JP4320378B2 - Manufacturing method of semiconductor substrate - Google Patents

Manufacturing method of semiconductor substrate Download PDF

Info

Publication number
JP4320378B2
JP4320378B2 JP2006272325A JP2006272325A JP4320378B2 JP 4320378 B2 JP4320378 B2 JP 4320378B2 JP 2006272325 A JP2006272325 A JP 2006272325A JP 2006272325 A JP2006272325 A JP 2006272325A JP 4320378 B2 JP4320378 B2 JP 4320378B2
Authority
JP
Japan
Prior art keywords
base substrate
layer
chromium nitride
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006272325A
Other languages
Japanese (ja)
Other versions
JP2008091730A (en
Inventor
隆文 八百
明煥 ▲チョ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EpiValley Co Ltd
Original Assignee
EpiValley Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EpiValley Co Ltd filed Critical EpiValley Co Ltd
Priority to JP2006272325A priority Critical patent/JP4320378B2/en
Publication of JP2008091730A publication Critical patent/JP2008091730A/en
Application granted granted Critical
Publication of JP4320378B2 publication Critical patent/JP4320378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Description

本発明は、半導体基板の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor substrate.

従来より、金属窒化物を下地基板として、その上にIII族窒化物半導体の結晶を成長させる方法が提案されている(例えば、特許文献1参照)。   Conventionally, a method of growing a group III nitride semiconductor crystal on a metal nitride as a base substrate has been proposed (for example, see Patent Document 1).

特許文献1の技術では、準備する下地基板として、その上に積層する半導体層に整合する格子定数を有した窒化物材料を用いている。
特開平9−237938号公報
In the technique of Patent Document 1, a nitride material having a lattice constant matching a semiconductor layer stacked thereon is used as a base substrate to be prepared.
Japanese Patent Laid-Open No. 9-237938

しかし、特許文献1に示される技術では、金属窒化物の単結晶を下地基板として準備する必要がある。例えば、CrZrNの単結晶を下地基板として準備した場合、下地基板自体が高価であるため、その上に成長させる半導体基板(結晶層)の製造コストが増大するおそれがある。   However, in the technique disclosed in Patent Document 1, it is necessary to prepare a metal nitride single crystal as a base substrate. For example, when a single crystal of CrZrN is prepared as a base substrate, since the base substrate itself is expensive, there is a risk that the manufacturing cost of a semiconductor substrate (crystal layer) to be grown thereon increases.

本発明の目的は、半導体基板の製造コストを低減できる半導体基板の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the semiconductor substrate which can reduce the manufacturing cost of a semiconductor substrate.

本発明の第1側面に係る半導体基板の製造方法は、Crで形成された下地基板を準備する準備工程と、前記下地基板の(110)面を窒化してクロム窒化物層の(111)面を形成させる窒化工程とを備えたことを特徴とする。   The method for manufacturing a semiconductor substrate according to the first aspect of the present invention includes a preparation step of preparing a base substrate formed of Cr, and a (111) surface of a chromium nitride layer by nitriding the (110) surface of the base substrate. And a nitriding step for forming the structure.

本発明の第2側面に係る半導体基板の製造方法は、本発明の第1側面に係る半導体基板の製造方法の特徴に加えて、前記クロム窒化物層の上にIII族窒化物半導体の結晶層を成長させる結晶層成長工程をさらに備えたことを特徴とする。   The semiconductor substrate manufacturing method according to the second aspect of the present invention includes a group III nitride semiconductor crystal layer on the chromium nitride layer, in addition to the features of the semiconductor substrate manufacturing method according to the first aspect of the present invention. The method further includes a crystal layer growth step for growing the crystal.

本発明の第3側面に係る半導体基板の製造方法は、本発明の第1側面又は第2側面に係る半導体基板の製造方法の特徴に加えて、前記下地基板及び前記クロム窒化物層をエッチングして前記III族窒化物半導体の結晶を前記下地基板から分離する分離工程をさらに備えたことを特徴とする。   The method for manufacturing a semiconductor substrate according to the third aspect of the present invention includes etching the underlying substrate and the chromium nitride layer in addition to the characteristics of the method for manufacturing a semiconductor substrate according to the first aspect or the second aspect of the present invention. And a separation step of separating the group III nitride semiconductor crystal from the base substrate.

本発明によれば、半導体基板の製造コストを低減できる。   According to the present invention, the manufacturing cost of a semiconductor substrate can be reduced.

本発明の実施形態に係る半導体基板の製造方法を、図1及び図2を用いて説明する。以下では、結晶層としてIII族窒化物半導体のGaNを例として説明するが、他のIII族窒化物半導体に関しても同様である。他のIII族窒化物半導体は、例えば、AlGaN、InGaN、AlInGaNなどがある。なお、後述のように結晶層を自立基板として用いてダイオード等に応用することを考えると、結晶層の材質となるIII族窒化物半導体は、GaNであることが好ましい。   A method for manufacturing a semiconductor substrate according to an embodiment of the present invention will be described with reference to FIGS. In the following, GaN as a group III nitride semiconductor will be described as an example of the crystal layer, but the same applies to other group III nitride semiconductors. Examples of other group III nitride semiconductors include AlGaN, InGaN, and AlInGaN. As will be described later, considering that the crystal layer is used as a free-standing substrate and applied to a diode or the like, the group III nitride semiconductor used as the material of the crystal layer is preferably GaN.

図1及び図2は、本発明の実施形態に係る半導体基板の製造方法を示す工程断面図である。   1 and 2 are process cross-sectional views illustrating a method for manufacturing a semiconductor substrate according to an embodiment of the present invention.

図1(a)に示す工程(準備工程)では、下地基板10を準備する。下地基板10は、Crの単結晶で形成されている。または、下地基板10の少なくとも上面10aは、単結晶面となっている。下地基板10の上面10aは、Crの結晶の(110)面になっている。Crの結晶は、体心立方構造を有する。   In the step (preparation step) shown in FIG. 1A, a base substrate 10 is prepared. The base substrate 10 is formed of a single crystal of Cr. Alternatively, at least the upper surface 10a of the base substrate 10 is a single crystal surface. The upper surface 10a of the base substrate 10 is a (110) plane of Cr crystals. The crystal of Cr has a body-centered cubic structure.

ここで、下地基板10がCrであるので、下地基板が金属窒化物である場合に比べて、準備工程におけるコスト(下地基板を準備するコスト)が低減されている。下地基板10の厚さは、100μm程度であることが好ましい。   Here, since the base substrate 10 is Cr, the cost in the preparation process (cost for preparing the base substrate) is reduced as compared with the case where the base substrate is a metal nitride. The thickness of the base substrate 10 is preferably about 100 μm.

また、下地基板をサファイア基板にする場合に比べて、Cr層を形成する工程を省くことができるので、工程を簡略化できる。また、下地基板10の上面10aをCrの結晶の(110)面とすることで、後述のクロム窒化物層30を下地基板10の上面10aに対して好適に(111)配向させることが可能となった。   In addition, since the process of forming the Cr layer can be omitted compared to the case where the base substrate is a sapphire substrate, the process can be simplified. In addition, since the upper surface 10a of the base substrate 10 is a (110) plane of Cr crystals, a chromium nitride layer 30 described later can be suitably (111) oriented with respect to the upper surface 10a of the base substrate 10. became.

なお、Crの純度は、3N以上(99.9%以上)であることが好ましい。不純物は少ない方が望ましいが、Crの純度は、3N程度で十分である。   In addition, it is preferable that the purity of Cr is 3N or more (99.9% or more). Although it is desirable that the amount of impurities is small, a purity of about 3N is sufficient for Cr.

図1(b)に示す工程(窒化工程)では、下地基板10を、GaNの結晶を成長させるための装置へ移送する。そして、下地基板10の表面近傍を、窒素を含有した還元性ガス雰囲気で加熱窒化処理する。この窒素を含有した還元性ガスは、好ましくはアンモニアもしくはヒドラジンなどである。その際、加熱温度は、1000℃以上1300℃以下であることが好ましく、1040℃以上1300℃以下であることがさらに好ましく、1060℃以上1300℃以下であることがさらに好ましい。加熱温度1000℃以上1300℃以下で窒化することにより、下地基板10の(110)面が窒化して、クロム窒化物層30が形成される。加熱温度1040℃以上1300℃以下で窒化することにより、後述の結晶層50の表面50aのピット密度が10〜10/cmレベルまで低減する。加熱温度1060℃以上1300℃以下で窒化することにより、後述の結晶層50の表面50aのピット密度が数/cmレベルまで低減する。加熱温度1300℃以上で窒化することは、クロム窒化物層30が溶融するおそれがあり、好ましくない。 In the step (nitriding step) shown in FIG. 1B, the base substrate 10 is transferred to an apparatus for growing GaN crystals. And the surface vicinity of the base substrate 10 is heat-nitrided in the reducing gas atmosphere containing nitrogen. The reducing gas containing nitrogen is preferably ammonia or hydrazine. At that time, the heating temperature is preferably 1000 ° C. or higher and 1300 ° C. or lower, more preferably 1040 ° C. or higher and 1300 ° C. or lower, further preferably 1060 ° C. or higher and 1300 ° C. or lower. By nitriding at a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower, the (110) plane of the base substrate 10 is nitrided, and the chromium nitride layer 30 is formed. By nitriding at a heating temperature of 1040 ° C. or higher and 1300 ° C. or lower, the pit density on the surface 50a of the crystal layer 50 described later is reduced to a level of 10 2 to 10 4 / cm 2 . By nitriding at a heating temperature of 1060 ° C. or higher and 1300 ° C. or lower, the pit density on the surface 50a of the crystal layer 50 described later is reduced to a few / cm 2 level. Nitriding at a heating temperature of 1300 ° C. or higher is not preferable because the chromium nitride layer 30 may be melted.

ここで、準備工程のコストと窒化工程のコストとを合計したコストは、下地基板が金属窒化物を準備するコストに比べて少なくなっている。   Here, the total cost of the cost of the preparation process and the cost of the nitriding process is smaller than the cost of the base substrate preparing the metal nitride.

また、クロム窒化物層30の組成は、CrNであることが好ましい。クロム窒化物層30の上面30aは、ほぼ全面に渡って、概ね平坦に形成されている。クロム窒化物層30の上面30aは、III族窒化物が積層できるように、結晶性がある状態となっている必要がある。このため、クロム窒化物層30の平均層厚は、適宜設定されるが、10nm以上100nm以下の範囲内の値であることが好ましい。ここで、クロム窒化物層30の平均層厚は、断面TEMで凹凸を測定して求めることができ、窒化を行う以前の下地基板10の表面近傍の領域(金属Cr)の平均層厚の1.5倍に相当することが確認された。   The composition of the chromium nitride layer 30 is preferably CrN. The upper surface 30a of the chromium nitride layer 30 is formed substantially flat over substantially the entire surface. The upper surface 30a of the chromium nitride layer 30 needs to be in a crystalline state so that the group III nitride can be stacked. For this reason, although the average layer thickness of the chromium nitride layer 30 is set suitably, it is preferable that it is a value within the range of 10 nm or more and 100 nm or less. Here, the average layer thickness of the chromium nitride layer 30 can be obtained by measuring irregularities with a cross-sectional TEM, and is 1 of the average layer thickness of the region (metal Cr) in the vicinity of the surface of the base substrate 10 before nitriding. It was confirmed to correspond to 5 times.

クロム窒化物層30の平均層厚が10nm未満である場合、III族窒化物を積層する際に、下地基板(金属)からの影響を受ける(反応する)おそれがある。クロム窒化物層30の平均層厚が100nmを超える場合、クロム窒化物層30のコストが増大するおそれがある。   When the average layer thickness of the chromium nitride layer 30 is less than 10 nm, there is a risk of being affected (reacted) by the base substrate (metal) when the group III nitride is laminated. When the average layer thickness of the chromium nitride layer 30 exceeds 100 nm, the cost of the chromium nitride layer 30 may increase.

下地基板10の少なくとも上面10aがCrの結晶の(110)面になっている。すなわち、クロム窒化物層30の格子間隔(図3に示す正三角形部の黒丸の間隔)は、下地基板(金属Cr)10の格子間隔(図3に示す白丸の間隔)と異なる。これにより、クロム窒化物を構成する原子(図3に示す黒丸)がCrの格子(図3に示す白丸)の間の位置で安定的に存在する。これにより、クロム窒化物層30は、黒丸で示す結晶格子のパタ−ンが繰り返し配列された状態となり、下地基板10の上面10aに対して好適に(111)配向する。クロム窒化物層30の上面30aを(111)配向させると、その上に成長させるIII族窒化物(後述のバッファー層40及び結晶層50)との格子ミスマッチ(格子不整合)が少なくなるので、III族窒化物を結晶性の良好な状態で積層することができる。   At least the upper surface 10a of the base substrate 10 is a (110) plane of Cr crystals. That is, the lattice interval of the chromium nitride layer 30 (interval of black circles in the equilateral triangle portion shown in FIG. 3) is different from the lattice interval of the base substrate (metal Cr) 10 (interval of white circles shown in FIG. 3). Thereby, atoms (black circles shown in FIG. 3) constituting the chromium nitride are stably present at positions between Cr lattices (white circles shown in FIG. 3). Thereby, the chromium nitride layer 30 is in a state in which the pattern of the crystal lattice indicated by the black circles is repeatedly arranged, and is preferably (111) oriented with respect to the upper surface 10a of the base substrate 10. When the upper surface 30a of the chromium nitride layer 30 is (111) oriented, lattice mismatch (lattice mismatch) with a group III nitride (a buffer layer 40 and a crystal layer 50 described later) grown on the upper surface 30a is reduced. Group III nitrides can be stacked with good crystallinity.

なお、III族窒化物とCrとの格子ミスマッチ(格子不整合)が大きいので、Cr(110)面(下地基板10の上面10a)の上には、結晶性の良好な状態でIII族窒化物(バッファ層40及び結晶層50)を積層することが困難である。   Note that since the lattice mismatch (lattice mismatch) between the group III nitride and Cr is large, the group III nitride is in a state of good crystallinity on the Cr (110) surface (the upper surface 10a of the base substrate 10). It is difficult to stack (buffer layer 40 and crystal layer 50).

さらに、クロム窒化物層30の上面30aである(111)面を面の水平方向((111)面に平行な方向)からわずかに傾斜させてカットさせてもよい。これにより、見かけの格子間距離(傾斜面に垂直な方向から見た場合の格子間の距離)を調整可能である。例えば、クロム窒化物層30を研磨したり切断したりすることにより上面として傾斜面を形成することができる。傾斜面の傾斜角度は、(111)面に平行な方向に対して数度程度でよい。傾斜面により、クロム窒化物層30とIII族窒化物との見かけ上の格子ミスマッチ(格子不整合)を減少させることができるため、クロム窒化物層30の上に積層されるIII族窒化物層は、極めて、転位等が少ないものとなる。傾斜面の傾斜の方向は、1方向に限らず、複数の方向を含んでもよい。   Further, the (111) plane that is the upper surface 30a of the chromium nitride layer 30 may be slightly inclined from the horizontal direction of the plane (direction parallel to the (111) plane). Thereby, the apparent interstitial distance (distance between the lattices when viewed from the direction perpendicular to the inclined surface) can be adjusted. For example, an inclined surface can be formed as the upper surface by polishing or cutting the chromium nitride layer 30. The inclination angle of the inclined surface may be about several degrees with respect to the direction parallel to the (111) plane. The inclined plane can reduce the apparent lattice mismatch (lattice mismatch) between the chromium nitride layer 30 and the group III nitride, and thus the group III nitride layer stacked on the chromium nitride layer 30. Has extremely few dislocations and the like. The direction of inclination of the inclined surface is not limited to one direction, and may include a plurality of directions.

あるいは、このような傾斜面は、下地基板(金属Cr)10の上面10aに形成してもよい。ただし、傾斜面の傾斜角度は、大きすぎるとクロム窒化物の(111)面が生成できないので、クロム窒化物の(111)面を形成可能な範囲内の値にする必要がある。この傾斜面の表面近傍を窒化させることで、クロム窒化物層の上面も同様に傾斜した傾斜面となる。   Alternatively, such an inclined surface may be formed on the upper surface 10 a of the base substrate (metal Cr) 10. However, if the inclination angle of the inclined surface is too large, the (111) surface of the chromium nitride cannot be generated, so it is necessary to set the value within a range in which the (111) surface of the chromium nitride can be formed. By nitriding the vicinity of the surface of the inclined surface, the upper surface of the chromium nitride layer is similarly inclined.

次に、図2(a)に示す工程では、下地基板温度を900℃まで下げ、HVPE法でGaNのバッファ層40を成膜する。バッファ層40の膜厚は、例えば、約10μmとする。   Next, in the step shown in FIG. 2A, the base substrate temperature is lowered to 900 ° C., and the GaN buffer layer 40 is formed by the HVPE method. The film thickness of the buffer layer 40 is about 10 μm, for example.

ここで、バッファ層40は、(111)配向したクロム窒化物層30の上面30a((111)面)に形成される。すなわち、クロム窒化物層30の上面30aが(111)配向しているので、その上に成長するバッファ層40との格子ミスマッチ(格子不整合)が少なくなる。これにより、バッファ層40を結晶性の良好な状態で積層することができる。すなわち、バッファ層40において、格子不整合に起因した転位が低減する。   Here, the buffer layer 40 is formed on the upper surface 30 a ((111) plane) of the (111) -oriented chromium nitride layer 30. That is, since the upper surface 30a of the chromium nitride layer 30 is (111) oriented, lattice mismatch (lattice mismatch) with the buffer layer 40 grown thereon is reduced. Thereby, the buffer layer 40 can be laminated | stacked in a state with favorable crystallinity. That is, dislocations due to lattice mismatch are reduced in the buffer layer 40.

図2(b)に示す工程では、下地基板温度を1040℃まで昇温し、GaNの結晶層50を成長する。成長時の結晶層50の膜厚は、例えば、約10μmとする。   In the step shown in FIG. 2B, the temperature of the base substrate is raised to 1040 ° C., and the GaN crystal layer 50 is grown. The film thickness of the crystal layer 50 during growth is, for example, about 10 μm.

上述のように結晶性が良好なバッファ層40の上に結晶層50を成長するので、結晶層50の結晶性も良好になる。すなわち、結晶層50において、格子不整合に起因した転位が低減する。   Since the crystal layer 50 is grown on the buffer layer 40 having good crystallinity as described above, the crystallinity of the crystal layer 50 is also good. That is, dislocations due to lattice mismatch are reduced in the crystal layer 50.

図2(c)に示す工程では、化学溶液を用いてクロム窒化物層30を選択的にエッチングする。このとき、下地基板10も同時にエッチングされてもよい。GaNの基板SBを下地基板10から分離できる。すなわち、GaNの基板SBを自立基板として得ることができる。ここで、基板SBは、バッファ層40と結晶層50とを含んでいる。   In the step shown in FIG. 2C, the chromium nitride layer 30 is selectively etched using a chemical solution. At this time, the base substrate 10 may also be etched at the same time. The GaN substrate SB can be separated from the base substrate 10. That is, the GaN substrate SB can be obtained as a free-standing substrate. Here, the substrate SB includes the buffer layer 40 and the crystal layer 50.

以上のように、下地基板として金属Crを用いて基板SBを製造するので、下地基板として金属窒化物を用いた場合に比べて、金属窒化物を得るためのコスト(本発明では、準備工程及び窒化工程のコスト)を低減できる。これにより、半導体基板(GaNの基板SB)の製造コストを低減できる。   As described above, since the substrate SB is manufactured using the metal Cr as the base substrate, compared with the case where the metal nitride is used as the base substrate, the cost for obtaining the metal nitride (in the present invention, the preparation step and The cost of the nitriding step can be reduced. Thereby, the manufacturing cost of the semiconductor substrate (GaN substrate SB) can be reduced.

なお、下地基板は、金属(Cr)であるので、上記で説明した以外にも、表面に予め所望のパターンや、凹凸等自在に設定でき、自由なデザインの半導体基板の製造が可能となる。   Since the base substrate is made of metal (Cr), a desired pattern, unevenness, or the like can be set in advance on the surface in addition to the above description, and a freely designed semiconductor substrate can be manufactured.

本発明の実施形態に係る半導体基板の製造方法を示す工程断面図。Process sectional drawing which shows the manufacturing method of the semiconductor substrate which concerns on embodiment of this invention. 本発明の実施形態に係る半導体基板の製造方法を示す工程断面図。Process sectional drawing which shows the manufacturing method of the semiconductor substrate which concerns on embodiment of this invention. クロム窒化物層の結晶方位を示す図。The figure which shows the crystal orientation of a chromium nitride layer.

符号の説明Explanation of symbols

10 下地基板
20 Cr層
30 クロム窒化物層
40 バッファ層
50 結晶層
10 Substrate 20 Cr layer 30 Chromium nitride layer 40 Buffer layer 50 Crystal layer

Claims (1)

Crで形成された下地基板を準備する準備工程と、
前記下地基板の(110)面を窒化してクロム窒化物層の(111)面を形成させる窒化工程と、
前記クロム窒化物層の上にIII族窒化物半導体の結晶層を成長させる結晶層成長工程と、
前記下地基板及び前記クロム窒化物層をエッチングして前記III族窒化物半導体の結晶を前記下地基板から分離する分離工程と、
を備えたことを特徴とする半導体基板の製造方法。
A preparation step of preparing a base substrate formed of Cr;
A nitriding step of nitriding the (110) surface of the base substrate to form a (111) surface of a chromium nitride layer;
A crystal layer growth step of growing a group III nitride semiconductor crystal layer on the chromium nitride layer;
A separation step of etching the base substrate and the chromium nitride layer to separate the group III nitride semiconductor crystal from the base substrate;
A method for manufacturing a semiconductor substrate, comprising:
JP2006272325A 2006-10-03 2006-10-03 Manufacturing method of semiconductor substrate Expired - Fee Related JP4320378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272325A JP4320378B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272325A JP4320378B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2008091730A JP2008091730A (en) 2008-04-17
JP4320378B2 true JP4320378B2 (en) 2009-08-26

Family

ID=39375557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272325A Expired - Fee Related JP4320378B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4320378B2 (en)

Also Published As

Publication number Publication date
JP2008091730A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP6067801B2 (en) Finely graded gallium nitride substrate for high quality homoepitaxy
CN100418191C (en) Epitaxial growth method
JP3886341B2 (en) Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
KR100629558B1 (en) GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP4741506B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
JP4783288B2 (en) Realization of III-nitride free-standing substrate by heteroepitaxy on sacrificial layer
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
US20050247260A1 (en) Non-polar single crystalline a-plane nitride semiconductor wafer and preparation thereof
JP2006232640A (en) R surface sapphire substrate, epitaxial substrate using the same, semiconductor device, and method for manufacturing the same
JP2008143772A (en) Process for producing group iii element nitride crystal
JP5103014B2 (en) Fabrication of gallium nitride substrates by lateral growth through a mask.
JP5065625B2 (en) Manufacturing method of GaN single crystal substrate
JP2006279025A (en) Method of growing non-polar a-plane gallium nitride
JP5129186B2 (en) Method for manufacturing group III nitride semiconductor layer
JP4320378B2 (en) Manufacturing method of semiconductor substrate
JP4993627B2 (en) Method for manufacturing group III nitride semiconductor layer
JP2010215446A (en) Method for growing group iii nitride crystal
EP4345922A1 (en) Gan-on-si epiwafer comprising a strain-decoupling sub-stack
JP4208078B2 (en) InN semiconductor and manufacturing method thereof
JP4524630B2 (en) Manufacturing method of HEMT epitaxial wafer
JP5743928B2 (en) Gallium nitride semiconductor epitaxial wafer and method for manufacturing the same
JP2011140428A (en) Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate
JP2007277062A (en) Method for manufacturing group iii nitride crystal substrate and group iii nitride crystal substrate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Ref document number: 4320378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees