement sample receiving position C and enters a standby state, the timer control is performed to open the shutter 45. Reference numeral 46 denotes a container for taking out the crushed sample supplied for moisture measurement.
[0017]
The moisture detection signal is arithmetically processed by the control unit 4 which will be described later, and a signal output of each part operation is made. The relationship between the moisture measurement result and the end of sample drying will be described below. The measured moisture value (initial moisture value) by the external weighing machine is M0 (%), the intermediate measured moisture value Mn (%), the finished moisture value Me (%), and the drying rate A (%). The initial drying time H1 is calculated from the received moisture value M0 and the finished moisture value Me. That is,
H1 = ((M0−Me) / A) / 2
It is. The intermediate moisture value M1 can be measured when the drying time H1 has elapsed. That is, the suction hand 28 unloads the corresponding sample box 5, moves to the moisture measurement sample loading position b, inverts the sample box 5, and puts the entire amount into the hopper 42a. It is supplied to the total 18 and the moisture is measured. The average moisture value is M1. The controller 4 calculates the next drying time (H2) from the intermediate moisture value M1 and the finishing moisture value Me. That is,
H2 = ((M1-Me) / A) / 2
It is.
[0018]
When the H2 time elapses, the sample box 5 is again carried out to the moisture measurement sample loading position B to receive moisture measurement, and the same processing and calculation are performed. When the moisture value Mn for the (n + 1) -th measurement is used, the (n + 1) -th drying time is
H (n + 1) = ((Mn-Me) / A) / 2
It is expressed. Based on the calculation of the next drying time H (n + 1), the sample box 5 is returned to the predetermined storage space 7 and continues to be dried. As the drying progresses, the intermediate measured moisture value Mn is equal to the finished moisture value Me + α. Within the range, that is, when the final moisture measurement range α (for example, α = 1%) is approached and the final finished moisture value is approached, only the drying is performed and the moisture measurement is not performed even if the time elapses. When it reaches, the corresponding sample box 5 is transported to the sample discharge position D after completion of drying, and waits at the entrance of the self-test apparatus 2.
[0019]
The drying rate A may be a preset value or a calculated value by actual measurement. However, when the drying can be stably performed, there is no problem with the set value. The configuration of the self-test apparatus 2 will be described. The self-assessment device for cocoons, after removing the cocoons, sifts and sorts the sized unpolished rice and waste rice, calculates the ratio of them and calculates the yield of the receiving potatoes. It is the basis. The outlet of the chute 19 is looked into the entrance hopper 50 of the self-test device 2, and the soot after sample drying is completed can be received. The entrance hopper 50 communicates with the lower weighing hopper 51 and is configured so that weighing by the weighing instrument 52 can be executed in the waiting state in the weighing hopper 51. The excess portion exceeding the predetermined volume is directly supplied to the entrance hopper 50 via the guide chute 53 to the slot 54.
[0020]
On the other hand, the inner tub of the weighing hopper 51 is provided at the upper part of the machine frame via the slot 55 when the gate is opened, and is supplied to the detaching section 57 having a pair of detaching rolls 56, 56. 58 is a dust exhaust fan and 59 is a dust exhaust cylinder. A single rotary sorting cylinder 60 is provided below the removal unit 57. The crushed brown rice is supplied to the sorting cylinder 60, and is classified into waste rice leaking from the sieve hole and conditioned brown rice remaining in the sorting cylinder. The sorted and separated waste rice and conditioned brown rice are supplied to the weighing hopper 51 in order and are weighed separately.
[0021]
The above-mentioned weighed waste rice and brown rice are supplied to a slot 54 that receives the excess rice cake. The outlet of the slot 54 is supplied to the sample pack machine 3 via the cyclone 61 and packed in the order of rice bran, waste rice, and brown rice previously supplied to the slot 54. That is, the sample pack machine 3 is configured so that the belt-like film is sequentially drawn out from the left and right rolls, and the bag sample is first supplied to the film formed into a bag shape by the operation of the vertical and horizontal welding mechanisms, and the self-assessment work is completed. At the same time, it is packaged in the order of waste rice and brown rice. A slip printed with receipt data and weighing inspection data is enclosed with the cooked brown rice sample. 62 is a slip output printing machine.
[0022]
The control unit 4 controls each operation control of the sample dryer 1, the self-test device 2, and the sample pack machine 3 and the related control between the devices. For example, the control unit 4 includes a receiving data input unit such as a receiving date, a name of a grain taker, and a variety, and the input data includes the status of the sample box 5 in the sample dryer for drying the sample basket from the receiving weighing machine, and voluntary. This is an index for centrally managing the test results by the test device 2.
[0023]
In addition to the input of the moisture meter 18 data and related control outputs, the control unit 4 operates the loading / unloading robot 20 of the sample dryer 1, controls on / off of the heater 36 of the drying air circulation unit 10, and operates the self-test apparatus 2. It controls a series of operations such as control and input / output processing of various weighing signals, control of the sealing mechanism of the sample pack machine 3, slip printing output, and sealed output.
[0024]
The operation of the above example will be described. The carry-in / out robot 20 of the sample dryer 1 sucks and holds the empty sample box 5 with the suction hand 28, inserts it into the receiving sample input position a, and stands by. The soot as the sample grain from the load receiving weighing machine is conveyed and is put into the sample box 5 from the discharge port. The loading / unloading robot 20 moves vertically and horizontally toward the empty storage space 7 set in advance, and the sample box 5 reaches the front thereof. Subsequently, as the motor 27 ′ rotates forward, the moving frame 26 moves forward to insert the sample box 5 into the storage space 7. When the energization of the suction hand 28 is released here, the sample box 5 is inserted and maintained in the storage space 7. The moving frame 26 is retracted and engaged in the next sample box loading / unloading. When the sample box 5 is inserted and held in the storage space 7, the corresponding introduction fan 40 is actuated, and a part of the drying air is introduced from the circulation path 10 a of the drying air circulation unit 10 to act on the sample basket and dry. . A procedure for managing the drying end time will be described based on the following numerical values. what if,
Receiving moisture value: M0 = 25 (%)
Intermediate measurement moisture value: Mn = Mn (%)
Finishing moisture value: Me = 15 (%)
Drying rate: 1 (%)
First drying time: H1
Next drying time: H (n + 1)
Final moisture measurement range: α = 1 (%)
And First, the initial drying time H1 is
H1 = ((25-15) / 1) / 2 = 5 (hours)
If the intermediate moisture value by moisture measurement after the initial drying time has elapsed is 16 (%), Mn = 16 (%).
H2 = ((16-15) / 1) /2=0.5 (hours)
Since H2 ≦ Me + α, a drying end signal is output after the drying time of H2 has elapsed, and the introduction fan 40 is turned off. Accordingly, the supply of dry air is stopped.
[0025]
The other example shown in FIG. 12 will be explained. In the theoretical continuous drying data (two-dot chain line in the figure) at the set drying rate of 1%, the initial drying time of 5 is required for drying from the received moisture value of 25% to the final moisture value of 15%. In time, the measured moisture value becomes 20%, and after 7.5 hours, the second measured moisture value becomes 17.5%, after 8.75 hours, the third measured moisture value becomes 16.3%, and so on. Finish drying. In contrast to this theoretical straight line, the measured drying data (solid line in the figure) does not necessarily ensure a set drying rate of 1% due to variations in hot air temperature, differences in the density of the sample in the sample box, etc. In the first drying time of 5 hours, the measured moisture value suddenly became 17.5%, and the actual drying rate was 1.5%. The measured moisture value was 16.5% after the second drying time of 6.25 hours and the measured moisture value of 15.9% after the third drying time of 7 hours, and this moisture value of 15.9% is the final moisture measurement range. When it becomes α (= 1%) or less and the final drying time of 0.9 hours elapses, the drying is finished.
[0026]
In this way, although the drying does not progress according to the theoretical continuous drying data, the initial drying time, the second drying time,... Can be sequentially calculated from the actually measured moisture value, and when it falls within the predetermined range, the timer management is switched to the drying finish. It will be. Therefore, there is little risk of overdrying, and management at the time of final finishing is based only on a timer, so that work efficiency is not lowered.
[0027]
Since it is configured to manage the moisture at the end of drying as described above, drying can be continued while calculating the drying time from the measured moisture and drying rate, and it is necessary to periodically detect moisture in the sample grain However, it is sufficient to provide a single moisture meter for a plurality of samples, which can contribute to cost reduction. Since the final moisture measurement range is determined and the moisture measurement is omitted at the end, it is possible to quickly determine the end of drying.
[0028]
In the above embodiment, the drying rate A is calculated with a fixed constant. However, each time the moisture is measured, the drying rate A is compared with the actual drying rate value, and an appropriate correction process is performed while confirming whether the drying rate A is correct. May be used. In this case, the accuracy can be improved. The sample basket in the sample box 5 that has been dried is transferred to the chute 19 by reversing the electromagnet body 28a at the tip of the suction hand 28 at the sample discharge position D. This dried sample basket reaches the entrance hopper 50 of the self-test apparatus 2, a predetermined volume of the kite is secured, and is subjected to a self-test process. The remaining bag is put into the sample pack machine 3 as it is, packed in a bag, and waits for the remaining test samples to be put in.
[0029]
The soot that has entered the self-test device 2 first enters the weighing hopper 51 and is weighed by the weighing instrument 52. The measurement data is stored in a predetermined storage unit of the control unit 4. Immediately after the measurement, it is supplied to the removal unit 57 via the slot 55. After being deflated by the pair of deflation rolls 56, 56, the brown rice enters the rotary sorting cylinder 60 and undergoes a sorting process. The waste rice that has been subjected to the rotational sorting action for a predetermined time set in advance and leaks from the sieve hole is first supplied to the weighing hopper 51 and weighed, and then the conditioned rice is discharged to the weighing hopper 51 and weighed. These weighing data are output and stored in the same manner as the soot weighing data. The control unit 4 calculates the yield of conditioned brown rice.
[0030]
As soon as the weighing with the weighing hopper 51 is completed, the waste packer and the brown rice are separately packed into the sample pack machine 3 by the slot 55. When the brown rice sample is put in, a slip printed with the receipt data, the weighing data, the calculation yield, etc. is inserted and sealed together.
[Brief description of the drawings]
FIG. 1 is a schematic front view of an apparatus.
FIG. 2 is a plan view thereof.
FIG. 3 is a side view of a sample loading / unloading robot.
FIG. 4 is a side view of a sample loading / unloading robot.
FIG. 5 is a side sectional view of a sample dryer.
FIG. 6 is a cross-sectional view showing the support structure of the vertical connection frame.
FIG. 7 is a plan view of a sample dryer.
FIG. 8 is a front view of a moisture measuring unit.
FIG. 9 is a front sectional view of the self-test apparatus.
FIG. 10 is a side sectional view of the self-test apparatus.
FIG. 11 is a side sectional view of the self-test apparatus.
FIG. 12 is a graph showing the relationship between drying time and moisture value.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample dryer, 2 ... Self-test device, 3 ... Sample packing machine, 4 ... Control part, 5 ... Sample box, 5a ... Top surface, 5b ... Bottom part, 5c ... Front plate, 5d ... Sample partition, 5e, 5e ... Inversion hole, 6 ... sample loading / unloading section, 7 ... storage space, 7a ... ventilation opening, 7b ... (individual) introduction path, 7c ... exhaust port, 8 ... sample box storage section, 9 ... sample loading / unloading section, 10 ... Dry air circulation part, 10a ... Dry air circulation path, 11, 12, 13, 14 ... Sample box insertion port, 15 ... Guide duct, 16 ... Cyclone, 17 ... Guide chute, 18 ... Moisture meter, 19 ... Chute, 20 ... Loading / unloading robot, 21 ... base member, 22, 23 ... horizontal rail, 24 ... vertical connection frame, 25 ... moving frame, 26, 26 ... rail, 27 ... forward / reverse rotation motor, 28 ... suction hand, 28a ... electromagnet body, 29 ... in / out, 29 , 29b ... Projection, 30 ... Forward / reverse motor, 31 ... Horizontal movement motor, 32 ... Vertical movement motor, 33 ... Optical sensor, 34, 34 ... Open / close door, 35, 35 ... Duct, 36 ... Heater, 37 ... Suction fan (Circulation fan), 38 ... outside air introduction port, 39 ... temperature sensor, 40, 40 ... introduction fan, 41 ... exhaust fan, 42 ... downflow passage, 42a ... hopper, 42b ... vertical passage, 42c ... reservoir, 43 ... one Grain feeding mechanism, 43a, 43b ... feed spiral, 44 ... electrode roll, 45 ... shutter, 50 ... inlet hopper, 51 ... weighing hopper, 52 ... weigher, 53 ... guide chute, 54 ... thrower, 55 ... thrower, 56, 56 ... De-rolling roll, 57 ... De-evaporating part, 58 ... Dust-discharging fan, 59 ... Dust-extracting cylinder, 60 ... Rotating sorting cylinder, 61 ... Cyclone, 62 ... Slip output printing machine

Claims (1)

複数のサンプル穀物を所定水分に乾燥するサンプル穀物乾燥装置と、サンプル穀物の水分を測定する水分計18と備えたサンプル穀物乾燥装置における水分値制御装置において、水分計18で乾燥初期水分M0を測定すると共にサンプル穀物の乾減率Aを設定し、これら初期水分M0と乾減率Aとから仕上げ水分値Meに到達する前に水分測定するための初回乾燥時間H1を求め、この初回乾燥時間H1乾燥後、水分計18で中間水分値Mnを測定し、該中間水分値Mnと乾減率Aから仕上げ水分Meまでに要する次回乾燥時間H(n+1)を求め、この次回乾燥時間H(n+1)について乾燥出力をなす構成とし中間水分値Mnが仕上げ水分値Meに予め設定する最終水分測定範囲αを加えた範囲内の水分値に達すると、その後の次回乾燥時間H ( n+1 ) についてはその乾燥出力経過後水分測定を行わず乾燥終了する構成としたサンプル穀物乾燥装置における水分値制御装置。In a moisture content control device in a sample grain drying apparatus provided with a sample grain drying apparatus for drying a plurality of sample grains to a predetermined moisture and a moisture meter 18 for measuring the moisture of the sample grains , the moisture initial value M0 is measured by the moisture meter 18 At the same time, the drying rate A of the sample grain is set, and from these initial moisture M0 and drying rate A, an initial drying time H1 for measuring moisture before reaching the finished moisture value Me is obtained, and this initial drying time H1 After drying, the intermediate moisture value Mn is measured with the moisture meter 18, and the next drying time H (n + 1) required from the intermediate moisture value Mn and the drying rate A to the finished moisture value Me is obtained. This next drying time H (n + 1) a structure forming the drying output for), the intermediate moisture value Mn reaches a moisture content within the range plus final moisture measurement range α which preset moisture value Me finishing, upon subsequent next drying H (n + 1) moisture content control in the configuration and sample grain drying apparatus to finish drying without water measured after the drying output progress for.
JP21215299A 1999-07-27 1999-07-27 Moisture value control device in sample grain dryer Expired - Fee Related JP3943290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21215299A JP3943290B2 (en) 1999-07-27 1999-07-27 Moisture value control device in sample grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21215299A JP3943290B2 (en) 1999-07-27 1999-07-27 Moisture value control device in sample grain dryer

Publications (2)

Publication Number Publication Date
JP2001041654A JP2001041654A (en) 2001-02-16
JP3943290B2 true JP3943290B2 (en) 2007-07-11

Family

ID=16617765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21215299A Expired - Fee Related JP3943290B2 (en) 1999-07-27 1999-07-27 Moisture value control device in sample grain dryer

Country Status (1)

Country Link
JP (1) JP3943290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163891A (en) * 2016-05-31 2016-09-08 井関農機株式会社 Fee-charging type grain processing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153922B1 (en) 2009-11-30 2012-06-08 (주)넷비젼텔레콤 Foot dryer having multiple purpose and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163891A (en) * 2016-05-31 2016-09-08 井関農機株式会社 Fee-charging type grain processing equipment

Also Published As

Publication number Publication date
JP2001041654A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP4127338B2 (en) Grain self-assessment system
JP3943290B2 (en) Moisture value control device in sample grain dryer
JP3933352B2 (en) Sample grain drying equipment
JP7457914B2 (en) Test dryer
JP4099617B2 (en) Sample grain dryer
JP2931912B2 (en) Drying equipment
JP2923390B2 (en) Grain drying and storage equipment
JP2001029812A (en) Independent certification device for grain
JP2593782B2 (en) Grain test dryer
JP2832302B2 (en) Drying equipment
JP2832303B2 (en) Drying equipment
JPH0517592Y2 (en)
JP2613190B2 (en) Dryer for self-inspection
JPH0486479A (en) Operation control system of grain conditioning and processing device
JP3948134B2 (en) Sample packaging equipment for grain self-assessment equipment
JPH04244587A (en) Discharge method of dried grains
JPH071151B2 (en) Grain drying equipment
JPH0454159B2 (en)
JPH059644Y2 (en)
JP2512230Y2 (en) Grain dryer with moisture measuring device in grain dryer
JP2931904B2 (en) Independent inspection equipment for drying facilities
JPH01310746A (en) Device for controlling drying in sample drier
JPH07208861A (en) Dust removal device in circulating-type grain drying machine
JPS62227453A (en) Test drier for cereal
JPH03101846A (en) Removing device for foreign matter in grain dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees