EP2759614B1 - Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures - Google Patents

Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures Download PDF

Info

Publication number
EP2759614B1
EP2759614B1 EP13152793.9A EP13152793A EP2759614B1 EP 2759614 B1 EP2759614 B1 EP 2759614B1 EP 13152793 A EP13152793 A EP 13152793A EP 2759614 B1 EP2759614 B1 EP 2759614B1
Authority
EP
European Patent Office
Prior art keywords
casting
amorphous
strip
cooled
cast strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13152793.9A
Other languages
German (de)
French (fr)
Other versions
EP2759614A1 (en
Inventor
Dorothée DORNER
Christian Höckling
Harald Hofmann
Matthias Schirmer
Markus DAAMEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13152793.9A priority Critical patent/EP2759614B1/en
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to US14/763,249 priority patent/US10730105B2/en
Priority to JP2015554158A priority patent/JP6457951B2/en
Priority to KR1020157022868A priority patent/KR102203018B1/en
Priority to CN201480018468.1A priority patent/CN105143491B/en
Priority to EP14701377.5A priority patent/EP2948572A1/en
Priority to PCT/EP2014/051416 priority patent/WO2014114756A1/en
Priority to BR112015017627-5A priority patent/BR112015017627B1/en
Publication of EP2759614A1 publication Critical patent/EP2759614A1/en
Application granted granted Critical
Publication of EP2759614B1 publication Critical patent/EP2759614B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Definitions

  • the invention relates to a method for producing a flat steel product having an amorphous, partially amorphous or fine-crystalline microstructure, the fine-crystalline microstructure having particle sizes in the range from 10 to 10,000 nm, and a flat steel product having an amorphous, partially amorphous or fine-crystalline microstructure of this type.
  • a molten steel is poured into a cast strip in a casting device and cooled down at an accelerated rate.
  • a steel melt containing at least two further elements from the group "Si, B, C and P" in addition to iron and production-dependent unavoidable impurities in a casting device the casting region at least one of its longitudinal sides is formed by a moving in the casting during the casting and cooled wall, cast into a cast strip.
  • the region of the casting device in which the cast strip is formed is referred to as the "casting region”.
  • two-roller casting device also known in technical terminology as a “twin-roller casting machine”.
  • two casting rolls or casting rolls aligned axially parallel to one another rotate in the casting operation and limit a casting gap defining the casting region in the region of their closest separation.
  • the casting rolls are strongly cooled, so that the melt meeting them solidifies to a shell.
  • the direction of rotation of the casting rolls is chosen so that the melt and with it the shells formed from it on the casting rolls are transported into the casting gap.
  • the trays entering the casting gap are compressed to the cast strip under the effect of sufficient banding force.
  • Another pouring device for strip casting is based on the principle of "belt casting” technology.
  • liquid steel is introduced via a feed system poured round casting tape.
  • the direction of the tape is chosen so that the melt is conveyed away from the feed system.
  • a second casting belt can be arranged, which rotates in opposite directions to the first casting belt.
  • At least one casting belt limits the mold, by which the cast strip is formed, even in the above-mentioned methods.
  • the respective casting belt is intensively cooled, so that the melt coming into contact with the casting belt in question is solidified at the turning point of the casting belt facing away from the supply system to form a belt which can be removed from the casting belt.
  • the cast strip emerging from the respective casting device is drawn off, cooled and fed to further processing.
  • This further processing may include a heat treatment and a hot rolling.
  • the particular advantage of strip casting here is that the steps following the strip casting can be completed in a continuous, uninterrupted sequence.
  • steels which are suitable for the production of steel strips with an amorphous, partially amorphous or fine-crystalline structure can be alloys based on iron and one or more elements from the group "B, C, Si, P, Ga” In addition to these elements in addition contents of Cr, Mo, W, Ta, V, Nb, Mn, Cu, Al, Co and rare earths may be present.
  • Alloys so formed are said to be cast strip tapes having a fine-grained, nanocrystalline, or near-nanocrystalline texture in which more than 90% of the grains are 5 ⁇ -1 ⁇ m in size, the melting point of the steel from which the cast iron is cast Consist of tapes in the range of 800-1500 ° C, the critical cooling rate of the steel is less than 10 5 K / s and the cast tapes contain ⁇ -Fe and / or ⁇ -Fe phases.
  • the object of the invention was to provide practical methods for the production of flat steel products which have an amorphous, partially amorphous or fine-grained structure.
  • a flat steel product should be specified, which can be produced inexpensively in a practical way.
  • a flat steel product is understood a cast or rolled steel strip or sheet and derived therefrom blanks, blanks or the like.
  • a first object solving this object according to the invention is specified in claim 1.
  • the solution according to the invention of the above-stated object is that such a flat steel product has the features mentioned in claim 14.
  • the invention mentions operating conditions with which, for practice, sufficient reproducibility from a steel containing at least two further elements from the group "Si, B, Cu, P" in addition to iron and unavoidable impurities, cast strips with amorphous, partially amorphous or can produce fine-crystalline structure.
  • those alloys are preferred in which, in addition to the respectively unavoidable production reasons but ineffective constituents with respect to the properties of the steel flat products produced according to the invention, besides iron, only two further elements of the group "Si, B, C, P" are present in the amounts prescribed according to the invention.
  • such alloys in addition to Fe and unavoidable impurities, only the alloy element pairs Si and B, Si and C, Si and P, B and C, B and P or C and P are present in the steel.
  • Such composite steel alloys are particularly suitable for amorphous or teilamorphe solidification.
  • said alloy pairs can be supplemented by one or two other alloying elements of the group "Si, B, C, P".
  • the alloying elements of the group "Si, B, C, P" which are not within the specifications according to the invention, although present in measurable levels, where they may have an effect, but in which they at most subordinate contribute to the formation of the invention sought after structure. That is, according to the invention, in each case two elements from the group "Si, B, C, P" must be present in the levels specified in the invention in order to produce inventive flat steel product, which does not preclude the respective other elements of the group "Si, B , C, P "are present in contents which are outside the specifications according to the invention.
  • a presence of an alloying element of the group "Si, B, C, P" contained outside the specifications according to the invention is particularly possible if its content is below the lower limit prescribed according to the invention for the content of the relevant element.
  • the widest composition of a steel according to the invention thus comprises as obligatory constituents at least two of the elements boron, silicon, carbon and phosphorus as well as the remainder iron and unavoidable impurities. These elements prove to be particularly advantageous because they can be procured at relatively low cost.
  • the production method according to the invention enables a reproducible production of a steel product with an amorphous, partially amorphous or fine-crystalline structure.
  • a flat steel product produced according to the invention has a finely crystalline microstructure with particle sizes in the range from 10 to 10,000 nm, it being possible in practice to regularly produce flat steel products whose grain sizes are limited to a maximum of 1000 nm.
  • the C in contents of up to 4.0% by weight promotes the amorphization of the material in flat steel products produced according to the invention.
  • the C content can be set to at least 1.0% by weight, especially 1.5% by weight.
  • settings of the contents of Si, B, C and P are obtained if, for the Si content% Si, 2.0% by weight ⁇ % Si ⁇ 6.0% by weight, in particular 3, 0% by weight ⁇ % Si 5.5% by weight, when the B content% B is 1.0% by weight ⁇ % B ⁇ 3.0% by weight, especially 1.5 wt .-% ⁇ % B ⁇ 3.0 wt .-%, if for the C content% C is 1.5 wt .-% ⁇ % C ⁇ 3.0 wt .-% or if for the P content% P is 2.0 wt% ⁇ % P ⁇ 6.0 wt%.
  • the ductility of the material can be increased, whereas the effect of Cr is mainly an improvement in corrosion resistance.
  • the addition of Al increases the corrosion resistance, but also has a supporting effect on the formation of an amorphous structure.
  • N can be considered as a possible substituent for C. Thus, the presence of N, as well as higher C contents, promotes the enhanced formation of an amorphous structure.
  • the molten steel can in each case optionally (in% by weight) at least 0.1% Cu, at least 0.5% Cr, at least 1.0% Al and at least 0.005% N included.
  • the steel alloy according to the invention can be produced with compulsory components which are conventional in the steel industry and which are comparatively inexpensive.
  • a steel strip having an amorphous, partially-amorphous or fine-crystalline structure of molten steel containing at least two of Si, B, C or P besides Fe and unavoidable impurities can be produced by a casting method.
  • a molten steel composition according to the invention is cast in a casting device into a cast strip whose casting region, in which the cast strip is formed, is formed on at least one of its longitudinal sides by a wall which moves and cools during the casting operation.
  • the wall which delimits the casting area and moves in the casting operation can be formed, in particular, by two counter-rotating casting rolls or a belt moving in the casting direction during the casting operation.
  • the molten steel is cooled by contact with the moving wall with at least 200 K / s.
  • the formation of the desired structure of the flat steel product can be ensured by performing the rapid cooling in practice to below the glass transition temperature T G of the respective steel. In this way, an amorphous or partially amorphous microstructure is first formed. On the basis of this microstructure, a finely crystalline microstructure can then be produced by means of a subsequent heat treatment above the crystallization temperature T x as a result of the resulting crystal nucleation and crystallization.
  • This approach has the advantage that the Feinkörnmaschine is very precisely adjustable, which is due to the Variety of forming nuclei sets a very homogeneous particle size distribution with very low fluctuation range.
  • the rapid cooling of the cast strip starting in the casting area after Exit from the casting area will continue.
  • the continued cooling sets in an advantageous manner immediately after the exit from the casting area, so that a largely continuous accelerated temperature decrease is ensured in the cast strip until the respective desired structural state is reached.
  • an additional cooling device can be provided, which is connected directly to the casting area of the casting device used for casting the cast strip.
  • the molten steel can be safely cooled to below the glass transition temperature T G with the cooling rate predetermined according to the invention in order to produce an amorphous or partially amorphous microstructure in the cast flat steel product.
  • the additional cooling device ensures that, in cases where there is only insufficient heat dissipation in the casting area of the casting device itself due to the contact with the moving and cooled wall of the casting area, the Cooling of the band is continued after the casting area so quickly that the microstructure state to be generated according to the invention is reliably achieved.
  • Another advantage of the additional, subsequent to the pouring device cooling is that can be controlled controlled with such cooling a specially adapted cooling curve. This may be useful if targeted cast tapes are to be obtained with a teilamorphen or fine crystalline structure as a result of the casting and cooling process.
  • the cooling can be carried out so that the glass transition temperature T G accelerates, but is not cooled in a sufficient for the expression of a fully amorphous structure speed.
  • the cast strip can be cooled accelerated according to the inventive specifications, but this cooling are stopped before reaching the glass transition temperature T G of each processed steel.
  • This way represents a first possibility to produce a predetermined, fine-crystalline structure in the resulting flat steel product.
  • the fine-crystalline structure is formed directly from the melt here, by allowing a controlled via the additional cooling crystallization.
  • Another way of producing a thin-crystalline steel flat product according to the invention is first to produce a strip with an amorphous or partially amorphous structure, which is then produced by an annealing process and a crystallization caused thereby is converted into a finely crystalline state.
  • the peculiarity of this procedure is that the crystallization takes place at a plurality of crystal nuclei and therefore the forming crystal grains are distributed very evenly in the material.
  • the crystallization temperature T x which is important for the development of the finely crystalline microstructure, is on average about 30-50 K above the glass transition temperature T G of the respective processed steel.
  • T G glass transition temperature
  • the inventively provided if necessary additional cooling device may be formed so that a cooling medium is added directly to the cast strip.
  • This cooling medium can be water, liquid nitrogen or another correspondingly effective cooling liquid.
  • cooling gases such as gaseous nitrogen, hydrogen, a gas mixture or water mist can also be applied. Suitable cooling devices for this purpose are known from the prior art ( KR2008 / 0057755A ).
  • the cooling rate critical for achieving an amorphous structure depends, inter alia, on the particular composition of the molten steel that is set. Thus, it may be appropriate to provide the cooling rates of more than 250 K / s, more than 450 K / s or even more than 800 K / s.
  • a particular aspect of finely crystalline steels of the type produced according to the invention is their ability to undergo structural superplasticity. Consequently, on the basis of flat steel products according to the invention, the most complex component geometries can be represented by grain boundary sliding processes at elevated temperatures (thermal activation).
  • a particularly process-reliable possibility of producing a flat steel product with a fine-crystalline structure provides that the cast strip emerging from the casting gap of the casting device and optionally additionally cooled thereafter has an amorphous or partially amorphous structure and that the cast strip produced in this way is then annealed at a minimum of the crystallization temperature Tx of the respective steel annealing temperature T anneal until the desired microstructure state is reached.
  • steel compositions are suitable for this purpose Annealing temperatures T annealing 500 - 1000 ° C.
  • annealing times of 2 s to 2 h are sufficient, depending on the specific concretely selected composition.
  • the belt speeds with which the cast strip emerges from the casting gap are typically in the range of 0.3-1.7 m / s in practice.
  • the strip thicknesses with which the cast and cooled strip according to the invention leaves the casting gap are typically in the range from 0.8 to 4.5 mm, in particular 0.8 to 3.0 mm.
  • the cast strip may be subjected to hot rolling in which the hot rolling start temperature should be 500-1000 ° C. Due to the hot rolling steps following the casting and cooling process in-line, on the one hand the desired final thickness of the strip and, on the other hand, the surface finish can be adjusted and the microstructure optimized, for example by closing still existing cavities in the cast state.
  • the hot rolling may also be hot rolled to the hot strip at a hot rolling start temperature in the range between the glass transition temperature T G and the crystallization temperature T x .
  • a two-roller casting is suitable, the mutually axially parallel to each other aligned axes rotating rollers each form a continuous casting in the casting continuously cooled longitudinal wall of the casting area, in which the band is formed.
  • the methods of the invention require only minor changes to existing methods and devices for the continuous production of close-to-scale flat steel products.
  • the invention will be explained in more detail with reference to a drawing illustrating an exemplary embodiment.
  • the single figure shows schematically a device for producing cast strip in a lateral view.
  • the plant 1 for producing a cast strip B comprises a casting device 2, which is constructed as a conventional two-roller casting device and accordingly two mutually aligned around axis-parallel to each other and at the same height axes X1, X2 rotating rollers 3,4.
  • the rollers 3, 4 are arranged with a thickness defining the thickness D of the cast strip B to be produced, and thus delimit on their longitudinal sides a casting area 5 in the form of a casting gap, in which the cast strip B is formed.
  • On its narrow sides of the casting area 5 in just as well known by not visible here side plates sealed, which are pressed against the end faces of the rollers 3,4.
  • the intensively cooled rollers 3, 4 rotate and in this way form longitudinal walls of a casting mold formed by the rollers 3, 4 and the side plates, which move continuously in the casting operation.
  • the direction of rotation of the rollers 3, 4 is directed in the direction of gravity R into the casting area 5, so that, as a result of the rotation, melt S is conveyed from the melt pool in the casting area 5, which is present in the space above the casting area 5 between the rollers 3, 4.
  • the melt S solidifies when it touches the peripheral surface of the rollers 3,4, due to the there taking place intense heat dissipation to one shell.
  • the shells adhering to the rollers 3, 4 are conveyed into the casting area 5 by the rotation of the rollers 3, 4, where they are pressed together under the effect of a band forming force K to form the cast strip B.
  • the effective cooling in the casting area 5 and the band forming force K are coordinated so that the continuously emerging from the casting area 5 cast strip B is largely completely solidified.
  • the cast strip B In order to suppress crystallization effects, the cast strip B, following the casting area 5, enters a cooling device 7, which applies a cooling medium to the cast strip B, so that it cools further.
  • the cooling by the cooling device 7 sets in the immediate connection to the casting area 5 and takes place so strong that the temperature T of cast strip B decreases steadily until it is below the glass transition temperature T G of each cast melt S. Any crystallization of the structure of the cast strip B is thus suppressed, so that it is still in an amorphous state on reaching the conveying path 6.
  • the emerging from the casting area 5 Band B is initially conveyed away vertically in the direction of gravity R and then deflected in a known manner in a continuously curved arc in a horizontally oriented conveying path 6.
  • the cast strip B can then pass through a heating device 8 in which the strip B is through- heated at an annealing temperature T annealing above the crystallization temperature Tx of the respectively cast molten steel S over an annealing time t ann .
  • the aim of this heat treatment is the controlled formation of a fine crystalline microstructure with grain sizes ranging from 10 to 10,000 nm in the cast strip B.
  • the cast strip B thus heat treated is then hot rolled in a hot rolling mill 9 to hot strip WB.
  • a cast strip B has been produced in each case from three steel melts S with the compositions Z1, Z2, Z3 given in Table 1.
  • the thickness D of the tapes B cast from the respective molten steel S the cooling rate AR achieved in each case during the cooling of the melt S in the casting region 5, which in each case during the cooling of the from the casting area 5 emerging cast bands B scored in the additional cooling device 7 cooling rate ARZ and the target temperature T z of the additional cooling specified.
  • Table 2 shows the microstructural state and any structural constituents of the resulting band.
  • the cast strip B before the heat treatment already had a fine crystalline structure of ⁇ -Fe, Fe 2 B, Fe 3 B and Fe 3 Si at a hardness of HV0.5 of 840-900. Even after the heat treatment, the microstructure consisted of ⁇ -Fe, Fe 2 B, Fe 3 B and Fe 3 Si, but the hardness was now HV0.5 760-810.
  • the invention thus provides methods for producing a steel strip B having an amorphous, partially amorphous or fine-crystalline structure with grain sizes in the range from 10 to 10,000 nm and a correspondingly obtained flat steel product.
  • a molten steel in a casting device (2) cast into a cast strip (B) and cooled accelerated.
  • the melt contains at least two further elements which belong to the group "Si, B, C, P".
  • Si, B, C, P the contents of these elements (in% by weight) Si: 1.2 to 7.0%, B: 0.4 to 4.0%, C: 0.5 to 4.0% , P: 1.5-8.0%.
  • the molten steel containing Si, B, C and P is formed in a casting device (2) whose casting region (5) is formed on at least one of its longitudinal sides by a wall which moves and cools in the casting direction (G) during the casting operation. to a cast strip (B), wherein the molten steel (S) is cooled by contact with the moving cooled wall at a cooling rate of at least 200 K / sec.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

Die Erfindung betrifft Verfahren zum Erzeugen eines Stahlflachprodukts mit einem amorphen, teilamorphen oder feinkristallinen Gefüge, wobei das feinkristalline Gefüge Korngrößen im Bereich von 10 - 10000 nm aufweist, sowie ein Stahlflachprodukt mit einem amorphen, teilamorphen oder feinkristallinen Gefüge dieser Art.The invention relates to a method for producing a flat steel product having an amorphous, partially amorphous or fine-crystalline microstructure, the fine-crystalline microstructure having particle sizes in the range from 10 to 10,000 nm, and a flat steel product having an amorphous, partially amorphous or fine-crystalline microstructure of this type.

Gemäß einer ersten Verfahrensvariante wird dabei eine Stahlschmelze in einer Gießeinrichtung zu einem gegossenen Band vergossen und beschleunigt abgekühlt.In accordance with a first variant of the method, a molten steel is poured into a cast strip in a casting device and cooled down at an accelerated rate.

Gemäß einer anderen Verfahrensvariante wird zum Erzeugen eines Stahlflachprodukts mit einem amorphen, teilamorphen oder feinkristallinen Gefüge, eine neben Eisen und herstellungsbedingt unvermeidbaren Verunreinigungen mindestens zwei weitere Elemente aus der Gruppe "Si, B, C und P" enthaltende Stahlschmelze in einer Gießeinrichtung, deren Gießbereich an mindestens einer seiner Längsseiten durch eine sich während des Gießbetriebs in Gießrichtung bewegende und gekühlte Wand gebildet ist, zu einem gegossenen Band vergossen. Als "Gießbereich" wird dabei der Bereich der Gießeinrichtung bezeichnet, in dem das gegossene Band geformt wird.According to another variant of the method, to produce a flat steel product having an amorphous, partially amorphous or fine-crystalline structure, a steel melt containing at least two further elements from the group "Si, B, C and P" in addition to iron and production-dependent unavoidable impurities in a casting device, the casting region at least one of its longitudinal sides is formed by a moving in the casting during the casting and cooled wall, cast into a cast strip. In this case, the region of the casting device in which the cast strip is formed is referred to as the "casting region".

Aus der WO 2008/049069 A2 ist es bekannt, dass sich Stahlflachprodukte der voranstehend genannten Art durch Bandgussverfahren erzeugen lassen. Beim Bandgießen wird die Stahlschmelze mit einer Gießeinrichtung vergossen, bei der der Gießbereich bzw. Erstarrungsbereich, in dem das gegossene Band geformt wird, an mindestens einer seiner Längsseiten durch eine während des Gießvorgangs kontinuierlich fortbewegte Wand begrenzt ist.From the WO 2008/049069 A2 It is known that flat steel products of the above type can be produced by strip casting. In strip casting, the molten steel is cast with a casting device in which the casting region or solidification region in which the cast strip is formed is delimited on at least one of its longitudinal sides by a wall that is continuously moving during the casting process.

Ein Beispiel für ein solches endabmessungsnahes, kontinuierliches Gießverfahren bzw. eine Gießeinrichtung zur Erzeugung eines Stahlflachprodukts ist die so genannte "Zwei-Rollen-Gießeinrichtung", in der Fachsprache auch als "Twin-Roller-Gießmaschine" bezeichnet. Bei einer Zwei-Rollen-Gießvorrichtung rotieren im Gießbetrieb zwei achsparallel zueinander ausgerichtete Gießwalzen bzw. Gießrollen gegenläufig und begrenzen im Bereich ihres engsten Abstands einen den Gießbereich definierenden Gießspalt. Die Gießrollen sind dabei stark gekühlt, so dass die auf sie treffende Schmelze zu jeweils einer Schale erstarrt. Die Drehrichtung der Gießrollen ist dabei so gewählt, dass die Schmelze und mit ihr die aus ihr auf den Gießrollen gebildeten Schalen in den Gießspalt transportiert werden. Die in den Gießspalt gelangenden Schalen werden unter Wirkung einer ausreichenden Bandformungskraft zu dem gegossenen Band zusammengedrückt.An example of such a near-final, continuous casting process or a casting device for producing a flat steel product is the so-called "two-roller casting device", also known in technical terminology as a "twin-roller casting machine". In a two-roller casting device, two casting rolls or casting rolls aligned axially parallel to one another rotate in the casting operation and limit a casting gap defining the casting region in the region of their closest separation. The casting rolls are strongly cooled, so that the melt meeting them solidifies to a shell. The direction of rotation of the casting rolls is chosen so that the melt and with it the shells formed from it on the casting rolls are transported into the casting gap. The trays entering the casting gap are compressed to the cast strip under the effect of sufficient banding force.

Eine andere Gießeinrichtung zum Bandgießen basiert auf dem Prinzip der "Belt-Casting"- Technologie. Bei einer für das Belt-Casting-Verfahren bestimmten Gießeinrichtung wird flüssiger Stahl über ein Zuführsystem auf ein umlaufendes Gießband gegossen. Die Laufrichtung des Bands ist dabei so gewählt, dass die Schmelze vom Zuführsystem weggefördert wird. Oberhalb des unteren ersten Gießbands kann ein zweites Gießband angeordnet sein, das gegenläufig zum ersten Gießband umläuft.Another pouring device for strip casting is based on the principle of "belt casting" technology. In a casting casting casting machine, liquid steel is introduced via a feed system poured round casting tape. The direction of the tape is chosen so that the melt is conveyed away from the feed system. Above the lower first casting belt, a second casting belt can be arranged, which rotates in opposite directions to the first casting belt.

Unabhängig davon, ob ein oder zwei Gießbänder vorgesehen sind, begrenzt auch bei den voranstehend genannten Verfahren mindestens ein Gießband die Kokille, durch die das gegossene Band gebildet wird. Das jeweilige Gießband wird dabei intensiv gekühlt, so dass die mit dem betreffenden Gießband in Kontakt kommende Schmelze am vom Zufuhrsystem abgewandten Umkehrpunkt des Gießbands zu einem Band verfestigt ist, das von dem Gießband abgenommen werden kann.Regardless of whether one or two casting belts are provided, at least one casting belt limits the mold, by which the cast strip is formed, even in the above-mentioned methods. The respective casting belt is intensively cooled, so that the melt coming into contact with the casting belt in question is solidified at the turning point of the casting belt facing away from the supply system to form a belt which can be removed from the casting belt.

Das aus der jeweiligen Gießeinrichtung austretende gegossene Band wird abgezogen, abgekühlt und der Weiterverarbeitung zugeleitet. Diese Weiterverarbeitung kann eine Wärmebehandlung und ein Warmwalzen umfassen. Der besondere Vorteil des Bandgießens besteht hier darin, dass die auf das Bandgießen folgenden Arbeitsschritte in einer kontinuierlichen, unterbrechungsfreien Abfolge absolviert werden können.The cast strip emerging from the respective casting device is drawn off, cooled and fed to further processing. This further processing may include a heat treatment and a hot rolling. The particular advantage of strip casting here is that the steps following the strip casting can be completed in a continuous, uninterrupted sequence.

In der oben bereits erwähnten WO 2008/049069 A2 ist erwähnt, dass Stähle, die zur Herstellung von Stahlbändern mit einem amorphen, teilamorphen oder feinkristallinen Gefüge geeignet sind, Legierungen auf Basis von Eisen und einem oder mehreren Elementen aus der Gruppe "B, C, Si, P, Ga" sein können, wobei neben diesen Elementen zusätzlich Gehalte an Cr, Mo, W, Ta, V, Nb, Mn, Cu, Al, Co und Seltene Erden vorhanden sein können. Aus derart zusammengesetzten Legierungen sollen sich durch Bandgießen gegossene Bänder erzeugen lassen, die ein feinkörniges, nanokristallines oder nahezu nanokristallines Gefüge aufweisen, bei dem mehr als 90 % der Körner 5 Å - 1 µm groß sind, wobei der Schmelzpunkt des Stahls, aus dem die gegossenen Bänder bestehen, im Bereich von 800 - 1500 °C liegt, die kritische Abkühlgeschwindigkeit des Stahls weniger als 105 K/s beträgt und die gegossenen Bänder α-Fe- und / oder γ-Fe-Phasen enthalten.In the already mentioned above WO 2008/049069 A2 It is mentioned that steels which are suitable for the production of steel strips with an amorphous, partially amorphous or fine-crystalline structure can be alloys based on iron and one or more elements from the group "B, C, Si, P, Ga" In addition to these elements in addition contents of Cr, Mo, W, Ta, V, Nb, Mn, Cu, Al, Co and rare earths may be present. Alloys so formed are said to be cast strip tapes having a fine-grained, nanocrystalline, or near-nanocrystalline texture in which more than 90% of the grains are 5 Å-1 μm in size, the melting point of the steel from which the cast iron is cast Consist of tapes in the range of 800-1500 ° C, the critical cooling rate of the steel is less than 10 5 K / s and the cast tapes contain α-Fe and / or γ-Fe phases.

Die in der WO 2008/049069 A2 wiedergegebenen Überlegungen beschränken sich auf eine Erörterung der für die Erzeugung von gegossenem Band mit einem amorphen, teilamorphen oder feinkristallinen Gefüge zweckmäßigen Arbeitsschritte.The in the WO 2008/049069 A2 The considerations given are limited to a discussion of the steps useful for producing cast strip having an amorphous, partially amorphous or fine crystalline texture.

Neben dem voranstehend erläuterten Stand der Technik ist aus der US 6,416,879 B1 ein Fe-basiertes amorphes Dünnband mit einer Dicke von 10 - 100 µm bekannt, das in Atom-% 78 - 90 % Fe, 2 - 4,5 % Si, 5 - 16 % B, 0,02 - 4 % C und 0,2 - 12 % P enthält und optimierte magnetische Eigenschaften besitzen soll. Zur Herstellung des Dünnbands wird eine entsprechend zusammengesetzte Schmelze unter Laborbedingungen auf eine schnell rotierende Kühlwalze gegossen, erstarrt dort und wird dann von der Walze abgezogen. Auf diese Weise werden Gießgeschwindigkeiten erreicht, die im Bereich von ca. 25 m/s liegen. Weiter wird erwähnt, dass die Herstellung eines solchen Dünnbands auch in einer Zwei-Walzen-Gießmaschine gelingen soll. Jedoch fehlen hierzu weitere Erläuterungen. Auch geht aus diesem Stand der Technik nicht hervor, wie die bekannte Vorgehensweise in der großtechnischen Praxis, in der größere Blechdicken und andere Eigenschaften des erhaltenen Bands gewünscht werden, umgesetzt werden könnte.In addition to the above-described prior art is from the US Pat. No. 6,416,879 B1 An Fe-based amorphous thin strip with a thickness of 10 - 100 microns, which in atomic% 78 - 90% Fe, 2 - 4.5% Si, 5 - 16% B, 0.02 - 4% C and 0 Contains 2 - 12% P and is said to have optimized magnetic properties. To produce the thin strip, a correspondingly composed melt is poured under laboratory conditions on a rapidly rotating cooling roll, solidifies there and is then removed from the roll. In this way, casting speeds are achieved, which are in the range of about 25 m / s. It is further mentioned that the production of such a thin strip should also succeed in a two-roll casting machine. However, more are missing Explanations. Also, it is not apparent from this prior art, as the known approach in the industrial practice, in the larger sheet thicknesses and other properties of the resulting tape are desired, could be implemented.

Ein dem voranstehend beschriebenen Stand der Technik ähnlicher Stand der Technik ist aus der US 4,219,355 A bekannt. Dort besteht ebenfalls die Zielrichtung, ein dünnes, folienartiges Band mit einer Dicke von 30 - 100 µm herzustellen, das optimierte magnetische Eigenschaften besitzt. Zu diesem Zweck wird auch in diesem Fall eine geeignet zusammengesetzte Schmelze auf eine rotierende Walze gegossen, auf der es mit einer Geschwindigkeit von 105 - 106 °C/s abgekühlt wird, um ein amorphes Gefüge zu erzeugen. Dabei bleibt ebenso offen, wie dies in der Praxis großtechnisch umgesetzt werden soll, wenn Flachprodukte größerer Dicke und mit einem anderen Anforderungsprofil erzeugt werden sollen.A prior art similar to the above-described prior art is known from the US 4,219,355 A known. There is also the goal of producing a thin, film-like tape with a thickness of 30 - 100 microns, which has optimized magnetic properties. For this purpose, also in this case, a suitably composed melt is poured onto a rotating roll, where it is cooled at a rate of 10 5 - 10 6 ° C / s to produce an amorphous structure. It remains just as open, as this is to be implemented on a large scale in industry, if flat products of greater thickness and with a different requirement profile to be generated.

Aus der DE 10 2009 048 165 A1 ist schließlich ein Verfahren zum Bandgießen eines Stahls mit einem Chromgehalt von mehr als 15 Gew.-% bekannt, bei dem eine Stahlschmelze in einer horizontalen Bandgießanlage vergossen wird, die einen Schmelzofen, eine Gießpfanne und ein Transportband zur Aufnahme und zum Abkühlen eines aus der Gießpfanne herausfließenden flüssigen Stahlbands umfasst. Die Dicke der so hergestellten Stahlbänder beträgt 8 - 25 mm. Welche Abkühlgeschwindigkeiten bei einer solchen Anlage erzielt werden können und ob sie geeignet wären, beispielsweise eines der voranstehend erläuterten Stahlflachprodukte herzustellen, bleibt dabei offen.From the DE 10 2009 048 165 A1 Finally, there is known a method for strip casting a steel having a chromium content of more than 15% by weight, in which a molten steel is poured in a horizontal strip casting machine comprising a melting furnace, a ladle and a conveyor belt for receiving and cooling one from the ladle flowing out liquid steel strip. The thickness of the steel strips produced in this way is 8 - 25 mm. What cooling rates can be achieved in such a system and if they would be suitable, for example one of the above explained steel flat products remains open.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand daher die Aufgabe der Erfindung darin, praxisgerechte Verfahren zur Herstellung von Stahlflachprodukten anzugeben, die ein amorphes, teilamorphes oder feinkörniges Gefüge besitzen.Against the background of the prior art explained above, therefore, the object of the invention was to provide practical methods for the production of flat steel products which have an amorphous, partially amorphous or fine-grained structure.

Darüber hinaus sollte ein Stahlflachprodukt angegeben werden, das sich auf praxisgerechte Weise kostengünstig herstellen lässt. Als Stahlflachprodukt wird dabei ein gegossenes oder gewalztes Stahlband oder -blech sowie daraus gewonnene Platinen, Zuschnitte oder desgleichen verstanden.In addition, a flat steel product should be specified, which can be produced inexpensively in a practical way. As a flat steel product is understood a cast or rolled steel strip or sheet and derived therefrom blanks, blanks or the like.

Ein gemäß der Erfindung erstes diese Aufgabe lösendes Verfahren ist in Anspruch 1 angegeben.A first object solving this object according to the invention is specified in claim 1.

In Bezug auf das Stahlflachprodukt besteht die erfindungsgemäße Lösung der voranstehend angegebenen Aufgabe darin, dass ein solches Stahlflachprodukt die in Anspruch 14 genannten Merkmale besitzt.With regard to the flat steel product, the solution according to the invention of the above-stated object is that such a flat steel product has the features mentioned in claim 14.

Den verschiedenen hier genannten Verkörperungen der Erfindung liegt der gemeinsame Gedanke zu Grunde, dass sich durch endabmessungsnahe Gießverfahren Stahlflachprodukte erzeugen lassen, die aus amorph, teilamorph oder nanokristallin bzw. feinkristallin erstarrenden Stählen bestehen. Dabei sind die erfindungsgemäß jeweils verarbeiteten Stähle so zusammengesetzt, dass sich der gewünschte Gefügezustand sicher einstellt. Wenn hier im Zusammenhang mit Stahllegierungen "%"-Angaben gemacht werden, sind diese immer als "Gew.-%" zu verstehen, sofern nichts anderes ausdrücklich angegeben ist.The various embodiments of the invention mentioned here are based on the common idea that, by means of casting processes close to the final dimensions, it is possible to produce flat steel products which are made of amorphous teilamorph or nanocrystalline or fine crystalline solidifying steels exist. In this case, the steels processed according to the invention are composed in such a way that the desired structural state is established reliably. If "%" information is given in connection with steel alloys, these are always to be understood as "% by weight", unless otherwise stated.

Gleichzeitig nennt die Erfindung Betriebsbedingungen, mit denen sich mit für die Praxis hinreichender Reproduzierbarkeit aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen mindestens zwei weitere Elemente aus der Gruppe "Si,B,Cu,P" enthält, gegossene Bänder mit amorpher, teilamorpher oder feinkristalliner Struktur erzeugen lassen.At the same time, the invention mentions operating conditions with which, for practice, sufficient reproducibility from a steel containing at least two further elements from the group "Si, B, Cu, P" in addition to iron and unavoidable impurities, cast strips with amorphous, partially amorphous or can produce fine-crystalline structure.

Das erfindungsgemäße erste Verfahren zum Erzeugen eines Stahlbands mit einem amorphen, teilamorphen oder feinkristallinen Gefüge sieht vor, dass die Stahlschmelze neben Eisen und herstellungsbedingt unvermeidbaren Verunreinigungen mindestens zwei weitere Elemente aus der Gruppe "Si, B, C, P" enthält. Dabei liegen gemäß der ersten Erfindungsvariante die Gehalte der jeweils mindestens vorhandenen beiden Elemente aus der Gruppe "Si, B, C, P" jeweils in folgenden Bereichen (in Gew.-%):

  • Si: 1,2 - 7,0 %,
  • B: 0,4 - 4,0 %,
  • C: 0,5 - 4,0 %,
  • P: 1,5 - 8,0 %
The first method according to the invention for producing a steel strip with an amorphous, partially amorphous or fine-crystalline microstructure provides that the molten steel contains at least two further elements from the group "Si, B, C, P" in addition to iron and inevitable impurities due to production. According to the first variant of the invention, the contents of the respectively at least two elements from the group "Si, B, C, P" are in each case in the following ranges (in% by weight):
  • Si: 1.2 - 7.0%,
  • B: 0.4 - 4.0%,
  • C: 0.5-4.0%,
  • P: 1.5 - 8.0%

Grundsätzlich werden erfindungsgemäß solche Legierungen bevorzugt, bei denen neben den jeweils herstellungsbedingt unvermeidbaren, jedoch hinsichtlich der Eigenschaften der erfindungsgemäß erzeugten Stahlflachprodukte unwirksamen Bestandteilen neben Eisen nur zwei weitere Elemente der Gruppe "Si, B, C, P" in den erfindungsgemäß vorgegebenen Gehalten vorhanden sind. Bei solchen Legierungen sind dann im Stahl neben Fe und unvermeidbaren Verunreinigungen jeweils nur die Legierungselementepaare Si und B, Si und C, Si und P, B und C, B und P oder C und P anwesend. Derart zusammengesetzte Stahllegierungen sind insbesondere für eine amorphe oder teilamorphe Erstarrung geeignet. Erforderlichenfalls können dabei innerhalb der erfindungsgemäßen Vorgaben die genannten Legierungspaare um jeweils ein oder zwei andere Legierungselemente der Gruppe "Si, B, C, P" ergänzt werden. Dabei ist es genauso möglich, dass die Legierungselemente der Gruppe "Si, B, C, P", die jeweils nicht innerhalb der erfindungsgemäßen Vorgaben liegen, zwar in messbaren Gehalten vorhanden sind, bei denen sie zwar eine Wirkung haben mögen, bei denen sie jedoch allenfalls untergeordnet zur Ausbildung des erfindungsgemäß angestrebten Gefüges beitragen. D.h., erfindungsgemäß müssen in einem für die Erzeugung von erfindungsgemäßem Stahlflachprodukt jeweils zwei Elemente aus der Gruppe "Si, B, C, P" in den erfindungsgemäß vorgegebenen Gehalten vorhanden sein, was nicht ausschließt, dass die jeweils anderen Elemente der Gruppe "Si, B, C, P" in Gehalten vorhanden sind, die außerhalb der erfindungsgemäßen Vorgaben liegen. Eine Anwesenheit eines jeweils außerhalb der erfindungsgemäßen Vorgaben enthaltenen Legierungselements der Gruppe "Si, B, C, P" ist insbesondere dann möglich, wenn sein Gehalt unterhalb der erfindungsgemäß für den Gehalt an dem betreffenden Element vorgeschriebenen Untergrenze liegt.Basically, according to the invention, those alloys are preferred in which, in addition to the respectively unavoidable production reasons but ineffective constituents with respect to the properties of the steel flat products produced according to the invention, besides iron, only two further elements of the group "Si, B, C, P" are present in the amounts prescribed according to the invention. In such alloys, in addition to Fe and unavoidable impurities, only the alloy element pairs Si and B, Si and C, Si and P, B and C, B and P or C and P are present in the steel. Such composite steel alloys are particularly suitable for amorphous or teilamorphe solidification. If necessary, within the specifications according to the invention, said alloy pairs can be supplemented by one or two other alloying elements of the group "Si, B, C, P". It is equally possible that the alloying elements of the group "Si, B, C, P", which are not within the specifications according to the invention, although present in measurable levels, where they may have an effect, but in which they at most subordinate contribute to the formation of the invention sought after structure. That is, according to the invention, in each case two elements from the group "Si, B, C, P" must be present in the levels specified in the invention in order to produce inventive flat steel product, which does not preclude the respective other elements of the group "Si, B , C, P "are present in contents which are outside the specifications according to the invention. A presence of an alloying element of the group "Si, B, C, P" contained outside the specifications according to the invention is particularly possible if its content is below the lower limit prescribed according to the invention for the content of the relevant element.

Die breiteste Zusammensetzung eines erfindungsgemäßen Stahls umfasst als Pflichtbestandteile somit wenigstens zwei der Elemente Bor, Silizium, Kohlenstoff und Phosphor sowie als Rest Eisen und unvermeidliche Verunreinigungen. Diese Elemente erweisen sich als besonders vorteilhaft, weil sie zu relativ geringen Kosten beschafft werden können. Mit den in den Ansprüchen genannten Gehalten an diesen Elementen ermöglicht das erfindungsgemäße Herstellungsverfahren eine reproduzierbare Herstellung eines Stahlprodukts mit einem amorphen, teilamorphen oder feinkristallinen Gefüge. Ein erfindungsgemäß erzeugtes Stahlflachprodukt weist ein feinkristallines Gefüge mit Korngrößen im Bereich von 10 - 10000 nm auf, wobei sich in der Praxis regelmäßig Stahlflachprodukte erzeugen lassen, deren Korngrößen auf maximale 1000 nm beschränkt sind.The widest composition of a steel according to the invention thus comprises as obligatory constituents at least two of the elements boron, silicon, carbon and phosphorus as well as the remainder iron and unavoidable impurities. These elements prove to be particularly advantageous because they can be procured at relatively low cost. With the contents of these elements mentioned in the claims, the production method according to the invention enables a reproducible production of a steel product with an amorphous, partially amorphous or fine-crystalline structure. A flat steel product produced according to the invention has a finely crystalline microstructure with particle sizes in the range from 10 to 10,000 nm, it being possible in practice to regularly produce flat steel products whose grain sizes are limited to a maximum of 1000 nm.

C in Gehalten von bis zu 4,0 Gew.-% fördert in erfindungsgemäß erzeugten Stahlflachprodukten die Amorphisierung des Werkstoffs. Um diesen Effekt sicher zu erreichen, kann der C-Gehalt auf mindestens 1,0 Gew.-%, insbesondere 1,5 Gew.-%, gesetzt werden.C in contents of up to 4.0% by weight promotes the amorphization of the material in flat steel products produced according to the invention. In order to surely achieve this effect, the C content can be set to at least 1.0% by weight, especially 1.5% by weight.

Für die Praxis zweckmäßige Einstellungen der Gehalte an Si, B, C und P ergeben sich dann, wenn für den Si-Gehalt %Si gilt 2,0 Gew.-% ≤ %Si ≤ 6,0 Gew.-%, insbesondere 3,0 Gew.-% ≤ %Si 5,5 Gew.-%, wenn für den B-Gehalt %B gilt 1,0 Gew.-% ≤ %B ≤ 3,0 Gew.-%, insbesondere 1,5 Gew.-% ≤ %B ≤ 3,0 Gew.-%, wenn für den C-Gehalt %C gilt 1,5 Gew.-% ≤ %C ≤ 3,0 Gew.-% oder wenn für den P-Gehalt %P gilt 2,0 Gew.-% ≤ %P ≤ 6,0 Gew. %. Dabei kann es günstig sein, jeweils eines oder mehrere der Elemente Si, B, C und P in den angegebenen enger eingegrenzten Gehalten zuzugeben, während die anderen Elemente der Gruppe "Si, B, C, P" innerhalb der erfindungsgemäß erlaubten maximalen Vorgaben zugegeben werden. Genauso kann es zweckmäßig sein, jedes der jeweils in erfindungsgemäßen Gehalten vorhandenen Elemente in den hier angegebenen engeren Grenzen zuzugeben.For practical purposes, settings of the contents of Si, B, C and P are obtained if, for the Si content% Si, 2.0% by weight ≦% Si ≦ 6.0% by weight, in particular 3, 0% by weight ≦% Si 5.5% by weight, when the B content% B is 1.0% by weight ≦% B ≦ 3.0% by weight, especially 1.5 wt .-% ≤% B ≤ 3.0 wt .-%, if for the C content% C is 1.5 wt .-% ≤% C ≤ 3.0 wt .-% or if for the P content% P is 2.0 wt% ≤% P ≤ 6.0 wt%. It may be advantageous to add in each case one or more of the elements Si, B, C and P in the specified narrower limited contents, while the other elements of the group "Si, B, C, P" are added within the maximum allowable according to the invention , In the same way, it may be expedient to add each of the elements present in the contents according to the invention within the narrower limits specified here.

Auch wenn es erfindungsgemäß als vorteilhaft angesehen wird, die Gruppe der Legierungselemente eines erfindungsgemäßen Stahls neben Fe und unvermeidbaren Verunreinigungen auf Si, B, C und P zu beschränken, kann es unter bestimmten Umständen für die Einstellung bestimmter Eigenschaften der erhaltenen Stahlflachprodukte zweckmäßig sein, dem Stahl optional eines oder mehrere der Elemente aus der Gruppe "Cu, Cr, Al, N, Nb, Mn, Ti, V" zuzugeben. Die hierzu erfindungsgemäß jeweils in Frage kommenden Gehaltsbereiche lauten (in Gew.-%):

  • Cu: bis zu 5,0 %, insbesondere bis zu 2,0 %,
  • Cr: bis zu 10,0 %, insbesondere bis zu 5,0 %,
  • Al: bis zu 10,0 %, insbesondere bis zu 5,0 %,
  • N: bis zu 0,5 %, insbesondere bis zu 0,2 %,
  • Nb: bis zu 2,0 %,
  • Mn: bis zu 3,0 %,
  • Ti: bis zu 2,0 %,
  • V: bis zu 2,0 %.
Although it is considered advantageous according to the invention to limit the group of alloying elements of a steel according to the invention to Fe, Si, B, C and P in addition to Fe and unavoidable impurities, under certain circumstances it may be useful to adjust certain properties of the resulting flat steel products, the steel optionally one or more of the elements from the group "Cu, Cr, Al, N, Nb, Mn, Ti, V" admit. The content ranges according to the invention in each case are (in% by weight):
  • Cu: up to 5.0%, in particular up to 2.0%,
  • Cr: up to 10.0%, in particular up to 5.0%,
  • Al: up to 10.0%, in particular up to 5.0%,
  • N: up to 0.5%, in particular up to 0.2%,
  • Nb: up to 2.0%,
  • Mn: up to 3.0%,
  • Ti: up to 2.0%,
  • V: up to 2.0%.

Durch die Zugabe von Cu kann die Duktilität des Werkstoffs erhöht werden, wohingegen die Wirkung von Cr hauptsächlich in einer Verbesserung der Korrosionsbeständigkeit liegt. Auch die Zugabe von Al steigert die Korrosionsbeständigkeit, wirkt aber auch unterstützend auf die Bildung eines amorphen Gefüges. N kann als möglicher Substituent für C angesehen werden. So unterstützt die Anwesenheit von N genauso wie höhere C-Gehalte die verstärkte Bildung eines amorphen Gefüges.By adding Cu, the ductility of the material can be increased, whereas the effect of Cr is mainly an improvement in corrosion resistance. The addition of Al increases the corrosion resistance, but also has a supporting effect on the formation of an amorphous structure. N can be considered as a possible substituent for C. Thus, the presence of N, as well as higher C contents, promotes the enhanced formation of an amorphous structure.

Um die positiven Einflüsse der optional zugegebenen Legierungselemente Cu, Cr, Al und N nutzen zu können, kann die Stahlschmelze jeweils optional (in Gew.-%) mindestens 0,1 % Cu, mindestens 0,5 % Cr, mindestens 1,0 % Al und mindestens 0,005 % N enthalten.In order to be able to use the positive influences of the optionally added alloying elements Cu, Cr, Al and N, the molten steel can in each case optionally (in% by weight) at least 0.1% Cu, at least 0.5% Cr, at least 1.0% Al and at least 0.005% N included.

Die erfindungsgemäße Stahllegierung kann mit in der Stahlindustrie gängigen und vergleichsweise kostengünstigen Legierungselementen als Pflichtbestandteile hergestellt werden.The steel alloy according to the invention can be produced with compulsory components which are conventional in the steel industry and which are comparatively inexpensive.

Aufgrund der hohen Gehalte an "leichten" Elementen sind aufgrund reduzierter Dichte sowie der hohen Festigkeit erhebliche Leichtbauvorteile gegenüber konventionellen Stählen denkbar.Due to the high content of "light" elements, considerable lightweight advantages over conventional steels are conceivable due to their reduced density and high strength.

Entsprechend den voranstehenden Erläuterungen lässt sich erfindungsgemäß ein Stahlband mit einem amorphen, teilamorphen oder feinkristallinen Gefüge aus einer Stahlschmelze, in der neben Fe und unvermeidbaren Verunreinigungen mindestens zwei der Elemente Si, B, C oder P enthalten sind, durch ein Gießverfahren erzeugen, bei dem eine erfindungsgemäß zusammengesetzte Stahlschmelze in einer Gießeinrichtung zu einem gegossenen Band vergossen wird, deren Gießbereich, in dem das gegossene Band geformt wird an mindestens einer seiner Längsseiten durch eine sich während des Gießbetriebs bewegende und gekühlte Wand gebildet ist. Die den Gießbereich begrenzende, sich im Gießbetrieb bewegende Wand kann insbesondere durch zwei gegenläufig rotierende Gießrollen oder ein sich während des Gießbetriebs in Gießrichtung bewegendes Band gebildet sein. Erfindungsgemäß wird dabei die Stahlschmelze über den Kontakt mit der sich bewegenden Wand mit mindestens 200 K/s abgekühlt.According to the above explanation, according to the present invention, a steel strip having an amorphous, partially-amorphous or fine-crystalline structure of molten steel containing at least two of Si, B, C or P besides Fe and unavoidable impurities can be produced by a casting method. in which a molten steel composition according to the invention is cast in a casting device into a cast strip whose casting region, in which the cast strip is formed, is formed on at least one of its longitudinal sides by a wall which moves and cools during the casting operation. The wall which delimits the casting area and moves in the casting operation can be formed, in particular, by two counter-rotating casting rolls or a belt moving in the casting direction during the casting operation. According to the invention, the molten steel is cooled by contact with the moving wall with at least 200 K / s.

Dabei gelten die oben bereits gegebenen Erläuterungen zur Zusammensetzung des erfindungsgemäßen Stahls für das hier vorgestellte erfindungsgemäße Verfahren genauso wie für ein erfindungsgemäßes Stahlflachprodukt.The explanations given above about the composition of the steel according to the invention for the inventive method presented here apply exactly the same as for a flat steel product according to the invention.

Die Ausbildung des angestrebten Gefüges des Stahlflachprodukts kann dadurch gesichert werden, dass das schnelle Abkühlen in der Praxis bis unterhalb der Glasübergangstemperatur TG des jeweiligen Stahls durchgeführt werden. Auf diese Weise wird zunächst ein amorphes oder teilamorphes Gefüge gebildet. Auf der Grundlage dieses Gefüges kann dann mittels einer nachfolgenden Wärmebehandlung oberhalb der Kristallisationstemperatur Tx durch die sich dadurch einstellende Kristallkeimbildung und Auskristallisation ein feinkristallines Gefüge erzeugt werden. Diese Vorgehensweise hat den Vorteil, dass die Feinkörnigkeit sehr präzise einstellbar ist, wobei sich aufgrund der Vielzahl sich bildender Kristallisationskeime eine sehr homogene Korngrößenverteilung mit sehr geringer Schwankungsbreite einstellt.The formation of the desired structure of the flat steel product can be ensured by performing the rapid cooling in practice to below the glass transition temperature T G of the respective steel. In this way, an amorphous or partially amorphous microstructure is first formed. On the basis of this microstructure, a finely crystalline microstructure can then be produced by means of a subsequent heat treatment above the crystallization temperature T x as a result of the resulting crystal nucleation and crystallization. This approach has the advantage that the Feinkörnigkeit is very precisely adjustable, which is due to the Variety of forming nuclei sets a very homogeneous particle size distribution with very low fluctuation range.

Um sicherzustellen, dass das gegossene Band auch nach dem Austritt aus dem jeweiligen Gießbereich in einer für die Ausbildung eines amorphen oder teilamorphen Gefüges ausreichenden Geschwindigkeit bis zur hierfür kritischen Glasbildungstemperatur des jeweils verarbeiteten Stahls abgekühlt wird, kann die im Gießbereich einsetzende schnelle Abkühlung des gegossenen Bands nach Austritt aus dem Gießbereich fortgesetzt werden. Die fortgesetzte Abkühlung setzt dabei vorteilhafter Weise im unmittelbaren Anschluss an den Austritt aus dem Gießbereich ein, so dass eine weitestgehend kontinuierliche beschleunigte Temperaturabnahme im gegossenen Band gewährleistet ist, bis der jeweils angestrebte Gefügezustand erreicht ist.In order to ensure that the cast strip is cooled even after leaving the respective casting area in a sufficient for the formation of an amorphous or partially amorphous structure speed to the critical glass forming temperature of the respective processed steel, the rapid cooling of the cast strip starting in the casting area after Exit from the casting area will continue. The continued cooling sets in an advantageous manner immediately after the exit from the casting area, so that a largely continuous accelerated temperature decrease is ensured in the cast strip until the respective desired structural state is reached.

Hierzu kann eine zusätzliche Kühleinrichtung vorgesehen sein, die unmittelbar an den Gießbereich der zum Gießen des gegossenen Bands eingesetzten Gießeinrichtung angeschlossen ist. Mit einer solchen Kühleinrichtung kann die Stahlschmelze mit der erfindungsgemäß vorgegebenen Abkühlrate sicher bis unter die Glasübergangstemperatur TG abgekühlt werden, um ein amorphes oder teilamorphes Gefüge im gegossenen Stahlflachprodukt zu erzeugen. Dabei gewährleistet die zusätzliche Kühleinrichtung sicher, dass in Fällen, in denen es im Gießbereich der Gießeinrichtung selber durch den Kontakt mit der sich bewegenden und gekühlten Wand des Gießbereichs nur zu einer unzureichenden Wärmeabfuhr gekommen ist, die Abkühlung des Bands im Anschluss an den Gießbereich so schnell fortgesetzt wird, dass der erfindungsgemäß zu erzeugende Gefügezustand sicher erreicht wird.For this purpose, an additional cooling device can be provided, which is connected directly to the casting area of the casting device used for casting the cast strip. With such a cooling device, the molten steel can be safely cooled to below the glass transition temperature T G with the cooling rate predetermined according to the invention in order to produce an amorphous or partially amorphous microstructure in the cast flat steel product. In this case, the additional cooling device ensures that, in cases where there is only insufficient heat dissipation in the casting area of the casting device itself due to the contact with the moving and cooled wall of the casting area, the Cooling of the band is continued after the casting area so quickly that the microstructure state to be generated according to the invention is reliably achieved.

Ein weiterer Vorteil der zusätzlichen, im Anschluss an die Gießeinrichtung erfolgenden Kühlung besteht darin, dass sich mit einer solchen Kühlung eine speziell angepasste Abkühlkurve kontrolliert variieren lässt. Dies kann zweckmäßig sein, wenn gezielt gegossene Bänder mit einem teilamorphen oder feinkristallinen Gefüge als Ergebnis des Gieß- und Abkühlprozesses erhalten werden sollen. So kann die Abkühlung so vorgenommen werden, dass die Glasübergangstemperatur TG zwar beschleunigt, jedoch nicht in einer für die Ausprägung eines vollständig amorphen Gefüges ausreichenden Geschwindigkeit abgekühlt wird.Another advantage of the additional, subsequent to the pouring device cooling is that can be controlled controlled with such cooling a specially adapted cooling curve. This may be useful if targeted cast tapes are to be obtained with a teilamorphen or fine crystalline structure as a result of the casting and cooling process. Thus, the cooling can be carried out so that the glass transition temperature T G accelerates, but is not cooled in a sufficient for the expression of a fully amorphous structure speed.

Alternativ kann das gegossene Band zwar entsprechend den erfindungsgemäßen Vorgaben beschleunigt abgekühlt werden, diese Abkühlung jedoch vor Erreichen der Glasübergangstemperatur TG des jeweils verarbeiteten Stahls abgebrochen werden. Dieser Weg stellt eine erste Möglichkeit dar, ein vorbestimmtes, feinkristallines Gefüge im erhaltenen Stahlflachprodukt zu erzeugen. Das feinkristalline Gefüge wird hier unmittelbar aus der Schmelze gebildet, indem eine über die zusätzliche Kühlung gesteuerte Kristallisation zugelassen wird.Alternatively, although the cast strip can be cooled accelerated according to the inventive specifications, but this cooling are stopped before reaching the glass transition temperature T G of each processed steel. This way represents a first possibility to produce a predetermined, fine-crystalline structure in the resulting flat steel product. The fine-crystalline structure is formed directly from the melt here, by allowing a controlled via the additional cooling crystallization.

Ein anderer Weg, ein erfindungsgemäßes Stahlflachprodukt mit feinkristallinem Gefüge zu erzeugen, besteht darin, zunächst ein Band mit amorphem oder teilamorphem Gefüge herzustellen, das erst danach durch einen Glühprozess und eine dadurch bewirkte Auskristallisation in einen feinkristallinen Zustand überführt wird. Die Besonderheit dieser Vorgehensweise liegt darin, dass die Kristallisation an einer Vielzahl von Kristallkeimen erfolgt und daher die sich bildenden Kristallkörner sehr gleichmäßig im Werkstoff verteilt sind.Another way of producing a thin-crystalline steel flat product according to the invention is first to produce a strip with an amorphous or partially amorphous structure, which is then produced by an annealing process and a crystallization caused thereby is converted into a finely crystalline state. The peculiarity of this procedure is that the crystallization takes place at a plurality of crystal nuclei and therefore the forming crystal grains are distributed very evenly in the material.

Die für die Ausprägung des feinkristallinen Gefüges wichtige Kristallisationstemperatur Tx liegt im Durchschnitt etwa 30 - 50 K oberhalb der Glasübergangstemperatur TG des jeweils verarbeiteten Stahls. Für die Herstellung eines erfindungsgemäßen Stahlflachprodukts mit amorphem oder teilamorphem Gefüge ist es daher erforderlich, beim Abkühlen der Schmelze die Temperatur TG möglichst schnell mit einer Abkühlgeschwindigkeit v > vkrit zu unterschreiten, wobei vkrit erfindungsgemäß 200 K/s ist. Auf diese Weise wird der amorphe Zustand des Stahls "eingefroren", wohingegen beim Aufheizen auf eine oberhalb der Temperatur Tx liegende Wärmebehandlungstemperatur die Kristallisation des Stahls einsetzt.The crystallization temperature T x, which is important for the development of the finely crystalline microstructure, is on average about 30-50 K above the glass transition temperature T G of the respective processed steel. For the production of a flat steel product according to the invention having an amorphous or partially amorphous microstructure, it is therefore necessary, when the melt cools down, to fall below the temperature T G as quickly as possible at a cooling rate v> v crit , where vcr is 200 K / s according to the invention. In this way, the amorphous state of the steel is "frozen", whereas when heated to a temperature above the temperature T x heat treatment temperature uses the crystallization of the steel.

Die erfindungsgemäß erforderlichenfalls vorgesehene zusätzliche Kühlvorrichtung kann so ausgebildet sein, dass ein Kühlmedium direkt auf das gegossene Band gegeben wird. Bei diesem Kühlmedium kann es sich um Wasser, flüssigen Stickstoff oder eine andere entsprechend wirksame Kühlflüssigkeit handeln. Alternativ oder ergänzend können auch Kühlgase, wie gasförmiger Stickstoff, Wasserstoff, ein Gasgemisch oder Wassernebel, aufgebracht werden. Hierzu geeignete Kühlvorrichtungen sind aus dem Stand der Technik bekannt ( KR2008/0057755A ).The inventively provided if necessary additional cooling device may be formed so that a cooling medium is added directly to the cast strip. This cooling medium can be water, liquid nitrogen or another correspondingly effective cooling liquid. Alternatively or additionally, cooling gases, such as gaseous nitrogen, hydrogen, a gas mixture or water mist can also be applied. Suitable cooling devices for this purpose are known from the prior art ( KR2008 / 0057755A ).

Die zur Erreichung eines amorphen Gefüges kritische Abkühlgeschwindigkeit hängt unter anderem von der jeweils eingestellten Zusammensetzung der Stahlschmelze ab. So kann es zweckmäßig sein, die Abkühlgeschwindigkeiten von mehr als 250 K/s, mehr als 450 K/s oder sogar mehr als 800 K/s vorzusehen.The cooling rate critical for achieving an amorphous structure depends, inter alia, on the particular composition of the molten steel that is set. Thus, it may be appropriate to provide the cooling rates of more than 250 K / s, more than 450 K / s or even more than 800 K / s.

Mittels des erfindungsgemäßen Verfahrens lässt sich somit gezielt ein in der erfindungsgemäßen Weise legiertes Band mit amorphem oder teilamorphem Gefüge erzeugen.By means of the method according to the invention, it is thus possible to selectively produce a band with an amorphous or partially amorphous microstructure alloyed in the manner according to the invention.

Ein besonderer Aspekt von feinkristallinen Stählen der erfindungsgemäß erzeugten Art ist ihre Fähigkeit zur strukturellen Superplastizität. Demzufolge können auf Basis von erfindungsgemäßen Stahlflachprodukten komplexeste Bauteilgeometrien durch Korngrenzgleitvorgänge bei angehobenen Temperaturen (thermische Aktivierung) dargestellt werden.A particular aspect of finely crystalline steels of the type produced according to the invention is their ability to undergo structural superplasticity. Consequently, on the basis of flat steel products according to the invention, the most complex component geometries can be represented by grain boundary sliding processes at elevated temperatures (thermal activation).

Wie oben bereits erwähnt, sieht eine besonders prozesssichere Möglichkeit der Erzeugung eines Stahlflachprodukts mit feinkristallinem Gefüge vor, dass das aus dem Gießspalt der Gießeinrichtung austretende und optional im Anschluss daran zusätzlich abgekühlte gegossene Band ein amorphes oder teilamorphes Gefüge aufweist und dass das gegossene und derart beschaffene Band anschließend bei einer mindestens der Kristallisationstemperatur Tx des jeweiligen Stahls entsprechenden Glühtemperatur TGlüh geglüht wird, bis der gewünschte Gefügezustand erreicht ist. Bei innerhalb der erfindungsgemäßen Vorgaben liegenden Stahlzusammensetzungen betragen die hierzu geeigneten Glühtemperaturen TGlüh 500 - 1000 °C. Um ein rein feinkristallines Gefüge zu erreichen, sind dabei, abhängig von der jeweils konkret gewählten Zusammensetzung typischerweise Glühzeiten von 2 s - 2 h ausreichend.As already mentioned above, a particularly process-reliable possibility of producing a flat steel product with a fine-crystalline structure provides that the cast strip emerging from the casting gap of the casting device and optionally additionally cooled thereafter has an amorphous or partially amorphous structure and that the cast strip produced in this way is then annealed at a minimum of the crystallization temperature Tx of the respective steel annealing temperature T anneal until the desired microstructure state is reached. In lying within the specifications of the invention steel compositions are suitable for this purpose Annealing temperatures T annealing 500 - 1000 ° C. In order to achieve a purely fine-crystalline structure, annealing times of 2 s to 2 h are sufficient, depending on the specific concretely selected composition.

Die Bandgeschwindigkeiten, mit denen das gegossene Band aus dem Gießspalt austritt, liegen in der Praxis typischerweise im Bereich von 0,3 - 1,7 m/s.The belt speeds with which the cast strip emerges from the casting gap are typically in the range of 0.3-1.7 m / s in practice.

Die Banddicken, mit denen das erfindungsgemäß gegossene und abgekühlte Band den Gießspalt verlässt, liegen typischerweise im Bereich von 0,8 - 4,5 mm, insbesondere 0,8 - 3,0 mm.The strip thicknesses with which the cast and cooled strip according to the invention leaves the casting gap are typically in the range from 0.8 to 4.5 mm, in particular 0.8 to 3.0 mm.

Nach dem Gießen des Bandes und dem optional zusätzlich im Anschluss daran durchgeführten Kühlen kann das gegossene Band einem Warmwalzen unterzogen werden, bei dem die Warmwalzanfangstemperatur 500 - 1000 °C betragen sollte. Durch die inline auf den Gieß- und Abkühlvorgang folgenden Warmwalzschritte kann einerseits die gewünschte Enddicke des Bands und andererseits die Oberflächenbeschaffenheit eingestellt sowie die Mikrostruktur optimiert werden, indem beispielsweise im gegossenen Zustand noch vorhandene Kavitäten geschlossen werden. Um einen amorphen oder teilamorphen Zustand des gegossenen Bands beizubehalten, kann das Warmwalzen zudem bei einer im Bereich zwischen der Glasübergangstemperatur TG und der Kristallisationstemperatur Tx liegenden Warmwalzanfangstemperatur zu dem Warmband warmgewalzt werden.After casting the strip and optionally additionally cooling thereafter, the cast strip may be subjected to hot rolling in which the hot rolling start temperature should be 500-1000 ° C. Due to the hot rolling steps following the casting and cooling process in-line, on the one hand the desired final thickness of the strip and, on the other hand, the surface finish can be adjusted and the microstructure optimized, for example by closing still existing cavities in the cast state. In order to maintain an amorphous or partially amorphous state of the cast strip, the hot rolling may also be hot rolled to the hot strip at a hot rolling start temperature in the range between the glass transition temperature T G and the crystallization temperature T x .

Als Gießeinrichtung für die Durchführung der erfindungsgemäßen Verfahren eignet sich beispielsweise eine Zwei-Rollen-Gießeinrichtung, deren gegeneinander um achsparallel zueinander ausgerichtete Achsen rotierende Rollen jeweils eine sich im Gießbetrieb in Gießrichtung kontinuierlich fortbewegende gekühlte Längswand des Gießbereichs bilden, in dem das Band geformt wird.As a pouring device for carrying out the method according to the invention, for example, a two-roller casting is suitable, the mutually axially parallel to each other aligned axes rotating rollers each form a continuous casting in the casting continuously cooled longitudinal wall of the casting area, in which the band is formed.

Die erfindungsgemäßen Verfahren erfordern nur geringe Veränderungen an bestehenden Verfahren bzw. Einrichtungen zur kontinuierlichen Herstellung von endabmessungsnahen Flachstahlprodukten.The methods of the invention require only minor changes to existing methods and devices for the continuous production of close-to-scale flat steel products.

Nachfolgend wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Die einzige Figur zeigt schematisch eine Vorrichtung zum Erzeugen von gegossenem Band in seitlicher Ansicht.The invention will be explained in more detail with reference to a drawing illustrating an exemplary embodiment. The single figure shows schematically a device for producing cast strip in a lateral view.

Die Anlage 1 zum Erzeugen eines gegossenen Bands B umfasst eine Gießeinrichtung 2, die als konventionelle Zwei-Rollen-Gießeinrichtung aufgebaut ist und dementsprechend zwei gegeneinander um achsparallel zueinander und auf gleicher Höhe ausgerichtete Achsen X1,X2 rotierende Rollen 3,4 umfasst. Die Rollen 3,4 sind mit einem die Dicke D des zu produzierenden gegossenen Bands B festlegenden Abstand angeordnet und begrenzen so an dessen Längsseiten einen als Gießspalt ausgebildeten Gießbereich 5, in dem das gegossene Band B geformt wird. An seinen Schmalseiten ist der Gießbereich 5 in ebenso bekannter Weise durch hier nicht sichtbare Seitenplatten abgedichtet, die gegen die Stirnseiten der Rollen 3,4 gedrückt werden.The plant 1 for producing a cast strip B comprises a casting device 2, which is constructed as a conventional two-roller casting device and accordingly two mutually aligned around axis-parallel to each other and at the same height axes X1, X2 rotating rollers 3,4. The rollers 3, 4 are arranged with a thickness defining the thickness D of the cast strip B to be produced, and thus delimit on their longitudinal sides a casting area 5 in the form of a casting gap, in which the cast strip B is formed. On its narrow sides of the casting area 5 in just as well known by not visible here side plates sealed, which are pressed against the end faces of the rollers 3,4.

Während des Gießbetriebs rotieren die intensiv gekühlten Rollen 3,4 und bilden auf diese Weise Längswände einer durch die Rollen 3,4 und die Seitenplatten gebildeten Gießkokille, die sich im Gießbetrieb kontinuierlich fortbewegen. Die Drehrichtung der Rollen 3,4 ist dabei in Schwerkraftrichtung R in den Gießbereich 5 hinein gerichtet, so dass in Folge der Rotation Schmelze S aus einem im Raum oberhalb des Gießbereichs 5 zwischen den Rollen 3,4 anstehenden Schmelzenpool in den Gießbereich 5 gefördert wird. Dabei erstarrt die Schmelze S, wenn sie die Umfangsfläche der Rollen 3,4 berührt, aufgrund der dort stattfindenden intensiven Wärmeabfuhr zu jeweils einer Schale. Die auf den Rollen 3,4 haftenden Schalen werden durch die Rotation der Rollen 3,4 in den Gießbereich 5 gefördert und dort unter Wirkung einer Bandformungskraft K zu dem gegossenen Band B zusammengepresst. Die im Gießbereich 5 wirksame Kühlleistung und die Bandformungskraft K sind dabei so aufeinander abgestimmt, dass das kontinuierlich aus dem Gießbereich 5 austretende gegossene Band B weitestgehend vollständig erstarrt ist.During the casting operation, the intensively cooled rollers 3, 4 rotate and in this way form longitudinal walls of a casting mold formed by the rollers 3, 4 and the side plates, which move continuously in the casting operation. The direction of rotation of the rollers 3, 4 is directed in the direction of gravity R into the casting area 5, so that, as a result of the rotation, melt S is conveyed from the melt pool in the casting area 5, which is present in the space above the casting area 5 between the rollers 3, 4. In this case, the melt S solidifies when it touches the peripheral surface of the rollers 3,4, due to the there taking place intense heat dissipation to one shell. The shells adhering to the rollers 3, 4 are conveyed into the casting area 5 by the rotation of the rollers 3, 4, where they are pressed together under the effect of a band forming force K to form the cast strip B. The effective cooling in the casting area 5 and the band forming force K are coordinated so that the continuously emerging from the casting area 5 cast strip B is largely completely solidified.

Um Kristallisationseffekte zu unterdrücken, läuft das gegossene Band B im Anschluss an den Gießbereich 5 in eine Kühleinrichtung 7 ein, die das gegossene Band B mit einem Kühlmedium beaufschlagt, so dass es weiter abkühlt. Die Abkühlung durch die Kühleinrichtung 7 setzt dabei im unmittelbaren Anschluss an den Gießbereich 5 ein und erfolgt dabei derart stark, dass die Temperatur T des gegossenen Bands B stetig abnimmt, bis sie unterhalb der Glasübergangstemperatur TG der jeweils vergossenen Schmelze S liegt. Jegliche Kristallisation des Gefüges des gegossenen Bands B wird so unterdrückt, so dass es sich bei Erreichen der Förderstrecke 6 nach wie vor in einem amorphen Zustand befindet.In order to suppress crystallization effects, the cast strip B, following the casting area 5, enters a cooling device 7, which applies a cooling medium to the cast strip B, so that it cools further. The cooling by the cooling device 7 sets in the immediate connection to the casting area 5 and takes place so strong that the temperature T of cast strip B decreases steadily until it is below the glass transition temperature T G of each cast melt S. Any crystallization of the structure of the cast strip B is thus suppressed, so that it is still in an amorphous state on reaching the conveying path 6.

Das aus dem Gießbereich 5 austretende Band B wird zunächst in Schwerkraftrichtung R vertikal abgefördert und anschließend in bekannter Weise in einem kontinuierlich gekrümmten Bogen in eine horizontal ausgerichtete Förderstrecke 6 umgelenkt.The emerging from the casting area 5 Band B is initially conveyed away vertically in the direction of gravity R and then deflected in a known manner in a continuously curved arc in a horizontally oriented conveying path 6.

Auf der Förderstrecke 6 kann das gegossene Band B anschließend eine Erwärmungseinrichtung 8 durchlaufen, in der das Band B bei einer oberhalb der Kristallisationstemperatur Tx der jeweils vergossenen Stahlschmelze S liegenden Glühtemperatur TGlüh über eine Glühzeit tGlüh durcherwärmt wird. Ziel dieser Wärmebehandlung ist die kontrollierte Bildung eines feinkristallinen Gefüges mit im Bereich von 10 - 10000 nm liegenden Korngrößen im gegossenen Band B. Das derart wärmebehandelte gegossene Band B wird anschließend in einem Warmwalzgerüst 9 zu Warmband WB warmgewalzt.On the conveyor line 6, the cast strip B can then pass through a heating device 8 in which the strip B is through- heated at an annealing temperature T annealing above the crystallization temperature Tx of the respectively cast molten steel S over an annealing time t ann . The aim of this heat treatment is the controlled formation of a fine crystalline microstructure with grain sizes ranging from 10 to 10,000 nm in the cast strip B. The cast strip B thus heat treated is then hot rolled in a hot rolling mill 9 to hot strip WB.

In der Anlage 1 ist aus drei Stahlschmelzen S mit den in Tabelle 1 angegebenen Zusammensetzungen Z1,Z2,Z3 jeweils ein gegossenes Band B erzeugt worden. Für jede Zusammensetzung Z1,Z2,Z3 ist die Dicke D der aus der jeweiligen Stahlschmelze S gegossenen Bänder B, die jeweils bei der Abkühlung der Schmelze S im Gießbereich 5 erzielte Abkühlrate AR, die jeweils bei der Abkühlung des aus dem Gießbereich 5 austretenden gegossenen Bands B in der zusätzlichen Kühleinrichtung 7 erzielte Abkühlrate ARZ sowie die Zieltemperatur Tz der zusätzlichen Abkühlung angegeben. Des Weiteren sind in Tabelle 2 der Gefügezustand und die ggf. vorhandenen Gefügebestandteile des erhaltenen Bands aufgeführt.In plant 1, a cast strip B has been produced in each case from three steel melts S with the compositions Z1, Z2, Z3 given in Table 1. For each composition Z1, Z2, Z3, the thickness D of the tapes B cast from the respective molten steel S, the cooling rate AR achieved in each case during the cooling of the melt S in the casting region 5, which in each case during the cooling of the from the casting area 5 emerging cast bands B scored in the additional cooling device 7 cooling rate ARZ and the target temperature T z of the additional cooling specified. Furthermore, Table 2 shows the microstructural state and any structural constituents of the resulting band.

An zwei Proben des in der voranstehend erläuterten Weise aus der Stahlschmelze S mit der Zusammensetzung Z1 erzeugten gegossenen Bands B sind unterschiedliche Wärmebehandlungen in der Erwärmungseinrichtung 8 durchgeführt worden. Die dabei jeweils eingestellte Glühtemperatur TGlüh und die Glühzeit tGlüh der Wärmebehandlung sind in Tabelle 3 gegenübergestellt.Different heat treatments were performed in the heater 8 on two samples of the cast strip B produced in the above-mentioned manner from the molten steel S having the composition Z1. The respectively set annealing temperature T glow and the annealing time t annealing of the heat treatment are compared in Table 3.

Es zeigte sich, dass das gegossene Band B vor der Wärmebehandlung bereits ein feinkristallines Gefüge aus α-Fe, Fe2B, Fe3B und Fe3Si bei einer Härte HV0,5 von 840 - 900 aufwies. Auch nach der Wärmebehandlung bestand das Gefüge aus α-Fe, Fe2B, Fe3B und Fe3Si, jedoch betrug nun die Härte HV0,5 760 - 810.It was found that the cast strip B before the heat treatment already had a fine crystalline structure of α-Fe, Fe 2 B, Fe 3 B and Fe 3 Si at a hardness of HV0.5 of 840-900. Even after the heat treatment, the microstructure consisted of α-Fe, Fe 2 B, Fe 3 B and Fe 3 Si, but the hardness was now HV0.5 760-810.

Es versteht sich, dass die beschriebene Wärmebehandlung mittels der Erwärmungseinrichtung 8 sowie das Warmwalzen mit dem Warmwalzgerüst 9 nur optionale Verfahrensschritte sind.It is understood that the described heat treatment by means of the heating device 8 and the hot rolling with the hot rolling mill 9 are only optional process steps.

Die Erfindung stellt somit Verfahren zum Erzeugen eines Stahlbands B mit einem amorphen, teilamorphen oder feinkristallinen Gefüge mit Korngrößen im Bereich von 10 - 10000 nm sowie ein entsprechend beschaffenes Stahlflachprodukt zur Verfügung. Gemäß der Erfindung wird dazu eine Stahlschmelze in einer Gießeinrichtung (2) zu einem gegossenen Band (B) vergossen und beschleunigt abgekühlt. Die Schmelze enthält neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen mindestens zwei weitere Elemente, die der Gruppe "Si, B,C,P" angehören. Gemäß einer ersten Verfahrensvariante gilt für die Gehalte an diesen Elementen (in Gew.-%) Si: 1,2 - 7,0 %, B: 0,4 - 4,0 %, C: 0,5 - 4,0 %, P: 1,5 - 8,0 %. Gemäß einer zweiten Verfahrensvariante wird die Si, B, C und P enthaltende Stahlschmelze in einer Gießeinrichtung (2), deren Gießbereich (5) an mindestens einer seiner Längsseiten durch eine sich während des Gießbetriebs in Gießrichtung (G) bewegende und gekühlte Wand gebildet ist, zu einem gegossenen Band (B) vergossen, wobei die Stahlschmelze (S) durch Kontakt mit der sich bewegenden gekühlten Wand mit einer Abkühlrate von mindestens 200 K/s abgekühlt wird.The invention thus provides methods for producing a steel strip B having an amorphous, partially amorphous or fine-crystalline structure with grain sizes in the range from 10 to 10,000 nm and a correspondingly obtained flat steel product. According to the invention to a molten steel in a casting device (2) cast into a cast strip (B) and cooled accelerated. In addition to Fe and inevitable impurities due to the production, the melt contains at least two further elements which belong to the group "Si, B, C, P". According to a first process variant, the contents of these elements (in% by weight) Si: 1.2 to 7.0%, B: 0.4 to 4.0%, C: 0.5 to 4.0% , P: 1.5-8.0%. According to a second variant of the method, the molten steel containing Si, B, C and P is formed in a casting device (2) whose casting region (5) is formed on at least one of its longitudinal sides by a wall which moves and cools in the casting direction (G) during the casting operation. to a cast strip (B), wherein the molten steel (S) is cooled by contact with the moving cooled wall at a cooling rate of at least 200 K / sec.

BEZUGSZEICHENREFERENCE NUMBERS

11
Anlage zum Erzeugen eines gegossenen Bands BPlant for producing a cast strip B
22
Gießeinrichtungcaster
3,43.4
Rollen der Gießeinrichtung 2Rollers of the casting device 2
55
Gießbereichcasting area
66
horizontal ausgerichtete Förderstreckehorizontally aligned conveyor line
77
Kühleinrichtungcooling device
88th
Erwärmungseinrichtungheater
99
WarmwalzgerüstHot rolling mill
BB
gegossenes Bandcast tape
DD
Dicke des gegossenen Bands BThickness of the cast strip B
RR
SchwerkraftrichtungThe direction of gravity
SS
Schmelzemelt
KK
BandformungskraftBand forming force
X1,X2X1, X2
Rotationsachsen der Rollen 3,4Rotation axes of the rollers 3,4
Tabelle 1Table 1 CC SiSi MnMn PP Alal CrCr CuCu NbNb TiTi VV BB Z1Z1 0,0380,038 5, 55, 5 0,440.44 3,33.3 0,0050.005 0,30.3 0,1330,133 0,0590.059 0,110.11 0,0480.048 2,02.0 Z2Z2 0,0410,041 3,33.3 0,510.51 0,0250,025 0,0050.005 0,40.4 0,090.09 0,0010.001 0,090.09 0,0550,055 2,22.2 Z3Z3 1,51.5 3,03.0 0,640.64 0,0300,030 1,301.30 0,40.4 0,080.08 0,0020,002 0,080.08 0,0450,045 1,61.6 Angaben in Gew.-%, Rest Eisen und unvermeidbare VerunreinigungenData in wt .-%, balance iron and unavoidable impurities Tabelle 2Table 2 D [mm]D [mm] AR [K/s]AR [K / s] ARZ [K/s]ARZ [K / s] Tz [°C]T z [° C] Gefügestructure Z1Z1 1,21.2 900900 900900 400400 amorphamorphous Z2Z2 1,21.2 10501050 600600 600600 feinkristallin α-Fe, Fe2B, Fe3B, Fe3Sifine crystalline α-Fe, Fe 2 B, Fe 3 B, Fe 3 Si Z3Z3 1,11.1 700700 500500 500500 feinkristallin, α-Fe, Fe2C, Fe2B, Fe3B, Fe3Sifine crystalline, α-Fe, Fe 2 C, Fe 2 B, Fe 3 B, Fe 3 Si Tabelle 3Table 3 D [mm]D [mm] Tglüh [°C]Tglüh [° C] tglüh [°C]annealing [° C] Gefügestructure Z1Z1 1,21.2 600°C600 ° C 1 min1 min Teilamorph (amorph + α-Fe, Fe2B, Fe3B, Fe3Si)Partial amorphous (amorphous + α-Fe, Fe 2 B, Fe 3 B, Fe 3 Si) Z1Z1 1,21.2 600°C600 ° C 20 min20 min feinkristallin α-Fe, Fe2B, Fe3B, Fe3Sifine crystalline α-Fe, Fe 2 B, Fe 3 B, Fe 3 Si

Claims (15)

  1. Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure, wherein the fine crystalline structure has grain sizes in the range of 10 to 10000 nm, in the case of which a steel melt is cast in a casting device (2) to form a cast strip (B) and rapidly cooled, wherein, in addition to iron and manufacture-related unavoidable impurities, the steel melt contains at least two additional elements belonging to the group "Si, B, C, P", having the proportion (in wt%)
    Si: 1.2 to 7.0%,
    B: 0.4 to 4.0%,
    C: 0.5 to 4.0%,
    P: 1.5 to 8.0%
    as well as optionally one or a plurality of the elements from the group "Cu, Cr, Al, N, Nb, Mn, Ti, V" with the proportion (in wt%):
    Cu: up to 5.0%,
    Cr: up to 10.0%,
    Al: up to 10.0%,
    N: up to 0.5%,
    Nb: up to 2.0%,
    Mn: up to 3.0%,
    Ti: up to 2.0%,
    V: up to 2.0%,
    characterised in that
    the casting device (2) has a casting region (5), in which the cast strip (B) is formed, said casting region is formed on at least one of its longitudinal sides by a wall that is moved and cooled during the casting operation, said wall is formed by two casting rollers (3, 4) rotating in opposing directions or by a strip moving in the casting direction (G)during the casting operation and in that the cast strip (B) is 0.8 to 4.5 mm thick.
  2. Method according to Claim 1, characterised in that the steel melt is cooled at a cooling rate of at least 200 K/s to below the glass transition temperature TG.
  3. Method according to any one of the preceding claims, characterised in that the amorphous or semi-amorphous cast strip (B) is hot rolled into the hot strip at a hot rolling starting temperature in the range between the glass transition temperature TG and the crystallisation temperature Tx.
  4. Method according to any one of the preceding claims, characterised in that the steel melt (S) is cooled by contact with the moving cooled wall at a cooling rate of at least 200 K/s.
  5. Method according to Claim 4, characterised in that the cast strip (B) continues to be cooled at a cooling rate of at least 200 K/s after leaving the casting region (5).
  6. Method according to Claim 4 or 5,
    characterised in that the cast strip (B) leaving the casting region (5) is continuously cooled until the glass transition temperature TG of the respective steel is undercut.
  7. Method according to any one of Claims 4 to 6, characterised in that the cast strip (B) is hot rolled into a hot strip at a hot rolling starting temperature of 500 to 1000°C.
  8. Method according to any one of Claims 4 to 7, characterised in that the cast strip (B) leaving the casting region (5) of the casting device (2) and optionally also cooled has an amorphous or semi-amorphous structure and in that the cast strip (B) procured in this manner is annealed at an annealing temperature TAnneal corresponding at least to the crystallisation temperature Tx of the respective steel.
  9. Method according to Claim 8, characterised in that the annealing temperature TAnneal is in the range of 500 to 1000°C.
  10. Method according to any one of Claims 4 to 9, characterised in that, in addition to the at least two elements from the group of Si, B, C and P, the steel melt (S) contains at least one element from the group of Cu, Cr, Al, N, Nb, Mn, Ti and V.
  11. Method according to any one of the preceding claims, characterised in that the casting device (2) is a two-roller casting device, whose rollers (3, 4) rotating opposed to one another around axes (X1, X2) aligned axially-parallel to one another each form a cooled longitudinal wall of the casting region (5) continually moving forward during the casting operation in the casting direction (G), the strip (B) being formed in said casting region.
  12. Method according to any one of the preceding claims, characterised in that one of the following proportions respectively applies to at least one of the elements from the group "Si, B, C, P" (in wt%):
    Si: 2.0 to 6.0%,
    B: 0.4 to 3.0%,
    C: 0.5 to 3.0%
    or
    P: 2.0 to 6.0%.
  13. Method according to any one of the preceding claims, characterised in that the steel melt optionally (in wt%) contains in each case at least 0.1% Cu, at least 0.5% Cr, at least 1.0% Al and at least 0.005% N.
  14. Flat steel product consisting of a steel which, in addition to iron and unavoidable impurities, contains at least two additional elements from the group of Si, B, C and P with the proportion (in wt%):
    Si: 1.2 to 7.0%,
    B: 0.4 to 4.0%,
    C: 0.5 to 4.0%,
    P: 1.5 to 8.0%,
    as well as optionally one or a plurality of the elements from the group "Cu, Cr, Al, N, Nb, Mn, Ti, V" with the proportion (in wt%):
    Cu: up to 5.0%,
    Cr: up to 10.0%,
    Al: up to 10.0%,
    N: up to 0.5%,
    Nb: up to 2.0%,
    Mn: up to 3.0%,
    Ti: up to 2.0%,
    V: up to 2.0%,
    wherein the flat steel product has an amorphous, semi-amorphous or fine crystalline structure with grain sizes which are in the range of 10 to 10000 nm, characterised in that the flat steel product has a thickness of 0.8 to 4.5 mm.
  15. Flat steel product according to Claim 14, characterised in that one of the following proportions respectively applies to at least one of the elements from the group "Si, B, C, P" (in wt%):
    Si: 2.0 to 6.0%,
    B: 0.4 to 3.0%,
    C: 0.5 to 3.0%,
    or
    P: 2.0 to 6.0%.
EP13152793.9A 2013-01-25 2013-01-25 Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures Not-in-force EP2759614B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13152793.9A EP2759614B1 (en) 2013-01-25 2013-01-25 Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures
JP2015554158A JP6457951B2 (en) 2013-01-25 2014-01-24 Method for producing a flat steel product with an amorphous microstructure, a partial amorphous microstructure or a microcrystalline microstructure and a flat steel product with such properties
KR1020157022868A KR102203018B1 (en) 2013-01-25 2014-01-24 Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type
CN201480018468.1A CN105143491B (en) 2013-01-25 2014-01-24 Manufacture the method for the flat product with amorphous state, part amorphous state or thin brilliant micro structure and there is the flat product of this characteristic
US14/763,249 US10730105B2 (en) 2013-01-25 2014-01-24 Method for producing a flat steel product with an amorphous, partially amorphous or fine-crystalline microstructure and flat steel product with such characteristics
EP14701377.5A EP2948572A1 (en) 2013-01-25 2014-01-24 Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type
PCT/EP2014/051416 WO2014114756A1 (en) 2013-01-25 2014-01-24 Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type
BR112015017627-5A BR112015017627B1 (en) 2013-01-25 2014-01-24 METHOD OF PRODUCTION OF A FLAT STEEL PRODUCT WITH AN AMORPLE MICRO-STRUCTURE, PARTIALLY AMORPIAN OR FINE CRYSTALLINE AND FLAT STEEL PRODUCT WITH SUCH CHARACTERISTICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13152793.9A EP2759614B1 (en) 2013-01-25 2013-01-25 Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures

Publications (2)

Publication Number Publication Date
EP2759614A1 EP2759614A1 (en) 2014-07-30
EP2759614B1 true EP2759614B1 (en) 2019-01-02

Family

ID=47681703

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13152793.9A Not-in-force EP2759614B1 (en) 2013-01-25 2013-01-25 Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures
EP14701377.5A Withdrawn EP2948572A1 (en) 2013-01-25 2014-01-24 Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14701377.5A Withdrawn EP2948572A1 (en) 2013-01-25 2014-01-24 Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type

Country Status (7)

Country Link
US (1) US10730105B2 (en)
EP (2) EP2759614B1 (en)
JP (1) JP6457951B2 (en)
KR (1) KR102203018B1 (en)
CN (1) CN105143491B (en)
BR (1) BR112015017627B1 (en)
WO (1) WO2014114756A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425082B1 (en) 2013-08-28 2024-05-15 Innovex Downhole Solutions Inc. Chromium-free thermal spray composition, method, and apparatus
CN104593701B (en) * 2015-01-15 2017-01-04 江苏本安环保科技有限公司 A kind of Fe-based amorphous alloy block blast-proof materials
DE102015217627B4 (en) 2015-09-15 2017-07-20 Thyssenkrupp Ag Belt processing device and method for processing a belt
DE102015116517A1 (en) 2015-09-29 2017-03-30 Thyssenkrupp Ag Apparatus and method for the continuous production of a band-shaped metallic workpiece
CN105838993B (en) 2016-04-05 2018-03-30 宝山钢铁股份有限公司 Lightweight steel, steel plate and its manufacture method with enhancing modulus of elasticity feature
CN110366602B (en) * 2017-02-27 2022-10-11 纽科尔公司 Thermal cycling for austenite grain refinement
WO2020044445A1 (en) * 2018-08-28 2020-03-05 Jfeスチール株式会社 Hot-rolled steel sheet and production method therefor, cold-rolled steel sheet and production method therefor, production method for cold-rolled annealed steel sheet, and production method for hot-dip galvanized steel sheet
CN109457168B (en) * 2018-12-24 2021-07-06 宁波正直科技有限公司 Gas pipe alloy of household gas stove, preparation method thereof and gas pipe
CN109719264B (en) * 2019-02-26 2020-10-02 安徽智磁新材料科技有限公司 Antirust amorphous alloy and preparation method thereof
CN109822067B (en) * 2019-04-08 2020-12-18 东北大学 Method for continuously preparing nickel-based amorphous thin strip
CN109957732B (en) * 2019-04-08 2020-11-27 东北大学 Method for continuously preparing zirconium-based amorphous thin strip
CN109825781B (en) * 2019-04-08 2021-02-05 东北大学 Method for continuously preparing iron-based amorphous thin strip
CN109967703B (en) * 2019-04-08 2020-09-18 东北大学 Method for continuously and efficiently preparing wide amorphous thin strip with thickness of 80-1500 mu m at high cooling speed
CN110195187B (en) * 2019-05-17 2020-06-05 北京科技大学 High-elasticity-modulus automobile steel material and preparation method thereof
DE102019004114A1 (en) * 2019-06-08 2020-06-18 Daimler Ag Steel alloy, component, in particular for a motor vehicle, and method for producing such a component
DE102019122515A1 (en) * 2019-08-21 2021-02-25 Ilsenburger Grobblech Gmbh Process for the production of high-strength sheets or strips from a low-alloy, high-strength bainitic steel and a steel strip or sheet steel from this
DE102021116380B4 (en) 2021-06-24 2023-04-06 Thyssenkrupp Steel Europe Ag Process for producing a steel flat product with an amorphous or partially amorphous structure and product made from such a steel flat product

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789989A (en) 1971-10-15 1973-02-01 Arbed
US4219355A (en) * 1979-05-25 1980-08-26 Allied Chemical Corporation Iron-metalloid amorphous alloys for electromagnetic devices
JPS57193005A (en) * 1981-05-23 1982-11-27 Tdk Corp Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same
JPS5964143A (en) 1982-10-04 1984-04-12 Nippon Steel Corp Production of light-gage amorphous alloy strip for iron core
JPS6376842A (en) 1986-09-18 1988-04-07 Kawasaki Steel Corp Manufacture of amorphous alloy foil for transformer iron core
JPH04266460A (en) 1991-02-19 1992-09-22 Nippon Steel Corp Secondary cooling method in twin roll type strip continuous casting
JPH0559483A (en) 1991-08-30 1993-03-09 Kawasaki Steel Corp Manufacture of amorphous alloy thin strip for commercial frequency band transformer
JPH05291019A (en) 1992-04-13 1993-11-05 Nippon Steel Corp Manufacture of fe-based amorphous alloy
JPH06274050A (en) 1993-03-23 1994-09-30 Tokyo Electric Co Ltd Transfer device
JPH06297109A (en) 1993-04-15 1994-10-25 Nippon Steel Corp Production of cr-ni series stainless steel cast strip excellent in surface characteristic
JPH08283919A (en) 1995-04-11 1996-10-29 Nippon Steel Corp Iron-base amorphous alloy foil and its production
US5958153A (en) * 1995-04-11 1999-09-28 Nippon Steel Corporation Fe-system amorphous metal alloy strip having enhanced AC magnetic properties and method for making the same
JP3634286B2 (en) 2000-11-27 2005-03-30 新日本製鐵株式会社 Fe-based amorphous alloy ribbon and iron core manufactured using it
US6416879B1 (en) * 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
JP3929327B2 (en) 2002-03-01 2007-06-13 独立行政法人科学技術振興機構 Soft magnetic metallic glass alloy
WO2003085150A1 (en) * 2002-04-05 2003-10-16 Nippon Steel Corporation Fe-BASE AMORPHOUS ALLOY THIN STRIP OF EXCELLENT SOFT MAGNETIC CHARACTERISTIC, IRON CORE PRODUCED THEREFROM AND MASTER ALLOY FOR QUENCH SOLIDIFICATION THIN STRIP PRODUCTION FOR USE THEREIN
WO2004028724A1 (en) 2002-09-27 2004-04-08 Postech Foundation Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
EP1740734B1 (en) * 2004-04-28 2017-07-05 The Nanosteel Company, Inc. Nano-crystalline steel sheet
JP4849545B2 (en) * 2006-02-02 2012-01-11 Necトーキン株式会社 Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and inductance component using the same
JP5057551B2 (en) 2006-06-21 2012-10-24 株式会社神戸製鋼所 Zr-based metallic glass sheet
JP4319206B2 (en) * 2006-07-20 2009-08-26 独立行政法人科学技術振興機構 Soft magnetic Fe-based metallic glass alloy
ES2540206T3 (en) * 2006-10-18 2015-07-09 The Nanosteel Company, Inc. Improved treatment procedure for the production of a nanometric / almost nanometric amorphous steel sheet
DE502006003835D1 (en) 2006-10-30 2009-07-09 Thyssenkrupp Steel Ag Method of producing steel flat products from boron microalloyed multiphase steel
TWI434944B (en) * 2006-12-04 2014-04-21 Amorphous alloy composition
KR101354935B1 (en) 2006-12-20 2014-01-27 재단법인 포항산업과학연구원 Cooling device for amorphous strip using strip casting
EP2163659B1 (en) 2008-09-11 2016-06-08 Outokumpu Nirosta GmbH Stainless steel, cold strip made of same and method for producing cold strip from same
DE102009048165A1 (en) * 2009-10-02 2011-04-07 Sms Siemag Ag Method for strip casting of steel and plant for strip casting
DE102011000089A1 (en) 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Method for producing a hot rolled flat steel product
CN102605293A (en) 2012-04-18 2012-07-25 江苏省沙钢钢铁研究院有限公司 Non-quenched and tempered low-crack-sensitivity steel plate with excellent low-temperature toughness and production method thereof
CN102796969B (en) * 2012-08-31 2015-08-26 宝山钢铁股份有限公司 A kind of containing boron microalloy weather resisting steel and manufacture method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20150110729A (en) 2015-10-02
KR102203018B1 (en) 2021-01-14
JP6457951B2 (en) 2019-01-23
EP2759614A1 (en) 2014-07-30
BR112015017627B1 (en) 2020-09-15
JP2016507383A (en) 2016-03-10
BR112015017627A2 (en) 2017-07-11
US10730105B2 (en) 2020-08-04
CN105143491B (en) 2016-12-14
US20150360285A1 (en) 2015-12-17
CN105143491A (en) 2015-12-09
EP2948572A1 (en) 2015-12-02
WO2014114756A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
EP2759614B1 (en) Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures
DE60014145T2 (en) METHOD FOR THE PRODUCTION OF CARBON STEEL STRIPS, ESPECIALLY FOR PACKAGING MATERIAL, AND SOFTWARE PRODUCED THEREFOR
DE69208528T2 (en) Process for shaping amorphous metallic materials
EP1752548B1 (en) Method for producing a magnetic grain oriented steel strip
EP2761041B1 (en) Method for producing a grain-oriented electrical steel strip or sheet intended for electrotechnical applications
DE60219484T2 (en) METHOD FOR PROCESSING STRUCTURED METALLIC BRAMS OR TAPES
DE69628312T2 (en) METHOD FOR THE PRODUCTION OF BEVERAGE CAN PANEL
DE112013001191B4 (en) Process for producing an amorphous alloy ribbon
EP2812456B1 (en) Process for manufacturing an electric sheet from a hot-rolled steel strip
EP2729588B1 (en) Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
EP3019292B1 (en) Method for producing a flat product from an iron-based shape memory alloy
EP1319091B1 (en) Method for producing a steel strip or sheet consisting predominantly of mn-austenite
DE112013001401T5 (en) BAND OF AMORPHER ALLOY
EP1341937B1 (en) Method for producing a hot rolled strip made of a steel comprising a high content of manganese
DE102009018683A1 (en) Method and device for continuous casting of a slab
DE102009036378A1 (en) Method and apparatus for producing a microalloyed steel, in particular a tubular steel
DE112015005690T5 (en) Hot rolled martensitic lightweight sheet steel and method of making the same
DE69621351T2 (en) CASTING BELTS FOR CASTING METALS, METHOD FOR THE PRODUCTION AND USE THEREOF
DE102014005662A1 (en) Material concept for a malleable lightweight steel
EP2483014B1 (en) Method for strip casting steel and system for strip casting
DE102021116380B4 (en) Process for producing a steel flat product with an amorphous or partially amorphous structure and product made from such a steel flat product
EP2756897A1 (en) Method for producing a flat product in the form of a metallic composite material
EP1228255A1 (en) Method for producing a hot strip
EP1802405B1 (en) Method for producing metal sheets from a magnesium melt
DE102012108648B4 (en) Process for the production of a component from a magnesium alloy casting belt with good forming behavior

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160226

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1084471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011941

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011941

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

26N No opposition filed

Effective date: 20191003

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190125

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210118

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210119

Year of fee payment: 9

Ref country code: AT

Payment date: 20210119

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013011941

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1084471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131