JP4316928B2 - Method and apparatus for producing activated carbide - Google Patents
Method and apparatus for producing activated carbide Download PDFInfo
- Publication number
- JP4316928B2 JP4316928B2 JP2003150333A JP2003150333A JP4316928B2 JP 4316928 B2 JP4316928 B2 JP 4316928B2 JP 2003150333 A JP2003150333 A JP 2003150333A JP 2003150333 A JP2003150333 A JP 2003150333A JP 4316928 B2 JP4316928 B2 JP 4316928B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical casing
- zone
- screw conveyor
- activated
- carbonization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水汚泥、畜産廃棄物、食品廃棄物、石炭、RDF等の炭素を含有する有機性可燃物から吸着用活性炭、その他利用用途の広い活性炭化物として使用することができる活性炭化物を製造する方法及び装置に関するものである。
【0002】
【従来の技術】
有機性廃棄物等を炭化処理し有効利用する技術が昨今増えているが、炭化物の状態では有効利用範囲が限られているため、炭化物を吸着性能に優れた活性炭化物にするような、付加価値を高める技術が提案されている。
従来、活性炭化物の製造装置として、円筒ケーシング内の軸方向中央部にガス流路を確保したスクリューコンベヤを複数段、燃焼炉内に、前段が乾燥ゾーン、中段が炭化ゾーン、後段が賦活ゾーンとなるように接続して配置し、前段の乾燥ゾーンのスクリューコンベヤの端部入口に含水有機物供給手段を接続し、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されており、賦活ゾーンのスクリューコンベヤの上部に水蒸気及び乾留ガスを燃焼炉内に排出するための乾留ガス・水蒸気排出口が設けられ、燃焼炉の下部に燃焼装置が、燃焼炉の上部に排気口が設けられている構成のものが提案されている(例えば、特許文献1参照)。
【0003】
また、内部にスクリューコンベヤを設けた炭化管が燃焼炉内に配置され、炭化管の前段を乾燥ゾーン、中段を炭化ゾーン、後段を賦活ゾーンとして炭化炉が構成され、炭化炉内の下方にバーナが設けられ、炭化管の端部入口に原料供給装置が設けられるとともに、炭化管の端部出口に活性炭化物排出装置が設けられ、原料供給装置から供給された炭化原料が炭化管内で間接加熱処理されて、前段での乾燥と水蒸気の発生、中段での炭化と乾留ガスの発生、並びに後段での水蒸気及び乾留ガスによる賦活・活性化によって活性炭化物となり、炭化管から活性炭化物排出装置によって排出されるようになっており、炭化管の後段に直上方向に熱分解ガスの抜出管が接続され、抜出管が水洗スクラバーに接続され、水洗スクラバーの出口がバーナ又はその近傍に接続されて、重金属が分離・除去された乾留ガスがバーナで燃焼されるようにした活性炭化物の製造装置が提案されている(例えば、特許文献2参照)。
【0004】
また、加熱炉内を水平方向に貫通する外套部に乾留ガス燃焼ノズルを設けたスクリューコンベヤを上下方向に複数設置し、前記スクリューコンベヤを加熱する加熱バーナーを設置し、上部スクリューコンベヤに供給した原料を搬送しながら低酸素雰囲気下で熱分解して下部のスクリューコンベヤから炭化物を取り出す構造とした炭化部からなる炭化炉において、炉内を冷却して炉内温度を低下させる蒸気又は水の噴霧ノズルをスクリューコンベヤの上部もしくはスクリューコンベヤの中間およびその両方に設けた多段スクリューコンベヤ式炭化装置が知られている(例えば、特許文献3参照)。
【0005】
【特許文献1】
特許第3055686号公報(第1頁、第2頁、図1)
【特許文献2】
特開2001−322809号公報(第2頁、第3頁、図1)
【特許文献3】
特開2001−172639号公報(第2頁、図1)
【0006】
【発明が解決しようとする課題】
上記のように、従来から種々の活性炭化物製造装置が提案されているが、市場での要求に応えるには、より高性能で安定した品質の製品を製造することが可能で、かつ、高温にも対応できる活性炭化物製造装置とする必要がある。
【0007】
従来の活性炭化物製造装置又は活性炭化炉では、バーナ及び乾留ガス燃焼時の輻射熱で円筒ケーシングが局部的に高温となり、円筒ケーシングが高温腐食することがあった。そのため、高温腐食対策として炭化炉系外に別設の熱風発生炉を設ける方式が採られることがある。その際、処理物から発生する乾留ガスを熱風発生炉まで誘導する必要があるが、乾留ガスの誘導管は加熱や保温をしても、乾留ガス中のタール・チャー等により閉塞し、安定運転に支障をきたす。
また、炭化炉の高温部において、熱風の流れを制御しない場合には、炭化炉内の上部と下部で温度分布に不均等が生じる。その影響で円筒ケーシングの温度分布が円筒ケーシングの上下で異なることになり、円筒ケーシングの熱膨張にも不均等が発生して、すなわち、円筒ケーシング下部の熱膨張が、円筒ケーシング上部の熱膨張より大きくなり、円筒ケーシングに悪影響を及ぼす変形等が発生することがある。
【0008】
また、スクリューと円筒ケーシングとの間には機器の構造上及び熱膨張差により間隙が生じ、その処理物が通過する部分で間隙が拡張したことにより、スケーリングが発生・残留しやすくなる。そのため、処理物はスケーリングにより断熱されることになり、処理物と円筒ケーシングとの直接接触による加熱が妨げられ、熱伝達効率の低下を招き、製品の品質の安定性に悪影響を与える。
活性炭化炉においては、処理物への伝熱は、主に円筒ケーシングとの接触面で行われている。しかし、スクリュー又はパドルにより輸送されている処理物は、輸送安息角迄しか円筒ケーシングと接触出来ないため、円筒ケーシングの伝熱面積の一部分しか使えないことになる。
【0009】
本発明は、上記の諸点に鑑みなされたもので、本発明の目的は、製品である活性炭化物の品質向上を図ることができ、かつ、装置の高温化に対応することができる活性炭化物の製造方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明の活性炭化物の製造方法は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて配置して、前部で乾燥工程が、中部で炭化工程が、後部で賦活工程が行われるようにし、有機性可燃物を前部のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前部の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、ついで、乾燥された有機物を中部の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガス(還元ガス又は熱分解ガス)を発生させ、さらに、炭化工程からの炭化物を後部の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、後部のスクリューコンベヤの賦活工程が行われる部分より処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐように構成されている(図1、図2参照)。
【0011】
また、本発明の活性炭化物の製造方法は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて配置して、前段で乾燥工程が、中段で炭化工程が、後段で賦活工程が行われるようにし、有機性可燃物を前段のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前段の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、ついで、乾燥された有機物を中段の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、さらに、炭化工程からの炭化物を後段の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、後段のスクリューコンベヤの賦活工程が行われる部分の処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴としている(図7、図8参照)。
【0012】
これらの方法において、円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節することが好ましい(図5、図6参照)。この場合、例えば、円筒ケーシングに対してスクリュー軸を偏心させることが好ましい(図3、図4参照)。
また、これらの方法において、スクリューの正回転及び逆回転を繰り返して、スクリューコンベヤ内容物の搬送と同時に攪拌を行うように構成することもある。
【0013】
本発明の活性炭化物の製造装置は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて、前部が乾燥ゾーン、中部が炭化ゾーン、後部が賦活ゾーンとなるように設け、前部の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、後部の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるようにした活性炭化物の製造装置であって、後部の賦活ゾーンより処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴としている(図1、図2参照)。
【0014】
また、本発明の活性炭化物の製造装置は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて、前段が乾燥ゾーン、中段が炭化ゾーン、後段が賦活ゾーンとなるように接続して配置し、前段の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、後段の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されている活性炭化物の製造装置であって、後段のスクリューコンベヤの賦活ゾーンの処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴としている(図7、図8参照)。
【0015】
上記装置において、スクリューコンベヤを縦方向の整流壁で交互千鳥状に区切って、ガス流れが蛇行するように構成することが好ましい(図1、図2参照)。また、後段の賦活ゾーンのスクリューコンベヤを縦方向の整流壁で交互千鳥状に区切るとともに、熱風発生部と処理物流れの最上流の整流壁との間に反転用仕切壁を設けて、ガス流れが蛇行するように構成することが好ましい(図7、図8参照)。
【0016】
これらの装置において、円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節する機構を設けた構成とすることが好ましい(図5、図6参照)。
また、この装置において、円筒ケーシングに対してスクリュー軸を偏心させて取り付ける構成とすることが好ましい(図3、図4参照)。
さらに、スクリューの周縁部に掻上・攪拌板を設けた構成とすることが好ましい(図3、図4参照)。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。図1は本発明の実施の第1形態による活性炭化物の製造装置の概略構成を示す立断面説明図であり、図2は同断面説明図(A−A線断面説明図)であり、図3はスクリューコンベヤの縦断面説明図、図4は同横断面説明図である。
【0018】
本実施形態はスクリューコンベヤが1段設置される場合を示している。10は炉体12内に配置されたスクリューコンベヤで、スクリューコンベヤ10の両端部は炉体12から突出している。このスクリューコンベヤ10は円筒ケーシング(レトルト)14内の軸方向中央部にガス流路16が形成されるようにスクリュー、例えばリボンスクリュー18が収納されている。なお、リボンスクリュー18の代りに、通常のスクリューにガス流過用の孔を設けた構造又はパドルとしても良い。20はリボンスクリュー18をスクリュー軸(主軸)22に取り付けるための固定部材、24はリボンスクリュー18に設けられた掻上・攪拌板、26は棒状体、リング等の清掃具、28は煙突、30は原料投入口、32は製品排出口である。
【0019】
スクリューコンベヤ10は、原料投入口30に近い炉体12内の前部が乾燥ゾーン34、中部が炭化ゾーン(乾留炭化ゾーン)36、後部が賦活ゾーン38となり、乾燥ゾーン34で発生した水蒸気及び炭化ゾーン36で発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーン38で接触させて、炭化物を賦活・活性化させることができるように構成されている。
【0020】
後部の賦活ゾーン38より処理物流れの下流部分の炉体12内の円筒ケーシング14を耐火材で被覆し、この被覆耐火材40及び円筒ケーシングに同心の乾留ガス排気口42を設けている。さらに、この排気口42の周りを遮蔽壁44で区分して熱風発生部(熱風発生室)46とし、この熱風発生部46にバーナ48を接続している。本実施形態では、あくまで賦活ゾーンからの熱供給を目的としており、そのため、バーナ操作による温度調整が可能なように構成されている。
【0021】
スクリューコンベヤ10は、縦方向の複数の整流壁50で、熱風発生部46から出た高温燃焼ガスの流れが、破線の矢印で示すの如く蛇行するように、交互に仕切られている。この場合、熱風発生部の遮蔽壁44と、熱風発生部出口の整流壁50とは、図1に示すように同一部材で構成してもよい。
【0022】
また、円筒ケーシング14の内壁とスクリュー18の周縁部との間隙を自動又は手動で調節(調整又は調芯)する機構が設けられている。また、図3及び図4に示すように、円筒ケーシング14の中心軸に対して、スクリュー軸22を偏心させて取り付けている。
【0023】
スクリュー自動調節機構の一例を、図5及び図6に示す。活性炭化物の製造装置の運転前に、昇降装置52及び横行装置54を操作し、スクリュー周縁部と円筒ケーシング14との間隙を極小に調整する。なお、この時、昇降量と横行量はスクリューによる処理物の輸送位置(掻き上げられながら進むため、真下より回転方向側に位置している)を予め計測しておき、昇降・横行調整量比率を決定しておく。
運転中はスクリューコンベヤ駆動用電動機M1電力又は電流を測定し、円筒ケーシング接触時の測定値まで上がらない範囲で、昇降装置52及び横行装置54をフィードバック制御する。M2は昇降装置用電動機、M3は横行装置用電動機、56は軸受、58はスライドカバー、60はスライドカバー押えである。
【0024】
また、スクリュー軸(主軸)22の正回転及び逆回転を繰り返して、例えば複数回正回転させた後、正回転の回転より少ない複数回逆回転させることを繰り返して、スクリューコンベヤ10の内容物(処理物)を搬送すると同時に攪拌を行うように構成する場合もある。
本実施形態における1段のスクリューコンベヤからなる装置の場合は、乾燥ゾーン・炭化ゾーン・賦活ゾーンでスクリュー又はパドルの間隔や傾斜を変更するようにすることが好ましい。
【0025】
図7は本発明の実施の第2形態による活性炭化物の製造装置の概略構成を示す立断面説明図であり、図8は同断面説明図(C−C線断面説明図)である。本実施形態はスクリューコンベヤが3段設置される場合を示している。10a、10b、10cは炉体12内に3段に配置されたスクリューコンベヤで、スクリューコンベヤの両端部は炉体12から突出している。これらのスクリューコンベヤ10a、10b、10cは円筒ケーシング14a、14b、14c内の軸方向中央部にガス流路16が形成されるようにスクリュー、例えばリボンスクリュー18が収納されている。なお、リボンスクリュー18の代りに、通常のスクリューにガス流過用の孔を設けた構造又はパドルとしても良い。28は煙突、30は原料投入口、32は製品排出口である。
【0026】
3段のスクリューコンベヤは、前段(上段)が乾燥ゾーン62、中段が炭化ゾーン(乾留炭化ゾーン)64、後段が賦活ゾーン66となり、乾燥ゾーン62で発生した水蒸気及び炭化ゾーン64で発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーン66で接触させて、炭化物を賦活・活性化させることができるように構成されている。
【0027】
後段のスクリューコンベヤの賦活ゾーン66において、処理物流れの下流部分の炉体12内の円筒ケーシングを耐火材で被覆し、この被覆耐火材40及び円筒ケーシングに同心の乾留ガス排気口42を設けている。さらに、この排気口42の周りを遮蔽壁44で区分して熱風発生部(熱風発生室)46とし、この熱風発生部46にバーナ48を接続している。68、70は処理物の鉛直通路である。
【0028】
賦活ゾーン66のスクリューコンベヤ10cは、縦方向の複数の整流壁50で、熱風発生部46から出た高温燃焼ガスの流れが、破線の矢印で示すの如く蛇行するように、交互に仕切られている。この場合、熱風発生部の遮蔽壁44と、熱風発生部出口の整流壁50とは、図7に示すように同一部材で構成してもよい。なお、熱風発生部46の遮蔽壁44と、処理物流れの最上流(図7における右側)の整流壁50の上端とは、反転用仕切壁72を介して接続されている。このように、炉体内の高温部は上下方向の整流壁50で仕切られている。なお、中温部、低温部では、水平仕切壁74で仕切られている。
【0029】
従来の活性炭化物製造装置では、賦活ゾーンのスクリュー上部から排気しているものの、バーナが下段下方にあり、乾燥ゾーン及び炭化ゾーンの熱供給に使われている。そのため、賦活ゾーンの熱供給には寄与しない上、乾燥ゾーン・炭化ゾーンの温度調整が困難である。本実施形態では、あくまで賦活ゾーンからの熱供給を目的としており、そのため、バーナ操作による温度調整が可能なように構成されている。
本実施形態では、一例として、3段のスクリューコンベヤを設ける場合について説明したが、2段又は4段以上とすることも可能である。他の構成及び作用は、実施の第1形態の場合と同様である。
【0030】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 賦活ゾーンより下流部分の円筒ケーシングを耐火材で被覆して保護し、乾留ガスの排気口をその部位に設けて、その部位を遮蔽壁で区分けすることで熱風発生部とすることにより、円筒ケーシングの高温腐食を防ぎ、さらに、従来のような乾留ガスの誘導管が不要となるため、乾留ガスをより効果的に有効利用することができる上に、乾留ガスによる閉塞が抑止されるので安定運転が可能となる。
(2) 高温部、すなわち賦活ゾーンの炉内については、整流壁で交互千鳥状に区切ることで、熱風が上下に整流されながら煙突側に流れる構造にすることにより、高低の温度分布を円筒ケーシング長手方向にして、円筒ケーシング円周上下方向の温度不均等を減少させることにより、円筒ケーシングの変形を均等化する。すなわち、円筒ケーシングに悪影響を及ぼす変形が発生しなくなる。
(3) 円筒ケーシング内壁とスクリュー周縁部との間隙を自動又は手動で調節できる構造を設けることにより、又は、さらに円筒ケーシングに対してスクリューを偏心させることにより、処理物通過部分の間隙を小さくすることができ、スケーリングが自然に解消され熱伝達効率の悪化を防ぐことができるため、製品の品質が安定する。
(4) スクリューの羽根と羽根との間に、処理物の掻上げ効果の高い角度で掻上・攪拌板を設ける構造とする場合は、効果が最適になるように、スクリュー又はパドルの円周方向・長手方向の取付け枚数を、必要に応じて設置することに留意することにより、処理物が安息角より高い円筒ケーシング伝熱部まで接触できるようになり、伝熱面積を大幅に向上させることができる。また、処理物を掻き上げて攪拌するため、輸送だけでは生じない攪拌効果が発揮されて、処理物が均等に加熱されるようになるので、品質向上にも有効である。さらに、掻上・攪拌板を主軸と平行・送り方向傾斜付・戻し方向傾斜付で使い分けることにより、各加熱工程において最適な滞留時間を確保できるようになる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による活性炭化物の製造装置を示す概略立断面構成説明図である。
【図2】図1におけるA−A線断面説明図である。
【図3】図1及び図2におけるスクリューコンベヤの縦断面説明図である。
【図4】同横断面説明図である。
【図5】スクリュー自動調節機構の一例を示す正面説明図である。
【図6】図5におけるB−B線断面説明図である。
【図7】本発明の実施の第2形態による活性炭化物の製造装置を示す概略立断面構成説明図である。
【図8】図7におけるC−C線断面説明図である。
【符号の説明】
10、10a、10b、10c スクリューコンベヤ
12 炉体
14、14a、14b、14c 円筒ケーシング
16 流路
18 リボンスクリュー
20 固定部材
22 スクリュー軸(主軸)
24 掻上・攪拌板
26 清掃具
28 煙突
30 原料投入口
32 製品排出口
34、62 乾燥ゾーン
36、64 炭化ゾーン
38、66 賦活ゾーン
40 被覆耐火材
42 乾留ガス排気口
44 遮蔽壁
46 熱風発生部
48 バーナ
50 整流壁
52 昇降装置
54 横行装置
56 軸受
58 スライドカバー
60 スライドカバー押え
68、70 鉛直通路
72 反転用仕切壁
74 水平仕切壁[0001]
BACKGROUND OF THE INVENTION
The present invention produces activated charcoal that can be used as activated charcoal for adsorption and other activated charcoal with a wide range of applications from organic combustible materials containing carbon such as sewage sludge, livestock waste, food waste, coal, RDF, etc. The present invention relates to a method and apparatus.
[0002]
[Prior art]
Technologies for carbonizing organic wastes and using them effectively have increased recently. However, since the range of effective use is limited in the state of carbides, added value such as converting activated carbides with excellent adsorption performance into carbides. A technique for improving the above has been proposed.
Conventionally, as an activated carbide manufacturing apparatus, a plurality of screw conveyors with gas flow paths secured in the axial center in a cylindrical casing, a combustion furnace, a drying zone in the front, a carbonization zone in the middle, and an activation zone in the rear The water-containing organic substance supply means is connected to the end inlet of the screw conveyor of the preceding drying zone, and the water vapor generated in the drying zone and the carbonization gas generated in the carbonization zone are combined with the carbide from the carbonization zone. The ends of the screw conveyors in each zone are connected to each other so that the carbides can be activated and activated by being brought into contact with each other in the screw conveyor in the subsequent activation zone. A dry distillation gas / water vapor outlet is provided to discharge the dry distillation gas into the combustion furnace, and a combustion device is installed at the bottom of the combustion furnace. Having a configuration that exhaust port part is provided has been proposed (e.g., see Patent Document 1).
[0003]
In addition, a carbonization pipe provided with a screw conveyor inside is arranged in the combustion furnace, and the carbonization furnace is configured with the front stage of the carbonization pipe as the drying zone, the middle stage as the carbonization zone, and the latter stage as the activation zone. Is provided, and a raw material supply device is provided at the end inlet of the carbonization pipe, and an activated carbide discharge device is provided at the end outlet of the carbonization tube, and the carbonized raw material supplied from the raw material supply device is indirectly heated in the carbonization pipe. It becomes activated carbide by drying and steam generation in the former stage, carbonization and dry distillation gas in the middle stage, activation and activation by steam and dry distillation gas in the latter stage, and discharged from the carbonized tube by the activated carbide discharge device. A pyrolysis gas extraction pipe is connected to the rear stage of the carbonization pipe in the upward direction, the extraction pipe is connected to the washing scrubber, and the outlet of the washing scrubber is connected to the burner or the scrubber. Is connected in the vicinity, heavy metal production apparatus of the active carbides as carbonization gas separated and removed is burned in the burner has been proposed (e.g., see Patent Document 2).
[0004]
Raw materials supplied to the upper screw conveyor by installing a plurality of screw conveyors with a dry distillation gas combustion nozzle in the upper and lower direction in the mantle that penetrates the heating furnace in the horizontal direction, and installing a heating burner for heating the screw conveyor. Steam or water spray nozzle that cools the inside of the furnace and lowers the temperature in the furnace in a carbonization furnace consisting of a carbonized part that is pyrolyzed in a low-oxygen atmosphere while removing the carbide from the lower screw conveyor There is known a multi-stage screw conveyor type carbonization apparatus in which the above is provided in the upper part of the screw conveyor or in the middle of the screw conveyor and both (for example, see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent No. 3055686 (first page, second page, FIG. 1)
[Patent Document 2]
JP 2001-322809 A (the second page, the third page, FIG. 1)
[Patent Document 3]
Japanese Patent Laid-Open No. 2001-172539 (second page, FIG. 1)
[0006]
[Problems to be solved by the invention]
As described above, various activated carbide production apparatuses have been proposed, but in order to meet market demands, it is possible to produce products with higher performance and more stable quality and at higher temperatures. Therefore, it is necessary to make an activated carbide manufacturing apparatus that can cope with the above.
[0007]
In the conventional activated carbide manufacturing apparatus or activated carbonization furnace, the cylindrical casing may become locally hot due to the radiant heat generated during burner and dry distillation gas combustion, and the cylindrical casing may corrode at high temperature. For this reason, there is a case where a separate hot air generating furnace is provided outside the carbonization furnace system as a countermeasure against high temperature corrosion. At that time, it is necessary to guide the dry distillation gas generated from the treated product to the hot-air generator, but the induction tube of the dry distillation gas is blocked by tar, char, etc. in the dry distillation gas even if it is heated or kept warm. Cause trouble.
Further, when the flow of hot air is not controlled in the high temperature part of the carbonization furnace, the temperature distribution is uneven in the upper part and the lower part in the carbonization furnace. As a result, the temperature distribution of the cylindrical casing is different between the upper and lower sides of the cylindrical casing, and the thermal expansion of the cylindrical casing is uneven, that is, the thermal expansion of the lower part of the cylindrical casing is greater than the thermal expansion of the upper part of the cylindrical casing. It may become large, and deformation or the like that adversely affects the cylindrical casing may occur.
[0008]
Further, a gap is generated between the screw and the cylindrical casing due to the structure of the device and due to a difference in thermal expansion, and the gap is expanded at a portion through which the processed material passes, so that scaling is likely to occur and remain. Therefore, the processed product is insulated by scaling, and heating by direct contact between the processed product and the cylindrical casing is hindered, leading to a decrease in heat transfer efficiency and adversely affecting the stability of product quality.
In the activated carbonization furnace, heat transfer to the processed material is mainly performed on the contact surface with the cylindrical casing. However, since the processed material transported by the screw or the paddle can contact the cylindrical casing only up to the transport angle of repose, only a part of the heat transfer area of the cylindrical casing can be used.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to produce an activated carbide that can improve the quality of the activated carbide that is a product and can cope with higher temperatures of the apparatus. It is to provide a method and apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the activated carbide manufacturing method of the present invention includes a screw conveyor that houses a screw so that a gas flow path is formed in a central portion in an axial direction in a cylindrical casing, and the furnace body is passed through. In order to carry out the drying process at the front, the carbonization process at the middle, and the activation process at the rear, the organic combustible material is supplied to the front screw conveyor while blocking it from the outside air, and the combustion exhaust gas Indirect heat treatment of the organic combustible material through the front cylindrical casing to dry and generate water vapor, and then the dried organic material is indirectly heat-treated with combustion exhaust gas in the middle cylindrical casing to dry distillation / Carbonization and generation of dry distillation gas (reducing gas or pyrolysis gas), and indirect heating treatment of the carbide from the carbonization process with combustion exhaust gas in the rear cylindrical casing. The activated carbide is activated and activated by contacting and reacting with the steam generated in the drying process and the carbonization gas generated in the carbonization process, and is processed from the portion where the activation process of the rear screw conveyor is performed. The cylindrical casing in the downstream part of the flow is covered with a refractory material, and a dry distillation gas exhaust port is provided in the covered refractory material part, and the periphery of this exhaust port is divided by a shielding wall to burn the dry distillation gas and generate hot air. The heating source is configured to prevent high temperature corrosion of the cylindrical casing (see FIGS. 1 and 2).
[0011]
Further, the method for producing activated carbide of the present invention includes a plurality of screw conveyors storing screws so that a gas flow path is formed in the central portion in the axial direction in the cylindrical casing, and arranged through the furnace body, The drying process is performed at the front stage, the carbonization process at the middle stage, and the activation process at the rear stage.The organic combustible material is supplied to the front screw conveyor while being shut off from the outside air, and the combustion exhaust gas passes through the front cylindrical casing. Indirect heat treatment of organic combustible material to dry it and generate water vapor, and then dry organic material is indirectly heat-treated with combustion exhaust gas in the middle cylindrical casing to dry and carbonize and generate dry distillation gas In addition, the steam generated from the carbonization process is indirectly heated by the combustion exhaust gas in the subsequent cylindrical casing, and the water vapor generated in the drying process and the carbonization process A method for producing activated carbide that is activated / activated by contacting / reacting with the generated dry distillation gas, and covering the cylindrical casing in the downstream part of the processed product flow in the part where the activation process of the subsequent screw conveyor is performed with a refractory material In addition, a dry distillation gas exhaust port is provided in the coated refractory material part, and the periphery of the exhaust port is divided by a shielding wall, and the dry distillation gas is combusted to generate hot air to be a heating source to prevent high temperature corrosion of the cylindrical casing. (See FIGS. 7 and 8).
[0012]
In these methods, it is preferable to automatically or manually adjust the gap between the inner wall of the cylindrical casing and the screw (see FIGS. 5 and 6). In this case, for example, the screw shaft is preferably eccentric with respect to the cylindrical casing (see FIGS. 3 and 4).
Moreover, in these methods, the forward rotation and the reverse rotation of the screw may be repeated, and stirring may be performed simultaneously with the conveyance of the screw conveyor contents.
[0013]
The activated carbide manufacturing apparatus of the present invention includes a screw conveyor that houses a screw so that a gas flow path is formed in an axially central portion in a cylindrical casing, and a front portion that is a drying zone and a middle portion. Is provided so that the carbonization zone and the rear part become the activation zone, the raw material inlet for introducing the organic combustible material is provided at the end inlet of the screw conveyor of the front drying zone, and the screw conveyor of the rear activation zone is provided. A product discharge port is provided at the end outlet, and water vapor generated in the drying zone and carbonization gas generated in the carbonization zone are brought into contact with the carbide from the carbonization zone in the screw conveyor in the rear activation zone to activate and activate the carbide. An activated carbide manufacturing apparatus configured to be able to cover a cylindrical casing in a downstream portion of a processed product flow from a rear activation zone with a refractory material, The coated refractory material and the cylindrical casing are provided with a dry distillation gas exhaust port, and the periphery of the exhaust port is divided by a shielding wall to form a hot air generating portion, and a burner is connected to the hot air generating portion (FIG. 1, (See FIG. 2).
[0014]
Further, the activated carbide manufacturing apparatus of the present invention has a plurality of stages of screw conveyors containing screws and a furnace body so that a gas flow path is formed in the central portion in the axial direction in the cylindrical casing, and the previous stage is dried. The zone, the middle stage is connected to the carbonization zone, and the latter stage is connected to the activation zone, and the raw material inlet for feeding organic combustibles is provided at the end of the screw conveyor in the former drying zone. A product discharge port is provided at the end exit of the screw conveyor in the activation zone, and carbonized by contacting the steam generated in the drying zone and the carbonization gas generated in the carbonization zone with the carbide from the carbonization zone in the screw conveyor in the subsequent activation zone. In order to be able to activate and activate, the screw conveyor of each zone is an activated carbide manufacturing apparatus in which ends are connected, The cylindrical casing in the downstream part of the treatment flow in the activation zone of the stage screw conveyor is coated with a refractory material, and a dry distillation gas exhaust port is provided in the coated refractory material and the cylindrical casing, and the periphery of the exhaust port is divided by a shielding wall. The hot air generating part is connected, and a burner is connected to the hot air generating part (see FIGS. 7 and 8).
[0015]
In the above apparatus, the screw conveyor is preferably configured so as to meander the gas flow by alternately staggering it with vertical flow straightening walls (see FIGS. 1 and 2). In addition, the screw conveyor in the activation zone in the subsequent stage is alternately staggered by vertical flow straightening walls, and a reversing partition wall is provided between the hot air generator and the uppermost flow straightening wall of the processed product flow to Is preferably configured to meander (see FIGS. 7 and 8).
[0016]
In these apparatuses, it is preferable that a mechanism for automatically or manually adjusting the gap between the inner wall of the cylindrical casing and the screw is provided (see FIGS. 5 and 6).
Moreover, in this apparatus, it is preferable to set it as the structure attached eccentrically with respect to a cylindrical casing (refer FIG. 3, FIG. 4).
Further, it is preferable that a scraping / stirring plate is provided on the peripheral edge of the screw (see FIGS. 3 and 4).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 is a vertical cross-sectional explanatory view showing a schematic configuration of an activated carbide manufacturing apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional explanatory view (cross-sectional explanatory view taken along line AA) of FIG. Is a longitudinal sectional view of the screw conveyor, and FIG. 4 is a transverse sectional view of the same.
[0018]
This embodiment has shown the case where a screw conveyor is installed in one stage. A
[0019]
In the
[0020]
The
[0021]
The
[0022]
A mechanism for adjusting (adjusting or aligning) the gap between the inner wall of the
[0023]
An example of the screw automatic adjustment mechanism is shown in FIGS. Prior to the operation of the activated carbide manufacturing apparatus, the elevating
During operation, the electric power or current of the motor M1 for driving the screw conveyor is measured, and the
[0024]
Further, the forward rotation and the reverse rotation of the screw shaft (main shaft) 22 are repeated, for example, after being rotated forward a plurality of times and then repeatedly rotated a plurality of times less than the normal rotation, the contents of the screw conveyor 10 ( In some cases, stirring may be performed at the same time as the processed product is conveyed.
In the case of an apparatus comprising a single-stage screw conveyor in the present embodiment, it is preferable to change the interval or inclination of the screw or paddle in the drying zone, carbonization zone, and activation zone.
[0025]
FIG. 7 is a vertical cross-sectional explanatory view showing a schematic configuration of an activated carbide manufacturing apparatus according to a second embodiment of the present invention, and FIG. 8 is a cross-sectional explanatory view (CC cross-sectional explanatory view). This embodiment shows a case where three stages of screw conveyors are installed.
[0026]
The three-stage screw conveyor has a drying
[0027]
In the
[0028]
The
[0029]
In the conventional activated carbide manufacturing apparatus, although the exhaust gas is exhausted from the upper part of the screw in the activation zone, the burner is located below the lower stage and is used for heat supply in the drying zone and the carbonization zone. Therefore, it does not contribute to the heat supply of the activation zone and it is difficult to adjust the temperature of the drying zone and the carbonization zone. In the present embodiment, the purpose is to supply heat from the activation zone to the end, and therefore, the temperature can be adjusted by a burner operation.
In this embodiment, the case where a three-stage screw conveyor is provided has been described as an example, but it may be two or four or more stages. Other configurations and operations are the same as those in the first embodiment.
[0030]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By covering the cylindrical casing downstream of the activation zone with a refractory material and protecting it, providing an exhaust port for dry distillation gas at the site, and dividing the site with a shielding wall to form a hot air generating part The high temperature corrosion of the cylindrical casing is prevented, and the conventional induction tube for the dry distillation gas is not required, so that the dry distillation gas can be used more effectively and effectively, and the blockage by the dry distillation gas is suppressed. Therefore, stable operation is possible.
(2) In the furnace of the high-temperature part, that is, the activation zone, the structure is configured such that hot air flows to the chimney side while being rectified up and down by dividing it alternately with rectifying walls. The deformation of the cylindrical casing is equalized by reducing the temperature non-uniformity in the vertical direction of the cylindrical casing in the longitudinal direction. That is, no deformation that adversely affects the cylindrical casing occurs.
(3) By providing a structure capable of automatically or manually adjusting the gap between the inner wall of the cylindrical casing and the peripheral edge of the screw, or by further decentering the screw with respect to the cylindrical casing, the gap at the workpiece passage portion is reduced. Therefore, the scaling is naturally eliminated and the deterioration of the heat transfer efficiency can be prevented, so that the product quality is stabilized.
(4) When a scraping / stirring plate is provided between the blades of the screw at an angle with a high effect of scraping the processed material, the circumference of the screw or paddle is optimized so that the effect is optimal. By paying attention to the number of installations in the direction / longitudinal direction as needed, the processed material can come into contact with the heat transfer part of the cylindrical casing higher than the angle of repose, and the heat transfer area is greatly improved. Can do. Further, since the processed product is stirred up and stirred, an agitation effect that does not occur only by transportation is exhibited, and the processed product is heated evenly, which is effective in improving quality. Furthermore, by using the scraping / stirring plate in parallel with the main shaft, with a tilt in the feed direction and with a tilt in the return direction, it is possible to secure an optimum residence time in each heating step.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic sectional view illustrating an activated carbide manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional explanatory view taken along line AA in FIG.
FIG. 3 is a longitudinal sectional view of the screw conveyor in FIGS. 1 and 2;
FIG. 4 is an explanatory view of the same cross section.
FIG. 5 is a front explanatory view showing an example of an automatic screw adjustment mechanism.
6 is a cross-sectional explanatory view taken along line BB in FIG.
FIG. 7 is a schematic elevation cross-sectional configuration explanatory view showing an activated carbide manufacturing apparatus according to a second embodiment of the present invention.
FIG. 8 is a cross-sectional explanatory view taken along the line CC in FIG.
[Explanation of symbols]
10, 10a, 10b,
24 Scraping / stirring
Claims (11)
有機性可燃物を前部のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前部の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、
ついで、乾燥された有機物を中部の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、
さらに、炭化工程からの炭化物を後部の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、
後部のスクリューコンベヤの賦活工程が行われる部分より処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴とする活性炭化物の製造方法。A screw conveyor that houses screws so that a gas flow path is formed in the axial center in the cylindrical casing is disposed through the furnace body, the drying process at the front, the carbonization process at the middle, the rear In the activation process,
Supply organic combustible material to the front screw conveyor while blocking the outside air, and heat and dry the organic combustible material indirectly through the front cylindrical casing with combustion exhaust gas, and generate water vapor.
Next, the dried organic matter is indirectly heated by combustion exhaust gas in the middle cylindrical casing to dry-carbonize and carbonize and generate dry-distilled gas,
Furthermore, the activated carbide is activated / activated by indirect heating treatment of the carbide from the carbonization process with the combustion exhaust gas in the rear cylindrical casing, and contact / reaction with water vapor generated in the drying process and dry distillation gas generated in the carbonization process. A manufacturing method comprising:
The cylindrical casing in the downstream part of the processed product flow is covered with a refractory material from the part where the activation process of the rear screw conveyor is performed, and a dry distillation gas exhaust port is provided in the coated refractory material part, and a shielding wall is provided around the exhaust port. A method for producing activated carbide, characterized by classifying and burning dry distillation gas to generate hot air to serve as a heat source to prevent high temperature corrosion of a cylindrical casing.
有機性可燃物を前段のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前段の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、
ついで、乾燥された有機物を中段の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、
さらに、炭化工程からの炭化物を後段の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、
後段のスクリューコンベヤの賦活工程が行われる部分の処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴とする活性炭化物の製造方法。A plurality of stages of screw conveyors containing screws are arranged so that a gas flow path is formed in the central part in the axial direction in the cylindrical casing, and the furnace body is disposed so that the drying process is performed in the previous stage, and the carbonization process is performed in the middle stage. So that the activation process is performed later,
Supply the organic combustible material into the screw conveyor of the previous stage while blocking the outside air, dry the organic combustible material by indirect heating treatment with the combustion exhaust gas via the cylindrical casing of the previous stage, and generate water vapor.
Next, the dried organic matter is indirectly heat-treated with combustion exhaust gas in a middle cylindrical casing to dry-carbonize and carbonize and generate dry-distilled gas,
Furthermore, the activated carbide is activated and activated by indirect heating treatment of the carbide from the carbonization process with the combustion exhaust gas in the cylindrical casing at the subsequent stage, and contact / reaction with water vapor generated in the drying process and dry distillation gas generated in the carbonization process. A manufacturing method comprising:
The cylindrical casing in the downstream part of the flow of processed material in the part where the activation process of the subsequent screw conveyor is performed is coated with a refractory material, and a dry distillation gas exhaust port is provided at the coated refractory material part, and a shield wall surrounds the exhaust port. A method for producing activated carbide, characterized by classifying and burning dry distillation gas to generate hot air to serve as a heat source to prevent high temperature corrosion of a cylindrical casing.
前部の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、
後部の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、
乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるようにした活性炭化物の製造装置であって、
後部の賦活ゾーンより処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴とする活性炭化物の製造装置。A screw conveyor that houses screws so that a gas flow path is formed in the central part in the axial direction in the cylindrical casing is passed through the furnace body, the front part becomes the drying zone, the middle part becomes the carbonization zone, and the rear part becomes the activation zone So that
A raw material inlet for introducing organic combustible materials is provided at the end of the screw conveyor in the front drying zone.
A product outlet is provided at the end exit of the screw conveyor in the rear activation zone,
Production of activated carbide that can activate and activate carbide by bringing steam generated in the drying zone and dry distillation gas generated in the carbonization zone into contact with the carbide from the carbonization zone in the screw conveyor of the rear activation zone A device,
The cylindrical casing in the downstream part of the flow of processed material from the rear activation zone is covered with refractory material, and a dry distillation gas exhaust port is provided in the coated refractory material and cylindrical casing, and hot air is generated by dividing the periphery of this exhaust port with a shielding wall And an activated carbide manufacturing apparatus characterized in that a burner is connected to the hot air generator.
前段の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、
後段の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、
乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されている活性炭化物の製造装置であって、
後段のスクリューコンベヤの賦活ゾーンの処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴とする活性炭化物の製造装置。Multiple stages of screw conveyors containing screws so that a gas flow path is formed in the central part in the axial direction inside the cylindrical casing, through the furnace body, the first stage is a drying zone, the middle stage is a carbonization zone, the second stage is an activation zone Connect and arrange so that
A raw material inlet for introducing organic combustibles is provided at the end entrance of the screw conveyor in the previous drying zone.
A product outlet is provided at the end exit of the screw conveyor in the activation zone at the rear stage.
Screws in each zone can be activated and activated by bringing the steam generated in the drying zone and the carbonization gas generated in the carbonization zone into contact with the carbide from the carbonization zone in the screw conveyor of the activation zone at the subsequent stage. The conveyor is an activated carbide production device whose ends are connected to each other,
The cylindrical casing in the downstream part of the processed product flow in the activation zone of the subsequent screw conveyor is covered with a refractory material, and a dry distillation gas exhaust port is provided in the coated refractory material and the cylindrical casing, and the periphery of the exhaust port is divided by a shielding wall. An activated carbide production apparatus characterized in that a hot air generating part is connected and a burner is connected to the hot air generating part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003150333A JP4316928B2 (en) | 2003-05-28 | 2003-05-28 | Method and apparatus for producing activated carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003150333A JP4316928B2 (en) | 2003-05-28 | 2003-05-28 | Method and apparatus for producing activated carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004352538A JP2004352538A (en) | 2004-12-16 |
JP4316928B2 true JP4316928B2 (en) | 2009-08-19 |
Family
ID=34046162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003150333A Expired - Lifetime JP4316928B2 (en) | 2003-05-28 | 2003-05-28 | Method and apparatus for producing activated carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4316928B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4539329B2 (en) * | 2004-12-28 | 2010-09-08 | 宣明 出張 | Reduced pressure continuous pyrolysis apparatus and reduced pressure continuous pyrolysis method |
JP2008013377A (en) * | 2006-07-03 | 2008-01-24 | Kawasaki Heavy Ind Ltd | Apparatus for producing carbonized product |
JP4925755B2 (en) * | 2006-07-15 | 2012-05-09 | 川崎重工業株式会社 | Carbide manufacturing method and apparatus |
JP2008115200A (en) * | 2006-10-31 | 2008-05-22 | Furukawa Industrial Machinery Systems Co Ltd | External heating-type carbonizing apparatus |
KR100894268B1 (en) | 2007-04-17 | 2009-04-21 | 김영대 | The disposal apparatus for process organic matter |
CN107082548B (en) * | 2017-04-27 | 2023-04-14 | 杭州钱江干燥设备有限公司 | Three-return-stroke-type roller drying and carbonizing machine |
KR102212835B1 (en) * | 2019-07-09 | 2021-02-04 | 김인철 | Synthetic resin recycled metal sorting device |
CN114602440A (en) * | 2022-03-18 | 2022-06-10 | 山东格瑞德活性炭有限公司 | Horizontal rotary kiln |
CN115369357B (en) * | 2022-08-15 | 2023-10-20 | 湖南晶碳新材料有限公司 | Carbon-carbon composite material production device |
-
2003
- 2003-05-28 JP JP2003150333A patent/JP4316928B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004352538A (en) | 2004-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101916958B1 (en) | Apparatus and method for pyrolysis carbonizing of sludge | |
JP6954526B2 (en) | Carbonization equipment | |
JP4316928B2 (en) | Method and apparatus for producing activated carbide | |
KR20180054939A (en) | Apparatus and method for pyrolysis carbonizing of sludge | |
JP2006206856A (en) | Manufacturing method of carbide and carbide manufacturing unit | |
CN105953575A (en) | Self-detection indirect heating type rotary furnace | |
JP5727295B2 (en) | Carbonization system | |
KR100593527B1 (en) | Device for drying carbon black | |
JP4937363B2 (en) | Combustion device | |
JP3781339B2 (en) | Waste carbonization pyrolysis reactor and carbonization pyrolysis method | |
KR100646163B1 (en) | A carbonizing equipment having consecutive processing rotary drum carbonizer | |
JP2009138089A (en) | Multistage screw carbonization device | |
HUT60851A (en) | Multilateral water-cooled rotary combustion chamber | |
KR102262101B1 (en) | Hybrid system for drying and carbonizing organic matter | |
JP4125618B2 (en) | Carbonization equipment for sludge containing organic matter | |
RU2291105C1 (en) | Method of production of silicon dioxide and the heat energy from the silicon-containing vegetable wastes and the installation for burning of the fine-dispersed materials | |
JP5102499B2 (en) | Rotary carbonization method and apparatus | |
CA2723601C (en) | Method and apparatus for efficient production of activated carbon | |
KR900004504B1 (en) | Consecutive cokes furnace | |
JP4961177B2 (en) | Electric heat heating carbonization furnace and waste treatment equipment using the carbonization furnace | |
JP2004225935A (en) | Horizontal type rotary heating device for heat treatment of metal waste | |
JP2003262316A (en) | Heat treatment method and facility for water containing organic matter | |
CN212357156U (en) | Garbage pyrolysis gasification furnace with catalytic pyrolysis flue gas circulation | |
JP7515184B2 (en) | Method and apparatus for producing biochar by thermal treatment | |
CN115349007B (en) | Method and apparatus for producing modified coal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060414 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4316928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |