JP4313708B2 - Ceramic carrier - Google Patents

Ceramic carrier Download PDF

Info

Publication number
JP4313708B2
JP4313708B2 JP2004082490A JP2004082490A JP4313708B2 JP 4313708 B2 JP4313708 B2 JP 4313708B2 JP 2004082490 A JP2004082490 A JP 2004082490A JP 2004082490 A JP2004082490 A JP 2004082490A JP 4313708 B2 JP4313708 B2 JP 4313708B2
Authority
JP
Japan
Prior art keywords
ratio
cordierite
solid solution
catalyst
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004082490A
Other languages
Japanese (ja)
Other versions
JP2005034833A (en
Inventor
友彦 中西
和彦 小池
智実 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004082490A priority Critical patent/JP4313708B2/en
Priority to DE102004030866A priority patent/DE102004030866A1/en
Priority to CNB2004100618532A priority patent/CN1286771C/en
Priority to US10/876,755 priority patent/US7211540B2/en
Publication of JP2005034833A publication Critical patent/JP2005034833A/en
Application granted granted Critical
Publication of JP4313708B2 publication Critical patent/JP4313708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、例えば、自動車エンジンの排ガス浄化用触媒等において、触媒を担持させるための担体として用いられるセラミック担体に関する。   The present invention relates to a ceramic carrier used as a carrier for carrying a catalyst in, for example, an exhaust gas purification catalyst for an automobile engine.

触媒担体用のセラミック担体には、従来より、低熱膨張で耐熱衝撃性の高いコーディエライト(2MgO・2Al23 ・5SiO2 )が広く用いられている。従来のセラミック担体は、一般に、コーディエライトをハニカム状に成形して、その表面をγ−アルミナで被覆(コート)した後、γ−アルミナの細孔に貴金属触媒を担持させて触媒体としている。コート層を形成するのは、コーディエライトの比表面積が小さく、そのままでは、必要な量の触媒成分を担持させることが困難なためである。 Conventionally, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) having a low thermal expansion and high thermal shock resistance has been widely used as a ceramic carrier for a catalyst carrier. Conventional ceramic carriers generally have cordierite formed into a honeycomb shape, and the surface thereof is coated (coated) with γ-alumina, and then a noble metal catalyst is supported on the pores of γ-alumina to form a catalyst body. . The coating layer is formed because the specific surface area of cordierite is small and it is difficult to support a necessary amount of the catalyst component as it is.

このように、従来のセラミック担体は、高比表面積のγ−アルミナをコートすることを前提とする。ところが、担体表面をγ−アルミナでコートすることは、一方で、重量増加による熱容量増加をまねく不具合があった。特に、近年、触媒の早期活性化のために、ハニカム担体のセル壁を薄くして熱容量を下げることが検討されており、コート層の形成はその効果を半減させることになる。また、コート層により熱膨張係数が大きくなる、セル開口面積の縮小により圧損が増加する等の問題があった。   As described above, the conventional ceramic carrier is premised on the coating of γ-alumina having a high specific surface area. However, coating the surface of the carrier with γ-alumina, on the other hand, has a problem that leads to an increase in heat capacity due to an increase in weight. In particular, in recent years, it has been studied to reduce the heat capacity by thinning the cell walls of the honeycomb carrier for early activation of the catalyst, and the formation of the coating layer halves the effect. In addition, the thermal expansion coefficient is increased by the coat layer, and the pressure loss is increased by reducing the cell opening area.

このため、コート層を形成することなく、触媒成分を担持可能なセラミック担体について、種々検討がなされている。例えば、酸処理した後、熱処理する方法でコーディエライト自体の比表面積を向上させることができるが、この方法では、酸処理等によりコーディエライトの結晶格子が破壊されて強度が低下する問題があり、実用的ではない。   For this reason, various studies have been made on ceramic carriers capable of supporting a catalyst component without forming a coating layer. For example, the specific surface area of cordierite itself can be improved by a method of heat treatment after acid treatment, but this method has a problem that the crystal lattice of cordierite is destroyed by acid treatment or the like and the strength is lowered. Yes, not practical.

これに対し、基材セラミックを構成する元素のうちの少なくとも1種類を、構成元素以外の元素と置換することによって、触媒成分を直接担持可能としたセラミック担体が提案されている(特許文献1)。このセラミック担体は、触媒成分を化学結合により直接担持することが可能であり、比表面積を向上させるためのコート層は不要となる。しかも、酸処理等に伴う強度低下の問題がないので、耐久性が必要な自動車用触媒用として有望である。
特開2002−346383号公報
On the other hand, a ceramic carrier capable of directly supporting a catalyst component by replacing at least one of the elements constituting the base ceramic with an element other than the constituent elements has been proposed (Patent Document 1). . The ceramic carrier can directly support the catalyst component by chemical bonding, and a coating layer for improving the specific surface area is not necessary. In addition, since there is no problem of strength reduction due to acid treatment or the like, it is promising for automobile catalysts that require durability.
JP 2002-346383 A

特許文献1のセラミック担体において、基材セラミックの構成元素と置換される元素としては、その電子軌道にdまたはf軌道を有する元素を用いることができる。dまたはf軌道を有する元素は、触媒成分とエネルギー準位が近いため、電子の授与が生じて、化学結合しやすいと考えられる。   In the ceramic carrier of Patent Document 1, an element having a d or f orbital in its electron orbit can be used as an element substituted for a constituent element of the base ceramic. An element having d or f orbital is considered to be easily chemically bonded due to the donation of electrons because the energy level is close to that of the catalyst component.

しかしながら、本発明者等がさらに検討したところ、置換元素の種類や組み合わせによって、熱耐久後の触媒性能が大きく異なることが判明した。また、置換元素の導入によって、熱膨張係数が増大することがあり、コーディエライトの特性を維持しつつ、早期活性化を実現することが大きな課題となっている。   However, as a result of further studies by the present inventors, it has been found that the catalyst performance after thermal endurance varies greatly depending on the type and combination of substitution elements. In addition, the introduction of a substitution element may increase the thermal expansion coefficient, and it is a major issue to realize early activation while maintaining the characteristics of cordierite.

本発明は、上記実情に鑑みてなされたものであり、その目的は、元素置換により触媒成分を直接担持するセラミック担体において、最適な置換元素の種類と組み合わせ、置換量等を規定し、基材セラミックの有する優れた特性を維持しながら、直接担持による触媒の早期活性化を実現し、しかも熱劣化しにくい高性能なセラミック担体を得ることにある。   The present invention has been made in view of the above circumstances, and its purpose is to specify the optimum substitution element type and combination, substitution amount, etc., in a ceramic carrier that directly supports a catalyst component by element substitution, An object of the present invention is to obtain a high-performance ceramic carrier that realizes early activation of a catalyst by direct loading while maintaining the excellent characteristics of ceramic, and that is not easily thermally deteriorated.

上記課題を解決するために、請求項1のセラミック担体は、基材セラミックをコーディエライトとし、その構成元素の少なくとも一種類を、該構成元素以外の第二成分元素であるWおよびTiと置換することによりPt、Rh、Pd、Ru、Au、Ag、Ir、Inのうち少なくとも一種類またはそれ以上の貴金属元素を触媒成分として直接担持可能としている。さらに、上記構成元素に対するWの置換率が5%より大きく、上記構成元素に対するWの置換量とTiの置換量の比がW:Ti=1:5〜1:8の範囲にあり、WおよびTiが固溶したコーディエライト結晶率を25mol%以上とすることで、高性能な直接担持セラミック担体を実現する。 In order to solve the above-mentioned problems, the ceramic carrier according to claim 1 uses cordierite as a base ceramic, and replaces at least one of its constituent elements with W and Ti as second component elements other than the constituent elements. By doing so, at least one or more kinds of noble metal elements among Pt, Rh, Pd, Ru, Au, Ag, Ir, and In can be directly supported as a catalyst component . Furthermore, the substitution ratio of W with respect to the constituent element is greater than 5%, and the ratio of the substitution amount of W with respect to the constituent element and the substitution amount of Ti is in the range of W: Ti = 1: 5 to 1: 8 By setting the cordierite crystal ratio in which Ti is dissolved to 25 mol% or more, a high-performance directly supported ceramic carrier is realized.

上記第二成分元素としてのWは、担持される触媒成分と強い力で結合するが、W単独ではコーディエライト中への固溶量がわずかであり、十分な触媒特性向上が見込めない。そこで、本発明では、Wと他の元素を組み合わせることを検討し、WおよびTiの組み合わせが最も効果的であることを見出した。Wとともに第二成分元素として導入されるTiは、Wのコーディエライト中への固溶を促進させる作用を有する。また、コーディエライト結晶の生成を促進させる。
Wの固溶率やコーディエライト結晶率は、WおよびTiの置換量や比率等によって調整可能である。Wの固溶量を増加させるには、Wの置換量に対するTiの置換量の比率を5倍ないしそれ以上とするのがよく、比率が大きいほどWの固溶率が大きくなる傾向にある。ただし、Wが固溶限界に達するとそれ以上固溶率は増えず、通常は、Ti置換量をW置換量の1倍〜8倍の範囲とすることで、所望の触媒特性が得られる。
ここで、基材全体における、WおよびTiが固溶したコーディエライト結晶の割合が25mol%以上であれば、化学結合により十分な量の触媒成分を直接担持可能であり、熱劣化を抑制する効果が高い。よって、コーディエライトの優れた特性を維持しながら、直接担持による触媒の早期活性化と、高い熱耐久性を実現できる。
W as the second component element is bonded to the supported catalyst component with a strong force. However, the amount of solid solution in cordierite is small with W alone, and a sufficient improvement in catalyst characteristics cannot be expected. Therefore, in the present invention, the combination of W and other elements was examined, and the combination of W and Ti was found to be most effective. Ti introduced as a second component element together with W has an action of promoting solid solution of W in cordierite. It also promotes the formation of cordierite crystals.
The solid solution ratio and cordierite crystal ratio of W can be adjusted by the substitution amounts and ratios of W and Ti. In order to increase the solid solution amount of W, the ratio of the substitution amount of Ti to the substitution amount of W is preferably set to 5 times or more, and the solid solution ratio tends to increase as the ratio increases. However, when W reaches the solid solution limit, the solid solution rate does not increase any more, and usually desired catalyst characteristics can be obtained by setting the Ti substitution amount in the range of 1 to 8 times the W substitution amount.
Here, if the ratio of cordierite crystals in which W and Ti are dissolved in the entire substrate is 25 mol% or more, a sufficient amount of catalyst component can be directly supported by chemical bonding, and thermal degradation is suppressed. High effect. Therefore, it is possible to achieve early activation of the catalyst by direct loading and high thermal durability while maintaining the excellent characteristics of cordierite.

請求項2のセラミック担体は、WおよびTiが固溶したコーディエライト結晶率を30mol%以上とする。   In the ceramic carrier of claim 2, the cordierite crystal ratio in which W and Ti are dissolved is 30 mol% or more.

好適には、WおよびTiの置換量や比率等を調整して、基材全体における、WおよびTiが固溶したコーディエライト結晶の割合を30mol%以上とすることができる。この時、より多くの触媒成分を化学結合により直接担持可能であり、かつ熱劣化を抑制する効果が向上する。また、低熱膨張のコーディエライト結晶量が増加することで、熱膨張係数の増加を抑制する効果が高くなり、触媒特性が大きく向上する。   Preferably, the substitution amount and ratio of W and Ti can be adjusted so that the ratio of cordierite crystals in which W and Ti are dissolved in the whole substrate can be 30 mol% or more. At this time, more catalyst components can be directly supported by chemical bonding, and the effect of suppressing thermal deterioration is improved. Further, an increase in the amount of cordierite crystal with low thermal expansion increases the effect of suppressing an increase in the thermal expansion coefficient, greatly improving the catalyst characteristics.

請求項3のセラミック担体は、コーディエライト結晶中へのWの固溶率を1.0atm%以上とする。 In the ceramic carrier of claim 3, the solid solution ratio of W in the cordierite crystal is 1.0 atm% or more.

好適には、コーディエライト結晶中へのWの固溶率が1.0atm%以上であれば、より多くの触媒成分を化学結合により直接担持可能であり、かつ熱劣化を抑制して、触媒の粒径を10nm以下に維持することができ、触媒特性を向上させることができる。Wの固溶率は、WおよびTiの置換量や比率等を変更することにより調整可能である。 Preferably, if the solid solution ratio of W in the cordierite crystal is 1.0 atm% or more, more catalyst components can be directly supported by chemical bonding, and thermal deterioration is suppressed, The particle size of the catalyst can be maintained at 10 nm or less, and the catalyst characteristics can be improved. The solid solution rate of W can be adjusted by changing the substitution amount and ratio of W and Ti.

請求項4のセラミック担体は、コーディエライト結晶中へのWの固溶率を1.5〜8.0atm%の範囲とする。 In the ceramic support of claim 4, the solid solution ratio of W in the cordierite crystal is in the range of 1.5 to 8.0 atm%.

より好適には、コーディエライト結晶中へのWの固溶率が1.5atm%以上であれば、さらに多くの触媒成分を化学結合により直接担持可能であり、かつ熱劣化を抑制して、触媒特性を大きく向上させることができる。また、Wの固溶率が8.0atm%以下であれば、安定したコーディエライト結晶構造が得られるので、低熱膨張の触媒担体が実現できる。 More preferably, if the solid solution ratio of W in the cordierite crystal is 1.5 atm% or more, more catalyst components can be directly supported by chemical bonding, and thermal deterioration is suppressed. The catalyst characteristics can be greatly improved. Further, if the solid solution ratio of W is 8.0 atm% or less, a stable cordierite crystal structure can be obtained, so that a low thermal expansion catalyst carrier can be realized.

請求項5のセラミック担体は、上記構成元素に対するTiおよびWの置換率を合計で90%以下とする。 Ceramic support according to claim 5, to 90% or less substitution rate of Ti and W for the constituent elements in total.

請求項6のセラミック担体は、コーディエライト結晶中へのTiの固溶率を、Wの固溶率の1〜3倍とする。   In the ceramic support of claim 6, the solid solution rate of Ti in the cordierite crystal is 1 to 3 times the solid solution rate of W.

WおよびTiの置換量の比率を上記請求項5の範囲とした時、コーディエライト結晶中へのTiの固溶率は、通常、Wの固溶率の1倍〜3倍となり、この範囲で良好な触媒特性が得られる。   When the ratio of the substitution amount of W and Ti is in the range of claim 5 above, the solid solution rate of Ti in the cordierite crystal is usually 1 to 3 times the solid solution rate of W. Good catalytic properties can be obtained.

以下、本発明を詳細に説明する。本発明のセラミック担体は、基材セラミックをコーディエライトとし、その構成元素の少なくとも一種類を、該構成元素以外の第二成分元素と置換させることにより、貴金属触媒等の触媒成分を直接担持可能となした直接担持セラミック担体である。本発明のセラミック担体では、第二成分元素として、WおよびTiを使用し、さらに、WおよびTiが固溶したコーディエライト結晶率が25mol%以上、好ましくは30mol%以上となるようにする。セラミック担体の形状は、特に制限されず、例えば、ハニカム状、フォーム状、中空糸状、繊維状、粉体状またはペレット状等、用途に応じた種々の形状とすることができる。用途には、自動車等の排ガス浄化触媒用の担体等が挙げられる。   Hereinafter, the present invention will be described in detail. The ceramic carrier of the present invention can directly support a catalyst component such as a noble metal catalyst by substituting at least one of its constituent elements with a second component element other than the constituent element using cordierite as the base ceramic. This is a directly supported ceramic carrier. In the ceramic carrier of the present invention, W and Ti are used as the second component element, and the cordierite crystal ratio in which W and Ti are dissolved is 25 mol% or more, preferably 30 mol% or more. The shape of the ceramic carrier is not particularly limited, and may be various shapes depending on the application such as a honeycomb shape, a foam shape, a hollow fiber shape, a fiber shape, a powder shape, or a pellet shape. Applications include a carrier for an exhaust gas purification catalyst for automobiles and the like.

基材セラミックとなるコーディエライトは、理論組成が2MgO・2Al23 ・5SiO2 で表され、低熱膨張で、耐熱衝撃性に優れることから、高温耐久性が要求される排ガス浄化触媒用の担体として好適である。ただし、コーディエライト表面に、触媒成分を物理吸着等により担持することは困難であり、本発明では、コーディエライト組成内に導入する第二成分元素に、触媒成分を結合させる。 Cordierite, the base ceramic, has a theoretical composition of 2MgO · 2Al 2 O 3 · 5SiO 2 , low thermal expansion, and excellent thermal shock resistance, so it can be used for exhaust gas purification catalysts that require high-temperature durability. Suitable as a carrier. However, it is difficult to support the catalyst component on the cordierite surface by physical adsorption or the like, and in the present invention, the catalyst component is bonded to the second component element introduced into the cordierite composition.

第二成分元素としては、WおよびTiの組み合わせが最適である。第二成分元素には、基材セラミックであるコーディエライトの構成元素(Mg、Al、Si)よりも、貴金属触媒等の触媒成分との結合力が大きく、触媒成分と化学的に結合可能な元素、具体的には、その電子軌道に空軌道を有し、酸化状態を二つ以上持つ元素が適している。ここで、Wの電子配置は[Xe]4f14 5d4 6s2 、Tiの電子配置は[Ar]3d2 4s2 であり、いずれもd軌道に空軌道を有する。また、Wの酸化数はII、IV、V、VI等、Tiの酸化数はII、III、IV等があり、二つ以上の酸化数を持つ。 As the second component element, a combination of W and Ti is optimal. The second component element has a stronger bonding force with a catalyst component such as a noble metal catalyst than the constituent elements (Mg, Al, Si) of cordierite that is a base ceramic, and can be chemically bonded to the catalyst component. An element, specifically, an element having an empty orbit in its electron orbit and having two or more oxidation states is suitable. Here, the electron arrangement of W is [Xe] 4f 14 5d 4 6s 2 , and the electron arrangement of Ti is [Ar] 3d 2 4s 2 , both of which have an empty orbit in the d orbit. The oxidation number of W is II, IV, V, VI, etc., and the oxidation number of Ti is II, III, IV, etc., and has two or more oxidation numbers.

d軌道に空軌道を有する元素は、担持される触媒金属元素とエネルギー準位が近く、電子の授受が行われやすい。また、二つ以上の酸化数を持つ元素も、触媒との間で電子の授受が生じやすい。中でもWは、貴金属元素とエネルギー準位が近く、このような電子の授受による結合によって、コート層なしに触媒と強い力で結合することができる。ただし、W単独では、コーディエライト中への固溶量がわずかであり、十分な触媒特性向上が見込めない。そこで、本発明では、複数の元素の導入を検討し、最も性能が良好となるWおよびTiの組み合わせを見出した。この組み合わせにおいて、貴金属触媒と主に結合するのはWであり、Tiは、Wのコーディエライト中への固溶を促進する作用を有する。   An element having an empty orbit in the d orbital is close in energy level to the supported catalytic metal element and is likely to exchange electrons. Also, an element having two or more oxidation numbers is likely to transfer electrons to and from the catalyst. Among them, W is close in energy level to the noble metal element, and can be bonded to the catalyst with a strong force without a coating layer by such bonding by transfer of electrons. However, with W alone, the amount of solid solution in cordierite is small, and sufficient improvement in catalyst characteristics cannot be expected. Therefore, in the present invention, the introduction of a plurality of elements was examined, and a combination of W and Ti with the best performance was found. In this combination, W is mainly bonded to the noble metal catalyst, and Ti has an action of promoting solid solution of W in cordierite.

第二成分元素がWおよびTiである時、WおよびTiが固溶したコーディエライト結晶率を25mol%以上、好ましくは30mol%以上とすることで、良好な触媒特性が得られる。コーディエライト結晶率が25mol%より少ないと、化学結合により触媒成分を担持するための結合サイトが少なくなり、熱劣化抑制効果が低下するために、熱耐久後の触媒特性が悪化する。また、コーディエライト以外の結晶の割合が増加するために、熱膨張係数が大きくなるなど、担体としての特性が低下する。ここで、WおよびTiが固溶したコーディエライト結晶率は、セラミック担体の基材全体における、WおよびTiが固溶したコーディエライト結晶の割合を示す。   When the second component element is W and Ti, good catalyst characteristics can be obtained by setting the cordierite crystal ratio in which W and Ti are dissolved to 25 mol% or more, preferably 30 mol% or more. If the cordierite crystallinity is less than 25 mol%, the number of binding sites for supporting the catalyst component by chemical bonding is reduced, and the effect of suppressing thermal degradation is lowered, so that the catalytic properties after thermal durability deteriorate. In addition, since the proportion of crystals other than cordierite increases, the characteristics as a carrier deteriorate, for example, the coefficient of thermal expansion increases. Here, the cordierite crystal ratio in which W and Ti are in solid solution indicates the ratio of cordierite crystal in which W and Ti are in solid solution in the entire base material of the ceramic carrier.

この場合、コーディエライト結晶中へのWの固溶率は、通常、0.1〜8.0atm%の範囲であれば、必要な量の触媒成分を担持することができる。コーディエライト結晶中へのWの固溶率が、0.1atm%よりも小さいと、化学結合により触媒成分を担持するための結合サイトが少なくなり、熱劣化しやすくなって、熱耐久後の触媒特性が悪化する。好ましくは、Wの固溶率が0.5atm%以上、より好ましくは、1.0atm%以上であると、化学結合により触媒成分を担持するための結合サイトが増加する。これにより触媒成分の凝集が抑制され10nm以下の粒径で高分散させることができるので、熱劣化を抑制する効果が向上する。コーディエライト結晶中へのWの固溶率が、8.0atm%よりも大きいと、WおよびTiの固溶した安定的なコーディエライト結晶構造ができないため、熱膨張係数が大きくなり、触媒担体として不適となる。   In this case, if the solid solution rate of W in the cordierite crystal is usually in the range of 0.1 to 8.0 atm%, a necessary amount of the catalyst component can be supported. If the solid solution ratio of W in the cordierite crystal is smaller than 0.1 atm%, the number of binding sites for supporting the catalyst component by chemical bonding is reduced, and thermal degradation tends to occur. Catalytic properties deteriorate. Preferably, when the solid solution ratio of W is 0.5 atm% or more, and more preferably 1.0 atm% or more, the binding sites for supporting the catalyst component by chemical bonding increase. As a result, aggregation of the catalyst component is suppressed and high dispersion can be achieved with a particle size of 10 nm or less, thereby improving the effect of suppressing thermal degradation. If the solid solution ratio of W in the cordierite crystal is larger than 8.0 atm%, a stable cordierite crystal structure in which W and Ti are dissolved cannot be formed. It becomes unsuitable as a carrier.

従って、通常は、基材セラミックの有する強度、熱膨張係数といった機械的特性および耐熱性、耐候性等を低下させることなく、必要な触媒担持量が確保できるように、WおよびTiが固溶したコーディエライト結晶率や、コーディエライト結晶中へのWの固溶率を調整して、最適な触媒特性が得られるようにする。コーディエライト結晶率を調整するには、出発原料の選定が重要であり、WとTiの置換量や比率によっても変化する。Wの固溶率を調整するには、WとTiの置換量、比率が重要となる。また、コーディエライトは広い組成領域で結晶形を保てるため、その範囲内で組成を変えることによっても、コーディエライト結晶率、Wの固溶率を調整することができる。   Therefore, normally, W and Ti are dissolved so that necessary catalyst loading can be secured without lowering mechanical properties such as strength and thermal expansion coefficient, heat resistance, and weather resistance of the base ceramic. The optimum catalyst characteristics are obtained by adjusting the cordierite crystal ratio and the solid solution ratio of W in the cordierite crystal. In order to adjust the cordierite crystal ratio, the selection of the starting material is important, and it varies depending on the substitution amount and ratio of W and Ti. In order to adjust the solid solution ratio of W, the substitution amount and ratio of W and Ti are important. Since cordierite can maintain a crystal form in a wide composition range, the cordierite crystal ratio and the solid solution ratio of W can be adjusted by changing the composition within the range.

本発明のセラミック担体は次のようにして製造される。すなわち、コーディエライトが理論組成となる原料から、予め、第二成分元素で置換すべき構成元素(Mg、Al、Si)の原料を置換量に応じて減らした原料を調製し、これに第二成分元素(W、Ti)の原料となる化合物を置換量に応じて添加する。このセラミック原料を、通常の方法で、混練、成形、乾燥させた後、大気雰囲気中で焼成する。あるいは、コーディエライトが理論組成となる原料から、予め、第二成分元素で置換すべき構成元素(Mg、Al、Si)の原料を置換量に応じて減らした原料を用い、通常の方法で、混練、成形、乾燥させた後、第二成分元素(W、Ti)の化合物を含む溶液に浸漬する。これを、乾燥させた後、大気雰囲気中で焼成してもよい。   The ceramic carrier of the present invention is manufactured as follows. That is, a raw material in which the raw materials of the constituent elements (Mg, Al, Si) to be substituted with the second component element are reduced in advance according to the substitution amount from the raw material having cordierite having a theoretical composition. A compound serving as a raw material for the binary elements (W, Ti) is added according to the substitution amount. The ceramic raw material is kneaded, shaped, dried by a usual method, and then fired in the air atmosphere. Alternatively, from a raw material in which cordierite has a theoretical composition, a raw material obtained by reducing the raw materials of constituent elements (Mg, Al, Si) to be substituted with the second component element in advance according to the substitution amount is used. After being kneaded, shaped and dried, it is immersed in a solution containing the compound of the second component element (W, Ti). This may be dried and then fired in an air atmosphere.

コーディエライト原料として、具体的には、Mg源としてタルク等の粘土鉱物が、Al源としては、アルミナ、水酸化アルミニウムが好適に使用される。Si源としては、カオリンが一般に用いられるが、好適には、非晶質珪素酸化物、例えば、溶融シリカが使用される。非晶質珪素酸化物を出発原料として使用すると、目的とするコーディエライト以外の結晶の生成を抑え、コーディエライト結晶率を増加させる効果が得られる。また、熱膨張係数を低下させる効果がある。   As the cordierite raw material, specifically, clay minerals such as talc are suitably used as the Mg source, and alumina and aluminum hydroxide are suitably used as the Al source. As the Si source, kaolin is generally used, but preferably an amorphous silicon oxide such as fused silica is used. When amorphous silicon oxide is used as a starting material, the effect of suppressing the formation of crystals other than the target cordierite and increasing the cordierite crystal ratio can be obtained. Moreover, there exists an effect which reduces a thermal expansion coefficient.

第二成分元素であるWのコーディエライト中への固溶率を高めるには、Tiの置換量をW置換量の倍〜8倍の範囲とするのがよい。一般に、Tiの置換量を多くすると、Wの固溶率も大きくなる傾向が見られるが、ある置換量以上では飽和する。従って、好適には、Tiの置換量をW置換量の倍以上で7倍より小さくなるようにするとよい。この時、コーディエライト結晶中へのTiの固溶率は、通常、Wの固溶率の1倍〜3倍となっており、この範囲で良好な触媒特性が得られる。Wの固溶率やコーディエライト結晶率は、TiとWの置換量および比率によって変動するので、これらを適切に設定して、最適な触媒特性が得られるように、Wの固溶率およびコーディエライト結晶率を調製するのがよい。 In order to increase the solid solution rate of W, which is the second component element, in the cordierite, the substitution amount of Ti is preferably in the range of 5 to 8 times the W substitution amount. In general, when the substitution amount of Ti is increased, the solid solution ratio of W tends to increase, but the saturation is obtained at a certain substitution amount or more. Therefore, it is preferable that the Ti substitution amount be at least 5 times the W substitution amount and less than 7 times. At this time, the solid solution rate of Ti in the cordierite crystal is usually 1 to 3 times the solid solution rate of W, and good catalyst characteristics can be obtained in this range. The solid solution ratio and cordierite crystal ratio of W vary depending on the substitution amount and ratio of Ti and W. Therefore, the solid solution ratio and the W solid solution ratio are set so that optimum catalyst characteristics can be obtained by appropriately setting these. The cordierite crystallinity should be adjusted.

ここで、コーディエライト結晶以外の構成成分(異相分)としては、TiO2 、MgWO4 、WO3 等が生成する。これらは、コーディエライトの結晶格子に入り込めなかったWや、コーディエライトの結晶格子の形成においてあまったAlやMg、Si等が酸化物化したり、複合酸化物化した化合物が異相となって、TiとWが固溶したコーディエライトからなる母相中に残留するものである。セラミック担体に対しX線回折測定を行うことで、TiとWが固溶したコーディエライト(母相)と、コーディエライトを含まない異相とが存在することを検証することができる。 Here, TiO 2 , MgWO 4 , WO 3 and the like are generated as constituent components (different phase components) other than cordierite crystals. These are oxides such as W that could not enter the cordierite crystal lattice, Al, Mg, Si, etc. that were formed in the formation of the cordierite crystal lattice. , Ti and W remain in the matrix composed of cordierite in which the solid solution is formed. By performing X-ray diffraction measurement on the ceramic support, it can be verified that cordierite (matrix) in which Ti and W are dissolved and a heterogeneous phase not containing cordierite exist.

このようにして得られる本発明のセラミック担体は、触媒成分と強い力で結合し、熱劣化しにくい上、低熱膨張係数で(通常、2.0×10-6/°C以下)、高性能な直接担持担体となる。このセラミック担体に担持させる触媒成分としては、例えば、Pt、Rh、Pd、Ru、Au、Ag、Ir、In等の貴金属元素が好適に用いられ、これら貴金属元素から選ばれる少なくとも一種類またはそれ以上を使用する。また、必要に応じて種々の助触媒を付加することもできる。助触媒には、例えば、Hf、Ti、Cu、Ni、Fe、Co、W、Mn、Cr、V、Se、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Sc、Ba、Ka等やランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)等の金属元素およびそれらの酸化物または複合酸化物が挙げられ、劣化抑制、酸素吸蔵能、触媒劣化検出といった目的に応じて、これら元素のうちの1種類または複数種類を目的に応じて使用する。 The ceramic carrier of the present invention thus obtained is bonded to the catalyst component with a strong force, hardly deteriorates by heat, has a low thermal expansion coefficient (usually 2.0 × 10 −6 / ° C. or less), and has a high performance. A direct carrier. As the catalyst component to be supported on the ceramic carrier, for example, a noble metal element such as Pt, Rh, Pd, Ru, Au, Ag, Ir, In or the like is preferably used, and at least one kind selected from these noble metal elements or more Is used. Various cocatalysts can be added as necessary. Examples of the promoter include Hf, Ti, Cu, Ni, Fe, Co, W, Mn, Cr, V, Se, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Sc, Ba, Ka. And metal elements such as lanthanoid elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and oxides or composite oxides thereof One or more of these elements are used depending on the purpose depending on purposes such as deterioration suppression, oxygen storage capacity, and catalyst deterioration detection.

本発明のセラミック担体に、これら触媒成分を担持させるには、通常、所望の触媒成分を含む溶液にセラミック担体を浸漬し、乾燥させた後、焼成する方法が用いられる。2種類以上の触媒成分を組み合わせて使用する場合は、複数の触媒成分を含む溶液を調製してセラミック担体を浸漬させればよい。例えば、PtとRhを主触媒成分として用いる場合には、ヘキサクロロ白金酸と塩化ロジウムを含有する溶液を用いることができる。また、種々の助触媒成分を併用することもできる。触媒成分の担持量は、通常、触媒貴金属で0.05〜10g/L、助触媒で1〜250g/Lの範囲とすることが好ましい。   In order to support these catalyst components on the ceramic carrier of the present invention, a method is generally used in which the ceramic carrier is immersed in a solution containing the desired catalyst component, dried and then fired. When two or more types of catalyst components are used in combination, a solution containing a plurality of catalyst components may be prepared and the ceramic carrier may be immersed. For example, when Pt and Rh are used as main catalyst components, a solution containing hexachloroplatinic acid and rhodium chloride can be used. Various cocatalyst components can also be used in combination. In general, the supported amount of the catalyst component is preferably in the range of 0.05 to 10 g / L for the catalyst noble metal and 1 to 250 g / L for the promoter.

(実施例1〜、比較例1〜12
本発明の効果を確認するために、以下の方法で、コーディエライトの構成成分を、第二成分元素であるWおよびTiで置換した本発明のセラミック担体を作製した。まず、コーディエライト化原料として、タルク、溶融シリカ、アルミナ、水酸化アルミニウムを使用し、Si源の10%をW(第1置換元素)で、同じくSi源の50%をTi(第2置換元素)に置換して、これら出発原料の粉末をコーディエライトの理論組成点付近となるように調合した。この調合原料にバインダ、潤滑剤および保湿剤等を適量添加し、通常の方法で混練したものを、セル壁100μm、セル密度400cpsi(1平方インチ当たりのセル個数)、直径50mmのハニカム形状に成形した。得られたハニカム成形体を、乾燥後、大気雰囲気で1260℃で焼成して本発明の直接担持セラミック担体を得た(実施例1)。
(Examples 1 to 4 and Comparative Examples 1 to 12 )
In order to confirm the effect of the present invention, a ceramic carrier of the present invention was produced by replacing the constituents of cordierite with W and Ti as the second component elements by the following method. First, talc, fused silica, alumina, and aluminum hydroxide are used as the cordierite forming raw material, 10% of the Si source is W (first substitution element), and 50% of the Si source is Ti (second substitution). The starting material powders were prepared so as to be near the theoretical composition point of cordierite. An appropriate amount of a binder, lubricant, moisturizer, etc. is added to this blended raw material and kneaded by a conventional method, and formed into a honeycomb shape with a cell wall of 100 μm, a cell density of 400 cpsi (number of cells per square inch), and a diameter of 50 mm did. The obtained honeycomb formed body was dried and fired at 1260 ° C. in an air atmosphere to obtain a directly supported ceramic carrier of the present invention (Example 1).

上記のようにして得られた直接担持セラミック担体に、主触媒成分である触媒貴金属を担持するため、塩化白金酸0.035mol/L、塩化ロジウム0.025mol/Lを溶解させた水溶液に5分間浸漬し、余分な溶液を取り除いた後、乾燥させ、大気雰囲気で600℃で焼き付けて金属化させた。触媒担持量はPt/Rh=1.0/0.2g/Lであった。   In order to support the catalyst noble metal as the main catalyst component on the directly supported ceramic carrier obtained as described above, 5 minutes in an aqueous solution in which 0.035 mol / L of chloroplatinic acid and 0.025 mol / L of rhodium chloride were dissolved. After dipping and removing the excess solution, it was dried and baked at 600 ° C. in an air atmosphere to be metallized. The catalyst loading was Pt / Rh = 1.0 / 0.2 g / L.

得られたセラミック触媒体の浄化性能と熱膨張係数をそれぞれ測定し、結果を表1に示した。浄化性能は、評価条件を下記のようにして、この時のプロピレン(C36 )の50%浄化温度(新触T50)を測定した。50%浄化温度(T50)は、プロピレンの浄化率が50%となる温度とする(図1(b)参照)。さらに、大気雰囲気、800℃、5時間の熱耐久試験を施した後の50%浄化温度(劣触T50)を測定し、その差を(劣触T50−新触T50)として示した。
セラミック担体:35cc(φ30×L50)
SV:41000/hr
ガス組成:A/F=14.55
The purification performance and thermal expansion coefficient of the obtained ceramic catalyst body were measured, and the results are shown in Table 1. As for purification performance, the evaluation conditions were as follows, and the 50% purification temperature (new contact T50) of propylene (C 3 H 6 ) at this time was measured. The 50% purification temperature (T50) is a temperature at which the purification rate of propylene is 50% (see FIG. 1B). Further, the 50% purification temperature (inferior touch T50) after the thermal endurance test at 800 ° C. for 5 hours was measured, and the difference was shown as (inferior touch T50−new touch T50).
Ceramic carrier: 35cc (φ30 × L50)
SV: 41000 / hr
Gas composition: A / F = 14.55

また、比較のため、第2置換元素としてCo、Zr、Gaを表1に示す置換量で使用したセラミック担体を製作した(比較例1〜3)。さらに、第1置換元素としてW、Ti、Zrを表1に示す置換量で使用し、第2置換元素を使用しないセラミック担体を製作した(比較例4〜6)。これらセラミック担体に、同様の方法で触媒を担持してセラミック触媒体を得、その浄化性能と熱膨張係数をそれぞれ測定した。結果を表1に併記する。   For comparison, ceramic carriers using Co, Zr, and Ga as the second substitution elements in substitution amounts shown in Table 1 were manufactured (Comparative Examples 1 to 3). Furthermore, W, Ti, and Zr were used as the first substitution element in the substitution amounts shown in Table 1, and ceramic carriers not using the second substitution element were produced (Comparative Examples 4 to 6). Catalysts were supported on these ceramic carriers by the same method to obtain ceramic catalyst bodies, and their purification performance and thermal expansion coefficient were measured. The results are also shown in Table 1.

表1に明らかなように、第2置換元素を使用しない場合には、第1置換元素としてWを用いた比較例6が、最も浄化性能が良好で、熱膨張係数も低い。ところが、これに第2置換元素を組み合わせた場合、第2置換元素との種類によっては、浄化性能がむしろ低下するか、あるいは熱膨張係数が増加する(比較例1〜3)。これに対し、WとTiを組み合わせた実施例1では、熱耐久試験前後の50%浄化温度に変化がなく、しかも、熱膨張係数が1.0×10-6/℃であり、熱劣化しにくく低熱膨張のセラミック担体とすることができる。 As is apparent from Table 1, when no second substitution element is used, Comparative Example 6 using W as the first substitution element has the best purification performance and a low thermal expansion coefficient. However, when the second substitution element is combined with this, the purification performance is rather lowered or the thermal expansion coefficient is increased depending on the type of the second substitution element (Comparative Examples 1 to 3). On the other hand, in Example 1 in which W and Ti were combined, the 50% purification temperature before and after the thermal endurance test did not change, and the thermal expansion coefficient was 1.0 × 10 −6 / ° C., resulting in thermal degradation. It is difficult to obtain a ceramic support with low thermal expansion.

次に、第二成分元素をWとTiとした場合の、WとTiの置換量および比率と、Si源の出発原料による効果の違いを調べた。上記実施例1と同様の方法で、WとTiの置換量および比率を表2のように変更して、セラミック担体を製作した(比較〜9)。また、Si源の出発原料を、溶融シリカに代えてカオリンとし、WとTiの置換量と比率を表2のように変更したものについても、同様にしてセラミック担体を製作した(実施例2、比較例10、11)。
さらに、比較のため、第二成分元素をWのみとし、Si源の出発原料をカオリンとしたセラミック担体を製作した(比較例12)。
Next, when the second component element is W and Ti, the difference between the substitution amount and the ratio of W and Ti and the effect due to the starting material of the Si source were examined. Ceramic carriers were produced in the same manner as in Example 1 above, with the substitution amounts and ratios of W and Ti changed as shown in Table 2 ( Comparative Examples 7 to 9). In addition, a ceramic carrier was manufactured in the same manner with respect to the Si source starting material using kaolin instead of fused silica and the substitution amount and ratio of W and Ti changed as shown in Table 2 (Example 2, Comparative Examples 10 and 11 ).
Furthermore, for comparison, a ceramic carrier was produced in which the second component element was only W and the starting material for the Si source was kaolin (Comparative Example 12 ).

上記のようにして得られた直接担持セラミック担体の、WとTiが固溶したコーディエライト結晶率と、コーディエライト中へのWの固溶率を測定し、結果を表2に示した。コーディエライト結晶率はX線回折法にて測定した。この時、まず、主成分であるコーディエライトと異相成分であるTiO2を任意の割合で混合した試料を作り、各成分のピーク強度を測定することで検量線を作成する。次に、上記実施例1〜、比較例7〜12の試料を同様の条件で測定し、作成した検量線からコーディエライト結晶率を求める。測定条件は下記のようにした。
測定条件:管電圧 50KV 管電流 200mA 室温
また、Wの固溶率はTEM−EDXにて測定した。まず、上記実施例1〜、比較例7〜12の試料を粉砕し、TEM(透過型電子顕微鏡)で観察する。これをEDXにて定量分析し、得られたW濃度をWの固溶率とした。
The cordierite crystal ratio in which W and Ti were dissolved and the solid solution ratio of W in cordierite of the directly supported ceramic support obtained as described above were measured. The results are shown in Table 2. . The cordierite crystal ratio was measured by an X-ray diffraction method. At this time, first, a calibration curve is created by preparing a sample in which cordierite as a main component and TiO 2 as a heterophasic component are mixed at an arbitrary ratio, and measuring the peak intensity of each component. Next, the samples of Examples 1 to 4 and Comparative Examples 7 to 12 are measured under the same conditions, and the cordierite crystal ratio is obtained from the prepared calibration curve. Measurement conditions were as follows.
Measurement conditions: Tube voltage 50 KV Tube current 200 mA Room temperature The solid solution rate of W was measured by TEM-EDX. First, the samples of Examples 1 to 4 and Comparative Examples 7 to 12 are pulverized and observed with a TEM (transmission electron microscope). This was quantitatively analyzed by EDX, and the obtained W concentration was defined as the W solid solution rate.


表2に明らかなように、第二成分元素がWのみの比較例7では、置換量を30%としても、コーディエライト結晶率が20mol%と低く、W固溶率も0.2atm%にすぎない。これに対し、WとTiを組み合わせた実施例1〜では、いずれもコーディエライト結晶率が25mol%以上であり、W固溶率は1.0atm%と高くなっている。さらに、Si源の出発原料を溶融シリカとすると、コーディエライト結晶率が増加し、置換量の比率(Ti/W)が1〜8の範囲でコーディエライト結晶率が30mol%以上と高い値を示す。同じ置換量、比率でSi源の出発原料をカオリンとした場合と比較すると例えば、WとTiの置換量の比率(Ti/W)が1〜5の時、実施例2、比較例10、11のコーディエライト結晶率が25〜30mol%であるのに対し、実施例1、比較例7、9のコーディエライト結晶率は53〜55mol%と、ほぼ倍増している。 As is apparent from Table 2, in Comparative Example 7 in which the second component element is only W, even if the substitution amount is 30%, the cordierite crystal ratio is as low as 20 mol%, and the W solid solution ratio is also 0.2 atm%. Only. On the other hand, in Examples 1 to 4 in which W and Ti are combined, the cordierite crystal ratio is 25 mol% or more, and the W solid solution ratio is as high as 1.0 atm%. Furthermore, when the starting material of the Si source is fused silica, the cordierite crystal ratio increases, and the cordierite crystal ratio is as high as 30 mol% or more when the substitution ratio ( Ti / W ) is in the range of 1 to 8. Indicates. Compared with the case where the starting material of the Si source is kaolin with the same substitution amount and ratio , for example, when the ratio of substitution amount of W and Ti ( Ti / W ) is 1 to 5, Example 2, Comparative Example 10, while 11 cordierite crystal ratio is 25~30Mol%, example 1, the cordierite crystal index of Comparative example 7, 9 and 53~55Mol%, has almost doubled.

また、実施例1、2、比較例7〜11から、WとTiの置換量が多く、WとTiの置換量の比率(Ti/W)が大きいほど、コーディエライト中へのWの固溶率が大きくなる傾向が見られる。例えば、W、Tiの置換量がそれぞれ5%の比較例8はW固溶率が0.5atm%であるのに対し、W、Tiの置換量がそれぞれ10%の比較例7では、W固溶率が0.8atm%となり、さらにW、Tiの置換量がそれぞれ10%、50%の実施例1では、W固溶率が1.5atm%と大きく向上する。ただし、置換量の比率(Ti/W)が5を超える実施例3、4では、W固溶率の増加は見られず、Wが固溶限界に達したためと考えられる。実施例3、4では、コーディエライト結晶率は実施例1より低下しており、従って、好適には、置換量の比率(Ti/W)を7より小さくするとよい。 Further, from Examples 1 and 2 and Comparative Examples 7 to 11 , the larger the amount of substitution of W and Ti and the larger the ratio of the amount of substitution of W and Ti ( Ti / W ), the more solid the W in cordierite. There is a tendency for the dissolution rate to increase. For example, in Comparative Example 8 in which the substitution amounts of W and Ti are each 5%, the W solid solution rate is 0.5 atm%, while in Comparative Example 7 in which the substitution amounts of W and Ti are 10%, In Example 1 in which the solubility is 0.8 atm% and the substitution amounts of W and Ti are 10% and 50%, respectively, the W solid solubility is greatly improved to 1.5 atm%. However, in Examples 3 and 4 in which the ratio of substitution amount ( Ti / W ) exceeds 5, no increase in the W solid solution rate was observed, and it is considered that W reached the solid solution limit. In Examples 3 and 4 , the cordierite crystal ratio is lower than that in Example 1. Therefore, it is preferable that the substitution amount ratio ( Ti / W ) be smaller than 7.

このように、W、Tiの置換量と比率(Ti/W)、出発原料等を変更することで、コーディエライト結晶率を増減させることができる。図1(a)は、このようにして種々のセラミック担体を作製し、熱耐久試験後の浄化性能を測定した結果を示すもので、コーディエライト結晶率が増加するにつれて熱劣化後の50%浄化温度(T50)が低くなっている。図1(a)より、コーディエライト結晶率が25mol%以上であれば、熱劣化後の50%浄化温度(T50)が400℃程度となり、実用上十分な性能を有することが分かる。コーディエライト結晶率が30mol%以上であれば、熱劣化後の50%浄化温度(T50)が380℃程度ないしそれ以下となり、熱劣化抑制により効果的である。図2は、同様にしてセラミック担体のW固溶率を変化させ、熱耐久試験後の浄化性能を測定した結果を示すもので、Wの固溶率が0.5atm%以上であれば、熱劣化後の50%浄化温度(T50)が400℃程度となり、実用上十分な性能を有することが分かる。Wの固溶率が1.0atm%以上であれば、熱劣化後の50%浄化温度(T50)が380℃程度ないしそれ以下となるので、より好ましい。 Thus, the cordierite crystal ratio can be increased or decreased by changing the substitution amount and ratio ( Ti / W ) of W and Ti , the starting material, and the like. FIG. 1 (a) shows the results of producing various ceramic supports in this way and measuring the purification performance after the thermal endurance test. As the cordierite crystal ratio increases, 50% after thermal degradation is shown. The purification temperature (T50) is low. FIG. 1A shows that when the cordierite crystal ratio is 25 mol% or more, the 50% purification temperature (T50) after thermal degradation is about 400 ° C., and it has practically sufficient performance. When the cordierite crystal ratio is 30 mol% or more, the 50% purification temperature (T50) after thermal degradation is about 380 ° C. or lower, which is more effective in suppressing thermal degradation. FIG. 2 shows the result of measuring the purification performance after the thermal durability test in the same manner by changing the W solid solution rate of the ceramic support. If the W solid solution rate is 0.5 atm% or more, It can be seen that the 50% purification temperature (T50) after deterioration is about 400 ° C., and it has practically sufficient performance. If the solid solution rate of W is 1.0 atm% or more, the 50% purification temperature (T50) after thermal degradation is about 380 ° C. or less, which is more preferable.

図3(a)、(b)は、W、Tiが固溶したコーディエライト結晶構造の例(W固溶率2.3atm%の時)を示すものである。上記各実施例についても、TEM−EDXによる分析でW、Tiが固溶していることが確認されており、この時のW、Tiの固溶比率は、Ti/W=1〜3であった。W、Tiの置換量の比率がTi/W=5の場合も上記固溶比率となり、Tiの方が固溶しやすくなっていることがわかる。 FIGS. 3A and 3B show examples of cordierite crystal structures in which W and Ti are dissolved (when the W solid solution rate is 2.3 atm%). Also in each of the above examples, it was confirmed by the analysis by TEM-EDX that W and Ti were dissolved, and the solid solution ratio of W and Ti at this time was Ti / W = 1-3. It was. When the ratio of the substitution amounts of W and Ti is Ti / W = 5, the solid solution ratio is obtained, and it can be seen that Ti is more easily dissolved.

図4は、上述したのと同様にしてセラミック担体のW固溶率を変化させ、熱耐久試験後の触媒粒径変化を調べた結果を示すものである。図示するように、Wの固溶率が0.5atm%未満の場合には、触媒粒径が10〜25nmの範囲ないしそれ以上となっており、結合サイトが少ないために熱劣化しやすくなったものと推測される。これに対し、Wの固溶率が0.5atm%以上である場合には、熱劣化後の触媒粒径を10nm以下にすることができる。Wの固溶率が1.0atm%以上であれば、熱劣化後の触媒粒径を5nm以下にすることができ、より好ましい。   FIG. 4 shows the result of examining the change in the catalyst particle size after the thermal endurance test by changing the W solid solution rate of the ceramic support in the same manner as described above. As shown in the figure, when the solid solution ratio of W is less than 0.5 atm%, the catalyst particle size is in the range of 10 to 25 nm or more, and it is easy to be thermally deteriorated because there are few binding sites. Presumed to be. On the other hand, when the solid solution rate of W is 0.5 atm% or more, the catalyst particle size after thermal deterioration can be made 10 nm or less. If the solid solution rate of W is 1.0 atm% or more, the catalyst particle diameter after heat deterioration can be made 5 nm or less, and it is more preferable.

以上により、本発明のセラミック担体によれば、第二成分元素であるW、Tiの置換量や比率、出発原料等を適切に選択することで、生成するコーディエライト量やWの固溶率を最適化し、少ない触媒量で劣化しない良好な触媒担体を得ることができる。   As described above, according to the ceramic carrier of the present invention, the amount of cordierite produced and the solid solution ratio of W can be selected by appropriately selecting the substitution amount and ratio of the second component elements W and Ti, the starting material, and the like. And a good catalyst carrier that does not deteriorate with a small amount of catalyst can be obtained.

(a)はコーディエライト結晶率と熱耐久試験後の50%浄化温度の関係を示す図、(b)は50%浄化温度の測定方法を説明するための図である。(A) is a figure which shows the relationship between the cordierite crystal ratio and the 50% purification temperature after a thermal endurance test, (b) is a figure for demonstrating the measuring method of 50% purification temperature. Wの固溶率と熱耐久試験後の50%浄化温度の関係を示す図である。It is a figure which shows the relationship between the solid-solution rate of W, and the 50% purification temperature after a thermal endurance test. W、Tiが固溶したコーディエライト結晶構造の一例を示す図である。It is a figure which shows an example of the cordierite crystal structure in which W and Ti dissolved. Wの固溶率と熱耐久試験後の触媒粒径の関係を示す図である。It is a figure which shows the relationship between the solid solution rate of W, and the catalyst particle size after a thermal endurance test.

Claims (6)

基材セラミックをコーディエライトとし、その構成元素の少なくとも一種類を、該構成元素以外の第二成分元素と置換させることによりPt、Rh、Pd、Ru、Au、Ag、Ir、Inのうち少なくとも一種類またはそれ以上の貴金属元素を触媒成分として直接担持可能となしたセラミック担体であって、上記第二成分元素がWおよびTiであり、上記構成元素に対するWの置換率が5%より大きく、上記構成元素に対するWの置換量とTiの置換量の比がW:Ti=1:5〜1:8の範囲にあり、かつWおよびTiが固溶したコーディエライト結晶率が25mol%以上であることを特徴とするセラミック担体。 The base ceramic is cordierite, and at least one of the constituent elements is replaced with a second component element other than the constituent elements, so that at least one of Pt, Rh, Pd, Ru, Au, Ag, Ir, and In. A ceramic support capable of directly supporting one or more kinds of noble metal elements as a catalyst component, wherein the second component element is W and Ti, and the substitution rate of W with respect to the constituent elements is greater than 5%, The ratio of the amount of substitution of W and the amount of substitution of Ti with respect to the constituent elements is in the range of W: Ti = 1: 5 to 1: 8, and the cordierite crystal ratio in which W and Ti are dissolved is 25 mol% or more. A ceramic carrier characterized by being. WおよびTiが固溶したコーディエライト結晶率が30mol%以上である請求項1記載のセラミック担体。   The ceramic carrier according to claim 1, wherein the cordierite crystal ratio in which W and Ti are dissolved is 30 mol% or more. コーディエライト結晶中へのWの固溶率が1.0atm%以上である請求項1または2記載のセラミック担体。 The ceramic carrier according to claim 1 or 2, wherein the solid solution ratio of W in the cordierite crystal is 1.0 atm% or more. コーディエライト結晶中へのWの固溶率が1.5〜8.0atm%の範囲である請求項1または2記載のセラミック担体。 3. The ceramic carrier according to claim 1, wherein the solid solution ratio of W in the cordierite crystal is in the range of 1.5 to 8.0 atm%. 上記構成元素に対するTiおよびWの置換率が合計で90%以下である請求項1ないし4のいずれか記載のセラミック担体。 The ceramic carrier according to any one of claims 1 to 4, wherein a substitution ratio of Ti and W to the constituent elements is 90% or less in total . コーディエライト結晶中へのTiの固溶率が、Wの固溶率の1〜3倍である請求項1ないし5のいずれか記載のセラミック担体。   The ceramic carrier according to any one of claims 1 to 5, wherein the solid solution ratio of Ti in the cordierite crystal is 1 to 3 times the solid solution ratio of W.
JP2004082490A 2003-06-27 2004-03-22 Ceramic carrier Expired - Fee Related JP4313708B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004082490A JP4313708B2 (en) 2003-06-27 2004-03-22 Ceramic carrier
DE102004030866A DE102004030866A1 (en) 2003-06-27 2004-06-25 Ceramic carrier
CNB2004100618532A CN1286771C (en) 2003-06-27 2004-06-25 Ceramic support
US10/876,755 US7211540B2 (en) 2003-06-27 2004-06-28 Ceramic support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003183985 2003-06-27
JP2004082490A JP4313708B2 (en) 2003-06-27 2004-03-22 Ceramic carrier

Publications (2)

Publication Number Publication Date
JP2005034833A JP2005034833A (en) 2005-02-10
JP4313708B2 true JP4313708B2 (en) 2009-08-12

Family

ID=33554461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082490A Expired - Fee Related JP4313708B2 (en) 2003-06-27 2004-03-22 Ceramic carrier

Country Status (4)

Country Link
US (1) US7211540B2 (en)
JP (1) JP4313708B2 (en)
CN (1) CN1286771C (en)
DE (1) DE102004030866A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813830B2 (en) * 2004-10-14 2011-11-09 三菱重工業株式会社 Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
US8910468B2 (en) * 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731938B2 (en) * 1973-10-11 1982-07-07
SE7800987L (en) * 1977-02-04 1978-08-05 Johnson Matthey Co Ltd CATALYST
US4708946A (en) * 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
US4740429A (en) * 1985-07-22 1988-04-26 Ngk Insulators, Ltd. Metal-ceramic joined articles
US4956329A (en) * 1988-11-28 1990-09-11 Allied-Signal Inc. High surface area cordierite catalyst support structures
CA2064977C (en) * 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
US5346722A (en) * 1993-05-18 1994-09-13 Corning Incorporated Method for improving the thermal shock resistance of a washcoated body
DE4428322A1 (en) * 1993-08-11 1995-02-23 Technology Co Ag Cordierite aggregate having low thermal expansion and composite bodies produced therefrom
US6194083B1 (en) * 1997-07-28 2001-02-27 Kabushiki Kaisha Toshiba Ceramic composite material and its manufacturing method, and heat resistant member using thereof
EP1043067A3 (en) * 1999-04-09 2002-03-27 Denso Corporation A ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US6887569B1 (en) * 1999-10-20 2005-05-03 The Board Of Trustees Of The University High temperature tolerant ceramic composites having porous interphases
US6503368B1 (en) * 2000-06-29 2003-01-07 Applied Materials Inc. Substrate support having bonded sections and method
US7067452B2 (en) * 2000-09-29 2006-06-27 Denso Corporation Ceramic catalyst body
KR100632591B1 (en) * 2000-12-16 2006-10-09 에스케이 주식회사 Catalyst composition for dioxin removal and preparation method thereof
JP4030320B2 (en) * 2001-03-22 2008-01-09 株式会社デンソー Ceramic body and ceramic catalyst body
JP2004008924A (en) * 2002-06-06 2004-01-15 Denso Corp Ceramic body and ceramic catalyst

Also Published As

Publication number Publication date
DE102004030866A1 (en) 2005-04-28
US7211540B2 (en) 2007-05-01
JP2005034833A (en) 2005-02-10
CN1576259A (en) 2005-02-09
US20050003958A1 (en) 2005-01-06
CN1286771C (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP4079717B2 (en) Ceramic catalyst body
US7605110B2 (en) Ceramic body, ceramic catalyst body and related manufacturing methods
JP5217091B2 (en) Ceramic body, ceramic carrier having catalyst supporting ability, ceramic catalyst body and method
JP4030320B2 (en) Ceramic body and ceramic catalyst body
EP1447130A1 (en) Catalyst element and method for manufacture thereof
JP6692256B2 (en) Porous ceramic structure
US20060014636A1 (en) Catalytic article
JP4046925B2 (en) Ceramic body, ceramic carrier having catalyst supporting ability, ceramic catalyst body and method for producing the same
US20030228457A1 (en) Ceramic body and ceramic catalyst body
JP5099656B2 (en) Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing the same
JP4296908B2 (en) Catalyst body and method for producing the same
JP4404538B2 (en) Silicon carbide catalyst body for exhaust gas purification and method for producing the same
JP4584555B2 (en) Ceramic catalyst body
JP2006206390A (en) Ceramic body, ceramic carrier having catalyst carrying capacity, ceramic catalyst body and method for producing the same
JP4313708B2 (en) Ceramic carrier
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
CN1253405C (en) Ceramic carrier and its prepn. method
JP2007054685A (en) Catalyst for water gas shift reaction
JP2004082091A (en) Ceramic catalyst body
JP2023180753A (en) ceramic porous body
JP5871179B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees