JP4319199B2 - Powder storage device - Google Patents

Powder storage device Download PDF

Info

Publication number
JP4319199B2
JP4319199B2 JP2006134630A JP2006134630A JP4319199B2 JP 4319199 B2 JP4319199 B2 JP 4319199B2 JP 2006134630 A JP2006134630 A JP 2006134630A JP 2006134630 A JP2006134630 A JP 2006134630A JP 4319199 B2 JP4319199 B2 JP 4319199B2
Authority
JP
Japan
Prior art keywords
granular material
storage tank
tank body
stage
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006134630A
Other languages
Japanese (ja)
Other versions
JP2007302449A (en
Inventor
正章 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2006134630A priority Critical patent/JP4319199B2/en
Publication of JP2007302449A publication Critical patent/JP2007302449A/en
Application granted granted Critical
Publication of JP4319199B2 publication Critical patent/JP4319199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

本発明は、廃棄物を原料とする炭化物やRDFのような低温酸化等による発熱反応性を有する粉粒体を安全に貯留しながら養生することができる粉粒体の貯留装置に関するものである。   The present invention relates to a granular material storage device capable of curing while safely storing a granular material having exothermic reactivity due to low-temperature oxidation or the like such as carbide or RDF using waste as a raw material.

従来、都市ごみ等の廃棄物の処理方法は埋設や焼却が主体であったが、最近では、燃料その他のエネルギー源として活用する技術が開発されている。ところが廃棄物を原料とする炭化物やRDFは低温酸化等による発熱反応性を有し、空中の酸素と反応して次第に温度が上昇し、発火する危険性がある。特に都市ごみを炭化炉で加熱して生産された炭化物はその表面に遊離基や官能基等を備えているため、炭化炉から排出された直後に出荷すると、搬送の途中や出荷先で発火するおそれがある。そこで数日間は貯留装置で養生を行い、発熱反応性を低下させてから出荷する必要がある。   Conventionally, waste disposal methods such as municipal waste have mainly been buried or incinerated, but recently, technologies for use as fuel and other energy sources have been developed. However, carbides and RDF using waste as a raw material have exothermic reactivity due to low-temperature oxidation or the like, and react with oxygen in the air to gradually increase the temperature and ignite. Carbides produced by heating municipal waste in a carbonization furnace have free radicals, functional groups, etc. on the surface, so if shipped immediately after being discharged from the carbonization furnace, it will ignite during transportation or at the shipping destination. There is a fear. Therefore, it is necessary to carry out curing with a storage device for several days to reduce exothermic reactivity before shipping.

ところが炭化物を大型の貯留槽に貯留すると、粉粒体の容積当たりの放熱面積が減少するため、その内部に熱がこもって中心部が高温になり、最悪の場合には熱暴走して発火に至ることがある。そこでこの危険を避けるために小型の貯留槽を多数設置して分散貯留方式とすると、広い設置面積を必要とするのみならず、管理に手数がかかるという問題があった。   However, if carbide is stored in a large storage tank, the heat radiation area per volume of the granular material decreases, so heat accumulates inside and the center becomes hot, and in the worst case, thermal runaway occurs and ignition occurs. Sometimes. Therefore, in order to avoid this danger, when a large number of small storage tanks are installed and the distributed storage method is adopted, there is a problem that not only a large installation area is required but also management is troublesome.

上記の事情はRDFの場合も同様であって、大型の貯留槽にRDFを貯留すると発火する危険性がある。そこで特許文献1のように貯留槽の全体を窒素ガスで満たして空中の酸素との反応を防止する提案がなされているが、全体を気密構造としなければならないので設備コストが高くなり、また窒素ガスのコストがかかるという問題がある。しかも窒素ガス内で貯留しても発熱反応性は変化しないので、養生という目的は達成することができない。
特開2005−178934号公報
The above situation is the same in the case of RDF, and there is a risk of ignition if RDF is stored in a large storage tank. Therefore, as in Patent Document 1, a proposal has been made to fill the entire storage tank with nitrogen gas to prevent reaction with oxygen in the air. However, since the entire structure must be an airtight structure, the equipment cost increases, and nitrogen There is a problem that the cost of gas is high. Moreover, since the exothermic reactivity does not change even when stored in nitrogen gas, the purpose of curing cannot be achieved.
JP 2005-178934 A

本発明は上記した従来の問題点を解決し、低温酸化等による発熱反応性を有する炭化物やRDFのような粉粒体を、広い設置面積を必要とせず、また管理に多くの手数を要することなく、低コストで安全に貯留して養生することができる発熱反応性を有する粉粒体の貯留装置を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and does not require a large installation area and requires a lot of manpower to manage powder particles such as carbide and RDF having exothermic reactivity due to low-temperature oxidation or the like. Therefore, the present invention has been made in order to provide a granular material storage device having exothermic reactivity that can be safely stored and cured at low cost.

上記の課題を解決するためになされた本発明の発熱反応性を有する粉粒体の貯留装置は、上端に投入口、下端に排出口を備えた縦長の貯留槽体の内部を、上下方向に複数段に区画し、各段を低温酸化等による発熱反応性を有する粉粒体の貯留室とするとともに、各段の貯留室には粉粒体を下段に落下させる開口と、この開口へ粉粒体を移動させる移送手段とを設け、さらに貯留槽体の側壁には、各段の貯留室から粉粒体を急速排出させる非常排出口を設けたことを特徴とするものである。   The exothermic reactive powder storage device of the present invention made to solve the above problems is a vertically long storage tank body provided with an inlet at the upper end and an outlet at the lower end in the vertical direction. The stage is divided into a plurality of stages, and each stage is used as a storage chamber for the granular material having exothermic reactivity due to low-temperature oxidation or the like. A transfer means for moving the granules, and an emergency discharge port for quickly discharging the granules from the storage chamber of each stage is provided on the side wall of the storage tank.

なお、移送手段がスクリューフィーダであり、その逆転方向の移送端に非常排出口が設けられた構造や、移送手段がサークルフィーダの回転羽根であり、貯留槽体の側壁に開閉可能なシュート式の非常排出口が設けられた構造とすることができる。また、貯留槽体の内部を区画する床板、スクリューフィーダのスクリュー軸、サークルフィーダの回転羽根のいずれか1つ以上を冷却可能な構造とすることが好ましく、貯留槽体に、粉粒体の温度センサと、粉粒体の温度制御手段と、移送手段の速度制御手段とを設けて低温酸化等の発熱反応をコントロールできるようにすることが好ましい。   Note that the transfer means is a screw feeder and an emergency discharge port is provided at the transfer end in the reverse direction, and the transfer means is a rotary blade of a circle feeder, which can be opened and closed on the side wall of the storage tank body. A structure with an emergency outlet can be provided. Moreover, it is preferable to set it as the structure which can cool any one or more of the floor board which divides the inside of a storage tank body, the screw shaft of a screw feeder, and the rotary blade of a circle feeder, and the temperature of a granular material is set to a storage tank body. It is preferable to provide a sensor, a temperature control means for the granular material, and a speed control means for the transfer means so that an exothermic reaction such as low-temperature oxidation can be controlled.

本発明の貯留装置は、炭化物やRDFのような粉粒体を上端の投入口から投入し、下端の排出口から排出することは通常のサイロ式の貯留装置と同様であるが、貯留槽体の内部が上下方向に複数段に区画されているので、粉粒体は各段の貯留室に小分けされた状態で貯留されることとなる。このため放熱面積を確保し易くなり、内部で熱暴走することを防止できる。特に貯留槽体の内部を区画する床板等を冷却可能な構造とすれば、より確実に熱暴走を防止できる。しかも特許文献1のような窒素ガスを必要としないので、ランイングコストを抑制することができる。   The storage device of the present invention is similar to a normal silo type storage device in which powder particles such as carbides and RDF are input from the upper end inlet and discharged from the lower end outlet. Is divided into a plurality of stages in the vertical direction, so that the granular material is stored in a state of being divided into storage chambers in each stage. For this reason, it becomes easy to ensure a heat radiation area, and it can prevent thermal runaway inside. In particular, if a floor plate or the like that partitions the inside of the storage tank body is structured to be cooled, thermal runaway can be prevented more reliably. And since nitrogen gas like patent document 1 is not required, a running cost can be suppressed.

また本発明の貯留装置は、各段の貯留室を上下多段に形成したので、広い設置面積は不要であり、また多数の小型の貯留槽を多数設置した場合に比較して、建設費が抑制でき、かつ管理が容易である。しかも仮に内部温度が異常に上昇した場合には、貯留槽体の側壁に設けた非常排出口から各段の貯留室内の粉粒体を急速排出することができるので、発火に至る危険を避けることができる。上端の投入口から投入された粉粒体は各段を順次移動する間に空中の酸素と接して養生され、出荷可能な安全な製品として取り出すことが可能となる。また、酸素供給源となり得る空気等の気体を貯留槽内に必要に応じて供給する気体供給装置を具備することによって、より低温酸化等の発熱反応を促進させ養生時間を短縮することができる。   In addition, since the storage device of the present invention has the storage chambers of each stage formed in upper and lower stages, a large installation area is unnecessary, and the construction cost is suppressed compared to the case where a large number of small storage tanks are installed. And easy to manage. In addition, if the internal temperature rises abnormally, the granular material in the storage chamber of each stage can be quickly discharged from the emergency outlet provided on the side wall of the storage tank body, so avoid the risk of ignition. Can do. The granular material fed from the top loading port is cured in contact with oxygen in the air while sequentially moving through each stage, and can be taken out as a safe product that can be shipped. In addition, by providing a gas supply device that supplies a gas such as air that can serve as an oxygen supply source into the storage tank as needed, an exothermic reaction such as low-temperature oxidation can be promoted and the curing time can be shortened.

以下に本発明の好ましい実施形態を示す。
図1と図2は本発明の第1の実施形態を示すもので、1は低温酸化等による発熱反応性を有する粉粒体を貯留するための縦長の貯留槽体であり、その上端には投入口2が設けられ、下端には排出口3が設けられている。貯留槽体1の内部は床板4によって上下方向に複数段に区画してあり、各段が貯留室5となっている。床板4は水平であっても後記の開口6に向けて僅かに傾斜させてもよい。貯留槽体1は水平断面が円形であっても角型であってもよいが、この実施形態では図2に示すような四角形である。段数は2段以上であれば任意である。
Preferred embodiments of the present invention are shown below.
1 and 2 show a first embodiment of the present invention. Reference numeral 1 denotes a vertically long storage tank body for storing powder particles having exothermic reactivity due to low-temperature oxidation or the like, and at the upper end thereof. An input port 2 is provided, and a discharge port 3 is provided at the lower end. The interior of the storage tank body 1 is partitioned into a plurality of stages in the vertical direction by the floor plate 4, and each stage is a storage chamber 5. The floor plate 4 may be horizontal or slightly inclined toward the opening 6 described later. The storage tank body 1 may be circular or square in horizontal section, but in this embodiment is a quadrangle as shown in FIG. The number of stages is arbitrary as long as it is two or more.

各段の貯留室5には、粉粒体を下段に落下させる開口6と、この開口6へ粉粒体を移動させる移送手段7とを設けてある。この実施形態では移送手段7は複数本のスクリューコンベヤであり、開口6は床板4の一端に形成されている。なお各段毎に開口6の位置を変え、粉粒体が2段以上下まで垂直に落下しないようにしておくものとする。   The storage chamber 5 at each stage is provided with an opening 6 for dropping the granular material to the lower stage and a transfer means 7 for moving the granular material to the opening 6. In this embodiment, the transfer means 7 is a plurality of screw conveyors, and the opening 6 is formed at one end of the floor plate 4. It should be noted that the position of the opening 6 is changed for each step so that the granular material does not fall vertically down to two or more steps.

また貯留槽体1の側壁8には、貯留室5から粉粒体を急速排出させるための非常排出口9が各段毎に設けられている。この実施形態ではスクリューコンベヤの逆転方向の移送端を外方に突出させて非常排出口9を形成してある。このため、スクリューコンベヤを正転させたときには粉粒体は開口6に向かって移送されるが、非常時にスクリューコンベヤを逆転させると非常排出口9に向けて移送され、各段から一斉に外部に排出することが可能となる。   In addition, the side wall 8 of the storage tank body 1 is provided with an emergency discharge port 9 for quickly discharging the granular material from the storage chamber 5 for each stage. In this embodiment, the emergency discharge port 9 is formed by projecting the transfer end of the screw conveyor in the reverse direction outward. For this reason, when the screw conveyor is rotated forward, the powder particles are transferred toward the opening 6. However, when the screw conveyor is reversed in an emergency, it is transferred toward the emergency discharge port 9, and is simultaneously transferred to the outside from each stage. It becomes possible to discharge.

このように構成された貯留装置は、上端の投入口2から投入された粉粒体を上段から下段に向かって順次移動させ、下端の排出口3から取り出すものであり、この間に粉粒体は徐々に低温酸化等の発熱反応が進行し、養生される。図1に示すように粉粒体は各段の貯留室5に分散されて貯留されるので、体積当たりの放熱面積を広く確保することができ、内部温度が異常に上昇する熱暴走が抑制され、安全な貯留が可能となる。しかも設置面積は小さくてよく、全体が単一の貯留槽体1の内部に収納されているため、多数の小型の貯留槽を多数設置した場合に比較して、建設費が抑制でき、かつ管理が容易である。   The storage device configured in this manner is to sequentially move the granular material charged from the upper inlet 2 toward the lower stage and take it out from the lower outlet 3, during which the granular material is Gradually, an exothermic reaction such as low-temperature oxidation proceeds and is cured. As shown in FIG. 1, since the granular materials are dispersed and stored in the storage chambers 5 of each stage, a large heat radiation area per volume can be secured, and thermal runaway in which the internal temperature rises abnormally is suppressed. , Safe storage is possible. Moreover, since the installation area may be small and the whole is housed in a single storage tank body 1, construction costs can be reduced and managed compared to the case where a large number of small storage tanks are installed. Is easy.

また仮に内部温度の異常な上昇が検出された場合には、各段のスクリューコンベヤを逆転させることにより粉粒体を非常排出口9に向けて移送し、各段から一斉に外部に排出することができる。この場合の排出速度は、通常運転時のN倍以上(Nは段数)となるので、火災に至ることがない。また、異常上昇した区画からのみ緊急排出することが可能なため、排出時に水散布等によって冷却した場合に、燃料としての価値を失う粉粒体を少なくすることが可能である。   In addition, if an abnormal rise in internal temperature is detected, the powder conveyors are transferred toward the emergency discharge port 9 by reversing the screw conveyor at each stage, and discharged simultaneously from each stage to the outside. Can do. In this case, the discharge speed is N times or more (N is the number of stages) during normal operation, so that a fire does not occur. Moreover, since it is possible to discharge urgently only from the abnormally elevated section, it is possible to reduce the number of granular materials that lose their value as fuel when cooled by water spraying or the like at the time of discharge.

なお図3に示すように、床板4に冷却パイプ10を設けて水冷構造としたり、あるいは床板4を中空として空冷可能な構造としたりすれば、各段における放熱効果を高めることができるので、低温酸化等の発熱反応の進行を抑制して内部温度が異常に上昇する熱暴走をより確実に防止することができる。また、冷却機構はスクリューフィーダのスクリュー軸や、サークルフィーダの回転羽根を利用したものとすることもできる。   As shown in FIG. 3, if the floor plate 4 is provided with a cooling pipe 10 to form a water cooling structure, or the floor plate 4 has a hollow structure capable of air cooling, the heat radiation effect at each stage can be enhanced. It is possible to more reliably prevent thermal runaway in which the internal temperature abnormally rises by suppressing the progress of an exothermic reaction such as oxidation. Moreover, the cooling mechanism can also utilize the screw shaft of a screw feeder, or the rotary blade of a circle feeder.

また図4に示すように、貯留槽体1の内部にレベルセンサ11、温度センサ12、酸素センサ13などを設けて粉粒体の状況を監視し、制御装置14によって粉粒体の温度制御手段である加熱装置15、冷却装置16を作動させることができるようにしておけば、低温酸化等の発熱反応の進行をより確実に制御することができる。この場合、加熱装置15としては電熱ヒーターや蒸気加熱装置を使用することができ、冷却装置16としては上記した水冷構造などを使用することができる。さらに制御装置14により移送手段7であるスクリューフィーダ等の作動速度を制御し、粉粒体の移動速度を制御できるようにしておけば、より好ましい。また新鮮な酸素供給源である気体(例えば空気)を供給する気体供給装置を具備すれば、低温酸化等の発熱反応を促進することが可能であり、より好ましい。   Further, as shown in FIG. 4, a level sensor 11, a temperature sensor 12, an oxygen sensor 13, and the like are provided inside the storage tank body 1 to monitor the state of the powder and the temperature of the powder is controlled by the control device 14. If the heating device 15 and the cooling device 16 can be operated, the progress of an exothermic reaction such as low-temperature oxidation can be controlled more reliably. In this case, an electric heater or a steam heating device can be used as the heating device 15, and the above-described water cooling structure or the like can be used as the cooling device 16. Further, it is more preferable that the control device 14 controls the operating speed of the screw feeder or the like as the transfer means 7 so that the moving speed of the powder particles can be controlled. Further, it is more preferable to provide a gas supply device that supplies a gas (for example, air) that is a fresh oxygen supply source because it is possible to promote an exothermic reaction such as low-temperature oxidation.

図5以下に示す第2の実施形態では、貯留槽体1は円筒状であってその内部が床板4により上下多段に区画されている。図6に示すように床板4には粉粒体を下段に落下させる開口6と、非常排出用の開口17とが設けられている。これらは何れも床板4の外周付近にある。貯留槽体1の中心には回転軸18が設けられており、この回転軸18には各段の床板4の直上位置で回転する回転羽根19が設けられている。回転羽根19はその下面に傾斜した多数の送り板20を備えており、各送り板20の下面は床板4に至近位置に達している。送り板20は回転羽根19の正転時に粉粒体を外周方向に移動させる角度となっている。   In the second embodiment shown in FIG. 5 and subsequent figures, the storage tank body 1 is cylindrical, and the inside thereof is partitioned into upper and lower multistages by the floor plate 4. As shown in FIG. 6, the floor plate 4 is provided with an opening 6 for dropping the granular material to the lower stage and an emergency discharge opening 17. These are all near the outer periphery of the floor plate 4. A rotating shaft 18 is provided at the center of the storage tank body 1, and a rotating blade 19 that rotates at a position immediately above the floor plate 4 of each stage is provided on the rotating shaft 18. The rotary blade 19 includes a number of feed plates 20 inclined on the lower surface thereof, and the lower surface of each feed plate 20 reaches a position close to the floor plate 4. The feed plate 20 has an angle at which the granular material is moved in the outer circumferential direction when the rotary blade 19 rotates forward.

このため回転軸18を回転させると各段の粉粒体は送り板20によって外周方向に押され、開口6から下段に落下する。また非常排出用の開口17は貯留槽体1の側壁8を貫通して外部に延びるシュート式の非常排出口21に接続されている。この非常排出口21は開閉可能なバルブ22により常時は閉鎖されている。しかし内部温度の異常な上昇が検出された場合にバルブ22により各段に非常排出口21を開くと、開口17から落下した粉粒体は各段の非常排出口21から一斉に外部に排出される。この間にも回転軸18は回転させて粉粒体の排出を促進する。また、開口6には異常時に閉じるバルブ24が設置されており、下段の区画に異常な粉粒体が落下するのを防止することができる。バルブ22とバルブ23は一体の構造である切替ダンパとしても良い。   For this reason, when the rotating shaft 18 is rotated, the granular material at each stage is pushed in the outer circumferential direction by the feed plate 20 and falls from the opening 6 to the lower stage. The emergency discharge opening 17 is connected to a chute-type emergency discharge port 21 that extends through the side wall 8 of the storage tank body 1 to the outside. The emergency discharge port 21 is normally closed by a valve 22 that can be opened and closed. However, when an abnormal rise in the internal temperature is detected, if the emergency discharge port 21 is opened at each stage by the valve 22, the powder particles dropped from the opening 17 are discharged from the emergency discharge port 21 at each stage all at once. The Also during this time, the rotating shaft 18 is rotated to promote the discharge of the granular material. Moreover, the valve | bulb 24 which closes at the time of abnormality is installed in the opening 6, and it can prevent that an abnormal granular material falls to the lower division. The valve 22 and the valve 23 may be a switching damper having an integral structure.

なお、段数が多い場合には単一のモータ23により全段の回転羽根19を回転させることが困難となることがある。その場合には、回転軸18を上下に分割し、それぞれを別個のモータにより駆動するようにしてもよい。   If the number of stages is large, it may be difficult to rotate all the rotary blades 19 by a single motor 23. In that case, the rotating shaft 18 may be divided into upper and lower parts and each may be driven by a separate motor.

この第2の実施形態の貯留装置も、上端の投入口2から投入された粉粒体を上段から下段に向かって順次移動させ、下端の排出口3から取り出すこと、この間に粉粒体は徐々に低温酸化等の発熱反応が進行し、養生されること、内部温度が異常に上昇する熱暴走が抑制され、安全な貯留が可能となること、設置面積は小さくてよく、管理が容易であること、内部温度の異常な上昇が検出された場合には、粉粒体を各段から一斉に外部に排出できることは、全て前述の第1の実施形態と同じである。また図7に示すように床板4冷却構造としたり、図4に示したような制御機構を組み込めることも、第1の実施形態と同じである。   Also in the storage device of the second embodiment, the granular material introduced from the upper inlet 2 is sequentially moved from the upper stage toward the lower stage and taken out from the lower outlet 3. Heat treatment such as low-temperature oxidation progresses and is cured, thermal runaway that abnormally increases the internal temperature is suppressed, safe storage is possible, installation area is small, and management is easy In addition, when an abnormal increase in the internal temperature is detected, it is all the same as in the first embodiment described above that the powder particles can be discharged from each stage all at once. Further, as shown in FIG. 7, it is the same as in the first embodiment that a floor plate 4 cooling structure or a control mechanism as shown in FIG. 4 can be incorporated.

以上に説明したように、本発明の貯留装置は廃棄物を原料とする炭化物やRDFのような低温酸化等による発熱反応性を有する粉粒体を安全に貯留しつつ徐々に低温酸化等を進行させて養生を行うことができ、排出された粉粒体は安全な製品として直ちに使用先に搬送可能である。   As described above, the storage device of the present invention gradually proceeds to low-temperature oxidation etc. while safely storing carbides made of waste as raw materials and powders having exothermic reactivity due to low-temperature oxidation such as RDF. Curing can be performed, and the discharged granular material can be immediately transported to the user as a safe product.

第1の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 1st Embodiment. 移送手段を示す水平断面図である。It is a horizontal sectional view which shows a transfer means. 変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a modification. 他の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another modification. 第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment. 移送手段を示す水平断面図である。It is a horizontal sectional view which shows a transfer means. 変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a modification.

符号の説明Explanation of symbols

1 貯留槽体
2 投入口
3 排出口
4 床板
5 貯留室
6 開口
7 移送手段
8 側壁
9 非常排出口
10 冷却パイプ
11 レベルセンサ
12 温度センサ
13 酸素センサ
14 制御装置
15 加熱装置
16 冷却装置
17 非常排出用の開口
18 回転軸
19 回転羽根
20 送り板
21 非常排出口
22 バルブ
23 モータ
24 バルブ
DESCRIPTION OF SYMBOLS 1 Reservoir body 2 Input port 3 Discharge port 4 Floor board 5 Storage chamber 6 Opening 7 Transfer means 8 Side wall 9 Emergency discharge port 10 Cooling pipe 11 Level sensor 12 Temperature sensor 13 Oxygen sensor 14 Control device 15 Heating device 16 Cooling device 17 Emergency discharge Opening 18 Rotating shaft 19 Rotating blade 20 Feed plate 21 Emergency discharge port 22 Valve 23 Motor 24 Valve

Claims (5)

上端に投入口、下端に排出口を備えた縦長の貯留槽体の内部を、上下方向に複数段に区画し、各段を発熱反応性を有する粉粒体の貯留室とするとともに、各段の貯留室には粉粒体を下段に落下させる開口と、この開口へ粉粒体を移動させる移送手段とを設け、さらに貯留槽体の側壁には、各段の貯留室から粉粒体を急速排出させる非常排出口を設けたことを特徴とする発熱反応性を有する粉粒体の貯留装置。   The interior of the vertically long storage tank body provided with the inlet at the upper end and the outlet at the lower end is partitioned into a plurality of stages in the vertical direction, and each stage is used as a storage chamber for exothermic reactive powder. The storage chamber is provided with an opening for dropping the granular material to the lower stage, and a transfer means for moving the granular material to the opening. Further, on the side wall of the storage tank body, the granular material is supplied from the storage chamber of each stage. An apparatus for storing granular material having exothermic reactivity, characterized in that an emergency discharge port for rapid discharge is provided. 移送手段がスクリューフィーダであり、その逆転方向の移送端に非常排出口が設けられたことを特徴とする請求項1記載の粉粒体の貯留装置。   2. The granular material storage device according to claim 1, wherein the transfer means is a screw feeder, and an emergency discharge port is provided at a transfer end in the reverse direction. 移送手段がサークルフィーダの回転羽根であり、貯留槽体の側壁に開閉可能なシュート式の非常排出口が設けられたことを特徴とする請求項1記載の粉粒体の貯留装置。   2. The granular material storage apparatus according to claim 1, wherein the transfer means is a rotary blade of a circle feeder, and a chute-type emergency discharge port that can be opened and closed is provided on a side wall of the storage tank body. 貯留槽体の内部を区画する床板と、スクリューフィーダのスクリュー軸と、サークルフィーダの回転羽根との少なくとも一つを、冷却可能な構造としたことを特徴とする請求項2記載の粉粒体の貯留装置。   The granular material according to claim 2, wherein at least one of a floor plate partitioning the inside of the storage tank body, a screw shaft of a screw feeder, and a rotary blade of a circle feeder has a cooling structure. Storage device. 貯留槽体に、粉粒体の温度センサと、粉粒体の温度制御手段と、移送手段の速度制御手段とを設けたことを特徴とする請求項1記載の粉粒体の貯留装置。   2. The granular material storage device according to claim 1, wherein a temperature sensor for the granular material, a temperature control means for the granular material, and a speed control means for the transfer means are provided in the storage tank body.
JP2006134630A 2006-05-15 2006-05-15 Powder storage device Active JP4319199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134630A JP4319199B2 (en) 2006-05-15 2006-05-15 Powder storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134630A JP4319199B2 (en) 2006-05-15 2006-05-15 Powder storage device

Publications (2)

Publication Number Publication Date
JP2007302449A JP2007302449A (en) 2007-11-22
JP4319199B2 true JP4319199B2 (en) 2009-08-26

Family

ID=38836717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134630A Active JP4319199B2 (en) 2006-05-15 2006-05-15 Powder storage device

Country Status (1)

Country Link
JP (1) JP4319199B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582973B (en) * 2012-03-02 2014-01-22 中国计量学院 Sludge storage bin system
CN103523412B (en) * 2013-10-17 2015-10-28 三一汽车制造有限公司 Powder material tank and mixing plant
JP6880509B2 (en) * 2017-10-23 2021-06-02 Jfeエンジニアリング株式会社 Dissolution device and method for solid disinfectants
WO2019193672A1 (en) * 2018-04-04 2019-10-10 太平洋エンジニアリング株式会社 Sorting device
JP7505371B2 (en) 2020-10-30 2024-06-25 株式会社サタケ Biomass storage device, operation control method thereof, and power generation system

Also Published As

Publication number Publication date
JP2007302449A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4319199B2 (en) Powder storage device
JP2003214768A (en) Thermal treatment equipment using superheated steam
KR20190109296A (en) Carbonizing furnace
US20100107493A1 (en) Bulk fueled gasifiers
RU2666559C1 (en) Installation for thermal processing of waste
JP6050987B2 (en) Carbide manufacturing method and carbide manufacturing system
US10094280B2 (en) Process for treating waste feedstock and gasifier for same
JP2019052234A (en) Gasification furnace and method for gasifying organic material
ES2716651T3 (en) Installation for the thermal treatment of waste products that pass continuously
JP6801295B2 (en) Sludge treatment equipment
RU2367848C1 (en) Rotating pyrolysis chamber for solid waste
JP6699395B2 (en) Water content control method for dry sludge and carbonization equipment for sludge
JP2009127947A (en) Raw material distributing device of segmental rotary kiln
JP2008249421A (en) Treatment device for reduction of gasification volume of radioactive solid waste
CN212246891U (en) Vertical garbage disposal furnace and garbage disposal system
JP2011063743A (en) Continuous carbonization apparatus
EP4004166B1 (en) Method and an apparatus for dry processing hot coal and coke
KR102632237B1 (en) Steam Coal Manufacturing System Using Sewage Sludge Odor Reduction Heat Treatment Electric Dryer
KR102632238B1 (en) Sewage Sludge Odor Reduction Heat Treatment Electric Dryer
JP6320714B2 (en) Powder storage and supply device
CN212246914U (en) Vertical garbage disposal furnace and garbage disposal system
RU209029U1 (en) Installation for the production of activated carbon from carbonaceous raw materials
EP3473693A1 (en) Thermal degradation reactor and method for operating the reactor
EP3749734B1 (en) Gasification plant
JP7200703B2 (en) carbonization furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250