JP4316974B2 - Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field - Google Patents

Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field Download PDF

Info

Publication number
JP4316974B2
JP4316974B2 JP2003339886A JP2003339886A JP4316974B2 JP 4316974 B2 JP4316974 B2 JP 4316974B2 JP 2003339886 A JP2003339886 A JP 2003339886A JP 2003339886 A JP2003339886 A JP 2003339886A JP 4316974 B2 JP4316974 B2 JP 4316974B2
Authority
JP
Japan
Prior art keywords
magnetic field
light emitting
field sensor
emitting layer
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003339886A
Other languages
Japanese (ja)
Other versions
JP2005108609A (en
Inventor
洋一 沖本
博 岡本
雅司 川崎
好紀 十倉
秀文 小高
章 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
AGC Inc
Original Assignee
Asahi Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Glass Co Ltd
Priority to JP2003339886A priority Critical patent/JP4316974B2/en
Publication of JP2005108609A publication Critical patent/JP2005108609A/en
Application granted granted Critical
Publication of JP4316974B2 publication Critical patent/JP4316974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、ELD(エレクトロルミネッセンスデバイス)の発光輝度の磁場依存性を用いて、直接磁場強度を光信号に変換する発光素子を用いた磁場センサーに関するものである。 The present invention relates to a magnetic field sensor using a light emitting element that directly converts a magnetic field intensity into an optical signal using the magnetic field dependence of the emission luminance of an ELD (electroluminescence device).

磁場センサーは、電磁誘導相互作用を利用したものと、磁電変換を利用したものに大別される。前者の例として、磁気ヘッド、差動トランス、タコジェネレータ、後者の例としてホール素子、MRE素子(磁気抵抗効果素子)を挙げることができる。
一般的に電磁誘導型の磁気センサーは出力電圧が徴分的になり、磁力線の時間的変化量に出力が比例する。つまり、磁気エネルギーの時間的変化のない場合は、磁気を検出することができない。
Magnetic field sensors are roughly classified into those using electromagnetic induction interaction and those using magnetoelectric conversion. Examples of the former include a magnetic head, a differential transformer, a tachometer, and examples of the latter include a Hall element and an MRE element (magnetoresistance effect element).
Generally, the output voltage of an electromagnetic induction type magnetic sensor becomes fractional, and the output is proportional to the amount of change over time of the lines of magnetic force. That is, magnetism cannot be detected when there is no temporal change in magnetic energy.

これに対して、磁電変換型の磁気センサーは電流と磁気の相互間に生ずるローレンツ力(フレミングの左手三指の法則)を利用しており、静磁界での検出も可能である。いずれのセンサーも磁気エネルギーを電気エネルギーに変換するものである。
このため磁場信号を光信号に変換するには、磁場によって発生した電気信号を何らかな手法で光信号に変える必要があり、磁気センサー構造の複雑さやコストを上げる原因となっている。
On the other hand, the magnetoelectric conversion type magnetic sensor uses Lorentz force (Fleming's left-handed three-finger law) generated between current and magnetism, and can be detected by a static magnetic field. Both sensors convert magnetic energy into electrical energy.
For this reason, in order to convert a magnetic field signal into an optical signal, it is necessary to change an electric signal generated by the magnetic field into an optical signal by some technique, which increases the complexity and cost of the magnetic sensor structure.

従来まで類似の機能を持つ発明, つまり磁場を直接光信号に変換する手法として、アントラセンを用いた有機EL素子が知られている(例えば、非特許文献1参照)。
アントラセンを陰極と陽極で挟みホールと電子をアントラセン中に入れると、三重項励起子が発生する。電流密度が高まると三重項励起子の密度も高まり、励起子同士が再結合し一重項励起子が発生し、これが発光に寄与する。
磁場が存在するとこの三重項励起子から1重項励起子への転換速度が変化し、EL素子の発光強度が変化することが知られている。しかしながら、アントラセンを用いたELは、燐光性の発光を伴いその寿命が数十msに及ぶことや、化学的安定性、低い発光効率が原因で、実用的なEL素子としての応用にはいたっていない。
J. Chemical Physics, vol. 63, 4187
An organic EL element using anthracene has been known as an invention having a similar function until now, that is, as a technique for directly converting a magnetic field into an optical signal (see, for example, Non-Patent Document 1).
When an anthracene is sandwiched between a cathode and an anode and holes and electrons are put into the anthracene, triplet excitons are generated. As the current density increases, the density of triplet excitons also increases, and the excitons recombine to generate singlet excitons, which contribute to light emission.
It is known that when a magnetic field is present, the rate of conversion from triplet excitons to singlet excitons changes, and the emission intensity of the EL element changes. However, EL using anthracene has not been put to practical use as an EL element due to phosphorescent emission and its lifetime of several tens of ms, chemical stability, and low emission efficiency. .
J. Chemical Physics, vol. 63, 4187

空間の磁場強度は、一旦、ホール電圧などの電気信号として測定された後、その信号を増幅して光信号化しており、このため複数のデバイスの組みあわせが必要となり、高コスト化につながっている。
本発明は、この点を改良し、磁気エネルギーを直接光信号として計測可能とするものであり、ELDの発光輝度の磁場依存性を用いて、直接磁場強度を光信号に変換することで、単純な構造を持ち、安定性及び発光効率に優れ、安価な発光素子を用いた磁場センサーを提供するものである。
The magnetic field strength in the space is once measured as an electrical signal such as a Hall voltage, and then the signal is amplified into an optical signal, which requires a combination of multiple devices, leading to higher costs. Yes.
The present invention improves this point and makes it possible to measure magnetic energy as a direct optical signal, and by simply converting the magnetic field strength into an optical signal by using the magnetic field dependence of the emission luminance of ELD, the present invention is simple. It is an object of the present invention to provide a magnetic field sensor having a simple structure, excellent in stability and luminous efficiency, and using an inexpensive light emitting element.

1)透明基板上に形成した正極となる透明電極、該透明電極の上に形成したホール輸送層、ホール輸送層の上に形成したアルミキノリノール錯体又はこれを含む有機物からなる発光層、さらにその上に負極となる電極が形成されている磁場センサーであって、磁場によって発光強度が変化する発光素子を用い、磁場強度を光信号に直接変換することを特徴とする磁場センサー、2)発光層に発光効率を高める色素がドーピングされていることを特徴とする1)記載の磁場センサー、3)発光層に発光効率を高める色素がドーピングされているアルミキノリノール錯体又はこれを含む有機物からなる発光層上に、さらに色素がドーピングされていないアルミキノリノール錯体又はこれを含む有機物からなる発光層が形成されていることを特徴とする2)記載の磁場センサー、4)色素がクマリンであることを特徴とする2)又は3)記載の磁場センサー、を提供する。 1) a transparent electrode to be a positive electrode formed on a transparent substrate, a hole transport layer formed on the transparent electrode, an aluminum quinolinol complex formed on the hole transport layer or a light emitting layer made of an organic material containing the same, and further thereon A magnetic field sensor in which an electrode serving as a negative electrode is formed using a light emitting element whose light emission intensity changes depending on the magnetic field, and directly converting the magnetic field intensity into an optical signal, and 2) a light emitting layer 1. A magnetic field sensor according to 1) , wherein a dye for increasing the luminous efficiency is doped; 3) an aluminum quinolinol complex doped with a dye for increasing the luminous efficiency in the light emitting layer or an organic layer containing the same. Further, a light emitting layer made of an aluminum quinolinol complex not doped with a dye or an organic substance containing the same is formed. 2) The magnetic field sensor according to 2) or 4), wherein the dye is coumarin.

本発明の発光素子により、発光輝度の磁場依存性を用いて、磁場強度を光信号に直接変換することが可能となり、これにより、単純な構造を持ち、安定性及び発光効率に優れ、かつ安価な磁場センサーを提供することができるという優れた効果を有する。   The light-emitting element of the present invention makes it possible to directly convert the magnetic field intensity into an optical signal using the magnetic field dependence of the emission luminance, and thus has a simple structure, excellent stability and luminous efficiency, and low cost. It is possible to provide an excellent magnetic field sensor.

本発明における磁場センサー(有機ELD)の基本構造を図1に示す。有機ELDにおいては基板上に形成された厚さ数百〜数千オングストロングの有機発光層薄膜を一対の電極が対向して挟む構造をとっており、その電極の一方から電子を、他方から正孔を注入して、有機発光層内部で電子と正孔が再結合した時に光が発生する機構となっている。
最近、アルミキノリノール錯体をフラットパネルディスプレイに用いられるようになったが、このアルミキノリノール錯体を発光層に含む蛍光材料を用いたEL素子においては、磁場に依存した発光強度の変化が起こることは全く知られていなかった。
The basic structure of the magnetic field sensor (organic ELD) in the present invention is shown in FIG. An organic ELD has a structure in which a pair of electrodes are sandwiched between organic light emitting layer thin films with a thickness of several hundred to several thousand angstroms formed on a substrate, with electrons from one of the electrodes and positive from the other. Light is generated when holes are injected and electrons and holes are recombined inside the organic light emitting layer.
Recently, an aluminum quinolinol complex has been used for a flat panel display. However, in an EL element using a fluorescent material containing the aluminum quinolinol complex in a light emitting layer, a change in emission intensity depending on a magnetic field does not occur at all. It was not known.

本発明らは、アルミキノリノール錯体(代表例は、Alq3)を含む有機物が、発光輝度の磁場依存性があることを知見し、これを用いることにより磁場強度を光信号に直接変換することで、単純な構造を持ち、安価な磁場センサーを製造することができるとの確証を得た。   The present inventors have found that an organic substance containing an aluminum quinolinol complex (typically, Alq3) has a magnetic field dependency of emission luminance, and by using this, the magnetic field strength is directly converted into an optical signal. We have confirmed that it is possible to manufacture an inexpensive magnetic field sensor with a simple structure.

本発明の有機ELDにおいては、まずガラス等の透明基板上に、ITO(=Indium tin oxide, In−SnO)やIZO(=Indium zinc oxide, In−ZnO)等の透明電極を正極として形成する。
次に、正極の上に有機発光層を一様に形成する。ここにいう有機発光層には、純然たる電子と正孔の再結合による光発生層以外に、発生した光を受けて二次的な蛍光を発生する層や、電子輸送層,正孔輸送層,電子注入層,正孔注入層,正孔阻止層,電子阻止層等の既に知られている各種機能層を一括して、ここでは有機発光層と呼ぶことにする。
In the organic ELD of the present invention, first, on a transparent substrate such as glass, ITO (= Indium tin oxide, In 2 O 3 —SnO 2 ), IZO (= Indium zinc oxide, In 2 O 3 —ZnO 2 ), etc. A transparent electrode is formed as a positive electrode.
Next, an organic light emitting layer is uniformly formed on the positive electrode. The organic light emitting layer mentioned here includes a layer that generates secondary fluorescence by receiving generated light, in addition to a light generation layer by pure electron-hole recombination, an electron transport layer, a hole transport layer Various known functional layers such as an electron injection layer, a hole injection layer, a hole blocking layer, and an electron blocking layer are collectively referred to herein as an organic light emitting layer.

従って、そこに含まれる化合物や層の数、種類等は適宜選択することができる。本発明は、これらを全て含むものである。
本発明においては、上記の通り発光層中にアルミキノリノール錯体の有機物を含むが、有機発光層内部の構成又はその他の一般的な磁場センサーとしての素子基本構造については、特に説明を要しないために省略する。
次に、その上に金属(例えばアルミニウム)膜の層を陰極として形成する。
Accordingly, the number and types of compounds and layers contained therein can be appropriately selected. The present invention includes all of these.
In the present invention, an organic material of an aluminum quinolinol complex is contained in the light emitting layer as described above, but the configuration inside the organic light emitting layer or other element basic structure as a general magnetic field sensor is not particularly required for explanation. Omitted.
Next, a metal (for example, aluminum) film layer is formed thereon as a cathode.

このように形成された有機ELD素子の有機層内部では、一重項励起子と三重項励起子が存在し、一重項励起子の一部は蛍光となって外部に光信号を送ることになる。
アルミキノリノール錯体等を用いたELDにおいては、工業的応用においてはアモルファス膜が利用されること、蛍光が発光の殆どを占めると従来まで考えられていため、上記のように磁場に依存した発光強度変化をすることは知られてはいなかった。
しかしながら、本発明では、アルミキノリノール錯体を用いたELDにおいては、磁場の存在により発光強度が変化し、磁場センサーとして利用可能であることを示すものである。
Inside the organic layer of the organic ELD element formed in this way, singlet excitons and triplet excitons exist, and some of the singlet excitons become fluorescence and send an optical signal to the outside.
In ELDs using aluminum quinolinol complexes, etc., it has been conventionally considered that amorphous films are used in industrial applications, and fluorescence accounts for most of the emission. It was not known to do.
However, in the present invention, in ELD using an aluminum quinolinol complex, the light emission intensity changes due to the presence of a magnetic field, which indicates that it can be used as a magnetic field sensor.

有機ELDにおいては外部への光取り出し効率を高めるために、濃度消光を防ぐ色素を発光層中にドープされているが、アルミキノリノール錯体を用いたELDにおいても同様に、クマリン、ルブレン、スクアリリウムなどが有効である。
本発明のアルミキノリノール錯体を用いたELDを磁場センサーとして利用する場合には、クマリンを色素として10Vol%以下、特に1〜5Vol%程度含有させることが好ましい。
In the organic ELD, a dye for preventing concentration quenching is doped in the light emitting layer in order to increase the light extraction efficiency to the outside. Similarly, in the ELD using an aluminum quinolinol complex, coumarin, rubrene, squarylium, etc. It is valid.
When the ELD using the aluminum quinolinol complex of the present invention is used as a magnetic field sensor, it is preferable to contain coumarin as a pigment in an amount of 10 Vol% or less, particularly about 1 to 5 Vol%.

次に、実施例について説明する。なお、以下に示す実施例については、本発明の理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の基づく改変又は他の実施態様は、全て本発明に含まれるものである。   Next, examples will be described. In addition, about the Example shown below, it is for making an understanding of this invention easy, and does not restrict | limit this invention. In other words, all modifications or other embodiments based on the technical idea of the present invention are included in the present invention.

図2に示す素子構成の有機ELDを作成した。作成プロセル条件、手順を以下に示す。まず、ガラス基板上に100nmのITOをスパッタリング法にて形成した。
この際、ITOの抵抗値下げるため、Ar=97sccm、O=3sccmの流量とし、Snが6原子パーセント入ったInターゲットを用いて、基板温度300°CでDCスパッタにより作成した。
この上に、以下の有機層、負極電極層を10−4Pa程度まで真空度を高めた真空チャンバー内で抵抗加熱によって真空蒸着した。
有機層はホール輸送性のあるα―NPD(N,N′−di−(α−naphthyl)−N,N′−diphenyl−1,1′−biphenyl−4,4′−diamine)を80nm、発光特性と電子輸送特性を有するAlq3、60nmからなる。その上に、金属電極層として、100nmのAlを成膜した。
An organic ELD having the element configuration shown in FIG. 2 was prepared. The creation process conditions and procedures are shown below. First, ITO having a thickness of 100 nm was formed on a glass substrate by a sputtering method.
At this time, in order to lower the resistance value of ITO, the flow rate was Ar = 97 sccm, O 2 = 3 sccm, and an In 2 O 3 target containing 6 atomic percent of Sn was used and DC sputtering was performed at a substrate temperature of 300 ° C.
On top of this, the following organic layer and negative electrode layer were vacuum deposited by resistance heating in a vacuum chamber whose degree of vacuum was increased to about 10 −4 Pa.
The organic layer emits α-NPD (N, N′-di- (α-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diaminine) having a hole transporting property at 80 nm. It consists of Alq3, 60 nm, which has characteristics and electron transport characteristics. On top of this, 100 nm of Al was deposited as a metal electrode layer.

実施例1と同様な方法で、ITO層、ホール輸送層(α―NPD)をガラス基板上に形成した後、クマリン(C545T)が4Vol%程度含まれるAlq3層を膜厚30nm、発光層として形成した。
具体的には、10−4Pa程度まで真空度を高めた真空蒸着装置内で、クマリン(C545T)とAlq3の入ったそれぞれのボートを同時に加熱することで、前記のクマリン(C545T)が4Vol%程度含まれるAlq3層を作成した。
その上に、純粋なAlq3層を膜厚30nm、電子輸送層として形成した。その上に、金属電極層として、100nmのAlを成膜した。
After the ITO layer and the hole transport layer (α-NPD) are formed on the glass substrate in the same manner as in Example 1, an Alq3 layer containing about 4 Vol% of coumarin (C545T) is formed as a light emitting layer with a thickness of 30 nm. did.
Specifically, the coumarin (C545T) is 4 Vol% by simultaneously heating each boat containing coumarin (C545T) and Alq3 in a vacuum deposition apparatus in which the degree of vacuum is increased to about 10 −4 Pa. An Alq3 layer included to some extent was created.
On top of this, a pure Alq3 layer was formed as an electron transport layer with a thickness of 30 nm. On top of this, 100 nm of Al was deposited as a metal electrode layer.

次に、上記実施例1と2で作成した有機ELD素子の発光効率の磁場依存性を評価した。素子の劣化の原因として酸素や水が問題なので、その要因を除くため真空チャンバーから取り出し後、乾燥窒素で満たされたグローブボックス内で、ガラスカバーによる封止を行った。
ガラスカバーとガラス基板の接着には、紫外線効果樹脂を用いた。
Next, the magnetic field dependence of the luminous efficiency of the organic ELD elements prepared in Examples 1 and 2 was evaluated. Since oxygen and water are the causes of deterioration of the element, in order to remove the cause, after taking out from the vacuum chamber, sealing with a glass cover was performed in a glove box filled with dry nitrogen.
An ultraviolet effect resin was used for bonding the glass cover and the glass substrate.

ITO側を正極にAl側を負極にして電圧を印加し、輝度の測定を行った。実施例1で作成した有機ELD素子については、一定の電流量(1250mA/cm)を流し、その輝度の磁場依存性を測定した。
磁場強度は0ガウスから500ガウスまで変化させた。磁場が0ガウスの時の輝度を基準にした磁場による輝度の変化を図3に示す。
100ガウス程度の磁場強度で発光輝度の変化量は飽和し、2%程度の輝度変化が磁場によって起こることがわかる。
A voltage was applied with the ITO side as the positive electrode and the Al side as the negative electrode, and the luminance was measured. About the organic ELD element produced in Example 1, a fixed electric current (1250 mA / cm < 2 >) was passed, and the magnetic field dependence of the brightness | luminance was measured.
The magnetic field intensity was changed from 0 gauss to 500 gauss. FIG. 3 shows a change in luminance due to the magnetic field based on the luminance when the magnetic field is 0 gauss.
It can be seen that the amount of change in emission luminance is saturated at a magnetic field intensity of about 100 Gauss, and a luminance change of about 2% is caused by the magnetic field.

実施例2についても実施例1と同様な測定を行った。但し、電流量は、25mA/cmと125mA/ cmとした。
図5に輝度の磁場依存性を示す。100ガウス程度の磁場強度で、4%程度の輝度変化が起きていることがわかる。
For Example 2, the same measurement as in Example 1 was performed. However, the amount of current was set to 25 mA / cm 2 and 125 mA / cm 2 .
FIG. 5 shows the magnetic field dependence of luminance. It can be seen that a luminance change of about 4% occurs at a magnetic field intensity of about 100 Gauss.

以上の実施例からわかるように、本発明内で例示される有機LED素子は、磁場によってその発光強度を変化させ、磁場センサーとして応用できることがわかる。
なお本発明の結果から、アルミキノリノール錯体以外にも蛍光性材料である錯体など磁場依存性が存在し、早い緩和過程を持つ燐光材料を使用することができる。
As can be seen from the above examples, the organic LED element exemplified in the present invention can be applied as a magnetic field sensor by changing its emission intensity by a magnetic field.
From the results of the present invention, it is possible to use a phosphorescent material having a magnetic field dependency such as a complex which is a fluorescent material in addition to the aluminum quinolinol complex and having a fast relaxation process.

本発明の発光素子により、発光輝度の磁場依存性を用いて、磁場強度を光信号に直接変換することが可能となり、これにより、単純な構造を持ち、安定性及び発光効率に優れ、かつ安価な磁場センサーとして有用である。   The light-emitting element of the present invention makes it possible to directly convert the magnetic field intensity into an optical signal using the magnetic field dependence of the emission luminance, and thus has a simple structure, excellent stability and luminous efficiency, and low cost. It is useful as a magnetic field sensor.

有機発光素子の基本構造を示す図である。It is a figure which shows the basic structure of an organic light emitting element. 実施例1における発光素子の説明図である。6 is an explanatory diagram of a light emitting element in Example 1. FIG. 実施例1における発光素子の磁場依存性を示すグラフである。4 is a graph showing the magnetic field dependence of the light emitting element in Example 1. 実施例2における発光素子の磁場依存性を示すグラフである。6 is a graph showing the magnetic field dependence of a light emitting element in Example 2.

Claims (4)

透明基板上に形成した正極となる透明電極、該透明電極の上に形成したホール輸送層、ホール輸送層の上に形成したアルミキノリノール錯体又はこれを含む有機物からなる発光層、さらにその上に負極となる電極が形成されている磁場センサーであって、磁場によって発光強度が変化する発光素子を用い、磁場強度を光信号に直接変換することを特徴とする磁場センサーA transparent electrode to be a positive electrode formed on a transparent substrate, a hole transport layer formed on the transparent electrode, an aluminum quinolinol complex formed on the hole transport layer or a light emitting layer made of an organic material containing the same, and a negative electrode on the light-emitting layer A magnetic field sensor in which an electrode to be formed is formed , wherein a magnetic field intensity is directly converted into an optical signal by using a light emitting element whose emission intensity changes according to the magnetic field . 発光層に発光効率を高める色素がドーピングされていることを特徴とする請求項1記載の磁場センサー。 The magnetic field sensor according to claim 1 , wherein the light emitting layer is doped with a dye for increasing luminous efficiency. 発光層に発光効率を高める色素がドーピングされているアルミキノリノール錯体又はこれを含む有機物からなる発光層上に、さらに色素がドーピングされていないアルミキノリノール錯体又はこれを含む有機物からなる発光層が形成されていることを特徴とする請求項2記載の磁場センサー。 A light emitting layer made of an aluminum quinolinol complex not doped with a dye or an organic substance containing the same is further formed on the light emitting layer made of an aluminum quinolinol complex doped with a dye for improving luminous efficiency or an organic substance containing the same. The magnetic field sensor according to claim 2, wherein: 色素がクマリンであることを特徴とする請求項2又は3記載の磁場センサー。 4. The magnetic field sensor according to claim 2 , wherein the dye is coumarin.
JP2003339886A 2003-09-30 2003-09-30 Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field Expired - Lifetime JP4316974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339886A JP4316974B2 (en) 2003-09-30 2003-09-30 Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339886A JP4316974B2 (en) 2003-09-30 2003-09-30 Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field

Publications (2)

Publication Number Publication Date
JP2005108609A JP2005108609A (en) 2005-04-21
JP4316974B2 true JP4316974B2 (en) 2009-08-19

Family

ID=34534953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339886A Expired - Lifetime JP4316974B2 (en) 2003-09-30 2003-09-30 Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field

Country Status (1)

Country Link
JP (1) JP4316974B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906786B2 (en) * 2008-01-11 2011-03-15 Industrial Technology Research Institute Light emitting device
EP2710394B1 (en) 2011-08-18 2015-04-29 Siemens Aktiengesellschaft Device and method for monitoring the state of a system component
JP2014529733A (en) * 2011-08-18 2014-11-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Apparatus element state monitoring apparatus and apparatus element state monitoring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276745B2 (en) * 1993-11-15 2002-04-22 株式会社日立製作所 Variable wavelength light emitting device and control method thereof
JP2001357972A (en) * 2000-06-13 2001-12-26 Hitachi Ltd Organic electroluminescent element
US6545409B2 (en) * 2001-05-10 2003-04-08 Eastman Kodak Company Organic light-emitting diode with high contrast ratio
JP2003086383A (en) * 2001-09-10 2003-03-20 Seiko Epson Corp Light-emitting device
JP2003208975A (en) * 2002-01-11 2003-07-25 Denso Corp Manufacturing method of organic el device
JP2003257674A (en) * 2002-03-04 2003-09-12 Honda Motor Co Ltd Organic electroluminescence element

Also Published As

Publication number Publication date
JP2005108609A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP6493920B2 (en) METAL OXIDE THIN FILM, ORGANIC ELECTROLUMINESCENT DEVICE EQUIPPED WITH THIS THIN FILM, SOLAR CELL, AND ORGANIC SOLAR CELL
US7868536B2 (en) Organic light emitting device
JP6210745B2 (en) Organic light emitting device
JPH03152184A (en) El element of organic thin film
JP2010103534A (en) Organic light-emitting diode device having nano-dot and method of manufacturing same
JP2005135600A (en) Organic electroluminescent element
JPH01312873A (en) Organic thin film el element
JP2666428B2 (en) Organic thin film EL device
WO2011148801A1 (en) Organic el element
EP1578174A1 (en) Organic electroluminescence element and organic electroluminescence display
JP4316974B2 (en) Magnetic field sensor using light emitting element whose emission intensity depends on magnetic field
JPH03141588A (en) Electroluminescent device
KR100581639B1 (en) Organic Electroluminescent Device
KR100790672B1 (en) Organic electroluminescence element and organic electroluminescence display
JP5567407B2 (en) Method for manufacturing organic electroluminescent device
JP2013229411A (en) Organic el element
KR101789903B1 (en) Method for producing organic electroluminescent element having light-emitting pattern
CN108336238B (en) Organic light-emitting element using spirobifluorene ring compound
WO2013129042A1 (en) Organic el element
Chu et al. Organic white light emitting devices with an RGB stacked multilayer structure
JP4394639B2 (en) Laminate of semiconductor thin film and method for producing laminate
Uchida et al. Blue flexible transparent organic light-emitting devices
KR20050054945A (en) Organic electroluminescence device and organic electroluminescence display
JP2001313176A (en) Organic electroluminescent element
TWI644887B (en) Organic light-emitting element using spirobifluorene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Ref document number: 4316974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term