JP2004352538A - Method and device for producing active carbide - Google Patents

Method and device for producing active carbide Download PDF

Info

Publication number
JP2004352538A
JP2004352538A JP2003150333A JP2003150333A JP2004352538A JP 2004352538 A JP2004352538 A JP 2004352538A JP 2003150333 A JP2003150333 A JP 2003150333A JP 2003150333 A JP2003150333 A JP 2003150333A JP 2004352538 A JP2004352538 A JP 2004352538A
Authority
JP
Japan
Prior art keywords
cylindrical casing
zone
carbonization
gas
screw conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003150333A
Other languages
Japanese (ja)
Other versions
JP4316928B2 (en
Inventor
Tamaki Sakurai
玉貴 櫻井
Hiromasa Kusuda
浩雅 楠田
Masakazu Sawai
正和 澤井
Masaki Tsuzawa
正樹 津澤
Kenichi Fujii
健一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003150333A priority Critical patent/JP4316928B2/en
Publication of JP2004352538A publication Critical patent/JP2004352538A/en
Application granted granted Critical
Publication of JP4316928B2 publication Critical patent/JP4316928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing active carbide which can attain the improvement in the quality of active carbide, and also, can correspond to the increase in the temperature of a device, and to provide the device. <P>SOLUTION: In the device for producing active carbide where drying, carbonization and activation are performed at the inside of a screw conveyer, a cylindrical casing in the downstream part of the flow of an object to be treated in an activation zone 38 at the rear side is covered with refractories, the covering refractories 40 and the cylindrical casing are provided with a dry distillation gas exhaust port 42, the circumference of the exhaust port is partitioned by a shielding wall 44 so as to be a hot blast generation part 46, and a burner 48 is connected to the hot blast generation part. Thus, high temperature corrosion in the cylindrical casing is prevented, further, dry distillation gas is effectively utilized, also, clogging by the dry distillation gas is suppressed, and stable operation is made possible. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥、畜産廃棄物、食品廃棄物、石炭、RDF等の炭素を含有する有機性可燃物から吸着用活性炭、その他利用用途の広い活性炭化物として使用することができる活性炭化物を製造する方法及び装置に関するものである。
【0002】
【従来の技術】
有機性廃棄物等を炭化処理し有効利用する技術が昨今増えているが、炭化物の状態では有効利用範囲が限られているため、炭化物を吸着性能に優れた活性炭化物にするような、付加価値を高める技術が提案されている。
従来、活性炭化物の製造装置として、円筒ケーシング内の軸方向中央部にガス流路を確保したスクリューコンベヤを複数段、燃焼炉内に、前段が乾燥ゾーン、中段が炭化ゾーン、後段が賦活ゾーンとなるように接続して配置し、前段の乾燥ゾーンのスクリューコンベヤの端部入口に含水有機物供給手段を接続し、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されており、賦活ゾーンのスクリューコンベヤの上部に水蒸気及び乾留ガスを燃焼炉内に排出するための乾留ガス・水蒸気排出口が設けられ、燃焼炉の下部に燃焼装置が、燃焼炉の上部に排気口が設けられている構成のものが提案されている(例えば、特許文献1参照)。
【0003】
また、内部にスクリューコンベヤを設けた炭化管が燃焼炉内に配置され、炭化管の前段を乾燥ゾーン、中段を炭化ゾーン、後段を賦活ゾーンとして炭化炉が構成され、炭化炉内の下方にバーナが設けられ、炭化管の端部入口に原料供給装置が設けられるとともに、炭化管の端部出口に活性炭化物排出装置が設けられ、原料供給装置から供給された炭化原料が炭化管内で間接加熱処理されて、前段での乾燥と水蒸気の発生、中段での炭化と乾留ガスの発生、並びに後段での水蒸気及び乾留ガスによる賦活・活性化によって活性炭化物となり、炭化管から活性炭化物排出装置によって排出されるようになっており、炭化管の後段に直上方向に熱分解ガスの抜出管が接続され、抜出管が水洗スクラバーに接続され、水洗スクラバーの出口がバーナ又はその近傍に接続されて、重金属が分離・除去された乾留ガスがバーナで燃焼されるようにした活性炭化物の製造装置が提案されている(例えば、特許文献2参照)。
【0004】
また、加熱炉内を水平方向に貫通する外套部に乾留ガス燃焼ノズルを設けたスクリューコンベヤを上下方向に複数設置し、前記スクリューコンベヤを加熱する加熱バーナーを設置し、上部スクリューコンベヤに供給した原料を搬送しながら低酸素雰囲気下で熱分解して下部のスクリューコンベヤから炭化物を取り出す構造とした炭化部からなる炭化炉において、炉内を冷却して炉内温度を低下させる蒸気又は水の噴霧ノズルをスクリューコンベヤの上部もしくはスクリューコンベヤの中間およびその両方に設けた多段スクリューコンベヤ式炭化装置が知られている(例えば、特許文献3参照)。
【0005】
【特許文献1】
特許第3055686号公報(第1頁、第2頁、図1)
【特許文献2】
特開2001−322809号公報(第2頁、第3頁、図1)
【特許文献3】
特開2001−172639号公報(第2頁、図1)
【0006】
【発明が解決しようとする課題】
上記のように、従来から種々の活性炭化物製造装置が提案されているが、市場での要求に応えるには、より高性能で安定した品質の製品を製造することが可能で、かつ、高温にも対応できる活性炭化物製造装置とする必要がある。
【0007】
従来の活性炭化物製造装置又は活性炭化炉では、バーナ及び乾留ガス燃焼時の輻射熱で円筒ケーシングが局部的に高温となり、円筒ケーシングが高温腐食することがあった。そのため、高温腐食対策として炭化炉系外に別設の熱風発生炉を設ける方式が採られることがある。その際、処理物から発生する乾留ガスを熱風発生炉まで誘導する必要があるが、乾留ガスの誘導管は加熱や保温をしても、乾留ガス中のタール・チャー等により閉塞し、安定運転に支障をきたす。
また、炭化炉の高温部において、熱風の流れを制御しない場合には、炭化炉内の上部と下部で温度分布に不均等が生じる。その影響で円筒ケーシングの温度分布が円筒ケーシングの上下で異なることになり、円筒ケーシングの熱膨張にも不均等が発生して、すなわち、円筒ケーシング下部の熱膨張が、円筒ケーシング上部の熱膨張より大きくなり、円筒ケーシングに悪影響を及ぼす変形等が発生することがある。
【0008】
また、スクリューと円筒ケーシングとの間には機器の構造上及び熱膨張差により間隙が生じ、その処理物が通過する部分で間隙が拡張したことにより、スケーリングが発生・残留しやすくなる。そのため、処理物はスケーリングにより断熱されることになり、処理物と円筒ケーシングとの直接接触による加熱が妨げられ、熱伝達効率の低下を招き、製品の品質の安定性に悪影響を与える。
活性炭化炉においては、処理物への伝熱は、主に円筒ケーシングとの接触面で行われている。しかし、スクリュー又はパドルにより輸送されている処理物は、輸送安息角迄しか円筒ケーシングと接触出来ないため、円筒ケーシングの伝熱面積の一部分しか使えないことになる。
【0009】
本発明は、上記の諸点に鑑みなされたもので、本発明の目的は、製品である活性炭化物の品質向上を図ることができ、かつ、装置の高温化に対応することができる活性炭化物の製造方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明の活性炭化物の製造方法は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて配置して、前部で乾燥工程が、中部で炭化工程が、後部で賦活工程が行われるようにし、有機性可燃物を前部のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前部の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、ついで、乾燥された有機物を中部の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガス(還元ガス又は熱分解ガス)を発生させ、さらに、炭化工程からの炭化物を後部の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、後部のスクリューコンベヤの賦活工程が行われる部分より処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐように構成されている(図1、図2参照)。
【0011】
また、本発明の活性炭化物の製造方法は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて配置して、前段で乾燥工程が、中段で炭化工程が、後段で賦活工程が行われるようにし、有機性可燃物を前段のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前段の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、ついで、乾燥された有機物を中段の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、さらに、炭化工程からの炭化物を後段の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、後段のスクリューコンベヤの賦活工程が行われる部分の処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴としている(図7、図8参照)。
【0012】
これらの方法において、円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節することが好ましい(図5、図6参照)。この場合、例えば、円筒ケーシングに対してスクリュー軸を偏心させることが好ましい(図3、図4参照)。
また、これらの方法において、スクリューの正回転及び逆回転を繰り返して、スクリューコンベヤ内容物の搬送と同時に攪拌を行うように構成することもある。
【0013】
本発明の活性炭化物の製造装置は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて、前部が乾燥ゾーン、中部が炭化ゾーン、後部が賦活ゾーンとなるように設け、前部の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、後部の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるようにした活性炭化物の製造装置であって、後部の賦活ゾーンより処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴としている(図1、図2参照)。
【0014】
また、本発明の活性炭化物の製造装置は、円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて、前段が乾燥ゾーン、中段が炭化ゾーン、後段が賦活ゾーンとなるように接続して配置し、前段の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、後段の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されている活性炭化物の製造装置であって、後段のスクリューコンベヤの賦活ゾーンの処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴としている(図7、図8参照)。
【0015】
上記装置において、スクリューコンベヤを縦方向の整流壁で交互千鳥状に区切って、ガス流れが蛇行するように構成することが好ましい(図1、図2参照)。
また、後段の賦活ゾーンのスクリューコンベヤを縦方向の整流壁で交互千鳥状に区切るとともに、熱風発生部と処理物流れの最上流の整流壁との間に反転用仕切壁を設けて、ガス流れが蛇行するように構成することが好ましい(図7、図8参照)。
【0016】
これらの装置において、円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節する機構を設けた構成とすることが好ましい(図5、図6参照)。
また、この装置において、円筒ケーシングに対してスクリュー軸を偏心させて取り付ける構成とすることが好ましい(図3、図4参照)。
さらに、スクリューの周縁部に掻上・攪拌板を設けた構成とすることが好ましい(図3、図4参照)。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。図1は本発明の実施の第1形態による活性炭化物の製造装置の概略構成を示す立断面説明図であり、図2は同断面説明図(A−A線断面説明図)であり、図3はスクリューコンベヤの縦断面説明図、図4は同横断面説明図である。
【0018】
本実施形態はスクリューコンベヤが1段設置される場合を示している。10は炉体12内に配置されたスクリューコンベヤで、スクリューコンベヤ10の両端部は炉体12から突出している。このスクリューコンベヤ10は円筒ケーシング(レトルト)14内の軸方向中央部にガス流路16が形成されるようにスクリュー、例えばリボンスクリュー18が収納されている。なお、リボンスクリュー18の代りに、通常のスクリューにガス流過用の孔を設けた構造又はパドルとしても良い。20はリボンスクリュー18をスクリュー軸(主軸)22に取り付けるための固定部材、24はリボンスクリュー18に設けられた掻上・攪拌板、26は棒状体、リング等の清掃具、28は煙突、30は原料投入口、32は製品排出口である。
【0019】
スクリューコンベヤ10は、原料投入口30に近い炉体12内の前部が乾燥ゾーン34、中部が炭化ゾーン(乾留炭化ゾーン)36、後部が賦活ゾーン38となり、乾燥ゾーン34で発生した水蒸気及び炭化ゾーン36で発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーン38で接触させて、炭化物を賦活・活性化させることができるように構成されている。
【0020】
後部の賦活ゾーン38より処理物流れの下流部分の炉体12内の円筒ケーシング14を耐火材で被覆し、この被覆耐火材40及び円筒ケーシングに同心の乾留ガス排気口42を設けている。さらに、この排気口42の周りを遮蔽壁44で区分して熱風発生部(熱風発生室)46とし、この熱風発生部46にバーナ48を接続している。本実施形態では、あくまで賦活ゾーンからの熱供給を目的としており、そのため、バーナ操作による温度調整が可能なように構成されている。
【0021】
スクリューコンベヤ10は、縦方向の複数の整流壁50で、熱風発生部46から出た高温燃焼ガスの流れが、破線の矢印で示すの如く蛇行するように、交互に仕切られている。この場合、熱風発生部の遮蔽壁44と、熱風発生部出口の整流壁50とは、図1に示すように同一部材で構成してもよい。
【0022】
また、円筒ケーシング14の内壁とスクリュー18の周縁部との間隙を自動又は手動で調節(調整又は調芯)する機構が設けられている。また、図3及び図4に示すように、円筒ケーシング14の中心軸に対して、スクリュー軸22を偏心させて取り付けている。
【0023】
スクリュー自動調節機構の一例を、図5及び図6に示す。活性炭化物の製造装置の運転前に、昇降装置52及び横行装置54を操作し、スクリュー周縁部と円筒ケーシング14との間隙を極小に調整する。なお、この時、昇降量と横行量はスクリューによる処理物の輸送位置(掻き上げられながら進むため、真下より回転方向側に位置している)を予め計測しておき、昇降・横行調整量比率を決定しておく。
運転中はスクリューコンベヤ駆動用電動機M1電力又は電流を測定し、円筒ケーシング接触時の測定値まで上がらない範囲で、昇降装置52及び横行装置54をフィードバック制御する。M2は昇降装置用電動機、M3は横行装置用電動機、56は軸受、58はスライドカバー、60はスライドカバー押えである。
【0024】
また、スクリュー軸(主軸)22の正回転及び逆回転を繰り返して、例えば複数回正回転させた後、正回転の回転より少ない複数回逆回転させることを繰り返して、スクリューコンベヤ10の内容物(処理物)を搬送すると同時に攪拌を行うように構成する場合もある。
本実施形態における1段のスクリューコンベヤからなる装置の場合は、乾燥ゾーン・炭化ゾーン・賦活ゾーンでスクリュー又はパドルの間隔や傾斜を変更するようにすることが好ましい。
【0025】
図7は本発明の実施の第2形態による活性炭化物の製造装置の概略構成を示す立断面説明図であり、図8は同断面説明図(C−C線断面説明図)である。本実施形態はスクリューコンベヤが3段設置される場合を示している。10a、10b、10cは炉体12内に3段に配置されたスクリューコンベヤで、スクリューコンベヤの両端部は炉体12から突出している。これらのスクリューコンベヤ10a、10b、10cは円筒ケーシング14a、14b、14c内の軸方向中央部にガス流路16が形成されるようにスクリュー、例えばリボンスクリュー18が収納されている。なお、リボンスクリュー18の代りに、通常のスクリューにガス流過用の孔を設けた構造又はパドルとしても良い。28は煙突、30は原料投入口、32は製品排出口である。
【0026】
3段のスクリューコンベヤは、前段(上段)が乾燥ゾーン62、中段が炭化ゾーン(乾留炭化ゾーン)64、後段が賦活ゾーン66となり、乾燥ゾーン62で発生した水蒸気及び炭化ゾーン64で発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーン66で接触させて、炭化物を賦活・活性化させることができるように構成されている。
【0027】
後段のスクリューコンベヤの賦活ゾーン66において、処理物流れの下流部分の炉体12内の円筒ケーシングを耐火材で被覆し、この被覆耐火材40及び円筒ケーシングに同心の乾留ガス排気口42を設けている。さらに、この排気口42の周りを遮蔽壁44で区分して熱風発生部(熱風発生室)46とし、この熱風発生部46にバーナ48を接続している。68、70は処理物の鉛直通路である。
【0028】
賦活ゾーン66のスクリューコンベヤ10cは、縦方向の複数の整流壁50で、熱風発生部46から出た高温燃焼ガスの流れが、破線の矢印で示すの如く蛇行するように、交互に仕切られている。この場合、熱風発生部の遮蔽壁44と、熱風発生部出口の整流壁50とは、図7に示すように同一部材で構成してもよい。なお、熱風発生部46の遮蔽壁44と、処理物流れの最上流(図7における右側)の整流壁50の上端とは、反転用仕切壁72を介して接続されている。このように、炉体内の高温部は上下方向の整流壁50で仕切られている。なお、中温部、低温部では、水平仕切壁74で仕切られている。
【0029】
従来の活性炭化物製造装置では、賦活ゾーンのスクリュー上部から排気しているものの、バーナが下段下方にあり、乾燥ゾーン及び炭化ゾーンの熱供給に使われている。そのため、賦活ゾーンの熱供給には寄与しない上、乾燥ゾーン・炭化ゾーンの温度調整が困難である。本実施形態では、あくまで賦活ゾーンからの熱供給を目的としており、そのため、バーナ操作による温度調整が可能なように構成されている。
本実施形態では、一例として、3段のスクリューコンベヤを設ける場合について説明したが、2段又は4段以上とすることも可能である。他の構成及び作用は、実施の第1形態の場合と同様である。
【0030】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 賦活ゾーンより下流部分の円筒ケーシングを耐火材で被覆して保護し、乾留ガスの排気口をその部位に設けて、その部位を遮蔽壁で区分けすることで熱風発生部とすることにより、円筒ケーシングの高温腐食を防ぎ、さらに、従来のような乾留ガスの誘導管が不要となるため、乾留ガスをより効果的に有効利用することができる上に、乾留ガスによる閉塞が抑止されるので安定運転が可能となる。
(2) 高温部、すなわち賦活ゾーンの炉内については、整流壁で交互千鳥状に区切ることで、熱風が上下に整流されながら煙突側に流れる構造にすることにより、高低の温度分布を円筒ケーシング長手方向にして、円筒ケーシング円周上下方向の温度不均等を減少させることにより、円筒ケーシングの変形を均等化する。すなわち、円筒ケーシングに悪影響を及ぼす変形が発生しなくなる。
(3) 円筒ケーシング内壁とスクリュー周縁部との間隙を自動又は手動で調節できる構造を設けることにより、又は、さらに円筒ケーシングに対してスクリューを偏心させることにより、処理物通過部分の間隙を小さくすることができ、スケーリングが自然に解消され熱伝達効率の悪化を防ぐことができるため、製品の品質が安定する。
(4) スクリューの羽根と羽根との間に、処理物の掻上げ効果の高い角度で掻上・攪拌板を設ける構造とする場合は、効果が最適になるように、スクリュー又はパドルの円周方向・長手方向の取付け枚数を、必要に応じて設置することに留意することにより、処理物が安息角より高い円筒ケーシング伝熱部まで接触できるようになり、伝熱面積を大幅に向上させることができる。また、処理物を掻き上げて攪拌するため、輸送だけでは生じない攪拌効果が発揮されて、処理物が均等に加熱されるようになるので、品質向上にも有効である。さらに、掻上・攪拌板を主軸と平行・送り方向傾斜付・戻し方向傾斜付で使い分けることにより、各加熱工程において最適な滞留時間を確保できるようになる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による活性炭化物の製造装置を示す概略立断面構成説明図である。
【図2】図1におけるA−A線断面説明図である。
【図3】図1及び図2におけるスクリューコンベヤの縦断面説明図である。
【図4】同横断面説明図である。
【図5】スクリュー自動調節機構の一例を示す正面説明図である。
【図6】図5におけるB−B線断面説明図である。
【図7】本発明の実施の第2形態による活性炭化物の製造装置を示す概略立断面構成説明図である。
【図8】図7におけるC−C線断面説明図である。
【符号の説明】
10、10a、10b、10c スクリューコンベヤ
12 炉体
14、14a、14b、14c 円筒ケーシング
16 流路
18 リボンスクリュー
20 固定部材
22 スクリュー軸(主軸)
24 掻上・攪拌板
26 清掃具
28 煙突
30 原料投入口
32 製品排出口
34、62 乾燥ゾーン
36、64 炭化ゾーン
38、66 賦活ゾーン
40 被覆耐火材
42 乾留ガス排気口
44 遮蔽壁
46 熱風発生部
48 バーナ
50 整流壁
52 昇降装置
54 横行装置
56 軸受
58 スライドカバー
60 スライドカバー押え
68、70 鉛直通路
72 反転用仕切壁
74 水平仕切壁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention manufactures activated carbon which can be used as activated carbon for adsorption and other activated carbon having a wide range of uses from organic combustibles containing carbon such as sewage sludge, livestock waste, food waste, coal, and RDF. And a method and apparatus for performing the method.
[0002]
[Prior art]
The technology for carbonizing and effectively utilizing organic waste has been increasing recently, but the effective utilization range is limited in the state of carbides, so value-added such as converting activated carbon into activated carbon with excellent adsorption performance. There are proposed techniques for improving the quality.
Conventionally, as an activated carbide production apparatus, a plurality of screw conveyors having a gas flow path secured in the axial center of the cylindrical casing, in the combustion furnace, the former stage is a drying zone, the middle stage is a carbonization zone, and the latter stage is an activation zone. Connected and arranged so as to connect the water-containing organic matter supply means to the end entrance of the screw conveyor of the preceding drying zone, the steam generated in the drying zone and the carbonized gas generated in the carbonization zone with the carbide from the carbonization zone. The screw conveyors in each zone are connected at their ends so that the carbides can be activated and activated by being brought into contact in the screw conveyor in the activation zone in the latter stage, and steam and A carbonization gas / steam outlet is provided to discharge the carbonization gas into the combustion furnace. Having a configuration that exhaust port part is provided has been proposed (e.g., see Patent Document 1).
[0003]
In addition, a carbonized pipe having a screw conveyor inside is arranged in the combustion furnace, and a carbonization furnace is configured with a drying zone at the former stage, a carbonization zone at the middle stage, and an activation zone at the latter stage, and a burner below the carbonization furnace. A raw material supply device is provided at the end inlet of the carbonized pipe, and an activated carbide discharge device is provided at the end end of the carbonized pipe. The carbonized raw material supplied from the raw material supply device is indirectly heated in the carbonized pipe. Then, drying and generation of steam in the first stage, carbonization and generation of carbonized gas in the middle stage, and activation and activation by steam and carbonized gas in the subsequent stage, become activated carbide, and are discharged from the carbonized pipe by the activated carbide discharge device. A pyrolysis gas extraction pipe is connected immediately above the carbonized pipe, and the extraction pipe is connected to the washing scrubber.The outlet of the washing scrubber is connected to a burner or a scrubber. Is connected in the vicinity, heavy metal production apparatus of the active carbides as carbonization gas separated and removed is burned in the burner has been proposed (e.g., see Patent Document 2).
[0004]
In addition, a plurality of screw conveyors provided with a dry distillation gas combustion nozzle in an outer jacket penetrating the heating furnace in the horizontal direction are installed vertically, a heating burner for heating the screw conveyor is installed, and the raw material supplied to the upper screw conveyor is provided. A steam or water spray nozzle that cools the furnace and lowers the furnace temperature in a carbonization furnace that has a structure in which pyrolysis is performed under a low oxygen atmosphere to remove carbide from the lower screw conveyor while conveying A multi-stage screw conveyor type carbonization device is known, which is provided above a screw conveyor or in the middle and both of the screw conveyors (for example, see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent No. 3055686 (1st page, 2nd page, FIG. 1)
[Patent Document 2]
JP 2001-322809 A (Page 2, Page 3, FIG. 1)
[Patent Document 3]
JP-A-2001-172639 (page 2, FIG. 1)
[0006]
[Problems to be solved by the invention]
As described above, various types of activated carbide manufacturing apparatuses have been conventionally proposed, but in order to meet the demands of the market, it is possible to manufacture products with higher performance and stable quality, and at high temperatures. It is necessary to provide an activated carbide production apparatus that can handle the above.
[0007]
In a conventional activated carbon production apparatus or activated carbon furnace, the cylindrical casing locally becomes high in temperature due to the radiant heat generated by burning the burner and the carbonization gas, and the cylindrical casing may be corroded at a high temperature. Therefore, as a measure against high-temperature corrosion, a method of providing a separate hot-air generator outside the carbonization furnace system may be adopted. At that time, it is necessary to guide the carbonized gas generated from the treated material to the hot air generating furnace, but even if the carbonized gas guide tube is heated or kept warm, it is blocked by tar char etc. in the carbonized gas and stable operation is performed. Cause trouble.
In addition, when the flow of hot air is not controlled in the high temperature part of the carbonization furnace, the temperature distribution becomes uneven in the upper part and lower part in the carbonization furnace. Due to this influence, the temperature distribution of the cylindrical casing is different between the upper and lower portions of the cylindrical casing, and the thermal expansion of the cylindrical casing also becomes uneven, that is, the thermal expansion of the lower portion of the cylindrical casing is larger than that of the upper portion of the cylindrical casing. In some cases, deformation may occur, which may adversely affect the cylindrical casing.
[0008]
Further, a gap is formed between the screw and the cylindrical casing due to the structure of the device and due to a difference in thermal expansion, and the gap is expanded in a portion where the processed material passes, so that scaling is likely to occur and remain. Therefore, the processed material is insulated by the scaling, and the heating due to the direct contact between the processed material and the cylindrical casing is hindered, thereby lowering the heat transfer efficiency and adversely affecting the stability of the product quality.
In the activated carbonization furnace, heat transfer to the processing object is mainly performed at a contact surface with the cylindrical casing. However, the processed material transported by the screw or the paddle can contact the cylindrical casing only up to the angle of repose of the transport, so that only a part of the heat transfer area of the cylindrical casing can be used.
[0009]
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to manufacture an activated carbide capable of improving the quality of an activated carbide, which is a product, and responding to a high temperature of an apparatus. It is to provide a method and an apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing an activated carbide of the present invention is characterized in that a screw conveyor containing screws so that a gas flow path is formed in an axially central portion in a cylindrical casing is passed through a furnace body. So that the drying process is performed at the front, the carbonization process is performed at the middle, and the activation process is performed at the rear.The organic combustibles are supplied to the front screw conveyor while being shielded from the outside air, and the flue gas The organic combustibles are indirectly heat-treated through the front cylindrical casing to dry and generate steam, and then the dried organic matter is subjected to indirect heat treatment with the combustion exhaust gas in the middle cylindrical casing for dry distillation. Carbonization and the generation of dry distillation gas (reducing gas or pyrolysis gas), and furthermore, the carbide from the carbonization process is indirectly heated by combustion exhaust gas in the rear cylindrical casing. A method for producing an activated carbide, which is activated and activated by contacting and reacting with steam generated in a drying step and a dry distillation gas generated in a carbonization step, wherein a treated material is processed from a part where an activation step of a rear screw conveyor is performed. The cylindrical casing at the downstream part of the flow is covered with a refractory material, and a carbonized gas exhaust port is provided at the coated refractory material portion, the area around the exhaust port is divided by a shielding wall, and the carbonized gas is burned to generate hot air. The heat source is used as a heat source to prevent high-temperature corrosion of the cylindrical casing (see FIGS. 1 and 2).
[0011]
In addition, the method for producing activated carbide of the present invention, a plurality of screw conveyors containing screws so as to form a gas flow path in the axial center in the cylindrical casing, arranged by penetrating the furnace body, The drying process in the first stage, the carbonization process in the middle stage, and the activation process in the second stage are performed.The organic combustibles are supplied to the screw conveyor of the previous stage while being shut off from the outside air, and the combustion exhaust gas passes through the cylindrical casing of the previous stage. The organic combustibles are dried by indirect heat treatment to generate water vapor, and then the dried organic substances are indirectly heat treated with combustion exhaust gas in a middle-stage cylindrical casing to carbonize and carbonize and generate carbonized gas. Further, the carbide from the carbonization step is indirectly heat-treated with the combustion exhaust gas in the subsequent cylindrical casing, and the steam generated in the drying step and the carbonization step A method for producing an activated carbide that is activated and activated by contacting and reacting with a generated carbonization gas, wherein a cylindrical casing at a downstream portion of a processed material flow at a portion where an activation process of a subsequent screw conveyor is performed is coated with a refractory material. Then, a carbonized gas exhaust port is provided in the coated refractory material portion, the area around the exhaust port is divided by a shielding wall, and the carbonized gas is burned to generate hot air to serve as a heating source to prevent high-temperature corrosion of the cylindrical casing. (See FIGS. 7 and 8).
[0012]
In these methods, it is preferable to automatically or manually adjust the gap between the inner wall of the cylindrical casing and the screw (see FIGS. 5 and 6). In this case, for example, it is preferable to decenter the screw shaft with respect to the cylindrical casing (see FIGS. 3 and 4).
In some of these methods, the screw may be rotated forward and backward repeatedly to stir the contents of the screw conveyor at the same time as stirring.
[0013]
The activated carbide manufacturing apparatus of the present invention is configured such that a screw conveyor accommodating a screw such that a gas flow path is formed in a central portion in an axial direction in a cylindrical casing is passed through a furnace body, a front portion is a drying zone, and a middle portion. The carbonization zone, the rear is provided so as to be an activation zone, a raw material input port for charging organic combustibles at the end inlet of the screw conveyor of the front drying zone, the rear of the screw conveyor of the activation zone is provided. A product outlet is provided at the end outlet, and the steam generated in the drying zone and the dry distillation gas generated in the carbonization zone are brought into contact with the carbide from the carbonization zone in the screw conveyor of the rear activation zone to activate and activate the carbide. A device for producing activated carbide, which is capable of covering a cylindrical casing in a downstream portion of a processing material flow from a rear activation zone with a refractory material, A dry gas exhaust port is provided in the coated refractory material and the cylindrical casing, and the area around the exhaust port is divided by a shielding wall to form a hot air generating section, and a burner is connected to the hot air generating section (FIG. 1). (See FIG. 2).
[0014]
Further, the activated carbide manufacturing apparatus of the present invention is characterized in that a plurality of screw conveyors accommodating screws are passed through a furnace body so that a gas flow path is formed in a central portion in an axial direction in a cylindrical casing, and a former stage is dried. Zone, the middle stage is connected to the carbonization zone, the latter stage is connected and arranged so as to be the activation zone, and a raw material inlet for introducing organic combustibles is provided at the end entrance of the screw conveyor of the former drying zone, and the latter stage is provided. A product outlet is provided at the end exit of the screw conveyor in the activation zone, and the steam generated in the drying zone and the dry distillation gas generated in the carbonization zone are brought into contact with the carbide from the carbonization zone in the screw conveyor of the subsequent activation zone to form the carbide. In order to be able to activate and activate, the screw conveyor of each zone is an activated carbide production device whose ends are connected to each other, The cylindrical casing in the downstream portion of the processing flow in the activation zone of the screw conveyor of the step is coated with a refractory material, and the coated refractory material and the cylindrical casing are provided with a carbonization gas exhaust port, and the area around the exhaust port is divided by a shielding wall. And a burner is connected to the hot air generating section (see FIGS. 7 and 8).
[0015]
In the above device, it is preferable that the screw conveyor is alternately staggered by the vertical rectifying wall so that the gas flow meanders (see FIGS. 1 and 2).
In addition, the screw conveyor of the subsequent activation zone is alternately separated in a zigzag manner by vertical rectifying walls, and a reversing partition wall is provided between the hot air generating section and the uppermost rectifying wall of the flow of the processed material, so that the gas flow is reduced. Is preferably meandering (see FIGS. 7 and 8).
[0016]
In these devices, it is preferable to provide a mechanism for automatically or manually adjusting the gap between the inner wall of the cylindrical casing and the screw (see FIGS. 5 and 6).
Further, in this device, it is preferable that the screw shaft is eccentrically attached to the cylindrical casing (see FIGS. 3 and 4).
Furthermore, it is preferable that a scraping / stirring plate is provided on the periphery of the screw (see FIGS. 3 and 4).
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 is an explanatory vertical sectional view showing a schematic configuration of an apparatus for producing an activated carbide according to a first embodiment of the present invention, FIG. 2 is an explanatory sectional view (AA sectional view), and FIG. Is a vertical cross-sectional explanatory view of the screw conveyor, and FIG. 4 is a horizontal cross-sectional explanatory view of the same.
[0018]
This embodiment shows a case where a single screw conveyor is installed. Reference numeral 10 denotes a screw conveyor disposed in the furnace body 12, and both end portions of the screw conveyor 10 protrude from the furnace body 12. The screw conveyor 10 accommodates a screw, for example, a ribbon screw 18 so that a gas flow path 16 is formed at a central portion in the axial direction within a cylindrical casing (retort) 14. Instead of the ribbon screw 18, a structure or a paddle in which a hole for gas flow is provided in a normal screw may be used. Reference numeral 20 denotes a fixing member for attaching the ribbon screw 18 to the screw shaft (main shaft) 22; 24, a scraping / stirring plate provided on the ribbon screw 18; 26, a cleaning tool such as a rod-shaped body or a ring; 28, a chimney; Is a raw material input port, and 32 is a product discharge port.
[0019]
The screw conveyor 10 has a drying zone 34 at the front, a carbonization zone (carbonized carbonization zone) 36 at the center, and an activation zone 38 at the rear in the furnace body 12 near the raw material inlet 30, and the steam and carbonization generated in the drying zone 34. The carbonized gas generated in the zone 36 is brought into contact with the carbide from the carbonization zone in the activation zone 38 at the rear to activate and activate the carbide.
[0020]
The cylindrical casing 14 in the furnace body 12 downstream of the activation zone 38 in the flow direction of the treated material is coated with a refractory material, and the coated refractory material 40 and the cylindrical casing are provided with a concentric carbonization gas exhaust port 42. Further, the periphery of the exhaust port 42 is divided by a shielding wall 44 to form a hot air generating section (hot air generating chamber) 46, and a burner 48 is connected to the hot air generating section 46. In the present embodiment, the purpose is only to supply heat from the activation zone, and therefore, it is configured so that the temperature can be adjusted by operating the burner.
[0021]
The screw conveyor 10 is partitioned by a plurality of vertical rectifying walls 50 such that the flow of the high-temperature combustion gas flowing out of the hot-air generating section 46 is meandering as indicated by a broken-line arrow. In this case, the shielding wall 44 of the hot air generating unit and the rectifying wall 50 at the outlet of the hot air generating unit may be formed of the same member as shown in FIG.
[0022]
Further, a mechanism for automatically or manually adjusting (adjusting or aligning) the gap between the inner wall of the cylindrical casing 14 and the peripheral edge of the screw 18 is provided. As shown in FIGS. 3 and 4, the screw shaft 22 is mounted eccentrically with respect to the center axis of the cylindrical casing 14.
[0023]
One example of the screw automatic adjustment mechanism is shown in FIGS. Before the operation of the activated carbide manufacturing apparatus, the lifting device 52 and the traversing device 54 are operated to adjust the gap between the peripheral portion of the screw and the cylindrical casing 14 to a minimum. At this time, the lifting amount and the traversing amount are measured in advance at the transport position of the processed material by the screw (because it advances while being scraped up, so it is located on the rotation direction side from immediately below), and the lifting / lowering / traversing adjustment amount ratio is measured. Is determined.
During operation, the electric power or current of the screw conveyor driving motor M1 is measured, and the elevation device 52 and the traversing device 54 are feedback-controlled within a range that does not increase to the measured value at the time of contact with the cylindrical casing. M2 is a motor for a lifting device, M3 is a motor for a traversing device, 56 is a bearing, 58 is a slide cover, and 60 is a slide cover holder.
[0024]
In addition, the forward rotation and the reverse rotation of the screw shaft (main shaft) 22 are repeated, for example, the forward rotation is performed a plurality of times, and then the reverse rotation is performed a plurality of times less than the forward rotation. In some cases, the agitation is performed at the same time as the transfer of the processed material).
In the case of an apparatus having a single-stage screw conveyor in the present embodiment, it is preferable to change the interval or inclination of the screw or paddle in the drying zone, the carbonization zone, and the activation zone.
[0025]
FIG. 7 is an elevational sectional view showing a schematic configuration of an activated carbide manufacturing apparatus according to a second embodiment of the present invention, and FIG. 8 is an explanatory sectional view (a sectional view taken along line CC) of the same. The present embodiment shows a case where three stages of screw conveyors are installed. Reference numerals 10a, 10b, and 10c denote screw conveyors arranged in three stages in the furnace body 12, and both end portions of the screw conveyor protrude from the furnace body 12. These screw conveyors 10a, 10b, and 10c house screws, for example, a ribbon screw 18, so that a gas flow path 16 is formed in the central portion in the axial direction within the cylindrical casings 14a, 14b, and 14c. Instead of the ribbon screw 18, a structure or a paddle in which a hole for gas flow is provided in a normal screw may be used. 28 is a chimney, 30 is a raw material input port, and 32 is a product discharge port.
[0026]
The three-stage screw conveyor includes a drying zone 62 in the first stage (upper stage), a carbonization zone (dry distillation carbonization zone) 64 in the middle stage, and an activation zone 66 in the second stage, and steam generated in the drying zone 62 and dry distillation gas generated in the carbonization zone 64. Is brought into contact with the carbide from the carbonization zone in the activation zone 66 in the subsequent stage, so that the carbide can be activated and activated.
[0027]
In the activation zone 66 of the subsequent screw conveyor, the cylindrical casing in the furnace body 12 at the downstream portion of the processing material flow is coated with a refractory material, and the coated refractory material 40 and the cylindrical casing are provided with a concentric carbonized gas exhaust port 42. I have. Further, the periphery of the exhaust port 42 is divided by a shielding wall 44 to form a hot air generating section (hot air generating chamber) 46, and a burner 48 is connected to the hot air generating section 46. Reference numerals 68 and 70 denote vertical passages of the processed material.
[0028]
The screw conveyor 10c in the activation zone 66 is divided by a plurality of flow straightening walls 50 in a vertical direction so that the flow of the high-temperature combustion gas flowing out of the hot-air generating section 46 is meandered as shown by a broken-line arrow. I have. In this case, the shielding wall 44 of the hot air generating unit and the rectifying wall 50 at the outlet of the hot air generating unit may be formed of the same member as shown in FIG. In addition, the shielding wall 44 of the hot air generating unit 46 and the upper end of the rectifying wall 50 at the uppermost stream (right side in FIG. 7) of the flow of the processing object are connected via a reversing partition wall 72. As described above, the high temperature part in the furnace is partitioned by the rectifying wall 50 in the vertical direction. The middle and low temperature sections are partitioned by a horizontal partition wall 74.
[0029]
In the conventional activated carbide manufacturing apparatus, although the air is exhausted from the upper part of the screw in the activation zone, the burner is located below the lower stage and is used for supplying heat to the drying zone and the carbonization zone. Therefore, it does not contribute to the heat supply of the activation zone, and it is difficult to adjust the temperature of the drying zone / carbonization zone. In the present embodiment, the purpose is only to supply heat from the activation zone, and therefore, it is configured so that the temperature can be adjusted by operating the burner.
In the present embodiment, as an example, a case in which a three-stage screw conveyor is provided has been described. However, two or four or more stages may be provided. Other configurations and operations are the same as those of the first embodiment.
[0030]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
(1) By covering the cylindrical casing downstream of the activation zone with a refractory material to protect it, providing an exhaust port for the carbonization gas at the site, and dividing the site by a shielding wall to form a hot air generating section. In addition, since high-temperature corrosion of the cylindrical casing is prevented, and a guide pipe for the carbonization gas as in the related art is not required, the carbonization gas can be more effectively and effectively used, and the blockage due to the carbonization gas is suppressed. Therefore, stable operation becomes possible.
(2) The inside of the furnace in the high-temperature section, that is, the activation zone, is divided alternately in a staggered manner by the rectifying walls so that the hot air flows to the chimney side while being rectified up and down, so that the high and low temperature distribution can be reduced. By reducing the temperature unevenness in the vertical direction in the circumferential direction of the cylindrical casing in the longitudinal direction, the deformation of the cylindrical casing is equalized. That is, deformation that adversely affects the cylindrical casing does not occur.
(3) By providing a structure that can automatically or manually adjust the gap between the inner wall of the cylindrical casing and the peripheral edge of the screw, or by further eccentricizing the screw with respect to the cylindrical casing, the gap at the processed object passage portion is reduced. As a result, the scaling is naturally eliminated and the deterioration of the heat transfer efficiency can be prevented, so that the product quality is stabilized.
(4) When a structure is used in which a scraping / stirring plate is provided between the blades of the screw at an angle with a high scraping effect of the processed material, the circumference of the screw or paddle is optimized so as to optimize the effect. By paying attention to the installation number in the direction and the longitudinal direction as necessary, the treated object can contact the heat transfer part of the cylindrical casing higher than the angle of repose, and the heat transfer area is greatly improved. Can be. In addition, since the processed material is stirred up and stirred, an agitation effect not generated by transport alone is exhibited, and the processed material is uniformly heated, which is also effective for quality improvement. Furthermore, by appropriately using the scraping / stirring plate parallel to the main shaft, inclined in the feed direction, and inclined in the return direction, it is possible to secure an optimum residence time in each heating step.
[Brief description of the drawings]
FIG. 1 is a schematic vertical cross-sectional configuration explanatory view showing an apparatus for producing activated carbide according to a first embodiment of the present invention.
FIG. 2 is an explanatory cross-sectional view taken along line AA in FIG.
FIG. 3 is an explanatory longitudinal sectional view of the screw conveyor in FIGS. 1 and 2;
FIG. 4 is an explanatory cross-sectional view of the same.
FIG. 5 is an explanatory front view showing an example of an automatic screw adjustment mechanism.
FIG. 6 is a sectional view taken along the line BB in FIG. 5;
FIG. 7 is a schematic vertical sectional view illustrating an apparatus for producing activated carbide according to a second embodiment of the present invention.
FIG. 8 is a sectional view taken along line CC in FIG. 7;
[Explanation of symbols]
10, 10a, 10b, 10c Screw conveyor 12 Furnace body 14, 14a, 14b, 14c Cylindrical casing 16 Flow path 18 Ribbon screw 20 Fixing member 22 Screw shaft (main shaft)
24 Raising / stirring plate 26 Cleaning tool 28 Chimney 30 Raw material inlet 32 Product outlet 34, 62 Drying zone 36, 64 Carbonization zone 38, 66 Activation zone 40 Coated refractory material 42 Carbonized gas exhaust port 44 Shield wall 46 Hot air generator 48 Burner 50 Straightening wall 52 Lifting device 54 Traversing device 56 Bearing 58 Slide cover 60 Slide cover retainer 68, 70 Vertical passage 72 Reversing partition 74 Horizontal partition

Claims (11)

円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて配置して、前部で乾燥工程が、中部で炭化工程が、後部で賦活工程が行われるようにし、
有機性可燃物を前部のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前部の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、
ついで、乾燥された有機物を中部の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、
さらに、炭化工程からの炭化物を後部の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、
後部のスクリューコンベヤの賦活工程が行われる部分より処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴とする活性炭化物の製造方法。
A screw conveyor housing the screws so that a gas flow path is formed in the central part in the axial direction in the cylindrical casing is disposed so as to penetrate the furnace body, and the drying step is performed in the front part, the carbonization step is performed in the middle part, and the rear part is performed. So that the activation process is performed in
The organic combustibles are supplied into the front screw conveyor while being shielded from the outside air, and the combustion combustibles are dried by indirect heating treatment of the organic combustibles through the front cylindrical casing through the front cylindrical casing, and steam is generated.
Then, the dried organic matter is subjected to indirect heating treatment with combustion exhaust gas in the middle cylindrical casing to dry-distill and carbonize, and generate a dry-distilled gas.
In addition, the carbide from the carbonization process is indirectly heat-treated with the combustion exhaust gas in the rear cylindrical casing, and the activated carbon is activated and activated by contacting and reacting with the steam generated in the drying process and the dry distillation gas generated in the carbonization process. A manufacturing method,
From the part where the activation process of the rear screw conveyor is performed, the cylindrical casing in the downstream part of the processing material flow is coated with a refractory material, a carbonization gas exhaust port is provided in this coated refractory material part, and the surroundings of this exhaust port with a shielding wall. A method for producing an activated carbide, comprising dividing and heating a dry distillation gas to generate hot air to serve as a heating source to prevent high-temperature corrosion of a cylindrical casing.
円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて配置して、前段で乾燥工程が、中段で炭化工程が、後段で賦活工程が行われるようにし、
有機性可燃物を前段のスクリューコンベヤ内に外気と遮断しながら供給し、燃焼排ガスにより前段の円筒ケーシングを介して有機性可燃物を間接加熱処理して乾燥させるとともに水蒸気を発生させ、
ついで、乾燥された有機物を中段の円筒ケーシング内で燃焼排ガスにより間接加熱処理して乾留・炭化させるとともに乾留ガスを発生させ、
さらに、炭化工程からの炭化物を後段の円筒ケーシング内で燃焼排ガスにより間接加熱処理し、乾燥工程で発生した水蒸気及び炭化工程で発生した乾留ガスと接触・反応させて賦活・活性化させる活性炭化物の製造方法であって、
後段のスクリューコンベヤの賦活工程が行われる部分の処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材部位に乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分し、乾留ガスを燃燃させて熱風を発生させて加熱源とし、円筒ケーシングの高温腐食を防ぐことを特徴とする活性炭化物の製造方法。
A plurality of screw conveyors accommodating screws so that a gas flow path is formed in the central portion in the axial direction in the cylindrical casing, the furnace body is penetrated and arranged, a drying step in the former stage, a carbonizing step in the middle stage, So that the activation process is performed at a later stage,
Organic combustibles are supplied to the screw conveyor of the preceding stage while being shut off from the outside air, and the organic combustibles are indirectly heated and dried by the combustion exhaust gas through the cylindrical casing of the preceding stage, and steam is generated.
Then, the dried organic matter is subjected to indirect heating treatment by combustion exhaust gas in a middle cylindrical casing to dry-distill and carbonize, and generate a dry-distilled gas.
Furthermore, the carbide from the carbonization step is indirectly heated with combustion exhaust gas in the cylindrical casing at the subsequent stage, and activated and activated by contacting and reacting with the steam generated in the drying step and the dry distillation gas generated in the carbonization step. A manufacturing method,
The cylindrical casing in the downstream part of the flow of the processed material in the part where the activation process of the subsequent screw conveyor is performed is coated with a refractory material, a carbonization gas exhaust port is provided in the coated refractory material portion, and the surroundings of the exhaust port with a shielding wall. A method for producing an activated carbide, wherein the activated carbon is divided, and the carbonized gas is burned to generate hot air to be used as a heating source to prevent high-temperature corrosion of the cylindrical casing.
円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節する請求項1又は2記載の活性炭化物の製造方法。The method according to claim 1 or 2, wherein the gap between the inner wall of the cylindrical casing and the screw is adjusted automatically or manually. スクリューの正回転及び逆回転を繰り返して、スクリューコンベヤ内容物の搬送と同時に攪拌を行う請求項1、2又は3記載の活性炭化物の製造方法。4. The method for producing activated carbide according to claim 1, wherein the screw is rotated forward and backward repeatedly to stir the contents of the screw conveyor while stirring. 円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを、炉体を貫通させて、前部が乾燥ゾーン、中部が炭化ゾーン、後部が賦活ゾーンとなるように設け、
前部の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、
後部の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、
乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後部の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるようにした活性炭化物の製造装置であって、
後部の賦活ゾーンより処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴とする活性炭化物の製造装置。
A screw conveyor containing screws so that a gas flow path is formed in the central part in the axial direction in the cylindrical casing is passed through the furnace body, the front part becomes a drying zone, the middle part becomes a carbonization zone, and the rear part becomes an activation zone. So that
A raw material inlet for charging organic combustibles is provided at an end entrance of the screw conveyor in the front drying zone,
A product outlet is provided at the end exit of the screw conveyor in the rear activation zone,
Manufacture of activated carbide in which the steam generated in the drying zone and the dry distillation gas generated in the carbonization zone are brought into contact with the carbide from the carbonization zone in the screw conveyor of the rear activation zone to activate and activate the carbide. A device,
The cylindrical casing in the downstream part of the processing material flow from the rear activation zone is coated with a refractory material, and the coated refractory material and the cylindrical casing are provided with a carbonized gas exhaust port, and the area around the exhaust port is divided by a shielding wall to generate hot air. And a burner connected to the hot air generating section.
円筒ケーシング内の軸方向中央部にガス流路が形成されるようにスクリューを収納したスクリューコンベヤを複数段、炉体を貫通させて、前段が乾燥ゾーン、中段が炭化ゾーン、後段が賦活ゾーンとなるように接続して配置し、
前段の乾燥ゾーンのスクリューコンベヤの端部入口に有機性可燃物を投入するための原料投入口を設け、
後段の賦活ゾーンのスクリューコンベヤの端部出口に製品排出口を設け、
乾燥ゾーンで発生した水蒸気及び炭化ゾーンで発生した乾留ガスを炭化ゾーンからの炭化物と後段の賦活ゾーンのスクリューコンベヤ内で接触させて炭化物を賦活・活性化させることができるように、各ゾーンのスクリューコンベヤは端部同士が接続されている活性炭化物の製造装置であって、
後段のスクリューコンベヤの賦活ゾーンの処理物流れの下流部分の円筒ケーシングを耐火材で被覆し、この被覆耐火材及び円筒ケーシングに乾留ガス排気口を設け、この排気口の周りを遮蔽壁で区分して熱風発生部とし、この熱風発生部にバーナを接続したことを特徴とする活性炭化物の製造装置。
A plurality of screw conveyors containing screws so that a gas flow path is formed in the central portion in the axial direction in the cylindrical casing, the furnace body is penetrated, the former stage is a drying zone, the middle stage is a carbonization zone, and the latter stage is an activation zone. Connect and arrange so that
A raw material input port for charging organic combustibles is provided at the end entrance of the screw conveyor in the preceding drying zone,
A product outlet is provided at the end exit of the screw conveyor in the subsequent activation zone,
The screw of each zone is activated so that the steam generated in the drying zone and the dry distillation gas generated in the carbonization zone are brought into contact with the carbide from the carbonization zone in the screw conveyor of the subsequent activation zone to activate and activate the carbide. The conveyor is an activated carbide manufacturing device whose ends are connected to each other,
The cylindrical casing at the downstream portion of the flow of the processed material in the activation zone of the subsequent screw conveyor is coated with a refractory material, and the coated refractory material and the cylindrical casing are provided with a carbonization gas exhaust port, and the area around the exhaust port is divided by a shielding wall. A hot air generating section, and a burner connected to the hot air generating section.
スクリューコンベヤを縦方向の整流壁で交互千鳥状に区切って、ガス流れが蛇行するようにしてなる請求項5記載の活性炭化物の製造装置。6. The activated carbide manufacturing apparatus according to claim 5, wherein the screw conveyor is divided in a zigzag manner by vertical straightening walls so that the gas flow meanders. 後段の賦活ゾーンのスクリューコンベヤを縦方向の整流壁で交互千鳥状に区切るとともに、熱風発生部と処理物流れの最上流の整流壁上端との間に反転用仕切壁を設けて、ガス流れが蛇行するようにしてなる請求項6記載の活性炭化物の製造装置。The screw conveyor of the subsequent activation zone is alternately separated in a staggered manner by vertical rectifying walls, and a reversing partition wall is provided between the hot air generating section and the uppermost rectifying wall of the uppermost stream of the processing object flow, so that the gas flow is reduced. 7. The apparatus for producing activated carbide according to claim 6, wherein the apparatus is arranged to meander. 円筒ケーシング内壁とスクリューとの間隙を自動又は手動で調節する機構を設けた請求項5〜8のいずれかに記載の活性炭化物の製造装置。9. The activated carbide producing apparatus according to claim 5, further comprising a mechanism for automatically or manually adjusting a gap between the inner wall of the cylindrical casing and the screw. 円筒ケーシングに対してスクリュー軸を偏心させてなる請求項9記載の活性炭化物の製造装置。The activated carbide manufacturing apparatus according to claim 9, wherein the screw shaft is eccentric with respect to the cylindrical casing. スクリューの周縁部に掻上・攪拌板を設けた請求項5〜10のいずれかに記載の活性炭化物の製造装置。The activated carbide producing apparatus according to any one of claims 5 to 10, wherein a scraping / stirring plate is provided at a peripheral portion of the screw.
JP2003150333A 2003-05-28 2003-05-28 Method and apparatus for producing activated carbide Expired - Lifetime JP4316928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150333A JP4316928B2 (en) 2003-05-28 2003-05-28 Method and apparatus for producing activated carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150333A JP4316928B2 (en) 2003-05-28 2003-05-28 Method and apparatus for producing activated carbide

Publications (2)

Publication Number Publication Date
JP2004352538A true JP2004352538A (en) 2004-12-16
JP4316928B2 JP4316928B2 (en) 2009-08-19

Family

ID=34046162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150333A Expired - Lifetime JP4316928B2 (en) 2003-05-28 2003-05-28 Method and apparatus for producing activated carbide

Country Status (1)

Country Link
JP (1) JP4316928B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187694A (en) * 2004-12-28 2006-07-20 Nobuaki Debari Apparatus and method for vacuum continuous thermal decomposition treatment
JP2008013377A (en) * 2006-07-03 2008-01-24 Kawasaki Heavy Ind Ltd Apparatus for producing carbonized product
JP2008024521A (en) * 2006-07-15 2008-02-07 Kawasaki Heavy Ind Ltd Method for producing carbonized matter and apparatus therefor
JP2008115200A (en) * 2006-10-31 2008-05-22 Furukawa Industrial Machinery Systems Co Ltd External heating-type carbonizing apparatus
KR100894268B1 (en) 2007-04-17 2009-04-21 김영대 The disposal apparatus for process organic matter
CN107082548A (en) * 2017-04-27 2017-08-22 浙江布莱蒙农业科技股份有限公司 A kind of three return-stroke type roller drying carbonizers
KR20210006799A (en) * 2019-07-09 2021-01-19 김인철 Synthetic resin recycled metal sorting device
CN114602440A (en) * 2022-03-18 2022-06-10 山东格瑞德活性炭有限公司 Horizontal rotary kiln
CN115369357A (en) * 2022-08-15 2022-11-22 湖南晶碳新材料有限公司 Carbon-carbon composite material production device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187694A (en) * 2004-12-28 2006-07-20 Nobuaki Debari Apparatus and method for vacuum continuous thermal decomposition treatment
JP4539329B2 (en) * 2004-12-28 2010-09-08 宣明 出張 Reduced pressure continuous pyrolysis apparatus and reduced pressure continuous pyrolysis method
JP2008013377A (en) * 2006-07-03 2008-01-24 Kawasaki Heavy Ind Ltd Apparatus for producing carbonized product
JP2008024521A (en) * 2006-07-15 2008-02-07 Kawasaki Heavy Ind Ltd Method for producing carbonized matter and apparatus therefor
JP2008115200A (en) * 2006-10-31 2008-05-22 Furukawa Industrial Machinery Systems Co Ltd External heating-type carbonizing apparatus
KR100894268B1 (en) 2007-04-17 2009-04-21 김영대 The disposal apparatus for process organic matter
CN107082548A (en) * 2017-04-27 2017-08-22 浙江布莱蒙农业科技股份有限公司 A kind of three return-stroke type roller drying carbonizers
KR20210006799A (en) * 2019-07-09 2021-01-19 김인철 Synthetic resin recycled metal sorting device
KR102212835B1 (en) * 2019-07-09 2021-02-04 김인철 Synthetic resin recycled metal sorting device
CN114602440A (en) * 2022-03-18 2022-06-10 山东格瑞德活性炭有限公司 Horizontal rotary kiln
CN115369357A (en) * 2022-08-15 2022-11-22 湖南晶碳新材料有限公司 Carbon-carbon composite material production device
CN115369357B (en) * 2022-08-15 2023-10-20 湖南晶碳新材料有限公司 Carbon-carbon composite material production device

Also Published As

Publication number Publication date
JP4316928B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP6954526B2 (en) Carbonization equipment
KR101916958B1 (en) Apparatus and method for pyrolysis carbonizing of sludge
JP3607757B2 (en) Solids heater equipped with heating tube
JP4316928B2 (en) Method and apparatus for producing activated carbide
JP3471239B2 (en) Outlet structure of carbonization furnace
JP3055686B1 (en) Method and apparatus for producing activated carbide
CN105953575A (en) Self-detection indirect heating type rotary furnace
KR100593527B1 (en) Device for drying carbon black
JP4937363B2 (en) Combustion device
JP3781339B2 (en) Waste carbonization pyrolysis reactor and carbonization pyrolysis method
JP2007303737A (en) Pyrolytic furnace device
JP2005037042A (en) Heat processing device
JP2005169364A (en) Device for drying pyrolysis of waste
JP4373263B2 (en) Carbonization method for sludge containing organic matter
KR100646163B1 (en) A carbonizing equipment having consecutive processing rotary drum carbonizer
JP2009138089A (en) Multistage screw carbonization device
JP5102499B2 (en) Rotary carbonization method and apparatus
JP2004277465A (en) Apparatus for carbonization treatment of organic material-containing sludge
JP4020486B2 (en) Externally heated rotary kiln
JP2005164094A (en) Kiln type external heating furnace
JP2003262316A (en) Heat treatment method and facility for water containing organic matter
JP2004225935A (en) Horizontal type rotary heating device for heat treatment of metal waste
RU2113671C1 (en) Heat-treatment furnace for carbon-containing materials
JP2005230788A (en) Apparatus for carbonization treatment of organic material-containing sludge
CA2723601A1 (en) Method and apparatus for efficient production of activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Ref document number: 4316928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

EXPY Cancellation because of completion of term