JP4314712B2 - Pier structure and its construction method - Google Patents

Pier structure and its construction method Download PDF

Info

Publication number
JP4314712B2
JP4314712B2 JP2000020459A JP2000020459A JP4314712B2 JP 4314712 B2 JP4314712 B2 JP 4314712B2 JP 2000020459 A JP2000020459 A JP 2000020459A JP 2000020459 A JP2000020459 A JP 2000020459A JP 4314712 B2 JP4314712 B2 JP 4314712B2
Authority
JP
Japan
Prior art keywords
column
steel pipe
hollow steel
hollow
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000020459A
Other languages
Japanese (ja)
Other versions
JP2001207410A (en
Inventor
敏明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000020459A priority Critical patent/JP4314712B2/en
Publication of JP2001207410A publication Critical patent/JP2001207410A/en
Application granted granted Critical
Publication of JP4314712B2 publication Critical patent/JP4314712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、橋脚構造物及びその構築方法に関する。
【0002】
【従来の技術】
近年では、土木建築構造物分野において、技術開発や、顧客ニーズなどにより、大型化、多様化、耐震性の向上などの観点から、高度化が進められている。例えば道路建設において、路線選定が、山間地となった場合、谷間や、河川部などにおいては、高橋脚構造形式が採用されている。
【0003】
該種建設条件に好適な橋脚の構造形式や施工方法の従来技術として、先に本出願人は、特許第2982551号及び特許第2973775号工法に示す技術を開発した。この従来技術は、複数のプレキャストコンクリート製型枠エレメントを組合わせた型枠ブロックの中空内部に、コンクリートを打設する作業を、順次所定の高さになるまで交互に繰返すことで作られる橋脚構造であり、構造物の構築にあたっては、型枠ブロックが、構造物の外形を構成する型枠として用いられるため、従来工法のような、型枠の設置、撤去の手数が不要であるため、工期短縮に好適である。
【0004】
【発明が解決しようとする課題】
しかしながら、この工法によって作られた橋脚構造物は、強度確保のために、中空内部に多数の主鉄筋や、横鉄筋、あるいは組立て鉄筋などが輻輳状態に配置しなければならないため、施工にあたっては、配筋作業が面倒で、手数が多くなり、作業時間に手間取っていた。また、このような構造では、特に高橋脚を構築する場合、荷重が大きくなるため、応答変位が大きくなり、地震力などの水平力を受けると、構造物の耐久性、耐震性を損うおそれがある。逆にこの種の変位に対してさらに耐久性、耐震性を向上するためには、これを上回る剛構造とする必要があり、構造物材料の重量と強度との間に構造的な悪循環を生ずる懸念があった。
【0005】
本発明は、以上の課題を解決するものであって、橋脚構造物の荷重を減少でき、軽量でありながら、所要の耐力を十分に確保できるようにした橋脚構造物及びその構築方法を提供するものである。
【0006】
【課題を解決するための手段】
以上の目的を達成するために、本発明の橋脚構造物は、基礎の上部に密集配置されるとともに、隣り合うものの少なくとも一面同士が互いに接触し、かつ、縦方向に順次接合される断面多角形状の中空のプレキャストコンクリート製の複数のコラムと、前記各コラムの内部に建て込まれるとともに、縦方向に順次接合される中空鋼管と、前記中空鋼管と前記コラムとの隙間に充填される外側中詰コンクリートと、前記各中空鋼管の内部の前記各コラムの縦方向接合位置近傍に対応する部分のみに充填される内側中詰コンクリートと該内側中詰コンクリートを充填した部分を横方向に貫通して緊張状態に定着され、前記複数のコラムを断面方向に緊結する横締め用のPC鋼材とからなることを特徴とする。
従って、本発明では、多数の鉄筋に替えて単体の中空鋼管を接合した構造であり、コラム及び中空鋼管同士の横方向の接合強度を十分に確保できるため、コンクリート量が少なく、軽量化を達成できる割に十分な耐力を確保できる。
また、中空鋼管の内部の各コラムの縦方向接合位置近傍に対応する部分のみに内側中詰コンクリートが充填され、しかも、この位置には横締め用のPC鋼材が横方向に貫通して緊張した状態に定着されているので、複数のコラムを断面方向に緊結することができる。従って、軽量化を図りつつ、横方向の接合強度を十分に確保でき、地震作用時におけるせん断耐力及び耐震性を向上させることができる。
【0007】
請求項2に記載の発明では、前記コラムの縦方向の接合位置と前記中空鋼管の縦方向接合位置とを縦方向にずらし、前記中空鋼管の上端を前記コラムの上端よりも上方に突出させたことにより、コラム及び鋼管の縦方向の接合位置の脆弱性を回避できる。
また、請求項3に記載の発明では、前記中空鋼管の中心には、縦方向接合用のPC鋼材が緊張状態に定着され該縦方向接合用のPC鋼材により、各中空鋼管及び各コラムが縦方向に緊結されていることにより、縦方向の強度も十分に確保できる。
【0008】
請求項4に記載の発明では、前記コラムは、六角形状断面をなすことにより、橋脚規模、高さなどに応じた計画強度に応じて、これをセグメント単位として、自由に組合わせることができ、各種バリエーションに応じた設計の多様化を図ることができる。
【0009】
また、本発明方法では、基礎の上部に複数の中空鋼管を密集した状態に建て込み、該各中空鋼管を縦方向に順次接合するとともに、前記各中空鋼管の周囲に断面多角形状の中空のプレキャストコンクリート製コラムを建て込み、該コラムを縦方向に順次接合するとともに、隣接するコラムの少なくとも一面同士を互いに接触させ、前記コラムと前記中空鋼管との隙間に外側中詰コンクリートを充填し、前記各中空鋼管の内部の前記各コラムの縦方向接合位置近傍に対応する部分のみに内側中詰コンクリートを充填し該内側中詰コンクリートを充填した部分を横締め用のPC鋼材により横方向に貫通し、該横締め用のPC鋼材を緊張状態に定着し、前記複数のコラムを断面方向に緊結することを特徴とする。
従って、本発明方法では、打設コンクリート量が少なく、従来の鉄筋に替えて中空鋼管を順次高さ方向に接合する作業であるため、作業が良好で、作業の省力化と、急速施工性を得ることができる。
また、鋼管の内部の各コラムの縦方向接合位置近傍に対応する部分のみに内側中詰コンクリートを充填し、しかも、この位置には横締め用のPC鋼材が横方向に貫通し、緊張した状態に定着されているので、複数のコラムを断面方向に緊結することができる。従って、軽量化を図りつつ、横方向の接合強度を十分に確保でき、地震作用時におけるせん断耐力及び耐震性を向上させることができる。
【0010】
【発明の実施の形態】
以下、本発明の好ましい実施の形態につき、添付図面を参照して詳細に説明する。図1〜図5は、本発明に係る橋脚構造物の構築手順を示す。まず、図1は、基礎部分の構築状況を示すものであり、地中に横設されたH型鋼1の上部には複数のリブ付鋼管2が配置され、その外周にコンクリートを打設することで、基礎3が構成される。そして、フーチング天端部の上部において、リブ付鋼管2の上部に中空鋼管4が接合され、さらに各鋼管4の外周部にPC部材からなるコラム5が配置される。
【0011】
各コラム5は、捨て型枠として、構造物外観を形成するものであり、図2に示すように、例えば断面正六角形状のプレキャストコンクリート部材であり、補強筋として、エポキシ鉄筋、あるいは炭素繊維などを一体に埋設した軽量高強度素材からなっている。なお、図例では、構造物中心を六角形に開口させた状態の所定断面のハニカム形状をなし、密集配置して隣接するコラム5の少なくとも一面同士を互いに接触させている。この配置間隔は、橋脚の計画断面に応じた配置であって、図例のほか、規模や橋脚の高さに応じて各コラム5をセグメントとして複数密集配置できる。
【0012】
そして、最初の鋼管4及びコラム5が建て込まれた状態で、鋼管4とコラム5との隙間には、コンクリート打設工により、外側中詰コンクリートである中詰コンクリート6が打設され、一体化が図られる。なお、各コラム5の縦方向接合面と、鋼管4との接合面のピッチはずらしておき、図3、図4に示すように、鋼管4がコラム5の天端より突出する配置とすることで接合部における脆弱性を回避できる。
【0013】
以上のコラム5の上部周囲には、同図3に示すように、自昇式の仮設足場7が配置され、高さ方向の工事進捗に応じて、順次上昇する。なお、図3中符号8は、前記仮設足場7に近接して配置された仮設エレベータ構造物、符号9はクレーン足場10上に配置される資材揚重用のタワークレーンであり、いずれも工事進捗に応じて上方に継足される。
【0014】
前記タワークレーン9は、上部鋼管4の建て込みと、建て込み作業完了後の下部鋼管4に対する溶接作業を終了した後、コラム5の建て込みとを交互になす。以上のコラム5の建て込み後は、前記と同様に中詰コンクリート6が打設充填され、この作業を設計高さまで交互に繰返すことで高橋脚が完成し、その上部に橋11が配置される。
【0015】
また、場合によっては、図5に断面して示すように、その中心に縦方向接合用のPC鋼材12を配置し、このPC鋼材12の上下を緊張させることで、地震後の残留変位を極小化することもできる。
【0016】
さらに、一般部においては、図5(a)に示すように、鋼管4の内部は中空状態に保持されている一方で、各コラム5同士の縦方向接合位置近傍においては、図5(b)に示すように、鋼管4の内部にも内側中詰コンクリートである中詰コンクリート6が充填さている。そして、この位置には横締用のPC鋼材14がそれぞれの横方向を貫通して緊張状態に配置されている。図示の集合例では、構造物の中心部が開口しその上下に直線配列された形状であるため、PC鋼材14はその周囲のコラム5及び鋼管4を貫通して円状に配置されているとともに、各コラム5及び鋼管4の横並び位置では、それぞれ直線状に貫通され、その両端を緊張状態に定着し、構造物全体をその断面に沿って緊結し、横方向接合強度を十分に確保しており、この補強効果によって地震作用時におけるせん断耐力及び耐震性を向上している。
【0017】
図6(a)、(b)は、コラム5の集合パターンの他の例を示し、(a)では構造物の中心となるコラム5の四面に周囲のコラム5が配置され、かつ周囲の隣接するコラム5の一面同士が接触するように密集配置された構造である。また、(b)では、構造物中心を六角形状に開口した状態で、その開口の周囲に開口を囲むように6つのコラム5を密集配置し、周方向に隣接するコラム5の一面同士を接触させたものである。
【0018】
以上のほか、橋脚規模、高さなどに応じた計画強度に応じて、コラムをセグメント単位として、種々の断面に組合わせることができ、各種バリエーションに応じた設計の多様化を図ることができる。なお、コラム5の断面は、六角形状にのみ限定されるものでないが、断面方向に対する適合性、密集配置状態における接合性などにおいて、六角形状が最も推奨される。
【0019】
【発明の効果】
以上の説明により明らかなように、本発明による橋脚構造物及び構築方法にあっては、橋脚構造物の荷重を減少でき、軽量でありながら、所要の耐力、耐久性及び耐震性を十分に確保でき、さらには工期短縮にも好適である。またコラムを断面六角形状とすることにより、橋脚規模、高さなどに応じた計画強度に応じて、これをセグメント単位として、自由に組合わせることができ、各種バリエーションに応じた設計の多様化を図ることができる。
また、各コラム及び中空鋼管の縦方向の接合位置の脆弱性を回避できる。さらに、各中空鋼管の内部の各コラムの縦方向接合位置近傍に対応する部分のみに内側中詰コンクリートを充填し、しかも、この位置には横締め用のPC鋼材が横方向に貫通し、緊張した状態に定着されているので、複数のコラムを断面方向に緊結することができる。従って、軽量化を図りつつ、横方向の接合強度を十分に確保でき、地震作用時におけるせん断耐力及び耐震性を向上させることができる。
【図面の簡単な説明】
【図1】本発明による施工手順のうち、基礎構築段階を示す断面図である。
【図2】図1のA−A線断面図である。
【図3】同上下方向の打継ぎ手順を示す側面図である。
【図4】(a),(b)は同打継ぎ手順を示す斜視図である。
【図5】(a),(b)は図3のB−B線及びc−c線における平断面図である。
【図6】(a),(b)はセグメントの組合わせ例の変更例を示す平断面図である。
【符号の説明】
4 中空鋼管
5 コラム
6 中詰コンクリート
12 縦方向PC鋼材
14 横締用PC鋼材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pier structure and a construction method thereof.
[0002]
[Prior art]
In recent years, in the field of civil engineering and building structures, advancement has been promoted from the viewpoints of size increase, diversification, improvement of earthquake resistance, etc., due to technological development and customer needs. For example, in road construction, when a route is selected as a mountainous area, a high pier structure format is adopted in a valley or a river part.
[0003]
As the prior art of the structure type and construction method of the pier suitable for the seed construction conditions, the present applicant has previously developed the technology shown in Japanese Patent No. 2982551 and Japanese Patent No. 2973775. This prior art is a pier structure made by alternately repeating the operation of placing concrete into a hollow inside of a formwork block formed by combining a plurality of precast concrete formwork elements until a predetermined height is reached. In the construction of the structure, since the formwork block is used as the formwork that forms the outer shape of the structure, there is no need to install and remove the formwork as in the conventional construction method. Suitable for shortening.
[0004]
[Problems to be solved by the invention]
However, in order to secure strength, the pier structure made by this construction method must be arranged in a congested state with many main reinforcing bars, horizontal reinforcing bars, or assembled reinforcing bars in the hollow interior. The work of bar arrangement was troublesome, the number of tasks increased, and it took time to work. Also, in such a structure, especially when a high pier is constructed, the load increases, so the response displacement increases, and if a horizontal force such as seismic force is applied, the durability and earthquake resistance of the structure may be impaired. There is. Conversely, in order to further improve durability and seismic resistance against this type of displacement, it is necessary to have a rigid structure that exceeds this, creating a structural vicious circle between the weight and strength of the structural material. There was concern.
[0005]
The present invention solves the above problems, and provides a pier structure that can reduce the load of the pier structure and is light in weight while ensuring sufficient required strength, and a construction method thereof. Is.
[0006]
[Means for Solving the Problems]
To achieve the above object, pier structure of the present invention, Rutotomoni are densely arranged on top of the foundation, in contact at least one surface between but adjacent to each other and polygonal cross-sectional shape in the longitudinal direction are sequentially joined a plurality of column made of hollow precast concrete, Rutotomoni is Tatekoma inside of each column, a hollow steel pipe which are sequentially joined in the longitudinal direction, in the outer filling the gap between the hollow steel tube and the column Filled concrete, inner filled concrete filled only in a portion corresponding to the vicinity of the longitudinal joining position of each column inside each hollow steel pipe, and a portion filled with the inner filled concrete are horizontally penetrated. It is fixed to a tension state, and consists of a PC steel material for lateral fastening that binds the plurality of columns in a cross-sectional direction .
Accordingly, in the present invention, a structure in which a single hollow steel pipe is joined instead of a large number of reinforcing bars, and the lateral joining strength between the column and the hollow steel pipes can be sufficiently secured, so that the amount of concrete is small and the weight is reduced. Sufficient yield strength can be ensured.
Moreover, only the portion corresponding to the vicinity of the longitudinal joining position of each column inside the hollow steel pipe is filled with the inner filling concrete, and the PC steel material for lateral fastening penetrates in the transverse direction and is strained at this position. Since the state is fixed, a plurality of columns can be fastened in the cross-sectional direction. Accordingly, it is possible to sufficiently secure the lateral joint strength while reducing the weight, and to improve the shear strength and seismic resistance during the seismic action.
[0007]
In the invention according to claim 2, the longitudinal joining position of the column and the longitudinal joining position of the hollow steel pipe are shifted in the longitudinal direction, and the upper end of the hollow steel pipe is protruded above the upper end of the column. As a result, the fragility of the column and the steel pipe in the longitudinal direction can be avoided.
Further, in the invention according to claim 3, wherein the center of each hollow steel pipe, PC steel for longitudinal joint is fixed in tension, the PC steel for said longitudinal direction joining, the hollow steel pipes and each column By being fastened in the vertical direction, the strength in the vertical direction can be sufficiently secured.
[0008]
In the invention according to claim 4 , the column can be freely combined as a segment unit according to the planned strength according to the pier scale, height, etc. by making a hexagonal cross section, The design can be diversified according to various variations.
[0009]
Further, in the method of the present invention , a plurality of hollow steel pipes are built in a dense state on the upper part of the foundation , the hollow steel pipes are sequentially joined in the vertical direction, and a hollow precast having a polygonal cross section around each hollow steel pipe. like an anchor for concrete columns, with sequentially joining the column in the vertical direction, by contacting at least one surface of adjacent columns to each other, filling the outer being packed concrete in the gap between the hollow steel tube and the column, the Only the portion corresponding to the vicinity of the longitudinal joining position of each column inside each hollow steel pipe is filled with inner filling concrete, and the portion filled with the inner filling concrete is penetrated in the horizontal direction by PC steel for lateral fastening. The PC steel material for lateral fastening is fixed in a tension state, and the plurality of columns are fastened in the cross-sectional direction .
Therefore, in the method of the present invention, the amount of cast concrete is small, and it is an operation of sequentially joining the hollow steel pipes in the height direction instead of the conventional rebar, so the operation is good, labor saving and rapid workability. Obtainable.
Also, only the portion corresponding to the vicinity of the longitudinal joining position of each column inside the steel pipe is filled with the inside filling concrete, and the PC steel material for lateral fastening penetrates in the transverse direction in this position and is in a tensioned state. Thus, a plurality of columns can be fastened in the cross-sectional direction. Accordingly, it is possible to sufficiently secure the lateral joint strength while reducing the weight, and to improve the shear strength and seismic resistance during the seismic action.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 5 show a construction procedure of a pier structure according to the present invention. First, FIG. 1 shows the construction status of the foundation part. A plurality of ribbed steel pipes 2 are arranged on the upper part of the H-shaped steel 1 installed in the ground, and concrete is placed on the outer periphery thereof. Thus, foundation 3 is constructed. And in the upper part of a footing top end part, the hollow steel pipe 4 is joined to the upper part of the ribbed steel pipe 2, and the column 5 which consists of PC members is arrange | positioned in the outer peripheral part of each steel pipe 4. Moreover, as shown in FIG.
[0011]
Each column 5 forms the appearance of a structure as a discarded mold, and is a precast concrete member having a regular hexagonal cross section, for example, as shown in FIG. 2, and an epoxy reinforcing bar or carbon fiber as a reinforcing bar. It is made of a lightweight, high-strength material that is embedded in a single piece. In the illustrated example, a honeycomb shape having a predetermined cross section with the center of the structure opened in a hexagonal shape is formed, and at least one surface of the adjacent columns 5 is in close contact with each other to be in contact with each other. This arrangement interval is an arrangement according to the planned cross section of the pier, and in addition to the example shown in the drawing, a plurality of columns 5 can be arranged as a segment according to the scale and the height of the pier.
[0012]
Then, in the state where the first steel pipe 4 and the column 5 are built, in the gap between the steel pipe 4 and the column 5 , the inside concrete 6 which is the outside inside concrete is placed by the concrete placement work, Is achieved. In addition, the pitch of the joining surface of the longitudinal direction of each column 5 and the steel pipe 4 is shifted, and it is set as the arrangement which the steel pipe 4 protrudes from the top end of the column 5 as shown in FIG. 3, FIG. Can avoid the vulnerability at the joint.
[0013]
As shown in FIG. 3, a self-raising temporary scaffolding 7 is arranged around the upper part of the column 5 described above, and ascends sequentially as the construction progresses in the height direction. In FIG. 3, reference numeral 8 is a temporary elevator structure disposed in the vicinity of the temporary scaffold 7, and reference numeral 9 is a tower crane for lifting material disposed on the crane scaffold 10. In response, it is added upward.
[0014]
The tower crane 9 alternates between the erection of the upper steel pipe 4 and the erection of the column 5 after finishing the welding operation on the lower steel pipe 4 after completion of the erection operation. After the above column 5 is built, the filled concrete 6 is cast and filled in the same manner as described above. By repeating this operation up to the design height, the high pier is completed, and the bridge 11 is arranged on the upper part. .
[0015]
Further, in some cases, as shown in a cross-sectional view in FIG. 5, the PC steel material 12 for longitudinal joining is arranged at the center, and the upper and lower sides of the PC steel material 12 are tensioned to minimize the residual displacement after the earthquake. It can also be converted.
[0016]
Further, in the general portion, as shown in FIG. 5A, the inside of the steel pipe 4 is held in a hollow state, while in the vicinity of the longitudinal joining position between the columns 5, FIG. As shown in FIG. 3, the inside of the steel pipe 4 is also filled with the filling concrete 6 which is the inside filling concrete . And in this position, the PC steel material 14 for horizontal fastening penetrates each horizontal direction, and is arrange | positioned in the tension | tensile_strength state. In the illustrated example of the set, the center portion of the structure is open and linearly arranged above and below it, so that the PC steel material 14 penetrates the surrounding column 5 and steel pipe 4 and is arranged in a circle. In the side-by-side positions of the columns 5 and the steel pipes 4, they are penetrated in a straight line, both ends thereof are fixed in a tension state, the entire structure is fastened along the cross section, and sufficient lateral joint strength is ensured. This reinforcement effect improves the shear strength and seismic resistance during earthquake action.
[0017]
6A and 6B show another example of the collective pattern of the columns 5. In FIG. 6A, the peripheral columns 5 are arranged on four sides of the column 5 which is the center of the structure, and adjacent to the surroundings. The columns 5 are arranged so as to be in close contact with each other . Further, (b), the state which opens the structure around the hexagonal shape, six column 5 so as to surround the opening densely arranged around the opening, contact one side ends of the column 5 adjacent in the circumferential direction It has been made.
[0018]
In addition to the above, according to the planned strength according to the pier scale, height, etc., the column can be combined into various cross sections as segment units, and the design can be diversified according to various variations. The cross-section of the column 5 is not limited to a hexagonal shape, but the hexagonal shape is most recommended in terms of compatibility with the cross-sectional direction, jointability in a densely arranged state, and the like.
[0019]
【The invention's effect】
As is clear from the above description, in the pier structure and construction method according to the present invention, the load on the pier structure can be reduced, and the required strength, durability and earthquake resistance are sufficiently secured while being lightweight. Further, it is suitable for shortening the construction period. The column has a hexagonal cross section, which can be freely combined as a segment unit according to the planned strength according to the pier scale, height, etc., and design diversification according to various variations. Can be planned.
Moreover, the vulnerability of the joining position of each column and the hollow steel pipe in the vertical direction can be avoided. Further, only the portion corresponding to the vicinity of the longitudinal joining position of each column inside each hollow steel pipe is filled with the inner filling concrete, and the PC steel material for transverse fastening penetrates in this direction in the transverse direction, and tension is applied. In this state, the plurality of columns can be fastened in the cross-sectional direction. Accordingly, it is possible to sufficiently secure the lateral joint strength while reducing the weight, and to improve the shear strength and seismic resistance during the seismic action.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a foundation construction stage in a construction procedure according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a side view showing a joining procedure in the vertical direction.
FIGS. 4A and 4B are perspective views showing the joining procedure. FIG.
5A and 5B are plan sectional views taken along lines BB and cc in FIG.
FIGS. 6A and 6B are cross-sectional plan views showing a modification example of a combination example of segments. FIGS.
[Explanation of symbols]
4 Hollow steel pipe 5 Column 6 Filled concrete 12 Longitudinal PC steel 14 Horizontally tightened PC steel

Claims (5)

基礎の上部に密集配置されるとともに、隣り合うものの少なくとも一面同士が互いに接触し、かつ、縦方向に順次接合される断面多角形状の中空のプレキャストコンクリート製の複数のコラムと、
前記各コラムの内部に建て込まれるとともに、縦方向に順次接合される中空鋼管と、
前記中空鋼管と前記コラムとの隙間に充填される外側中詰コンクリートと、
前記各中空鋼管の内部の前記各コラムの縦方向接合位置近傍に対応する部分のみに充填される内側中詰コンクリートと
該内側中詰コンクリートを充填した部分を横方向に貫通して緊張状態に定着され、前記複数のコラムを断面方向に緊結する横締め用のPC鋼材とからなることを特徴とする橋脚構造物。
Rutotomoni are densely arranged on top of the foundation, in contact with each other at least one side but adjacent to each other, and a hollow plurality of columns made of precast concrete of polygonal cross-sectional shape in the longitudinal direction are sequentially joined,
Rutotomoni is Tatekoma inside of each column, a hollow steel pipe which are sequentially joined in the longitudinal direction,
Outer filled concrete filled in the gap between the hollow steel pipe and the column;
Inside filled concrete filled only in the portion corresponding to the vicinity of the longitudinal joining position of each column inside each hollow steel pipe ,
A bridge pier structure comprising: a PC steel material for lateral fastening which penetrates a portion filled with the inner filling concrete in a lateral direction and is fixed in a tension state and fastens the plurality of columns in a cross-sectional direction .
前記コラムの縦方向の接合位置と前記中空鋼管の縦方向接合位置とを縦方向にずらし、前記中空鋼管の上端を前記コラムの上端よりも上方に突出させたことを特徴とする請求項1に記載の橋脚構造物。 The longitudinal joining position of the column and the longitudinal joining position of the hollow steel pipe are shifted in the longitudinal direction so that the upper end of the hollow steel pipe protrudes above the upper end of the column. The listed pier structure. 前記中空鋼管の中心には、縦方向接合用のPC鋼材が緊張状態に定着され該縦方向接合用のPC鋼材により、各中空鋼管及び各コラムが縦方向に緊結されていることを特徴とする請求項1又は2に記載の橋脚構造物。In the center of each hollow steel pipe, a PC steel material for longitudinal joining is fixed in a tension state, and each hollow steel pipe and each column are fastened in the longitudinal direction by the PC steel material for longitudinal joining. The pier structure according to claim 1 or 2. 前記コラムは、六角形状断面をなすことを特徴とする請求項1から3の何れか1項に記載の橋脚構造物。  The pier structure according to any one of claims 1 to 3, wherein the column has a hexagonal cross section. 基礎の上部に複数の中空鋼管を密集した状態に建て込み、該各中空鋼管を縦方向に順次接合するとともに、前記各中空鋼管の周囲に断面多角形状の中空のプレキャストコンクリート製コラムを建て込み、該コラムを縦方向に順次接合するとともに、隣接するコラムの少なくとも一面同士を互いに接触させ
前記コラムと前記中空鋼管との隙間に外側中詰コンクリートを充填し、
前記各中空鋼管の内部の前記各コラムの縦方向接合位置近傍に対応する部分のみに内側中詰コンクリートを充填し
該内側中詰コンクリートを充填した部分を横締め用のPC鋼材により横方向に貫通し、該横締め用のPC鋼材を緊張状態に定着し、前記複数のコラムを断面方向に緊結することを特徴とする橋脚構造物の構築方法。
Like an anchor in a state of dense multiple hollow steel tube on top of the foundation, as well as sequentially joining the respective hollow steel pipe in the longitudinal direction, like an anchor said hollow precast concrete column polygonal section around each hollow steel tube , And sequentially joining the columns in the vertical direction, with at least one surface of adjacent columns contacting each other ,
Filling the gap between the column and the hollow steel pipe with outer filling concrete,
Filling the inner filling concrete only in the portion corresponding to the vicinity of the longitudinal joining position of each column inside each hollow steel pipe ,
A portion filled with the inner filling concrete is laterally penetrated by a PC steel material for lateral fastening, the PC steel material for lateral fastening is fixed in a tension state, and the plurality of columns are fastened in a cross-sectional direction. The construction method of the pier structure.
JP2000020459A 2000-01-28 2000-01-28 Pier structure and its construction method Expired - Fee Related JP4314712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020459A JP4314712B2 (en) 2000-01-28 2000-01-28 Pier structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020459A JP4314712B2 (en) 2000-01-28 2000-01-28 Pier structure and its construction method

Publications (2)

Publication Number Publication Date
JP2001207410A JP2001207410A (en) 2001-08-03
JP4314712B2 true JP4314712B2 (en) 2009-08-19

Family

ID=18547017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020459A Expired - Fee Related JP4314712B2 (en) 2000-01-28 2000-01-28 Pier structure and its construction method

Country Status (1)

Country Link
JP (1) JP4314712B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818072B2 (en) * 2001-02-26 2006-09-06 株式会社大林組 Multi-column composite pier structure and its construction method
JP5411749B2 (en) * 2010-03-11 2014-02-12 公益財団法人鉄道総合技術研究所 Construction column construction method
CN108004912B (en) * 2017-12-25 2023-08-15 中北大学 A protector that is used for circular pier stud antiknock to shock
JP7158231B2 (en) * 2018-10-02 2022-10-21 大成建設株式会社 Composite column, bridge pier using same, construction method
CN110847018B (en) * 2019-11-12 2021-03-02 山东交通学院 Assembled concrete pier and construction method thereof
CN113832840B (en) * 2021-08-26 2023-08-22 广州市城建规划设计院有限公司 Double-wall hollow pier column top support connecting node and construction method
CN114960431A (en) * 2022-05-12 2022-08-30 西南交通大学 Grid type steel-foamed aluminum combined anti-impact device and construction method thereof
CN117433822B (en) * 2023-12-20 2024-02-13 贵州省公路工程集团有限公司 Structural performance evaluation system and method using reinforced concrete bracket as support

Also Published As

Publication number Publication date
JP2001207410A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
KR100971736B1 (en) Shear reinforcement with dual anchorage function each up and down
KR101184654B1 (en) Method for constructing united joint of tube filled concrete block
KR101519086B1 (en) Bridg using t-girder with pile supporting apparatus and bridge continuous construction method using the same
KR101582599B1 (en) Bridge construction method for forming continuous point part of pier using copping for connecting girder
JP4314712B2 (en) Pier structure and its construction method
KR100911148B1 (en) Lightened Coping for bridge
JP3635004B2 (en) Bridge cantilever construction method
CN113265953A (en) Prefabricated segmental bent cap
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
KR20140125754A (en) Bridge construction method for forming continuous point part of pier using copping for connecting girder
JP3818072B2 (en) Multi-column composite pier structure and its construction method
JP3660647B2 (en) Girder construction method using concrete receiving beams
KR200207380Y1 (en) A column's reinforcing rod for a round pier
KR100599768B1 (en) Hollow type Composite Pier Structure using Precast Concrete Form and Constructing Method therefor
JP3676442B2 (en) Filled coated steel pipe concrete structure
JP2001207409A (en) Pier structure and its constructing method
KR100584867B1 (en) Shear reinforcing member for improving adhesive power between concrete and steel beam in complexed structure composed of concrete and steel beam, and method for constructing complexed structure using the shear reinforcing member
JP2008274567A (en) Circular steel pipe prefabricated bridge and its construction method
CN114411523B (en) Corrugated steel web plate combined box girder structure based on arch structure stress and construction method thereof
JP3187347B2 (en) Column and beam joining method and joint structure
CN217026682U (en) Prefabricated segmental bent cap
KR100901499B1 (en) Lightened Coping for bridge
JP2763488B2 (en) Prefabricated pillar and inverted ramen prefabricated construction method
JPH05263404A (en) Column base structural body and construction method thereof
JP2002047614A (en) Pier structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees