JP4311971B2 - Mold for semi-solid metal compact - Google Patents

Mold for semi-solid metal compact Download PDF

Info

Publication number
JP4311971B2
JP4311971B2 JP2003122401A JP2003122401A JP4311971B2 JP 4311971 B2 JP4311971 B2 JP 4311971B2 JP 2003122401 A JP2003122401 A JP 2003122401A JP 2003122401 A JP2003122401 A JP 2003122401A JP 4311971 B2 JP4311971 B2 JP 4311971B2
Authority
JP
Japan
Prior art keywords
semi
solid metal
mold
metal
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003122401A
Other languages
Japanese (ja)
Other versions
JP2004322176A (en
Inventor
充 安達
智 佐藤
道寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Yanagawa Seiki Co Ltd
Original Assignee
Ube Machinery Corp Ltd
Yanagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd, Yanagawa Seiki Co Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2003122401A priority Critical patent/JP4311971B2/en
Publication of JP2004322176A publication Critical patent/JP2004322176A/en
Application granted granted Critical
Publication of JP4311971B2 publication Critical patent/JP4311971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半凝固金属成形体の成形金型に関するもので、特に、金型に半凝固金属を載置して、直接、上型や加圧ピンにより加圧することにより、高品質の成形品を成形することができる半凝固金属成形体の成形金型に関するものである。
【0002】
【従来の技術】
地球環境保護や省エネルギーの観点から自動車の軽量化を進める中で、健全な鋳造品を得るため、各種の高圧鋳造法が適用されているが、なかでも、固液共存状態の金属(半凝固金属)を成形する方法が注目されている。
半凝固金属の成形においては、一般的には、液体から温度を低下させて製造した半凝固金属あるいは固体状態の金属を加熱して製造した半溶融金属を一旦スリーブに移し、しかる後スリーブ内のチップを移動し、半凝固金属または半溶融金属を成形金型内に押圧充填して成形する。
【0003】
しかしながら、上記成形方法には幾つかの課題がある。第1に、半凝固金属をスリーブに挿入した段階で、固液共存状態の金属はスリーブに接触して熱を奪われるので、凝固層が生成しやすい。このため、凝固層が製品へ混入するのを防ぐ工夫が必要となる。
第2に、半凝固金属の充填中にスリーブ内に残されたビスケット部分と製品までのランナーを加えた製品以外の部分の全鋳込み重量に対する割合が高い。特に、小型製品を製造する場合に、その割合が高くなる。その結果、製品価格が高くなる。
【0004】
このため、金型の中に、直接、半凝固金属を入れて成形する方法が開発されている。しかし、この方法においては、下型に載置した半凝固金属を、上型の下型への接近に伴い圧縮変形させて上型と下型で構成される空間部に半凝固金属を充填する際に、成形品内部に成分偏析が発生したり、半凝固金属が金型外に飛散したり、または、保持容器上部に発生していた半凝固金属の酸化物が製品部内に混入したりするという課題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記課題に着目し、煩雑な方法を採ることなく、半凝固金属を加圧成形する方法に使用する成形金型を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
このような課題を解決するために、本発明の第1の発明では、半凝固金属を載置できる大きさの凹部を有する下型と上型で構成される空間部に該半凝固金属を充填して鋳物製品を成形する金型であって、型合わせ面に、空間部を取り囲みかつ全周において空間部と連通する1個所以上の半凝固金属余剰メタルの集積部を設けるとともに、下型凹部とそれに対面する上型の凹部で構成される空間部に、半凝固金属余剰メタルの集積部を設け、空間部に設けた集積部に、上型に対して摺動可能で、局部加圧に加えて成形体の取り出しが可能な治具を配設した構造の半凝固金属成形体の成形金型とする。
【0007】
第1の発明を主体とする第2の発明では、前記下型に対して摺動可能で、局部加圧または成形体の取り出しの少なくとも一つ以上の機能を有する治具を設けた構造の半凝固金属成形体の成形金型とする。
【0009】
【発明の実施の形態】
以下に、本発明の半凝固金属成形体の成形金型に係る具体的な実施の形態を、図面を参照して詳細に説明する。
【0010】
図1は、溶湯から、直接、半凝固金属を製造するまでのプロセスの説明図、図2は、下型凹部の半凝固金属を上型が下降して圧縮して成形することを示す説明図、図3は、半凝固金属の型締め速度と変形率との関係を示す説明図、図4は、半凝固金属を加圧方向と異なる方向にスライド機構を有する鋳抜きピンにより、加圧または穴あけを行なうことを示す説明図、図5は、上型と下型の合わせ面および下型凹部のメタル集積部に半凝固金属の余剰メタルを集めることを示す説明図、図6は、上型に対して摺動可能な治具により局部加圧をし、成形後の半凝固金属成形体を取り出すことを示す説明図である。
【0011】
まず、図1の(1)、(2)、(3)、および、(4)に基づいて、半凝固金属を製造する時の概要を説明する。図において、1はラドル、2は金属容器(保持容器)、3は溶湯、4は断熱材、5はエアー、6は半凝固金属、6Bは高周波誘導コイルである。
工程(1)において、融点直上の溶湯3を金属容器2に注いで、多数の結晶核を溶湯内に発生させ、工程(2)において、溶湯温度を下げながら結晶核を起点にして球状結晶を成長させ、目標の固相率を有する半凝固金属6を製造する。
【0012】
この間、温度が低下しやすい上部および下部の溶湯を断熱材4により保温し、断熱材4で覆われていない部分をエアー5で冷却して、容器内の半凝固金属6の温度を均一にする。工程(3)においては、高周波誘導コイル6Bで半凝固金属6を加熱して、更に半凝固金属6の温度を均一化し、半凝固金属6を容器から排出しやすいようにする。そして、工程(4)において、半凝固金属6を排出する。
【0013】
半凝固金属6の固相率は30〜99.9%とする。固相率が30%未満であると、軟いために、成形に際して型の外にメタルが飛散したり、半凝固金属6に引け巣が発生しやすく、一方、固相率が99.9%を越えると、固体状態になり、成形が難しくなって、半凝固金属成形体9の外観が良くないので、半凝固金属6の固相率は、30〜99.9%とする。
【0014】
次に、図2の(1)、(2)、および、(3)に基づいて、半凝固金属成形体を製造する時の概要を説明する。図において、7は上型、8は下型、9は半凝固金属成形体である。
工程(1)では、図1に示す製法で得た半凝固金属6を、凹部を有する下型8に反転して載置し、工程(2)では、上型7を下型8へ接近させて半凝固金属6を静かに変形させ、工程(3)では、上型7と下型8で構成される空間部に半凝固金属6を完全に充填し、最終形状の半凝固金属成形体9を成形する。
即ち、工程(2)においては、半凝固金属6を静かに圧縮変形して基本形状を整え、工程(3)において、最終形状の製品に成形する。
【0015】
上型を下型へ接近させて半凝固金属6を圧縮変形する際、圧縮変形中は、型締め速度を0.01〜1.0m/sとする。
型締め速度が0.01m/s未満であると、半凝固金属6を的確に圧縮変形することが難しくなるとともに、半凝固金属成形体9の凝固組織に成分偏析が生じ、表面性状や特性の不均一の原因となるので、型締め速度の下限を0.01m/sとする。
一方、型締め速度が1.0m/sを越えると、圧縮変形が速すぎて、半凝固金属6が上型と下型の隙間から飛散することがあるので、型締め速度の上限を1.0m/sとする。
型締め速度は、0.01〜1.0m/sの範囲内で適宜選択できるが、好ましくは、0.01〜0.6m/s、より好ましくは、0.02〜0.2m/sである。
また、型締め速度は、半凝固金属6の圧縮変形途中においても、0.01〜1.0m/sの範囲内で適宜選択して変えることができる。
【0016】
第1工程として、変形率が最大50%未満までは0.5m/s未満の型締め速度で半凝固金属6を圧縮変形させて基本形状を設定し、次いで、第2工程として、該変形率以上では該型締め速度以上で圧縮変形させて最終製品形状を形成することができる。
変形率50%を境にして、型締め速度を変える理由は、変形率が50%未満までの範囲では基本形状を整え易いからである。変形率が50%を越えるまで、基本形状の設定を行なうと、圧縮変形中、溶融金属が滲み出したり、半凝固金属成形体9が硬くなりすぎたりする。
【0017】
また、半凝固金属6の圧縮変形中、第1工程の終了後10秒未満保持して、一旦、型締め速度を0.01m/s未満とし、引き続き第2工程を行なってもよい。具体的には、工程(2)と工程(3)の間において、一旦、型締め速度(変形速度)を0.01m/s未満にして製品の固相率を低下させて、収縮巣の発生を抑えるようにし、工程(3)における加工において、塑性加工を含む鍛造効果を一部期待する方法を採用することもできる。なお、半凝固金属6の圧縮変形中、成形体の内部品質向上のために振動することもできる。
【0018】
図3に、半凝固金属の型締め速度と変形率の関係の一例を示す。タイプ(イ)の場合、第1工程においては型締め速度が0.45m/sの等速で変形率50%近くまで変形させ、その後、型締め速度を0.95m/sまで上げて、変形率が90%になるまで成形している。タイプ(ロ)の場合、第1工程においては、型締め速度が0.05m/sの等速で変形率30%近くになるまで変形させ、その後、型締め速度を0.45m/sまで上げて、変形率が80%になるまで成形している。
【0019】
実際の成形においては、それぞれの工程の中で、図3に示すような変形率に対して一定の型締め速度とは異なるパターンも選択できる。
なお、変形率(%)とは、半凝固金属6の初期高さHから変形後の高さHを差し引いたものを、初期高さHで割った値を意味している。即ち、下記式で計算される値である。
変形率(%)=100×(H−H)÷H
【0020】
図4は、半凝固金属の加圧方向と異なる横方向にスライド機構を有する鋳抜きピンにより、半凝固金属に対し加圧したりまたは穴あけを行なうことを示す説明図である。図において、6は半凝固金属、8は下型、10は鋳抜きピン、11はスライド機構を有する鋳抜きピンである。半凝固金属6を圧縮変形している過程、または、半凝固金属6を圧縮変形した後において、スライド機構を有する鋳抜きピン11を移動させることにより、半凝固金属6に対して加圧または穴あけを行ない、半凝固金属成形体9を成形する。
【0021】
図5は、上型と下型の合わせ面および下型凹部のメタル集積部に半凝固金属の余剰メタルを集めることを示す説明図である。図において、7は上型、8は下型、8Aは下型凹部、9は半凝固金属成形体、12は型合わせ面の半凝固金属集積部外、13は型合わせ面の半凝固金属集積部内、14は下型凹部8Aの半凝固金属集積部である。
上型7の下型8への接近に伴い半凝固金属6は圧縮変形されるが、それに伴い、下型凹部8Aに載置した半凝固金属6の余剰メタル6Aを半凝固金属集積部14に集め、また、上型7と下型8の合わせ面における余剰メタル6Aを半凝固金属集積外12と半凝固金属集積内13に集める。
【0022】
図6は、上型に対して摺動可能な治具により局部加圧をし、また、成形後の半凝固金属成形体9を取り出すことを示す図である。図において、7は上型、8は下型、15は突き出し治具、16は成形体の取出し機能を有する押出しピンである。
上型7と下型8で構成される空間部に、図2に示す工程を経て製造された半凝固金属成形体9を、突き出し治具15を用いて加圧する。上型7の上昇による型開き後、先に、ロボットアームで半凝固金属成形体9を把持しておき、引続き、押出しピン16と突き出し治具15を用いて、半凝固金属成形体9を下方向へ突き出す。
なお、下方向へ突き出された半凝固金属成形体9は上型7から離型され、所望の場所へ搬送される。
図6に示す成形金型においては、図示はしていないが下型に対して摺動可能で、局部加圧または成形体の取りだしの少なくとも一つ以上の機能を有する治具を設けてもよい。また、さらに、加圧方向と異なる方向に、図4に示すようなスライド機構を有する鋳抜きピンを設けてもよい。
【0023】
【実施例】
(実施例)
以下、図面および表1に基づいて、本発明の実施例について詳細に説明する。
下型8に載置した半凝固金属6を加圧した場合、下型8に接触して半凝固金属6の温度が低下して凝固層が発生し、該凝固層が製品の内部に混在したり、また、金属容器2の中で生成し半凝固金属6の上部に集積した酸化物が、同様に、製品の内部に混在したりして、品質上問題になることがある。
また、半凝固金属6の圧縮変形に際しては、製品重量以上の余剰メタルを、型外に飛散させないように型内の所定の場所に集める必要がある。また、上記圧縮変形に際し、加圧成形条件が不適切な場合、成形した製品中に成分偏析が発生したり、成形過程で半凝固金属6が飛散したりすることがある。
本実施例においては、これらのことを評価した。
半凝固金属成形体9の成形条件と品質(評価結果)を表1に示す。
【0024】
【表1】

Figure 0004311971
【0025】
用いた合金はAC4CH合金である。合金組成はAl−7%、Si−0.35%、Mg−0.15Tiである。半凝固金属6は、図1に示す製法で製造した。金型は200℃に加熱し、黒鉛系の水溶性離型剤を塗布して、試験に用いた。
型締め力315tのマシンを使用し、約1.0kgの半凝固金属9を圧縮変形した。
【0026】
なお、半凝固金属の製造方法は、図1に示す方法に限定されるものではなく、種々の方法を適用できる。図1に示す方法は、半凝固金属を、治具を使用せずに、直接得る方法であって、液相線温度に対して過熱度を50℃未満に保持された結晶微細化剤を含むアルミニウム合金溶湯、または、マグネシウム合金溶湯を冷却治具を使用することなく、直接、金属容器2に注湯し、溶湯内に結晶核を発生させ、該結晶核を成長させて、所定の液相率を示す成形温度まで冷却しつつ30秒〜30分間保持することにより、球状結晶を有する半凝固金属9を得ることを特徴としている。
【0027】
半凝固金属6を金属容器2より反転して排出した後、下型8内に載置する。なお、半凝固金属6は、AC4CH合金に限定されるものでなく、半凝固金属6として準備できる金属または合金は、すべて本発明に適用できる。
【0028】
また、本発明においては、冷却板に溶湯を接触させて、あるいは、冷却振動棒を、注湯する溶湯あるいは注湯後も継続して溶湯中に浸漬して、上記方法と同様に、保持容器内で冷却保持する方法も適用できる。さらに、一旦固化したビレットを加熱して製造した半溶融金属も本発明に適用できる。
【0029】
比較例10では、下型8に凹部がないため、半凝固金属6を載置して加圧した場合、下型8に接触して温度が低下し、発生した凝固層が半凝固金属成形体9の内部に混入するとともに、金属容器2内で生成した半凝固金属6の酸化物を固定できないために、該酸化物が、同様に、半凝固金属成形体9の内部に混入して、品質上問題があった。
【0030】
比較例11では、第1工程における型締め速度が遅いために、圧縮変形中にSiが濃縮されて成分偏析が発生し、また、変形速度が遅いために、圧縮成形の途中で、固相率が高まり成形し難くなり、収縮巣が発生した。
比較例12では、第2工程における型締め速度が速いために、メタル集積部を設けていても、型外にメタルが飛散した。
【0031】
比較例13では、第1工程における型締め速度が速いために、メタル集積部を設けていても、型外にメタルが飛散した。
比較例14では、固相率が低いために、メタル集積部を設けていても、型外にメタルが飛散した。また、収縮巣が発生しやすく、成分偏析も発生した。
比較例15では、固体であるために、成形が容易でなく外観が悪化した。また、成形体9中に収縮巣が発生した。
比較例16では、第1工程の後の変形停止時間が長すぎるために、半凝固金属成形体9の表面が固化して成形が容易でなくなり、外観が悪化した。
【0032】
一方、実施例1〜9では、半凝固金属成形体9の内部組織に成分偏析は認められないし、また、凝固層、酸化物の混入も非常に少ない。また、加圧効果も十分に高いために、収縮巣もほとんど認められない。特に、突き出し治具15、押出しピン16を用いたものについては、さらに、収縮巣は観察されなかった。
また、メタル集積部を設けたものについては、第2工程の型締め速度が速くても、型外へのメタルの飛散はなかった。
【0033】
【発明の効果】
以上、説明したことから明らかなように、本発明の半凝固金属成形体の成形金型は、上型に対し摺動可能で、局部加圧に加えて成形体の取りだし可能な治具を備えているので、鋳造作業、さらに、鋳造後の取り出し作業も能率よく行なうことができる。
【図面の簡単な説明】
【図1】溶湯から直接半凝固金属を製造するまでのプロセスを示す説明図である。
【図2】下型凹部の半凝固金属を上型が下降して圧縮して成形することを示す説明図である。
【図3】半凝固金属の型締め速度と変形率との関係を示す説明図である。
【図4】半凝固金属を加圧方向と異なる方向にスライド機構を有する鋳抜きピンにより、加圧または穴あけを行なうことを示す説明図である。
【図5】上型と下型の合わせ面および下型凹部のメタル集積部に半凝固金属の余剰メタルを集めることを示す説明図である。
【図6】上型に対して摺動可能な治具により局部加圧をし、成形後の半凝固金属成形体を取り出すことを示す説明図である。
【符号の説明】
1…ラドル
2…金属容器(保持容器)
3…溶湯
4…断熱材
5…エアー
6…半凝固金属
6A…余剰メタル
6B…高周波誘導コイル
7…上型
8…下型
8A…下型凹部
9…半凝固金属成形体
10…鋳抜きピン
11…スライド機構を有する鋳抜きピン
12…半凝固金属集積部外
13…半凝固金属集積部内
14…下型凹部8Aの半凝固金属集積部
15…突き出し治具
16…押出しピン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding die for a semi-solid metal molded body, and in particular, a high-quality molded product by placing a semi-solid metal on a die and directly pressing it with an upper die or a pressure pin. The present invention relates to a molding die for a semi-solid metal molded body that can be molded.
[0002]
[Prior art]
Various high-pressure casting methods have been applied in order to obtain sound castings while advancing the weight reduction of automobiles from the viewpoint of global environmental protection and energy savings. ) Is attracting attention.
In forming a semi-solid metal, generally, a semi-solid metal produced by lowering the temperature from a liquid or a semi-molten metal produced by heating a solid state metal is once transferred to the sleeve, and then in the sleeve. The chip is moved, and a semi-solid metal or a semi-molten metal is pressed and filled into a molding die and molded.
[0003]
However, the molding method has several problems. First, when the semi-solid metal is inserted into the sleeve, the solid-liquid coexisting metal contacts the sleeve and loses heat, so that a solidified layer is easily formed. For this reason, the device which prevents that a solidified layer mixes in a product is needed.
Secondly, the ratio of the biscuit portion left in the sleeve during the filling of the semi-solid metal and the portion other than the product including the runner up to the product is high with respect to the total cast weight. In particular, when manufacturing a small product, the ratio becomes high. As a result, the product price increases.
[0004]
For this reason, a method of forming a semi-solid metal directly in a mold has been developed. However, in this method, the semi-solid metal placed on the lower mold is compressed and deformed as the upper mold approaches the lower mold, and the space formed by the upper mold and the lower mold is filled with the semi-solid metal. At this time, component segregation occurs in the molded product, the semi-solid metal is scattered outside the mold, or the semi-solid metal oxide generated in the upper part of the holding container is mixed in the product part. There is a problem.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a molding die for use in a method of pressure-forming a semi-solid metal without taking a complicated method, paying attention to the above problems.
[0006]
[Means for Solving the Problems]
In order to solve such a problem, according to the first aspect of the present invention, the semi-solid metal is filled in the space formed by the lower mold and the upper mold having a recess having a size capable of placing the semi-solid metal. a mold for molding a casting product and, on the die matching surface, Oite the surrounding and all around the space, provided with an integrated part of the space 1 or more sites for communicating with the semi-solid metal excess metal, A semi-solid metal surplus metal accumulation part is provided in a space composed of a lower mold depression and an upper mold depression facing it, and the accumulation part provided in the space is slidable with respect to the upper mold, and is locally A molding die for a semi-solid metal molded body having a structure in which a jig capable of taking out the molded body in addition to pressurization is provided.
[0007]
In a second invention mainly composed of the first invention, a half of a structure provided with a jig that is slidable with respect to the lower mold and has at least one function of local pressurization or removal of a molded body. A molding die for a solidified metal molded body is used.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments according to a molding die of a semi-solid metal molded body of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 is an explanatory view of a process from the molten metal directly to producing a semi-solid metal, and FIG. 2 is an explanatory view showing that the upper die descends and compresses and forms the semi-solid metal in the lower mold recess. FIG. 3 is an explanatory view showing the relationship between the mold clamping speed and the deformation rate of the semi-solid metal. FIG. 4 is a diagram showing how the semi-solid metal is pressed or cast by a cast pin having a slide mechanism in a direction different from the pressurizing direction. FIG. 5 is an explanatory diagram showing that drilling is performed, FIG. 5 is an explanatory diagram showing collecting surplus metal of semi-solid metal on the mating surface of the upper die and the lower die and the metal accumulation portion of the lower die recess, and FIG. It is explanatory drawing which shows taking out the semi-solid metal forming body after shaping | molding with the jig | tool which can be slid with respect to, and shape | molding.
[0011]
First, based on (1), (2), (3), and (4) of FIG. 1, the outline at the time of manufacturing a semi-solid metal will be described. In the figure, 1 is a ladle, 2 is a metal container (holding container), 3 is a molten metal, 4 is a heat insulating material, 5 is air, 6 is a semi-solid metal, and 6B is a high-frequency induction coil.
In the step (1), the molten metal 3 immediately above the melting point is poured into the metal container 2 to generate a large number of crystal nuclei in the molten metal. In the step (2), the spherical crystals are formed starting from the crystal nuclei while lowering the molten metal temperature. Growing to produce a semi-solid metal 6 having a target solid fraction.
[0012]
During this time, the upper and lower molten metal whose temperature tends to decrease is kept warm by the heat insulating material 4, and the portion not covered with the heat insulating material 4 is cooled by the air 5 to make the temperature of the semi-solid metal 6 in the container uniform. . In step (3), the semi-solid metal 6 is heated by the high-frequency induction coil 6B, and the temperature of the semi-solid metal 6 is further uniformed so that the semi-solid metal 6 can be easily discharged from the container. In step (4), the semi-solid metal 6 is discharged.
[0013]
The solid phase ratio of the semi-solid metal 6 is 30 to 99.9%. When the solid phase ratio is less than 30%, the metal is scattered out of the mold at the time of molding, and shrinkage cavities are likely to occur in the semi-solid metal 6. On the other hand, the solid phase ratio is 99.9%. If it exceeds, it becomes a solid state, forming becomes difficult, and the appearance of the semi-solid metal compact 9 is not good, so the solid phase ratio of the semi-solid metal 6 is set to 30 to 99.9%.
[0014]
Next, based on (1), (2), and (3) of FIG. 2, the outline at the time of manufacturing a semi-solid metal compact will be described. In the figure, 7 is an upper mold, 8 is a lower mold, and 9 is a semi-solid metal compact.
In the step (1), the semi-solid metal 6 obtained by the manufacturing method shown in FIG. 1 is inverted and placed on the lower die 8 having the recesses, and in the step (2), the upper die 7 is brought close to the lower die 8. Then, the semi-solid metal 6 is gently deformed, and in the step (3), the space formed by the upper die 7 and the lower die 8 is completely filled with the semi-solid metal 6, and the semi-solid metal compact 9 having the final shape is formed. Is molded.
That is, in the step (2), the semi-solid metal 6 is gently compressed and deformed to adjust the basic shape, and in the step (3), it is formed into a final product.
[0015]
When the semi-solid metal 6 is compressed and deformed by bringing the upper mold close to the lower mold, the mold clamping speed is set to 0.01 to 1.0 m / s during the compression deformation.
When the clamping speed is less than 0.01 m / s, it becomes difficult to accurately compress and deform the semi-solid metal 6, and component segregation occurs in the solidified structure of the semi-solid metal molded body 9, resulting in surface properties and characteristics. Since this causes unevenness, the lower limit of the mold clamping speed is set to 0.01 m / s.
On the other hand, if the mold clamping speed exceeds 1.0 m / s, the compression deformation is too fast and the semi-solid metal 6 may scatter from the gap between the upper mold and the lower mold. 0 m / s.
The mold clamping speed can be appropriately selected within the range of 0.01 to 1.0 m / s, preferably 0.01 to 0.6 m / s, more preferably 0.02 to 0.2 m / s. is there.
The mold clamping speed can be appropriately selected and changed within the range of 0.01 to 1.0 m / s even during the compression deformation of the semi-solid metal 6.
[0016]
As the first step, the basic shape is set by compressively deforming the semi-solid metal 6 at a clamping speed of less than 0.5 m / s until the deformation rate is less than 50% at maximum, and then, as the second step, the deformation rate. The final product shape can be formed by compressing and deforming at the mold clamping speed or higher.
The reason for changing the mold clamping speed at the deformation rate of 50% is that the basic shape can be easily adjusted in the range where the deformation rate is less than 50%. If the basic shape is set until the deformation rate exceeds 50%, the molten metal oozes out during compression deformation, or the semi-solid metal formed body 9 becomes too hard.
[0017]
Further, during the compressive deformation of the semi-solid metal 6, it may be held for less than 10 seconds after the end of the first step, once the mold clamping speed is set to less than 0.01 m / s, and then the second step may be performed. Specifically, between step (2) and step (3), once the mold clamping speed (deformation speed) is less than 0.01 m / s to reduce the solid phase rate of the product, the generation of shrinkage foci In the processing in the step (3), a method for partially expecting a forging effect including plastic processing can be adopted. In addition, during the compression deformation of the semi-solid metal 6, it can also vibrate in order to improve the internal quality of the molded body.
[0018]
FIG. 3 shows an example of the relationship between the mold clamping speed and the deformation rate of the semi-solid metal. In the case of type (a), in the first step, the mold clamping speed is deformed at a constant speed of 0.45 m / s at a deformation rate close to 50%, and then the mold clamping speed is increased to 0.95 m / s for deformation. Molding is performed until the rate reaches 90%. In the case of type (b), in the first step, the mold is clamped at a constant speed of 0.05 m / s until the deformation rate is close to 30%, and then the mold clamping speed is increased to 0.45 m / s. Thus, the molding is performed until the deformation rate reaches 80%.
[0019]
In actual molding, a pattern different from a fixed mold clamping speed can be selected for each deformation rate as shown in FIG.
The deformation rate (%) means a value obtained by subtracting the height H 1 after deformation from the initial height H 0 of the semi-solid metal 6 and dividing it by the initial height H 0 . That is, it is a value calculated by the following formula.
Deformation rate (%) = 100 × (H 0 −H 1 ) ÷ H 0
[0020]
FIG. 4 is an explanatory view showing that a semi-solid metal is pressurized or punched by a cast pin having a slide mechanism in a lateral direction different from the pressing direction of the semi-solid metal. In the figure, 6 is a semi-solid metal, 8 is a lower mold, 10 is a cast pin, and 11 is a cast pin having a slide mechanism. In the process of compressively deforming the semi-solid metal 6 or after the semi-solid metal 6 is compressed and deformed, the punching pin 11 having a slide mechanism is moved to press or punch the semi-solid metal 6. The semi-solid metal molded body 9 is formed.
[0021]
FIG. 5 is an explanatory view showing that the surplus metal of the semi-solid metal is collected on the mating surface of the upper die and the lower die and the metal accumulation portion of the lower die recess. In the figure, 7 is an upper mold, 8 is a lower mold, 8A is a lower mold recess, 9 is a semi-solid metal molded body, 12 is outside the semi-solid metal accumulation portion of the die-mating surface, and 13 is semi-solid metal accumulation of the die-mating surface. In the section, 14 is a semi-solid metal accumulation portion of the lower mold recess 8A.
As the upper mold 7 approaches the lower mold 8, the semi-solid metal 6 is compressed and deformed, and accordingly, the surplus metal 6 A of the semi-solid metal 6 placed in the lower mold recess 8 A is transferred to the semi-solid metal accumulation part 14. collected, and collect surplus metal 6A in the mating surface of the upper mold 7 and the lower die 8 and the semi-solid metal integrated unit out 12 in semi-solid metal stacking section 13.
[0022]
FIG. 6 is a view showing that the local pressurization is performed by a jig slidable with respect to the upper die, and that the semi-solid metal molded body 9 after the molding is taken out. In the figure, 7 is an upper mold, 8 is a lower mold, 15 is an extrusion jig, and 16 is an extrusion pin having a function of taking out a molded body.
A semi-solid metal molded body 9 manufactured through the process shown in FIG. 2 is pressed into a space formed by the upper mold 7 and the lower mold 8 by using a protruding jig 15. After the mold is opened by raising the upper mold 7, the semi-solid metal molded body 9 is first gripped by the robot arm, and then the semi-solid metal molded body 9 is lowered using the extrusion pin 16 and the extrusion jig 15. Stick out in the direction.
The semi-solid metal molded body 9 protruding downward is released from the upper mold 7 and conveyed to a desired place.
In the molding die shown in FIG. 6, although not shown, a jig that can slide with respect to the lower die and has at least one function of local pressurization or removal of the molded body may be provided. . Furthermore, a cast pin having a slide mechanism as shown in FIG. 4 may be provided in a direction different from the pressing direction.
[0023]
【Example】
(Example)
In the following, embodiments of the present invention will be described in detail with reference to the drawings and Table 1.
When the semi-solid metal 6 placed on the lower mold 8 is pressurized, the temperature of the semi-solid metal 6 decreases due to contact with the lower mold 8 to generate a solidified layer, and the solidified layer is mixed inside the product. In addition, the oxide generated in the metal container 2 and accumulated on the upper part of the semi-solid metal 6 may also be mixed in the product, resulting in a quality problem.
Further, when the semi-solid metal 6 is compressed and deformed, it is necessary to collect surplus metal more than the product weight at a predetermined location in the mold so as not to be scattered outside the mold. In addition, when the compression molding conditions are inappropriate during the compression deformation, component segregation may occur in the molded product, or the semi-solid metal 6 may be scattered during the molding process.
In this example, these were evaluated.
Table 1 shows the molding conditions and quality (evaluation results) of the semi-solid metal compact 9.
[0024]
[Table 1]
Figure 0004311971
[0025]
The alloy used is an AC4CH alloy. The alloy composition is Al-7%, Si-0.35%, Mg-0.15Ti. Semi-solid metal 6 was manufactured by the manufacturing method shown in FIG. The mold was heated to 200 ° C., a graphite-based water-soluble release agent was applied, and used for the test.
Using a machine with a clamping force of 315 t, about 1.0 kg of the semi-solid metal 9 was compressed and deformed.
[0026]
In addition, the manufacturing method of a semi-solidified metal is not limited to the method shown in FIG. 1, A various method is applicable. The method shown in FIG. 1 is a method for directly obtaining a semi-solid metal without using a jig, and includes a crystal refining agent whose superheat degree is kept below 50 ° C. with respect to the liquidus temperature. A molten aluminum alloy or a molten magnesium alloy is poured directly into the metal container 2 without using a cooling jig, crystal nuclei are generated in the molten metal, the crystal nuclei are grown, and a predetermined liquid phase is obtained. A semi-solid metal 9 having a spherical crystal is obtained by holding for 30 seconds to 30 minutes while cooling to a molding temperature showing a rate.
[0027]
After the semi-solid metal 6 is inverted and discharged from the metal container 2, it is placed in the lower mold 8. The semi-solid metal 6 is not limited to the AC4CH alloy, and any metal or alloy that can be prepared as the semi-solid metal 6 can be applied to the present invention.
[0028]
Further, in the present invention, the holding container is made in the same manner as in the above method by bringing the molten metal into contact with the cooling plate or immersing the cooling vibration rod in the molten metal to be poured or continuously after the molten metal is poured. It is also possible to apply a method of cooling and holding inside. Furthermore, semi-molten metal produced by heating a billet once solidified can also be applied to the present invention.
[0029]
In Comparative Example 10, since the lower mold 8 has no recess, when the semi-solid metal 6 is placed and pressed, the temperature is lowered by contact with the lower mold 8 and the generated solid layer is a semi-solid metal molded body. 9 and the oxide of the semi-solid metal 6 produced in the metal container 2 cannot be fixed, so that the oxide is mixed into the semi-solid metal formed body 9 in the same manner. There was a problem above.
[0030]
In Comparative Example 11, since the mold clamping speed in the first step is slow, Si is concentrated during compression deformation, component segregation occurs, and since the deformation speed is slow, the solid phase ratio is reduced during compression molding. As a result, the mold became difficult to mold and a shrinkage nest was generated.
In Comparative Example 12, because the mold clamping speed in the second step was fast, the metal was scattered outside the mold even when the metal integrated portion was provided.
[0031]
In Comparative Example 13, since the mold clamping speed in the first step was fast, the metal was scattered outside the mold even when the metal integrated portion was provided.
In Comparative Example 14, since the solid phase ratio was low, the metal was scattered out of the mold even when the metal integrated portion was provided. In addition, shrinkage foci were likely to occur, and component segregation also occurred.
In Comparative Example 15, since it was solid, molding was not easy and the appearance deteriorated. Further, shrinkage nests occurred in the molded body 9.
In Comparative Example 16, since the deformation stop time after the first step was too long, the surface of the semi-solid metal formed body 9 was solidified and became difficult to form, and the appearance deteriorated.
[0032]
On the other hand, in Examples 1 to 9, no component segregation is observed in the internal structure of the semi-solid metal molded body 9, and the solidified layer and oxides are very little mixed. Further, since the pressurizing effect is sufficiently high, almost no contraction nest is observed. In particular, in the case of using the extrusion jig 15 and the extrusion pin 16, no shrinkage nest was observed.
Further, in the case where the metal accumulation part was provided, even if the mold clamping speed in the second step was high, the metal was not scattered outside the mold.
[0033]
【The invention's effect】
As is apparent from the above description, the molding die of the semi-solid metal molding of the present invention is slidable with respect to the upper die, and includes a jig capable of taking out the molding in addition to local pressure. Therefore, it is possible to efficiently perform the casting operation and further the removal operation after casting.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a process from manufacturing a semi-solid metal directly from a molten metal.
FIG. 2 is an explanatory view showing that a semi-solid metal in a lower mold recess is molded by lowering and compressing an upper mold.
FIG. 3 is an explanatory view showing a relationship between a mold clamping speed and a deformation rate of a semi-solid metal.
FIG. 4 is an explanatory view showing that a semi-solid metal is pressed or drilled by a cast pin having a slide mechanism in a direction different from the pressing direction.
FIG. 5 is an explanatory diagram showing collecting surplus metal of a semi-solid metal on the mating surface of the upper die and the lower die and the metal accumulation portion of the lower die recess.
FIG. 6 is an explanatory view showing that a partial pressurization is performed by a jig slidable with respect to an upper mold, and a molded semi-solid metal formed body is taken out.
[Explanation of symbols]
1 ... Ladle 2 ... Metal container (holding container)
3 ... Molten metal 4 ... Heat insulating material 5 ... Air 6 ... Semi-solid metal 6A ... Excess metal 6B ... High frequency induction coil 7 ... Upper die 8 ... Lower die 8A ... Lower die recess 9 ... Semi-solid metal molded body 10 ... Cast pin 11 ····················································································································································· •

Claims (2)

半凝固金属を載置できる大きさの凹部を有する下型と上型で構成される空間部に該半凝固金属を充填して鋳物製品を成形する金型であって、型合わせ面に、空間部を取り囲みかつ全周において空間部と連通する1個所以上の半凝固金属余剰メタルの集積部を設けるとともに、下型凹部とそれに対面する上型の凹部で構成される空間部に、半凝固金属余剰メタルの集積部を設け、空間部に設けた集積部に、上型に対して摺動可能で、局部加圧に加えて成形体の取り出しが可能な治具を配設したことを特徴とする半凝固金属成形体の成形金型。A mold for forming a cast product by filling a space portion composed of a lower mold and an upper mold having a recess capable of placing a semi-solid metal, and filling the semi-solid metal with a space on the mold mating surface. surrounds the part and Oite the entire circumference, provided with a collecting section of the space and communicating with one portion or more semi-solid metal excess metal, in the space constituted by the recess of the upper mold facing thereto and a lower mold recess, A semi-solid metal surplus metal accumulation part was provided, and a jig that was slidable with respect to the upper mold and capable of taking out the compact in addition to local pressurization was provided in the accumulation part provided in the space part. A mold for semi-solid metal compacts. 前記下型に対して摺動可能で、局部加圧または成形体の取り出しの少なくとも一つ以上の機能を有する治具を設けたことを特徴とする請求項1記載の半凝固金属成形体の成形金型。  The molding of the semi-solid metal molded body according to claim 1, further comprising a jig that is slidable with respect to the lower mold and has at least one function of local pressurization or removal of the molded body. Mold.
JP2003122401A 2003-04-25 2003-04-25 Mold for semi-solid metal compact Expired - Lifetime JP4311971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122401A JP4311971B2 (en) 2003-04-25 2003-04-25 Mold for semi-solid metal compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122401A JP4311971B2 (en) 2003-04-25 2003-04-25 Mold for semi-solid metal compact

Publications (2)

Publication Number Publication Date
JP2004322176A JP2004322176A (en) 2004-11-18
JP4311971B2 true JP4311971B2 (en) 2009-08-12

Family

ID=33500644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122401A Expired - Lifetime JP4311971B2 (en) 2003-04-25 2003-04-25 Mold for semi-solid metal compact

Country Status (1)

Country Link
JP (1) JP4311971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584397B2 (en) * 2008-03-27 2014-09-03 タマティーエルオー株式会社 Method for producing a massive mixture of aluminum nitride and aluminum

Also Published As

Publication number Publication date
JP2004322176A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
CN106955985B (en) A kind of secondary Compound Extrusion casting method of aluminium alloy semi-solid
US5279349A (en) Process for casting amorphous alloy member
WO2015053373A1 (en) Semisolid casting and forging device and method, and cast and forged product
JP3635258B2 (en) Molding method and mold of semi-solid aluminum compact
US20170361374A1 (en) Press forming method for a semi-solid metal material and press forming apparatus for a semi-solid metal material
JP2772765B2 (en) Method of heating casting material for thixocasting
JP4311971B2 (en) Mold for semi-solid metal compact
JPH0254401B2 (en)
JP3658348B2 (en) Metal forming method and metal forming apparatus
JP2003326351A (en) Method for producing metallic product and its apparatus, and machine parts
JP2000144210A (en) Forging method of metallic powder
CN108262434B (en) A kind of increment die-forging forming method towards aluminium alloy slab
JP2794539B2 (en) Thixocasting method
JP2005040813A (en) Pressurization molding die and molding method for semi-solidified metal using the same
JP2837630B2 (en) Method and apparatus for manufacturing press-formed product
US2716792A (en) Method of cast-forging metals
JP2003126955A (en) Molding method and molding die for semisolid metal goods
JP2832691B2 (en) Thixocasting method
JPS60152358A (en) Half-melting high pressure casting method
SU1740131A1 (en) Method of manufacturing a molding die
JP2919014B2 (en) Forming method of semi-solid metal
JP2005272934A (en) Method for manufacturing metal member using fine atomized metal powder, and metal member using fine atomized metal powder
JPH03221253A (en) Thixocasting process
JP2954737B2 (en) Forming method of semi-molten metal
JPS5893557A (en) Production of composite fibrous metallic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term