JP4319206B2 - Soft magnetic Fe-based metallic glass alloy - Google Patents

Soft magnetic Fe-based metallic glass alloy Download PDF

Info

Publication number
JP4319206B2
JP4319206B2 JP2006198792A JP2006198792A JP4319206B2 JP 4319206 B2 JP4319206 B2 JP 4319206B2 JP 2006198792 A JP2006198792 A JP 2006198792A JP 2006198792 A JP2006198792 A JP 2006198792A JP 4319206 B2 JP4319206 B2 JP 4319206B2
Authority
JP
Japan
Prior art keywords
alloy
metallic glass
glass
soft magnetic
based metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006198792A
Other languages
Japanese (ja)
Other versions
JP2008024985A (en
Inventor
明久 井上
宝龍 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006198792A priority Critical patent/JP4319206B2/en
Publication of JP2008024985A publication Critical patent/JP2008024985A/en
Application granted granted Critical
Publication of JP4319206B2 publication Critical patent/JP4319206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、高飽和磁化で、軟磁気特性に優れた軟磁性Fe基金属ガラス合金に関する。   The present invention relates to a soft magnetic Fe-based metallic glass alloy having high saturation magnetization and excellent soft magnetic properties.

多元素合金のある種のものは、組成物を溶融状態から急冷するとき、結晶化せず、一定
の温度幅を有する過冷却液体状態を経過してガラス状固体に転移する性質を有していて、
この種の非晶質合金は「金属ガラス合金」(glassy alloy)と呼ばれている。
Certain types of multi-element alloys have the property that when the composition is rapidly cooled from the molten state, it does not crystallize and transitions to a glassy solid after passing through a supercooled liquid state having a certain temperature range. And
This type of amorphous alloy is called a “glassy alloy”.

「金属ガラス合金」は加熱によって明瞭なガラス転移が観察され、結晶化温度までの過
冷却液体領域の温度範囲が数十Kにも達する。この物性を備えることにより初めて、冷却
速度の遅い銅金型等に鋳込む方法によってバルク状のアモルファス合金を作ることができ
るようになった。このようなアモルファス合金が、特に、「金属ガラス」と呼ばれている
のは、金属でありながら、酸化物ガラスのように安定な非晶質で、高温で容易に塑性変形
(粘性流動)できるためである。
In the “metal glass alloy”, a clear glass transition is observed by heating, and the temperature range of the supercooled liquid region up to the crystallization temperature reaches several tens of K. For the first time with this physical property, a bulk amorphous alloy can be made by a method of casting into a copper mold having a slow cooling rate. Such an amorphous alloy is particularly called a “metal glass”, although it is a metal, it is a stable amorphous material like oxide glass and can be easily plastically deformed (viscous flow) at high temperatures. Because.

「金属ガラス合金」は、ガラス形成能が高い、すなわち、ガラス相からなる、より寸法
の大きな、いわゆるバルクの金属鋳造体を銅金型鋳造法等により溶湯から過冷却液体状態
において冷却凝固して製造できる特性を有するものであり、また、過冷却液体状態に加熱
して塑性加工できる特性を有するものであり、これらの特性を有しない従来の薄帯やファ
イバーなどの「アモルファス合金」とは本質的に異なる材料であり、その有用性も非常に
大きい。
“Metal glass alloy” has a high glass forming ability, that is, a so-called bulk metal casting made of a glass phase and having a larger size is cooled and solidified in a supercooled liquid state from a molten metal by a copper mold casting method or the like. It has the characteristics that can be manufactured, and has the characteristics that can be plastically processed by heating to a supercooled liquid state, and the essence of the conventional “amorphous alloys” such as ribbons and fibers that do not have these characteristics The material is very different and its usefulness is very great.

本発明者らが1995年にFe−(Al,Ga)系の軟磁性Fe基金属ガラス合金を報
告(非特許文献1、特許文献1〜3)して以来、機能材料(非特許文献2〜6)及び構造
材料(非特許文献7〜10)として多数のFe基金属ガラス合金が開発された。
Since the present inventors reported a Fe— (Al, Ga) -based soft magnetic Fe-based metallic glass alloy in 1995 (Non-patent Document 1, Patent Documents 1 to 3), functional materials (Non-patent Documents 2 to 2). A number of Fe-based metallic glass alloys have been developed as 6) and structural materials (Non-Patent Documents 7 to 10).

軟磁性Fe基金属ガラス合金は2つのグループに区別できる。一つは、Fe−P−C系
金属ガラス合金グループであり、他方は、新しく開発されたFe−B−Si系金属ガラス
合金グループである。Fe−B−Si系金属ガラス合金は、直径又は厚さ2〜5mmの金
属ガラス棒材に鋳造できる高いガラス形成能を有しているが、B、Siの含有量を多くす
る必要があり、Fe含有量が少ない(65at%未満)ので、飽和磁化(Is)は0.8
〜1.1Tとそれほど大きくなく、センサ用途としては有用であるが、電力変圧器やモー
ターへは適用できない。
Soft magnetic Fe-based metallic glass alloys can be distinguished into two groups. One is a Fe—P—C-based metallic glass alloy group, and the other is a newly developed Fe—B—Si based metallic glass alloy group. Fe-B-Si-based metallic glass alloy has a high glass-forming ability that can be cast into a metallic glass rod having a diameter or thickness of 2 to 5 mm, but it is necessary to increase the content of B and Si. Since the Fe content is low (less than 65 at%), the saturation magnetization (Is) is 0.8.
Although it is not so large as -1.1T and is useful as a sensor application, it cannot be applied to a power transformer or a motor.

低いヒシテリシス損失及び高いIsが電磁的エネルギー転換機器の低鉄損コアに必要な
基本的な特性であり、Fe基軟磁性金属ガラス合金は通常の多結晶Fe(Si)合金によ
り製造されたものより低鉄損のコアを提供すべくその潜在可能性について研究されている
。それゆえ、Fe−B−Si系金属ガラス合金と比べて、先行して開発されたFe−P−
C系金属ガラス合金は、1.3〜1.4T(非特許文献3,11)の高いIsを示すので
、磁気コア材としての応用は、より潜在可能性がある。
Low hysteresis loss and high Is are basic characteristics required for low iron loss core of electromagnetic energy conversion equipment, Fe-based soft magnetic metallic glass alloys are more than those produced by ordinary polycrystalline Fe (Si) alloys Its potential is being researched to provide a low iron loss core. Therefore, compared to Fe-B-Si-based metallic glass alloys, Fe-P- developed in advance.
Since the C-based metallic glass alloy exhibits a high Is of 1.3 to 1.4 T (Non-patent Documents 3 and 11), its application as a magnetic core material has more potential.

しかしながら、Fe−P−C基金属ガラス合金の多くは、非常に高価なGaを含有して
おり、そのコストは合金のコストの90%を占める。Gaは、また、保磁力(Hc)の好
ましくない増加をもたらす(非特許文献12)。さらにガラス形成能はそれほど大きくな
く、銅鋳型鋳造法により製造されたFe−P−C基金属ガラス合金の最大直径又は厚さは
2.5mmである(非特許文献3,11)。
However, many of the Fe-PC-based metallic glass alloys contain very expensive Ga, and the cost accounts for 90% of the alloy cost. Ga also causes an undesirable increase in coercivity (Hc) (Non-patent Document 12). Furthermore, the glass forming ability is not so great, and the maximum diameter or thickness of the Fe—PC—C based metallic glass alloy produced by the copper mold casting method is 2.5 mm (Non-patent Documents 3 and 11).

一つのFeCrMoGaPCBSi金属ガラス合金はより大きなガラス形成能を示し、
フラックス溶融及び水急冷で直径又は厚さ4mmまでの金属ガラス合金を製造できるけれ
ども、この方法は、複雑であり、Isは低い(1T未満)。本発明者等は,これまで軟磁
性Fe基金属ガラス合金の開発を精力的に行なってきた(特許文献4〜10)。特に、特
許文献9に示されるFe−B−Si系金属ガラス合金は1.4T以上の飽和磁化を有し、
保磁力が3.5〜3.0A/mであり、Nbを1at%を含有する合金は、図8に示す磁
化曲線に示す優れた軟磁気特性を有している。また、本発明者らは、組成がFe76−y
{(Si(P[M;Nb,Mo、19≦x≦30,0≦y
≦6]で示される金属ガラス合金に係わる発明について特許出願した(特許文献11)。
この組成に含まれる式Fe74Si7.210.83.20.8Moの粒子材(
実施例3−3)は、ΔTxが48.4K、Bs(T)は1.28であるが、図9の磁化曲
線に示されるとおり、Nbを1at%を含有する合金(実施例1−3)に比べて軟磁気特
性はよくなかった。
One FeCrMoGaPCBSi metallic glass alloy shows a greater glass forming ability,
Although it is possible to produce metallic glass alloys up to 4 mm in diameter or thickness with flux melting and water quenching, this method is complex and the Is is low (less than 1T). The inventors of the present invention have so far vigorously developed soft magnetic Fe-based metallic glass alloys (Patent Documents 4 to 10). In particular, the Fe—B—Si-based metallic glass alloy disclosed in Patent Document 9 has a saturation magnetization of 1.4 T or more,
An alloy having a coercive force of 3.5 to 3.0 A / m and containing 1 at% of Nb has excellent soft magnetic characteristics shown in the magnetization curve shown in FIG. In addition, the inventors have the composition Fe 76-y
{(Si a B b) m (P c C d) n} x M y [M; Nb, Mo, 19 ≦ x ≦ 30,0 ≦ y
A patent application was filed for an invention related to a metallic glass alloy represented by ≦ 6] (Patent Document 11).
Particulate material of the formula Fe 74 Si 7.2 B 10.8 P 3.2 C 0.8 Mo 2 included in this composition (
In Example 3-3), ΔTx is 48.4K and Bs (T) is 1.28, but as shown in the magnetization curve of FIG. 9, an alloy containing 1 at% of Nb (Example 1-3) Compared with), the soft magnetic properties were not good.

A.Inoue,Y.Shinomiya,andJ.S.Gook,Mater.Trans.,JIM 36,1427(1995)A. Inoue, Y. Shinomiya, and J. S. Gook, Mater. Trans., JIM 36, 1427 (1995) T.D.Shen and R.B.Schwarz,Apppl.Phys.Lett.75,49(1999)T.D.Shen and R.B.Schwarz, Apppl.Phys.Lett. 75, 49 (1999) B.L.Shens and A.Inoue,Mater.Trans.,43,1235(20002)B.L.Shens and A.Inoue, Mater.Trans., 43,1235 (20002) P.Paliwk,H.A.Davies,and M.R.J.Gibbs,Mater.Sci.Eng.,A 375-377,372(2004)P.Paliwk, H.A.Davies, and M.R.J.Gibbs, Mater.Sci.Eng., A 375-377,372 (2004) R.B.Schwarz,T.D.Shen,U.Harms,and T.Lillo,J.Magn Magn.Mater.283,233(2004)R.B.Schwarz, T.D.Shen, U.Harms, and T.Lillo, J.Magn Magn.Mater.283,233 (2004) M.Stoica,S.Roth,J.Eckert,L.Scultz,and M.D.Baro,J.Magn.Magn.Mater.290-291,1480(2005)M. Stoica, S. Roth, J. Eckert, L. Scultz, and M. D. Baro, J. Magn. Magn. Mater. 290-291, 1480 (2005) V.Ponnambalam,S.J.Poon,and G.J.Shiflet,J.Mater.Res.19,1320(2004)V.Ponnambalam, S.J.Poon, and G.J.Shiflet, J.Mater.Res. 19,1320 (2004) Z.P.Lu,C.T.Liu,J.R.Thompson,and W.D.Porter,Phys.Rev.Lett.92,245503(2004)Z.P.Lu, C.T.Liu, J.R.Thompson, and W.D.Porter, Phys.Rev.Lett.92,245503 (2004) A.Inoue,B.L.Shen,and C.T.Chang ,Acta Mater.52,4093(2004)A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater. 52, 4093 (2004) B.L.Shen,A.Inoue,and C.T.Chang ,Apppl.Phys.Lett.85,4911(2004)B.L.Shen, A.Inoue, and C.T.Chang, Apppl.Phys.Lett.85,4911 (2004) B.L.Shen,M.Akiba,ans A.Inoue,Phys.Rev.B 73,104204(2006)B.L.Shen, M.Akiba, ans A.Inoue, Phys.Rev.B 73,104204 (2006) T.Mizhushima,A.Makino,and A.Inoue,J.Appl.Phys.83,6329(1998)T. Mizhushima, A. Makino, and A. Inoue, J. Appl. Phys. 83, 6329 (1998) 特開平9−320827号公報JP 9-320827 A 特開平11−71647号公報Japanese Patent Laid-Open No. 11-71647 特開2001−152301号公報JP 2001-152301 A 特開平11−131199号公報Japanese Patent Laid-Open No. 11-131199 特開2000−256812号公報JP 2000-256812 A 特開2002−105607号公報JP 2002-105607 A 特開2002−194514号公報JP 2002-194514 A 特開2003−253408号公報Japanese Patent Laid-Open No. 2003-253408 特開2005−256038号公報Japanese Patent Laying-Open No. 2005-256038 特開2005−290468号公報JP 2005-290468 A

軟磁性材料としては、従来、珪素鋼、フェライト、鉄基およびコバルト基非晶質合金薄
帯などが使用されている。これらのうち、鉄基非晶質合金薄帯は、約1.5Tの高い飽和
磁化を持つものの、磁歪が大きいために透磁率は数千であり低い。これに対して、コバル
ト基非晶質合金薄帯の透磁率は数万のレベルと高いものの、飽和磁化は1T以下であり、
飽和磁化と軟磁気特性(透磁率、保磁力、鉄損など)の両方の特性に優れた合金材料の開
発は非常に困難であった。
Conventionally, silicon steel, ferrite, iron-based and cobalt-based amorphous alloy ribbons have been used as soft magnetic materials. Among these, the iron-based amorphous alloy ribbon has a high saturation magnetization of about 1.5 T, but has a large permeability and a low permeability of several thousand. In contrast, the permeability of the cobalt-based amorphous alloy ribbon is as high as several tens of thousands, but the saturation magnetization is 1T or less,
It has been very difficult to develop an alloy material excellent in both saturation magnetization and soft magnetic properties (permeability, coercivity, iron loss, etc.).

また、バルクの非晶質合金である従来のFe−B−C系軟磁性金属ガラス合金は、飽和
磁化が小さく、変圧器やモーター用途の要求を満たさない。また、Fe−B−C系軟磁性
金属ガラス合金であって、Gaを使用しているものは、コストが高い。鉄濃度の高い鉄・
遷移金属非晶質合金を熱処理してナノメータサイズの微細な結晶を均一に析出させること
により高い飽和磁化と共に優れた軟磁気特性を兼ね備えた軟磁性材料の開発もなされてい
るが、熱処理工程の厳密な制御が必要になり、コストが高い。したがって、実用化を進め
るために、ガラス形成能及び初期透磁力、保磁力、飽和磁化などの軟磁気特性の改善、並
びに、原材料や製造工程のコストの低減が強く求められている。
Moreover, the conventional Fe-B-C type soft magnetic metallic glass alloy which is a bulk amorphous alloy has a small saturation magnetization, and does not satisfy the requirements for transformers and motor applications. Further, an Fe—B—C soft magnetic metal glass alloy using Ga is expensive. Iron with high iron concentration
Soft magnetic materials that combine high saturation magnetization with excellent soft magnetic properties have been developed by heat-treating transition metal amorphous alloys to uniformly precipitate fine crystals of nanometer size. Costly control is required and the cost is high. Therefore, in order to promote practical application, there is a strong demand for improvement of soft magnetic properties such as glass forming ability, initial permeability, coercivity, and saturation magnetization, and reduction of costs of raw materials and manufacturing processes.

そこで、本発明者らは、上述の課題を解決することを目的として種々の合金組成及び元
素の組み合わせの方法について探査した結果、高価な元素Gaを含有しないFe79-x
Mox1044Si3(x=2〜5at%)で示されるFe基金属ガラス合金が、
過冷却液体の温度間隔ΔTxが40K以上であり、保磁力(Hc)が1.5〜2.1A/m
、飽和磁化(Is)が1.14T〜1.39T、1kHz、1A/mでの初期透磁率(μ
e) が18600〜25230、磁歪(λs)が17.7×10-6〜22.7である
ことを見出し、本発明の完成に至った。
Therefore, as a result of exploring various alloy compositions and methods of element combinations for the purpose of solving the above-mentioned problems, the present inventors have found that Fe 79-x not containing an expensive element Ga.
Fe-based metallic glass alloy represented by Mo x P 10 C 4 B 4 Si 3 (x = 2 to 5 at%)
The temperature interval ΔTx of the supercooled liquid is 40K or more, and the coercive force (Hc) is 1.5 to 2.1 A / m.
, Saturation permeability (Is) of 1.14T to 1.39T, 1 kHz, initial permeability at 1 A / m (μ
It was found that e ) was 18600 to 25230 and magnetostriction (λs) was 17.7 × 10 −6 to 22.7, and the present invention was completed.

本発明の金属ガラス合金は、過冷却液体の温度間隔ΔTxが大きく、直径又は厚さが1
.5mm〜4mmで、ガラス相の体積分率が100%であるものを金型鋳造法によって製
造することができる。
The metallic glass alloy of the present invention has a large temperature interval ΔTx of the supercooled liquid and a diameter or thickness of 1
. A glass phase volume fraction of 5% to 4 mm and 100% can be produced by a die casting method.

図6に、各種の軟磁性材料の飽和磁化と透磁率の関係を本発明の合金と対比して示す。
本発明の金属ガラス合金は、これまでのFe−P−C系金属ガラス合金中で最高のIs,
優れた軟磁気特性を有することが理解される。
FIG. 6 shows the relationship between the saturation magnetization and magnetic permeability of various soft magnetic materials in comparison with the alloy of the present invention.
The metallic glass alloy of the present invention has the highest Is, among the conventional Fe-PC-based metallic glass alloys.
It is understood that it has excellent soft magnetic properties.

上記の合金組成において、銅鋳型鋳造法により作製した鋳造棒材について測定したΔT
x=Tx−Tgの式で表される過冷却液体の温度間隔ΔTxは41K以上である。また、
換算ガラス化温度Tg/Tlが0.600以上である。
In the above alloy composition, ΔT measured for a cast bar produced by a copper mold casting method.
The temperature interval ΔTx of the supercooled liquid expressed by the equation x = Tx−Tg is 41K or more. Also,
The conversion vitrification temperature Tg / Tl is 0.600 or more.

この組成を持つ合金を用いて、銅鋳型鋳造法により作製した金属ガラスは、熱分析を行
う際、明瞭なガラス遷移及び結晶化による発熱が観察され、ガラス形成の臨界厚さ又は直
径の値は1.5mm以上であり、最大では4mmに達するので、銅鋳型鋳造法によって厚
さ又は直径1.5mm〜4mmの範囲でガラス相の体積分率が100%であるバルク金属
ガラス合金を容易に製作できる。
When an alloy having this composition is used for the metal glass produced by the copper mold casting method, a clear glass transition and heat generation due to crystallization are observed during thermal analysis, and the critical thickness or diameter value of the glass formation is Since it is 1.5 mm or more and reaches a maximum of 4 mm, a bulk metallic glass alloy having a glass phase volume fraction of 100% within a thickness or diameter of 1.5 mm to 4 mm can be easily manufactured by a copper mold casting method. it can.

以上説明したように、本発明のFe基金属ガラス合金は、ガラス形成能に優れ、ガラス
形成の臨界厚さ又は直径が1.5mm以上であり、最大では直径又は厚さ4mmの値を有
する。従来のFe−P−C系バルク金属ガラス合金には不可欠のGa元素を含有しないに
もかかわらず、高いガラス形成能を示すとともに、高飽和磁化と優れた軟磁気特性を示す
材料の開発に成功した。
As described above, the Fe-based metallic glass alloy of the present invention is excellent in glass forming ability, has a critical thickness or diameter of glass formation of 1.5 mm or more, and has a maximum diameter or thickness of 4 mm. Succeeded in developing a material that exhibits high glass-forming ability, high saturation magnetization, and excellent soft magnetic properties, despite the fact that it does not contain the essential Ga element in conventional Fe-PC-C bulk metal glass alloys did.

次に、本発明の実施の形態を説明する。本発明の上記合金組成は、基本的に下記6種の
元素を構成要素としている。Fe:鉄、Mo:モリブデン、P;燐、C;炭素,B:ホウ
素、Si:けい素。そして、式Fe79−xMo10Si(x=2〜5a
t%)で示される組成を有する。
Next, an embodiment of the present invention will be described. The above alloy composition of the present invention basically comprises the following six elements. Fe: iron, Mo: molybdenum, P: phosphorus, C: carbon, B: boron, Si: silicon. And the formula Fe 79-x Mo x P 10 C 4 B 4 Si 3 (x = 2-5a
t%).

本発明のFe基金属ガラス合金において、主成分であるFeは、本発明の高飽和磁化の
金属ガラス合金の基となる元素である。本発明のFe基金属ガラス合金中のFe含有量は
74〜77at%と高く、大きな飽和磁化が得られる。
In the Fe-based metallic glass alloy of the present invention, Fe, which is the main component, is an element that forms the basis of the highly saturated magnetization metallic glass alloy of the present invention. The Fe content in the Fe-based metallic glass alloy of the present invention is as high as 74 to 77 at%, and a large saturation magnetization is obtained.

本発明の上記合金組成において、半金属元素P,C,B,Siは、アモルファス相の形
成を担う元素であり、安定なアモルファス構造を得るために重要である。従来のFe−B
−C系金属ガラス合金では、ガラス形成能を高めるためには、Siと組み合わせて、10
at%程度以上の高濃度にBを含有させる必要があった。Fe−P−C系金属ガラス合金
では、FeとPの間では、Feの含有量が約80at%の組成で一つの共晶点が存在してお
り、この共晶点近傍での組成はガラス形成能が高い。また、ガラス形成能の向上には、安
定な過冷却液体が必要である。そのため、原子サイズの異なったC,B,Siを添加する
ことにより安定なアモルファス構造が得られ、ガラス形成能が向上する。
In the above alloy composition of the present invention, the metalloid elements P, C, B, and Si are elements responsible for forming an amorphous phase, and are important for obtaining a stable amorphous structure. Conventional Fe-B
In the case of the -C-based metallic glass alloy, in order to increase the glass forming ability, in combination with Si, 10
It was necessary to contain B at a high concentration of about at% or more. In the Fe-PC-C-based metallic glass alloy, there is one eutectic point between Fe and P with a composition of Fe content of about 80 at%, and the composition near this eutectic point is glass. High ability to form. Moreover, a stable supercooled liquid is required for improving the glass forming ability. Therefore, by adding C, B, and Si having different atomic sizes, a stable amorphous structure is obtained, and the glass forming ability is improved.

本発明の合金では、半金属元素P,C,B,Siをともに特定の含有量で含有させるこ
とにより、合計の含有量が少なくてもガラス形成能が優れることを見出した。これらの半
金属元素の合計の含有量は約20at%は必要である。これらの半金属元素が規定の量より
多くなるにつれ、共晶点から離れるので、ガラス形成能は低下し、飽和磁化は低下する。
また、規定の量より少なくなると、飽和磁化はやや大きくなる傾向があるが、ガラス形成
能が急激に低下する。P元素は、合金全体を一つの共晶点に持っていく役割をする。
In the alloy of the present invention, it has been found that the glass forming ability is excellent even when the total content is small by containing the metalloid elements P, C, B, and Si at a specific content. The total content of these metalloid elements is required to be about 20 at%. As the amount of these metalloid elements exceeds the specified amount, the glass forming ability is lowered and the saturation magnetization is lowered because it is away from the eutectic point.
On the other hand, when the amount is less than the specified amount, the saturation magnetization tends to be slightly increased, but the glass forming ability is rapidly lowered. The element P plays a role of bringing the entire alloy into one eutectic point.

Feの2〜5at%をMoで置換することによりΔTxをかなり拡大し、ガラス形成能
を大幅に増加させる。Moの添加は、C,B,Siの添加で共晶点からずれた組成を共晶
点に戻す役割をする。ΔTxの増大は、結晶化の遅滞による。Moを含有しない場合は準
安定相のFe23(B,C)相が析出するが、Feをわずか1at%のMoで置換する
ことにより準安定相は析出しなくなる。少量のMoで合金化することによって、SiとM
oの間の大きな負の値を持つ混合エンタルピーが準安定(Fe,Mo)23(B,C)
相の形成の困難さを大きくするので準安定相の析出は強く阻止されると考えられる。加え
て、大きな(Fe及びMo)及び小さな(B及びC)原子は、アモルファス構造中に補強
されたバックボーンを形成し、また結晶化を抑制すると思われる。これらの二つの作用に
より、過冷却液体の安定性を増加させる。一方、これらの合金は共晶か、それに近い組成
である。
By substituting 2 to 5 at% of Fe with Mo, ΔTx is considerably enlarged and the glass forming ability is greatly increased. The addition of Mo serves to return the composition shifted from the eutectic point to the eutectic point by the addition of C, B, and Si. The increase in ΔTx is due to crystallization delay. When Mo is not contained, the metastable phase Fe 23 (B, C) 6 phase is precipitated, but the metastable phase is not precipitated by substituting Fe with only 1 at% of Mo. By alloying with a small amount of Mo, Si and M
The mixed enthalpy with a large negative value between o is metastable (Fe, Mo) 23 (B, C) 6
Precipitation of the metastable phase is thought to be strongly prevented because it increases the difficulty of phase formation. In addition, large (Fe and Mo) and small (B and C) atoms appear to form a reinforced backbone in the amorphous structure and suppress crystallization. These two actions increase the stability of the supercooled liquid. On the other hand, these alloys are eutectic or have a composition close to that.

本発明の上記合金組成において、組成範囲からのずれにより、ガラス形成能が劣り、溶
湯から凝固過程にかけて、結晶核が生成・成長し、ガラス相に結晶相が混在した組織にな
る。また、この組成範囲から大きく離れると、ガラス相が得られず、結晶相となる。
In the above alloy composition of the present invention, the glass forming ability is inferior due to the deviation from the composition range, crystal nuclei are generated and grown from the molten metal to the solidification process, and the glass phase has a mixed crystal phase. Moreover, if it leaves | separates greatly from this composition range, a glass phase will not be obtained but it will become a crystal phase.

本発明の上記合金組成において、ガラス形成能が高いため、銅鋳型鋳造すると直径又は
厚さが4mmまでのガラス相の体積分率が100%の金属ガラス合金の棒材又は板材が作
製できるが、同様な冷却速度で、回転水中紡糸法により、直径0.55mmまでの細線、
アトマイズ法により、直径0.6mmまでの粒子の金属ガラスを作製できる。
In the above alloy composition of the present invention, since the glass forming ability is high, when a copper mold is cast, a rod or plate of a metal glass alloy with a volume fraction of the glass phase up to 4 mm in diameter or thickness can be produced. A thin wire up to a diameter of 0.55 mm by a rotating underwater spinning method at a similar cooling rate,
By the atomizing method, metallic glass having a particle diameter of up to 0.6 mm can be produced.

本発明の合金は、実施例に示すように、Moの含有量が2〜5at%の範囲で、1kH
z、1A/mでの初期透磁率(μ) が18600〜25230、保磁力(Hc)が1.5
〜2.1A/m、飽和磁化(Is)が1.14〜1.39T、の極めて優れた軟磁気特性
を持つFe基金属ガラス合金である。さらに、Moの含有量が3〜4at%の範囲では、
初期透磁率(μ) が24610〜25230、保磁力(Hc)が1.5〜1.7A/m、
飽和磁化(Is)が1.27〜1.32Tとなり、より優れた軟磁気特性が得られる。
As shown in the examples, the alloy of the present invention has a Mo content in the range of 2 to 5 at%.
z Initial permeability (μ e ) at 1 A / m is 18600-25230, coercive force (Hc) is 1.5
It is an Fe-based metallic glass alloy having extremely excellent soft magnetic properties of ˜2.1 A / m and saturation magnetization (Is) of 1.14 to 1.39 T. Furthermore, in the range where the Mo content is 3 to 4 at%,
Initial magnetic permeability (μ e ) is 24610-25230, coercive force (Hc) is 1.5-1.7 A / m,
The saturation magnetization (Is) is 1.27 to 1.32T, and more excellent soft magnetic characteristics can be obtained.

表1に示すA0〜A5の合金材料を調製し、銅鋳型鋳造法を実施し、バルク合金を得た
。図5に、銅鋳型鋳造法により直径1〜4mmの合金試料を作製するのに用いた装置を側
面から見た概略構成を示す。A0〜A5の各合金組成は式Fe79−xMo10
Siにおいて、x=0(A0),x=1(A1),x=2(A2),x=3(A3
),x=4(A4),x=5(A5)、x=6(A6)とした。
Alloy materials of A0 to A5 shown in Table 1 were prepared, and a copper mold casting method was performed to obtain a bulk alloy. FIG. 5 shows a schematic configuration of an apparatus used for producing an alloy sample having a diameter of 1 to 4 mm by a copper mold casting method as viewed from the side. Each alloy composition of A0 to A5 has the formula Fe 79-x Mo x P 10 C 4
In B 4 Si 3 , x = 0 (A0), x = 1 (A1), x = 2 (A2), x = 3 (A3
), X = 4 (A4), x = 5 (A5), and x = 6 (A6).

純鉄、純Mo,Siメタロイド、Fe−Pプレアロイ、Fe−Cプレアロイ、純B結晶
の混合物を高純度Ar雰囲気中で誘導加熱溶融することにより合金インゴットを製造した
An alloy ingot was manufactured by induction heating and melting a mixture of pure iron, pure Mo, Si metalloid, Fe—P prealloy, Fe—C prealloy, and pure B crystal in a high purity Ar atmosphere.

この合金インゴットを先端に小孔(孔径0.5〜4mm)を有する石英管3に充填し、高周波
発生コイル4により加熱溶融した。その後、その石英管3を垂直な孔5を鋳込み空間とし
て設けた銅製鋳型6の直上に設置した。次いで、石英管3内の溶融金属1をアルゴンガス
の加圧(0.1〜1.0 Kg/cm2)により石英管3の小孔2から噴出し、銅製鋳型6の孔に注入
してそのまま放置して凝固させて直径4mmまでの長さ40mmの円柱状鋳造棒を製造し
た。
This alloy ingot was filled in a quartz tube 3 having a small hole (hole diameter: 0.5 to 4 mm) at the tip, and was heated and melted by a high frequency generating coil 4. Thereafter, the quartz tube 3 was placed immediately above a copper mold 6 provided with a vertical hole 5 as a casting space. Next, the molten metal 1 in the quartz tube 3 is ejected from the small hole 2 of the quartz tube 3 by pressurization of argon gas (0.1 to 1.0 Kg / cm 2 ), injected into the hole of the copper mold 6 and left as it is. Solidified to produce a cylindrical cast bar having a length of 40 mm and a diameter of 4 mm.

表1に、試料A0〜A5の示差走査熱量計を用いて測定したガラス遷移温度(Tg)、
ΔTx=Tx−Tg(Txは結晶化開始温度)、Tg/Tlを示す。また、Is,Hc,
1kHzでの初期透磁率(μ)を、それぞれ、400kA/mの磁場を印加した振動試
料型マグネトメーター、800A/mの磁場でのB−Hループトレーサー、1A/mの磁
場でのインピーダンスアナライザーにより測定した。磁歪(λs)は3端子キャパシタン
ス法により測定した。
In Table 1, the glass transition temperature (Tg) measured using the differential scanning calorimeter of samples A0 to A5,
ΔTx = Tx−Tg (Tx is the crystallization start temperature), Tg / Tl. Also, Is, Hc,
An initial permeability (μ e ) at 1 kHz, a vibrating sample magnetometer applied with a magnetic field of 400 kA / m, a BH loop tracer with a magnetic field of 800 A / m, and an impedance analyzer with a magnetic field of 1 A / m, respectively. It was measured by. Magnetostriction (λs) was measured by the three-terminal capacitance method.

Figure 0004319206
Figure 0004319206

図1に、Fe79−xMo10Si(x=0〜6at%)のDSC曲線
を示す。Moの含有量が0から4at%に増加するにつれてTgとΔTxは740から7
52K、34から47Kへそれぞれ増加する。A0合金の結晶化は、3つの発熱段階で生
じ、P1,P2,P3の印を付した3つの対応する発熱ピークは接近している。しかしな
がら、結晶化は、Feを1〜4at%のMoで置換すると2つの段階を通して生じ、A3
とA4合金は主の発熱ピークに肩(shoulder)を示すが、2つの発熱ピーク間の温度間隔は
Mo含有量が増えるにつれて増加する。
FIG. 1 shows a DSC curve of Fe 79-x Mo x P 10 C 4 B 4 Si 3 (x = 0 to 6 at%). Tg and ΔTx are increased from 740 to 7 as the Mo content increases from 0 to 4 at%.
Increase from 52K, 34 to 47K, respectively. Crystallization of the A0 alloy occurs in three exothermic stages, and the three corresponding exothermic peaks marked P1, P2, P3 are close. However, crystallization occurs through two stages when Fe is replaced with 1-4 at% Mo, and A3
And the A4 alloy show shoulders in the main exothermic peak, but the temperature interval between the two exothermic peaks increases as the Mo content increases.

Mo含有量が5at%及び6at%にさらに増加すると、肩は、面心立方晶(Fe、
Mo)23(B,C)相の析出により発熱ピークになる。特に、A6合金については、
ピークP1は、大きく、結晶化は、ΔTの大幅な低下を伴って、再度、3つの明白な発熱
段階を通って生じる。それゆえに、過冷却液体(SL)の熱的安定性はMo含有量が4a
t%へ増加するにつれて増加し、さらにMo含有量が増加すると減少が始まると推測され
る。
When the Mo content is further increased to 5 at% and 6 at%, the shoulder is face-centered cubic (Fe,
Mo) 23 (B, C) Exothermic peak due to precipitation of 6 phases. Especially for the A6 alloy,
Peak P1 is large and crystallization occurs again through three distinct exothermic stages, with a significant drop in ΔT. Therefore, the thermal stability of the supercooled liquid (SL) has a Mo content of 4a.
It increases with increasing to t%, and it is estimated that the decrease starts when the Mo content further increases.

図2に、Fe79−xMo10Si(x=0〜5at%)のDTA曲線
を示す。A0合金については、Pendo1及びPendo2の符号を付した2つの吸熱
ピークが加熱曲線上に見える。これは該組成が共晶点の近くに存在していないことを示唆
する。Mo含有量が1から4at%へ増加するにつれてピークPendo1の強度は、増
加するが、ピークPendo2の強度は次第に低下する。こうして、Moが2,3,4a
t%にそれぞれ増加すると、事実上たった一つのピークが残り、Mo含有量が4at%に
増加すると共晶点に接近することを示している。Mo含有量がさらに5at%に増加する
と、2つの吸熱ピークが再度現れるので、Mo含有量が5at%に増加すると合金の組成
は共晶点から離れ始めることを示唆する。
FIG. 2 shows a DTA curve of Fe 79-x Mo x P 10 C 4 B 4 Si 3 (x = 0 to 5 at%). For the A0 alloy, two endothermic peaks labeled P endo1 and P endo2 are visible on the heating curve. This suggests that the composition does not exist near the eutectic point. As the Mo content increases from 1 to 4 at%, the intensity of the peak P endo1 increases, but the intensity of the peak P endo2 gradually decreases. Thus, Mo becomes 2, 3, 4a.
As each increase to t%, virtually only one peak remains, indicating that the eutectic point is approached when the Mo content is increased to 4 at%. When the Mo content is further increased to 5 at%, two endothermic peaks reappear, suggesting that when the Mo content is increased to 5 at%, the composition of the alloy begins to move away from the eutectic point.

加えて、冷却曲線に示されるように、Mo含有量が1から4at%に増加するにつれて
Tlは1270から1226Kに低下し、Mo含有量がさらに5at%に増加するにつれ
て再度1265Kに高まる。A4合金は、2つの発熱ピークを示すが、他のMo含有合金
は3以上の発熱ピークを示すので、A4合金の凝固挙動は他の合金よりも単純であること
を示している。それゆえ、A2,A3,A4合金は共晶点の近くにあり、A4合金はこれ
らの3つの合金の中では最も共晶点に近いと考えられる。
In addition, as shown in the cooling curve, Tl decreases from 1270 to 1226K as the Mo content increases from 1 to 4 at% and increases again to 1265K as the Mo content increases further to 5 at%. The A4 alloy shows two exothermic peaks, but other Mo-containing alloys show three or more exothermic peaks, indicating that the solidification behavior of the A4 alloy is simpler than other alloys. Therefore, the A2, A3, and A4 alloys are close to the eutectic point, and the A4 alloy is considered to be the closest to the eutectic point among these three alloys.

さらに、換算ガラス化温度(Tg/Tl)は0.586〜0.613の間にある。それ
ゆえ、DSC及びDTA測定からこのFePC基金属ガラス合金は高いガラス形成能を示
す結果となると考えられる。金属ガラス合金棒の臨界直径は、A0,A1,A2,A3,
A4,及びA5のそれぞれについて、1,1.5,2.5,3.5,4,及び3mmであ
る。図3に、これらの鋳造棒のXRDパターンを示す。結晶のピークを伴わない広いピー
クのみがこれらの鋳造棒全てに見ら、4mmまでの直径でガラス相の形成が示唆される。
Furthermore, the conversion vitrification temperature (Tg / Tl) is between 0.586 and 0.613. Therefore, it can be considered from DSC and DTA measurements that this FePC-based metallic glass alloy exhibits a high glass forming ability. The critical diameter of metallic glass alloy rods is A0, A1, A2, A3
For each of A4 and A5, it is 1, 1.5, 2.5, 3.5, 4, and 3 mm. FIG. 3 shows the XRD patterns of these cast bars. Only a broad peak with no crystal peak is seen in all of these cast bars, suggesting the formation of a glass phase with diameters up to 4 mm.

上記の表1にA0〜A5合金の最大直径(Dmax;mm)、熱安定性、磁気特性を示す。
Mo含有量が0から5at%に増加するにつれて、Fe含有量の低下により飽和磁化(I
s)が1.53から1.14Tに低下するけれども、Fe含有量の合計が74at%より
多いので、このガラス合金のIsは、どの他のFe−P−C系金属ガラス合金よりも高い
。最大のガラス形成能を有するA3及びA4金属ガラス合金は、最良の軟磁気特性を示す
。この理由は、結晶核を全く含まない高いレベルの同質性(homogeneity)を持つガラス構
造の形成による。実際、A3及びA4合金は、約15×10−6の最低の磁歪(λs)を
示す。結果として、1.32及び1.27Tのより高いIsに加えて、非常に大きい初期
透磁率(μ)を持つ優れた軟磁気特性がA3及びA4ガラス合金について得られた。
Table 1 shows the maximum diameter (Dmax; mm), thermal stability, and magnetic properties of the A0 to A5 alloys.
As the Mo content increases from 0 to 5 at%, the saturation magnetization (I
Although s) drops from 1.53 to 1.14 T, the total Fe content is greater than 74 at%, so the Is of this glass alloy is higher than any other Fe-PC-based metallic glass alloy. A3 and A4 metallic glass alloys with maximum glass forming ability exhibit the best soft magnetic properties. The reason for this is due to the formation of a glass structure with a high level of homogeneity that does not contain any crystal nuclei. Indeed, A3 and A4 alloys exhibit a minimum magnetostriction (λs) of about 15 × 10 −6 . As a result, excellent soft magnetic properties with very high initial magnetic permeability (μ e ) in addition to the higher Is of 1.32 and 1.27 T were obtained for A3 and A4 glass alloys.

図4には、比較のためにメルトスピン法で作製した金属ガラス合金リボンのXRDパタ
ーンも示している。準安定(Fe,Mo)23(B,C)相のXRDパターン5mm径
の鋳造棒のXRDパターンに重ねて示しているとおり、(Fe,Mo)23(B,C)
相が5mm径のロッドのガラス相から析出していることが分かる。それゆえ、準安定(F
e,Mo)23(B,C)相は事実、ガラス相の形成と競合する主相であることが確認
される。図7に、A2〜A5合金の磁化曲線を示す。本発明のFe基金属ガラス合金は、
非常に大きい初期透磁率が得られることが分かる。
FIG. 4 also shows an XRD pattern of a metallic glass alloy ribbon manufactured by a melt spin method for comparison. Metastable (Fe, Mo) 23 (B, C) 6- phase XRD pattern (Fe, Mo) 23 (B, C) 6 as shown superimposed on the XRD pattern of a 5 mm diameter casting rod
It can be seen that the phase is precipitated from the glass phase of the 5 mm diameter rod. Therefore, metastable (F
e, Mo) 23 (B, C) The six phases are indeed confirmed to be the main phase competing with the formation of the glass phase. FIG. 7 shows the magnetization curves of the A2 to A5 alloys. The Fe-based metallic glass alloy of the present invention is
It can be seen that a very large initial permeability is obtained.

本発明のFe基金属ガラス合金は 銅鋳型鋳造法により製造された棒材又は板材を提供
することができ、高い飽和磁化と大きい初期透磁率を有しているので、電力変圧器のコア
材やモータコア材などの高透磁率磁心材料として特に有用であり、その他、スイッチング
電源用トランス。チョークコイル、ノイズフイルタなどの磁心材料、電磁シールド材、磁
気センサ、電流センサなど、幅広い応用が期待される。
る。
The Fe-based metallic glass alloy of the present invention can provide a bar or plate manufactured by a copper mold casting method, and has high saturation magnetization and large initial permeability. It is particularly useful as a high-permeability magnetic core material such as a motor core material. A wide range of applications such as magnetic core materials such as choke coils and noise filters, electromagnetic shielding materials, magnetic sensors, and current sensors are expected.
The

本発明合金のDSC曲線を示すグラフである。It is a graph which shows the DSC curve of this invention alloy. 本発明合金のDTA曲線を示すグラフである。It is a graph which shows the DTA curve of this invention alloy. 本発明合金の鋳造棒材のYRDパターンである。It is a YRD pattern of the casting bar material of this invention alloy. 本発明合金の直径又は厚さ4mm及び5mmの鋳造棒及び比較のためのメルトスピン法で製造したリボンのXRDパターンである。FIG. 4 is an XRD pattern of a 4 mm and 5 mm diameter cast bar of the alloy of the present invention and a ribbon produced by a melt spin method for comparison. 銅鋳型鋳造法により合金試料を作製するのに用いた装置の概略側面図である。It is a schematic side view of the apparatus used for producing an alloy sample by a copper mold casting method. 各種の軟磁性材料の飽和磁化と透磁率の関係を示すグラフである。It is a graph which shows the relationship between the saturation magnetization and magnetic permeability of various soft magnetic materials. 実施例のA2〜A5合金の磁化曲線を示すグラフである。It is a graph which shows the magnetization curve of A2-A5 alloy of an Example. 従来例のFe−B−Si−Nb金属ガラス合金の磁化曲線を示すグラフである。It is a graph which shows the magnetization curve of the Fe-B-Si-Nb metallic glass alloy of a prior art example. 従来例のFe−Si−b−P−C−(Nb,Mo)金属ガラス合金粒子材の磁化曲線を示すグラフである。It is a graph which shows the magnetization curve of the Fe-Si-b-PC- (Nb, Mo) metallic glass alloy particle material of a prior art example.

Claims (2)

組成が、式;Fe79-xMox1044Si3(x=2〜5at%)で示され、
過冷却液体の温度間隔ΔTxが40K以上、直径又は厚さが1.5mm〜4mmでガラス
相の体積分率が100%であり、保磁力(Hc)が1.5〜2.1A/m、飽和磁化(Is
)が1.14T〜1.39T、1kHz、1A/mでの初期透磁率(μe) が18600
25230であることを特徴とする軟磁性Fe基金属ガラス合金。
The composition is represented by the formula; Fe 79-x Mo x P 10 C 4 B 4 Si 3 (x = 2 to 5 at%)
The temperature interval ΔTx of the supercooled liquid is 40K or more, the diameter or thickness is 1.5 mm to 4 mm, the volume fraction of the glass phase is 100%, the coercive force (Hc) is 1.5 to 2.1 A / m, Saturation magnetization (Is
) Is 1.14T to 1.39T, 1 kHz, initial magnetic permeability (μ e ) at 1 A / m is 18600
A soft magnetic Fe-based metallic glass alloy characterized by being 25230 .
銅鋳型鋳造法により製造された請求項1記載のFe基金属ガラス合金の棒材又は板材から
なることを特徴とする磁心材料。
A magnetic core material comprising a bar or plate material of an Fe-based metallic glass alloy according to claim 1 manufactured by a copper mold casting method.
JP2006198792A 2006-07-20 2006-07-20 Soft magnetic Fe-based metallic glass alloy Expired - Fee Related JP4319206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198792A JP4319206B2 (en) 2006-07-20 2006-07-20 Soft magnetic Fe-based metallic glass alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198792A JP4319206B2 (en) 2006-07-20 2006-07-20 Soft magnetic Fe-based metallic glass alloy

Publications (2)

Publication Number Publication Date
JP2008024985A JP2008024985A (en) 2008-02-07
JP4319206B2 true JP4319206B2 (en) 2009-08-26

Family

ID=39115936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198792A Expired - Fee Related JP4319206B2 (en) 2006-07-20 2006-07-20 Soft magnetic Fe-based metallic glass alloy

Country Status (1)

Country Link
JP (1) JP4319206B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170776B2 (en) * 2008-05-26 2013-03-27 トピー工業株式会社 Soft magnetic material
US8313588B2 (en) * 2009-10-30 2012-11-20 General Electric Company Amorphous magnetic alloys, associated articles and methods
CN103492108B (en) 2011-04-28 2015-09-09 国立大学法人东北大学 The manufacture method of glassy metal nano wire, the glassy metal nano wire manufactured by this manufacture method and the catalyst containing glassy metal nano wire
WO2013087627A1 (en) * 2011-12-12 2013-06-20 Ocas Onderzoekscentrum Voor Aanwending Van Staal N.V. Fe-based soft magnetic glassy alloy material
CN102912257A (en) * 2012-10-19 2013-02-06 张家港市清大星源微晶有限公司 Microcrystalline material
CN102875024A (en) * 2012-10-19 2013-01-16 张家港市清大星源微晶有限公司 Microcrystalline material with high magnetic inductivity
EP2759614B1 (en) * 2013-01-25 2019-01-02 ThyssenKrupp Steel Europe AG Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures
JP6347606B2 (en) * 2013-12-27 2018-06-27 井上 明久 High magnetic flux density soft magnetic iron-based amorphous alloy with high ductility and high workability
CN109503143A (en) * 2018-12-18 2019-03-22 横店集团东磁股份有限公司 It is a kind of curtain coating raw cook, and preparation method thereof and with its prepare magnetic sheet
JP6741108B1 (en) * 2019-03-26 2020-08-19 Tdk株式会社 Soft magnetic alloys and magnetic parts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130572A (en) * 1977-04-05 1978-11-14 Tdk Electronics Co Ltd Highhgradient magnetic separator using amorphous magnetic alloy
US4385944A (en) * 1980-05-29 1983-05-31 Allied Corporation Magnetic implements from glassy alloys
JPS61243152A (en) * 1985-11-29 1986-10-29 Res Inst Iron Steel Tohoku Univ High magnetic premeability amorphous alloy and its production
JP3929327B2 (en) * 2002-03-01 2007-06-13 独立行政法人科学技術振興機構 Soft magnetic metallic glass alloy
JP4358016B2 (en) * 2004-03-31 2009-11-04 明久 井上 Iron-based metallic glass alloy
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same

Also Published As

Publication number Publication date
JP2008024985A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4319206B2 (en) Soft magnetic Fe-based metallic glass alloy
Gheiratmand et al. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP4310480B2 (en) Amorphous alloy composition
Song et al. Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system
JP6347606B2 (en) High magnetic flux density soft magnetic iron-based amorphous alloy with high ductility and high workability
JP2009120927A (en) Soft magnetic amorphous alloy
Shen et al. Effects of Si and Mo additions on glass-forming in FeGaPCB bulk glassy alloys with high saturation magnetization
Pang et al. Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy
Aykol et al. Solidification behavior, glass forming ability and thermal characteristics of soft magnetic Fe–Co–B–Si–Nb–Cu bulk amorphous alloys
JP3983207B2 (en) Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy
JP3929327B2 (en) Soft magnetic metallic glass alloy
JP3877893B2 (en) High permeability metal glass alloy for high frequency
JP3560591B2 (en) Soft magnetic Co-based metallic glass alloy
JP6601139B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
Shen et al. Effects of metalloids on the thermal stability and glass forming ability of bulk ferromagnetic metallic glasses
Sun et al. Effects of B and Si contents on glass-forming ability and soft-magnetic properties in (Co0. 89Fe0. 057Nb0. 053) 100− x (B0. 8Si0. 2) x glassy alloys
JP3948898B2 (en) Fe-based amorphous alloy with high saturation magnetization and good soft magnetic properties
JP3756405B2 (en) Soft magnetic, high strength Fe-Co-Ni based metallic glass alloy
Nowosielski et al. Magnetic properties and structure after crystallization of Fe80-xB20Nbx (x= 4, 6, 10) metallic glasses
Makino et al. Fe-metalloid metallic glasses with high magnetic flux density and high glass-forming ability
JP4044531B2 (en) Ultra high strength Fe-Co based bulk metallic glass alloy
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
Sun et al. Bulk glassy (Fe0. 474Co0. 474Nb0. 052) 100− x (B0. 8Si0. 2) x alloys prepared using commercial raw materials
JP4694325B2 (en) Co-Fe soft magnetic metallic glass alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees